JPS6160839A - Refining method refractory metal - Google Patents

Refining method refractory metal

Info

Publication number
JPS6160839A
JPS6160839A JP18015184A JP18015184A JPS6160839A JP S6160839 A JPS6160839 A JP S6160839A JP 18015184 A JP18015184 A JP 18015184A JP 18015184 A JP18015184 A JP 18015184A JP S6160839 A JPS6160839 A JP S6160839A
Authority
JP
Japan
Prior art keywords
vacuum
cylindrical body
mgcl2
gas
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18015184A
Other languages
Japanese (ja)
Other versions
JPH0445571B2 (en
Inventor
Hiroshi Ishizuka
博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP18015184A priority Critical patent/JPS6160839A/en
Priority to BR8504128A priority patent/BR8504128A/en
Publication of JPS6160839A publication Critical patent/JPS6160839A/en
Publication of JPH0445571B2 publication Critical patent/JPH0445571B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To prevent a back flow of air to a device, and to suppress contamination of a product metal by leading in an inert gas and continuing heating in a negative pressure atmosphere, in the latter half period of a process for separating mixed Mg and MgCl2 by heating a Kroll process reaction product under a reduced pressure. CONSTITUTION:A reaction product 4 in which Mg and MgCl2 obtained by a Kroll process are mixed is contained in a reducing reaction vessel 5 of the lower part of a cylindrical body 3 provided in an electric heating furnace 2. After installing a vessel supporting frame, an empty reducing reaction vessel 11 is installed, and the upper part and the lower part of the cylindrical body 3 are joined. Subsequently, a vacuum is formed through an exhaust pipe 6 of the top part, the lower part of the cylindrical body 3 is heated to about 950-1,000 deg.C, and the upper part of the cylindrical body 3 is cooled by a water jacket 7. This state is held for a prescribed time, and when a degree of vacuum in the suction port becomes about 2X10<-2>Torr, a small quantity of Ar gas is supplied from a conduit extending to the bottom part along the lower part of the cylindrical body 3, a degree of vacuum in this position is held at about 2-5X10<-2>Torr, and a coagulum of Mg, MgCl2, etc. is adhered to the inside surface of the vessel 11.

Description

【発明の詳細な説明】 本発明は耐火金属の精製法、特にT +CJa 、Zr
Cl4のよプな金属塩化物の溶融マグネシウムによる還
元法(いわゆるクロール法)で得られた反応生成物から
、塩化マグネシウム及び金属マグネシウムを分離・除去
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for refining refractory metals, particularly T + CJa, Zr
The present invention relates to a method for separating and removing magnesium chloride and metallic magnesium from a reaction product obtained by a reduction method of a metal chloride such as Cl4 with molten magnesium (so-called Kroll method).

クロル法で生成した金属から、これに介在する未反応の
金属マグネシウム及び塩化マグネシウムを加熱して分離
する方法としては、不活性ガスの循°環流にhlg及び
MgCLを担持させて系外へ取出す方法も知られている
が(特公昭43−29861号公報)、真空蒸溜による
方法がより一般的に採用されている。
A method for heating and separating unreacted metallic magnesium and magnesium chloride from the metal produced by the Chlor method is to carry hlg and MgCL in a circulating flow of inert gas and take them out of the system. is also known (Japanese Patent Publication No. 43-29861), but a method using vacuum distillation is more commonly adopted.

前者の方法においては、正圧のAr雰囲気中で操作され
るのでMgやMgCI tの蒸発速度が小さいうえ、こ
れらの物質を担持した循環ガスは冷却され、固化した鞠
やMgC1m等はフィルターで捕集されるため、複雑な
装置構成を必要とする。また捕集された陶やMgC1重
粒子はr布に付着しており回収に手間を要するうえ、回
収物も汚染の度合が大きいので再利用は困難である、等
の欠点があった。
In the former method, since the operation is carried out in a positive pressure Ar atmosphere, the evaporation rate of Mg and MgCIt is low, and the circulating gas carrying these substances is cooled, and solidified mari and MgClm are captured by a filter. It requires a complex equipment configuration. In addition, the collected ceramic and MgCl heavy particles adhere to the r-cloth, which requires time and effort to collect, and the recovered material is highly contaminated, making it difficult to reuse.

−万真空蒸溜工程においては、系全体を真空ボ/プで排
気しつ工、例えばTiの場合は約1000’Cに加熱し
続ける。レトルト内に収容したスポンジ状金属からは、
まず鬼の蒸気が発生し、これはレトルト外に設けた冷却
部へ導いて凝固させる。鳩の蒸気が発生している間のレ
トルト内の圧力は比較的高(、数十rnfrLHglI
c達すルコどモアルカ、Mgの大部分が蒸発Q尽(し、
MgCl2の蒸気が発生する時期になると、この蒸気圧
は八4gに比べて1桁低いので、装置内の真空度はかな
り上昇し、しかもその期間は長い。従ってこの段階で装
置の気密性に欠陥が存在すると、侵入した外気圧より製
品が汚染されることになる。このような汚染の危険はf
′II製される金属がTiやその他の耐火金属のように
酸素や窒素との親和力が強く高真空度を得るためのゲッ
ターとして用いられるものくおいては極めて大きい。
- In the vacuum distillation process, the entire system is evacuated with a vacuum tube and continuously heated to about 1000'C in the case of Ti, for example. From the spongy metal housed in the retort,
First, demon steam is generated, which is guided to a cooling section installed outside the retort and solidified. The pressure inside the retort during pigeon steam generation is relatively high (, several tens of rnfrLHglI
When c reaches Rukodo Moalca, most of the Mg evaporates and Q exhausts (and
When the time comes for MgCl2 vapor to be generated, the vapor pressure is one order of magnitude lower than that of 84 g, so the degree of vacuum within the device increases considerably, and the period is long. Therefore, if there is a defect in the airtightness of the device at this stage, the product will be contaminated by the intruding outside air pressure. The risk of such contamination is
It is extremely large when the metal manufactured by 'II has a strong affinity for oxygen and nitrogen, such as Ti and other refractory metals, and is used as a getter to obtain a high degree of vacuum.

従って真空蒸溜工程忙用いる装置では高度の気密性を確
保しなげればならず、このためこれらの装置は昇温に先
立って加圧気体による気密性テストを行なうのが普通で
ある。しかし構成の複雑な実際の装置では、このテスト
に多大の労力及び時間を要するので現実的でない場合が
多く、またシール材の形状によっては排気系を高い正圧
状態に保てない場合がある。
Therefore, it is necessary to ensure a high degree of airtightness in equipment used in the vacuum distillation process, and for this reason, these equipments are usually tested for airtightness using pressurized gas prior to raising the temperature. However, in an actual device with a complicated configuration, this test requires a great deal of labor and time and is often impractical, and depending on the shape of the sealing material, it may not be possible to maintain the exhaust system at a high positive pressure state.

このように気密性の確認を系全体について完全く行なう
ことは困難なことが多く、また真空蒸溜操作開始後に漏
れが生じた場合には系全体が減圧状態くあるため、漏れ
箇所を見つけ出すことは極めて困難であり、結局真空蒸
溜楊作による従来の精密工程では、ある程度の製品汚染
は避けられず、良品質製品の歩留りは低かった。
In this way, it is often difficult to completely check the airtightness of the entire system, and if a leak occurs after the vacuum distillation operation has started, the entire system is under reduced pressure, so it is difficult to find the leak location. It is extremely difficult to do this, and in the end, the traditional precision process of vacuum distillation has inevitably resulted in a certain degree of product contamination, resulting in a low yield of high-quality products.

従りて本発明の主な目的の一つは上述の両従来技術の欠
点を除去することであり、その要旨は、陶及びMgC+
、と混在せる耐大金属塊を外気から隔てられた空間内で
加熱し、気化又は液化した陶及びMgCJ、を固体の金
属から分離する方法において、少くとも、碌及びMgC
l2の分圧が著しく低下する分離工程の後半期に、該空
間内に不活性ガスの気流を導入し、負圧の不活性ガス雰
囲気圧で加熱を続行することを特徴とする耐火金属の精
製法にある。
Therefore, one of the main objectives of the present invention is to eliminate the drawbacks of both the above-mentioned prior art, the gist of which is to
A method for separating vaporized or liquefied ceramic and MgCJ from solid metal by heating a large metal lump mixed with , in a space separated from the outside air, at least
Refining of refractory metal characterized by introducing an inert gas flow into the space in the latter half of the separation process when the partial pressure of l2 is significantly reduced, and continuing heating under a negative inert gas atmosphere pressure. It's in the law.

本発明の方法に従って操作を行なうときは、蒸溜装置の
各連結部や、排気系からこの装置への空気の逆流が防止
され、製品金属の汚染は最小限に抑制される。
When operating according to the method of the present invention, backflow of air from the connections and exhaust system of the distillation apparatus into the apparatus is prevented and contamination of product metals is minimized.

本発明方法の実施忙際しては、精製すべき金属塊は例え
ば特公昭48−34646号、特開昭58−17453
婦に記載されているような装置を利用して、蒸溜装置内
空間の上方又は下方IC置き、下方又は上方を冷却部と
して、蒸発した職やMgCI 曹をこへに固化付着させ
ることができる。或は金属塩化物のMg還元とかへる蒸
溜操作を同一の装置内で行な5ために、例えば特公昭5
5−56255号ヤuSP6,684.264 〕各公
報に記載の装置を改変し利用することができる。還元工
程を別装置で行なう場合、内筒を用いる二重筒構成とす
れば金属塊の移送に便利である。
During the implementation of the method of the present invention, the metal ingot to be refined may be used, for example, in
Using a device such as that described in the above, the IC can be placed above or below the internal space of the distillation apparatus, and the lower or upper part can be used as a cooling section to solidify and adhere evaporated carbon dioxide and MgCI soda thereto. Alternatively, in order to perform Mg reduction of metal chlorides and distillation operations in the same apparatus, for example,
No. 5-56255, uSP 6,684.264] The devices described in each publication can be modified and used. When the reduction process is performed in a separate device, a double cylinder configuration using an inner cylinder is convenient for transporting the metal lump.

上記の各種の装置を用いて本発明方法を実施する場合、
さらにいくつかの態様が利用可能である。
When carrying out the method of the present invention using the various devices described above,
Several further embodiments are available.

例えば不活性ガスの導入(吹込み)箇所については、用
いるガスのFir債が少いこと、また蒸溜装置のレトル
ト本体から洩れが生ずることはほとんどないので、空気
の混入防止という本来の目的からは、不活性ガスの導入
(吹込み)は、精製すべき金属塊に関して真空吸引側と
同じ側(例えば装置上方)に行なえば充分である。この
場合、比較的本線な構造の装置が得られる点で布石であ
る。一方、ガスの導入を吸引と反対側忙行なえば、導入
気流による禰及びMgCl2の冷却部への搬送が期待さ
れ、これによる減圧蒸溜時間の短縮が可能になるので、
より好ましい。この際、精製すべき金属塊を容器下方V
C置き加熱する構成の減圧蒸溜装置の場合、不活性ガス
を導入するための管は容器壁に沿って延設し、器底近く
に開口を持つように予め配置しておくのが最適である。
For example, regarding the point where inert gas is introduced (injected), the gas used has a small amount of fire, and there is almost no leakage from the retort body of the distillation equipment, so it is not possible to prevent the original purpose of preventing air from entering. It is sufficient that the inert gas is introduced (injected) on the same side of the metal mass to be purified as the vacuum suction side (for example, above the apparatus). In this case, it is a good start in that a device with a relatively basic structure can be obtained. On the other hand, if the gas is introduced on the side opposite to the suction, it is expected that the introduced airflow will transport the slag and MgCl2 to the cooling section, which will shorten the vacuum distillation time.
More preferred. At this time, the metal lump to be refined is
In the case of a vacuum distillation device configured to heat the container under a C, it is best to extend the pipe for introducing the inert gas along the container wall and place it in advance so that it has an opening near the bottom of the container. .

例えば下方に加熱部を有する専用の蒸溜レトルトを用い
金属を収容した内筒をレトルト内へ配設する場合には、
レトルトの底部に開口を有する導管を設けておく。また
還元操作と蒸溜操作とを共通のレトルト(例えば特開昭
59−133335に記載のような)を用いて実施する
場合には、還元扮作時に副生MgCl2の排出のためく
用いる配管を、不活性ガスの導入管として用いることが
できる。こうすることによって不活性ガスは導入管を通
過する間K、900″C,以上(加熱された炉によって
充分に予熱されるので、MgCl2や〜1gの凝固を防
ぐため(導入ガスを予熱する特別な装置は必要としない
For example, when using a dedicated distillation retort with a heating section below and placing an inner cylinder containing metal inside the retort,
A conduit with an opening is provided at the bottom of the retort. In addition, when the reduction operation and the distillation operation are carried out using a common retort (for example, as described in JP-A-59-133335), the piping used for discharging the by-product MgCl2 during the reduction operation is It can be used as an inert gas introduction pipe. By doing this, the inert gas is sufficiently preheated by the heated furnace to K, 900"C or more, while passing through the inlet tube, and to prevent solidification of MgCl2 or ~1 g (a special No special equipment is required.

構造を簡単くするために上記の装置において導入管の開
口を冷却部の下部に設けることができる。
In order to simplify the structure, the opening of the inlet pipe can be provided in the lower part of the cooling section in the above device.

この場合は導入したガスによってMg及びMgL:11
の蒸気が多少冷却されることになるが、導入ガスは少量
であるので、蒸気が凝固し落下する、ことはなく、むし
ろ僅かながら蒸気の冷却壁への固化付着を促進する作用
が見られる。
In this case, depending on the gas introduced, Mg and MgL: 11
The steam will be cooled to some extent, but since the amount of gas introduced is small, the steam will not solidify and fall.In fact, there will be a slight effect of promoting the solidification and adhesion of the steam to the cooling wall.

さらに加熱、レトルト部と冷却筒との間の接続が完全に
気密に行なわれる場合には、導入管の開口部は冷却筒の
蓋付近に設げてもよい。これによっても蓋部及び真空系
配管における洩れによって排気が真空系へ逆流すること
は阻止できる。
Furthermore, if the connection between the heating and retort parts and the cooling cylinder is completely airtight, the opening of the introduction pipe may be provided near the lid of the cooling cylinder. This also prevents exhaust gas from flowing back into the vacuum system due to leaks in the lid and vacuum system piping.

−万、精製すべき金属を上部に置き、下部を冷却部とす
る形式の減圧分離装置1cついては、尋人管の配置を上
記の各場合の逆とすればよ℃・。
-10,000°C. For a vacuum separation apparatus 1c in which the metal to be refined is placed in the upper part and the lower part is used as a cooling section, the arrangement of the interstitial tubes can be reversed to the above cases.

本発明方法においては真空分離操作の少くとも後段にお
いて不活性ガスを導入し、もって真空系内の真空度を多
少低下せしめ、これによって、操作開始前の気密試験で
は検知が不可能又は困難な漏洩個所からの僅かな空気の
侵入くよって真空蒸溜禄作中VC精製金属が汚染される
のを防ぐものである。従って使用するガスの量は少量で
充分に機能する。例えば蒸溜操作を通じて、排気を続け
なからI Torr程度の圧力を保つべ(Arを導入し
てもよいが、しかしより大きな蒸溜速度を得る上ではよ
り減圧下で、即ち導入ガスのより少い状態で操作するこ
とが望ましい。一般にM溜操作開始直前の到達真空度(
例えば1O−2Torr程度)が、操作を通じて保たれ
るようにMガスを投入するのがよい。
In the method of the present invention, an inert gas is introduced at least after the vacuum separation operation, thereby reducing the degree of vacuum in the vacuum system to some extent, thereby preventing leakage that is impossible or difficult to detect in the airtightness test before the start of the operation. This prevents the VC refined metal from being contaminated during vacuum distillation by a small amount of air entering from the place. Therefore, the system can function satisfactorily with a small amount of gas. For example, throughout the distillation operation, a pressure of about I Torr should be maintained without continuing evacuation (Ar may be introduced, but to obtain a higher distillation rate, it is necessary to maintain a pressure of around I Torr), but to obtain a higher distillation rate, it is necessary to maintain a pressure of about I Torr, i.e. with less gas introduced. Generally, the ultimate vacuum level (
For example, it is preferable to introduce M gas so that the pressure (about 10-2 Torr) is maintained throughout the operation.

このように本発明方法は比較的低い真空度で蒸溜操作を
行うので、高真空度での蒸溜操作におけるような大容量
の高真空ボンダを必要としないので、排気系を簡単な構
成にすることができろ。また操作前の気密試験を簡略化
できるのでこれに要する時間の短縮及び労力の節約が達
成される。
As described above, since the method of the present invention performs distillation operation at a relatively low degree of vacuum, it does not require a large-capacity high-vacuum bonder unlike distillation operations at a high degree of vacuum, so the exhaust system can be configured simply. Be able to do it. Furthermore, since the airtightness test before operation can be simplified, the time and labor required for this can be reduced.

本発明方法では蒸溜操作が低真空度で行われるために、
不純物との蒸気圧の差に基く真空分離操作の効率自体は
多少低下するが、反面、系内忙存在するガス忙よる熱伝
導率の上昇があるため1、最終的な不純物除去効率の低
下は少い。また系内には常時不活性ガスを導入している
ので、排気系にトラブルを生じて系内を正圧にする必要
が生じた場合にでも精製金属の汚染を未然に防止するた
めの適切な対応を速やかに行うことができ、こうしたト
ラブルにもか工わらず、高品質を維持し歩留りの低下を
防止することができる。
In the method of the present invention, since the distillation operation is performed at a low vacuum level,
The efficiency of the vacuum separation operation itself is somewhat reduced due to the difference in vapor pressure from impurities, but on the other hand, the thermal conductivity increases due to the presence of gas in the system.1 The final impurity removal efficiency decreases. Few. In addition, since inert gas is constantly introduced into the system, even if there is a problem with the exhaust system and it becomes necessary to create positive pressure in the system, appropriate measures can be taken to prevent contamination of refined metals. It is possible to take prompt action, maintain high quality, and prevent a decline in yield despite these troubles.

次に本発明を図面によって説明する。Next, the present invention will be explained with reference to the drawings.

第1図は本発明方法の実施に適した分離装置の縦断面図
を示す。2忙おいて全体を1として示される減圧分離装
置の下部外万罠は、本質的に密閉構造で適当な減圧手段
(図示せず)に接続した電熱炉2が配置される。炉2内
には縦長の筒体6が取付けられ、この下部には、クロル
法で得られる生成金属−J −Mg Cl *から成る
反応混合物4を保持した還元反応容器5が収容される。
FIG. 1 shows a longitudinal sectional view of a separation device suitable for carrying out the method of the invention. The lower part of the vacuum separator, shown as 1 in its entirety, is essentially a closed structure in which an electric heating furnace 2 connected to a suitable pressure reducing means (not shown) is disposed. A vertically elongated cylindrical body 6 is installed in the furnace 2, and a reduction reaction vessel 5 holding a reaction mixture 4 consisting of the produced metal -J-MgCl* obtained by the Kroll method is accommodated in the lower part of the cylinder.

炉2かも突出せる筒体5の上部は、炉内に置かれる下部
から分離可能で、頂部には減圧用の排気管6が、周囲に
は冷却用の水套7が設置される。筒体3の下部には器壁
に溢って不活性ガス導入管8が延設され底部に開口を有
する。筒体の中間部には着脱可能な熱遮蔽具9が取付け
られている。筒体3の蓋10にボルトで固定されて空の
還元反応容器11が吊下げられ、内面1clV1g、 
MgC1婁等の凝固物を付着される。このような構成の
装置を用いた一実施例を示せば次のとおりである。
The upper part of the cylinder 5, which can also protrude from the furnace 2, can be separated from the lower part placed in the furnace, and an exhaust pipe 6 for depressurization is installed at the top, and a water canopy 7 for cooling is installed around the top. An inert gas introduction pipe 8 extends from the bottom of the cylinder 3 overflowing the vessel wall, and has an opening at the bottom. A removable heat shield 9 is attached to the middle part of the cylinder. An empty reduction reaction container 11 is fixed to the lid 10 of the cylinder 3 with bolts, and the inner surface 1clV1g,
A coagulum such as MgCl is attached. An example using a device having such a configuration is as follows.

実施例 内径2m、深さ4mの本質的に円筒状の空間をもつ電熱
炉に内径t6m、肉厚32 IR(r) S U S 
516製の筒体下部が設置されている。この中に置かれ
た外径1.4 m、肉厚16mm、全長2.4 m、 
SUS a 10製の反応容器にはスポンジチタン約4
トンと少量 のMgC1−およびMgを含む混合物が保
持されている。
Example An electric furnace having an essentially cylindrical space with an inner diameter of 2 m and a depth of 4 m has an inner diameter of t6 m and a wall thickness of 32 IR(r) S U S
The lower part of the cylinder made of 516 is installed. Placed inside this was an outer diameter of 1.4 m, a wall thickness of 16 mm, a total length of 2.4 m,
Approximately 4 pieces of titanium sponge are used in the reaction vessel made of SUS A10.
A mixture containing tons and small amounts of MgC1- and Mg is retained.

容器支持用のコマを取付けた後、筒体下部VC置かれた
のと同タイプの(底板な取除いた)空の還元反応容器を
設置し、更に筒体の上部を被せて下部と接合する。頂部
の管を通じて真空引きを行ない、炉で筒体下部を950
〜1000’C,に加熱する一万、上部を冷却する。
After installing the support piece for the container, install an empty reduction reaction container of the same type as the VC placed at the bottom of the cylinder (with the bottom plate removed), then cover the top of the cylinder and connect it to the bottom. . A vacuum is drawn through the tube at the top, and the lower part of the cylinder is heated to 950°C in a furnace.
Heat to ~1000'C, then cool the top.

上記温度に20時間保持し、真空ポンプの吸引口におけ
る真空度が2 X 10−”Torrに達した時点で、
筒体下部に沿って延び底部に開口している導管を通じて
少量のArガスを供給し、上記位置における真空度を2
〜5 X 10−”J’orr K保りた。この状態を
72時間維持して分離操作を完了した。
The temperature was maintained at the above temperature for 20 hours, and when the degree of vacuum at the suction port of the vacuum pump reached 2 x 10-'' Torr,
A small amount of Ar gas is supplied through a conduit extending along the lower part of the cylinder and opening at the bottom, and the degree of vacuum at the above position is reduced to 2.
~5×10-”J'orr K was maintained. This state was maintained for 72 hours to complete the separation operation.

得られたスポンジチタン塊全体の平均分析値は次のとお
りであった。
The average analysis values of the entire titanium sponge mass obtained were as follows.

酸素 s o o ppm     窒素  301)
I)m祿  120ppm     塩素 250pI
Xn硬さ  80BHN この品質は、従来の完全気密な装置で得られるものとほ
とんど同等であり、かつ全操業時間についても大差は見
られなかった。
Oxygen s o o ppm Nitrogen 301)
I)m 120ppm Chlorine 250pI
Xn hardness: 80BHN This quality is almost the same as that obtained with a conventional completely airtight device, and no major difference was observed in the total operating time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に適した減圧分離装置の概略
を示す縦断面図である。 1・・・・・・分離装置(全体);2・・・・・・電熱
炉;3・・・・・・筒体; 4・・・・・・反応混合物
;5・・・・・・還元反応容器; 6・・・・・・排気
管; 7・・・・・・水套;8・・・・・・ガス導入管
; 9・・・・・・熱遮蔽具;10・・・・・・蓋;1
1・・・・・・還元反応容器。
FIG. 1 is a vertical sectional view schematically showing a vacuum separation apparatus suitable for carrying out the method of the present invention. 1... Separation device (whole); 2... Electric heating furnace; 3... Cylindrical body; 4... Reaction mixture; 5... Reduction reaction vessel; 6... Exhaust pipe; 7... Water mantle; 8... Gas introduction pipe; 9... Heat shield; 10... ...Lid; 1
1... Reduction reaction vessel.

Claims (1)

【特許請求の範囲】 1、Mg及びMgCl_2と混在せる耐火金属塊を外気
から隔てられた空間内で加熱し、気化又は液化したMg
及びMgCl_2を固体の金属から分離する方法におい
て、少くとも、Mg及びMgCl_2の分圧が著しく低
下する分離工程の後半期に、該空間内に不活性ガスの気
流を導入し、負圧の不活性ガス雰囲気で加熱を続行する
ことを特徴とする耐火金属の精製法。 2、上記不活性ガスがアルゴンを主成分とするガスであ
る、特許請求の範囲第1項記載の耐火金属の精製法。
[Claims] 1. Mg that is vaporized or liquefied by heating a refractory metal lump mixed with Mg and MgCl_2 in a space separated from the outside air.
and MgCl_2 from a solid metal, at least in the latter half of the separation process when the partial pressures of Mg and MgCl_2 are significantly reduced, a stream of inert gas is introduced into the space, and an inert gas under negative pressure is introduced into the space. A method for refining refractory metals characterized by continuing heating in a gas atmosphere. 2. The method for refining a refractory metal according to claim 1, wherein the inert gas is a gas containing argon as a main component.
JP18015184A 1984-08-29 1984-08-29 Refining method refractory metal Granted JPS6160839A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18015184A JPS6160839A (en) 1984-08-29 1984-08-29 Refining method refractory metal
BR8504128A BR8504128A (en) 1984-08-29 1985-08-28 REFRACTORY METAL PURIFICATION PROCESS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18015184A JPS6160839A (en) 1984-08-29 1984-08-29 Refining method refractory metal

Publications (2)

Publication Number Publication Date
JPS6160839A true JPS6160839A (en) 1986-03-28
JPH0445571B2 JPH0445571B2 (en) 1992-07-27

Family

ID=16078288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18015184A Granted JPS6160839A (en) 1984-08-29 1984-08-29 Refining method refractory metal

Country Status (2)

Country Link
JP (1) JPS6160839A (en)
BR (1) BR8504128A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066914A1 (en) * 2000-08-07 2003-08-14 Sumitomo Titanium Corporation High-purity spongy titanium material and its production method
JP2006097107A (en) * 2004-09-30 2006-04-13 Toho Titanium Co Ltd Method for manufacturing sponge titanium
JP2010013686A (en) * 2008-07-02 2010-01-21 Osaka Titanium Technologies Co Ltd Method for producing sponge titanium
US8850715B2 (en) * 2006-09-07 2014-10-07 Eisenmann Ag Process and installation for drying articles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066914A1 (en) * 2000-08-07 2003-08-14 Sumitomo Titanium Corporation High-purity spongy titanium material and its production method
JP2006097107A (en) * 2004-09-30 2006-04-13 Toho Titanium Co Ltd Method for manufacturing sponge titanium
US8850715B2 (en) * 2006-09-07 2014-10-07 Eisenmann Ag Process and installation for drying articles
JP2010013686A (en) * 2008-07-02 2010-01-21 Osaka Titanium Technologies Co Ltd Method for producing sponge titanium

Also Published As

Publication number Publication date
JPH0445571B2 (en) 1992-07-27
BR8504128A (en) 1986-06-17

Similar Documents

Publication Publication Date Title
US6824585B2 (en) Low cost high speed titanium and its alloy production
US3966460A (en) Reduction of metal halides
JPS62103328A (en) Production of zirconium or hafnium
US2482127A (en) Apparatus for refining metals
JP6878639B1 (en) Analytical method of oxygen concentration of titanium sponge
US5007243A (en) Vessel for making high-purity fine particles of active metals
US2778726A (en) Purification of refractory metals
US4749409A (en) Method of purifying refractory metal
JPS6160839A (en) Refining method refractory metal
Kroll et al. Large‐scale laboratory production of ductile zirconium
Hansen et al. Producing titanium powder by continuous vapor-phase reduction
US2792438A (en) Apparatus for producing titanium metal
JP2960652B2 (en) Method and apparatus for purifying high purity metal
US2952723A (en) Apparatus for controlling the atmosphere in an electric furnace
JP3515541B2 (en) Titanium sponge manufacturing equipment
EP0091414B1 (en) Apparatus and method for production of refractory metal from a chloride thereof
US3356491A (en) Purification of contaminated reactive metal products
US3663001A (en) Vacuum separator
JPS59226127A (en) Device for producing high-melting high-toughness metal
JPS6112837A (en) Manufacture of metallic titanium
US2735668A (en) Recovery of sodium and calcium metals
JPH06145831A (en) Treatment of molten aluminum or molten aluminum alloy
JPH0255490B2 (en)
JP3774339B2 (en) Method for recovering metallic magnesium
US2855331A (en) Method for producing titanium metal