JP2010013686A - Method for producing sponge titanium - Google Patents

Method for producing sponge titanium Download PDF

Info

Publication number
JP2010013686A
JP2010013686A JP2008173380A JP2008173380A JP2010013686A JP 2010013686 A JP2010013686 A JP 2010013686A JP 2008173380 A JP2008173380 A JP 2008173380A JP 2008173380 A JP2008173380 A JP 2008173380A JP 2010013686 A JP2010013686 A JP 2010013686A
Authority
JP
Japan
Prior art keywords
melt
molten
reduction reaction
pipe
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008173380A
Other languages
Japanese (ja)
Other versions
JP4906121B2 (en
Inventor
Kotaro Nakamura
幸太郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2008173380A priority Critical patent/JP4906121B2/en
Publication of JP2010013686A publication Critical patent/JP2010013686A/en
Application granted granted Critical
Publication of JP4906121B2 publication Critical patent/JP4906121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively prevent the blockage from occurring in a melt-transportation pipe during a tapping operation in a process of producing sponge titanium with the Kroll method, through a simple operation. <P>SOLUTION: This production method includes lowering the level of a melt in a melt-transportation pipe 13 which is a vertical pipe, down to an opening end of the melt-transportation pipe 13 in a bottom side of a reduction reaction vessel 10 by injecting a gas into the melt-transportation pipe 13, prior to the tapping operation of extracting molten MgCl<SB>2</SB>produced as a byproduct from the bottom part of the vessel 10 to the outside of the vessel 10 through the vertical melt-transportation pipe 13, in a middle of the reaction. The melt in the melt-transportation pipe 13 is pressed into the reduction reaction vessel 10, and the molten Mg in the melt floats on the molten MgCl<SB>2</SB>in the reduction reaction vessel 10 due to a difference between the specific gravities. Afterward, the molten MgCl<SB>2</SB>is extracted from the bottom part of the reduction reaction vessel 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、クロール法によるスポンジチタン製造方法に関する。   The present invention relates to a method for producing sponge titanium by a crawl method.

航空機用材料等として使用される展伸材用金属チタンは、クロール法によるスポンジチタンの製造、スポンジチタンの溶解凝固(チタンインゴットの製造)等の工程を経て製造される。クロール法によるスポンジチタンの製造では、図3(a)に示すように、レトルトと呼ばれる還元反応容器10が使用される。還元反応容器10は耐熱性に優れたステンレス鋼等からなり、上部の蓋体に取付けられた四塩化チタン供給管11及び不活性ガス供給管12、並びに底部に連結された溶融物輸送管13などを備えている。   Titanium metal for wrought material used as an aircraft material or the like is manufactured through processes such as manufacture of sponge titanium by the crawl method, dissolution and solidification of sponge titanium (production of titanium ingot), and the like. In the production of sponge titanium by the crawl method, a reduction reaction vessel 10 called a retort is used as shown in FIG. The reduction reaction vessel 10 is made of stainless steel or the like having excellent heat resistance, and includes a titanium tetrachloride supply pipe 11 and an inert gas supply pipe 12 attached to the upper lid, a melt transport pipe 13 connected to the bottom, and the like. It has.

溶融物輸送管13は、ここでは還元反応容器10の横に垂直に配置された外部縦管であり、その下端部は、反応中に容器底部内に溜まる副生物を抜き出すために、その容器底部に接続されている。溶融物輸送管13の上端部は、他の溶融物輸送管との接続、蓋板の取付けなどのためにフランジ構造になっている。   The melt transport pipe 13 here is an external vertical pipe arranged vertically beside the reduction reaction vessel 10, and its lower end is a bottom of the vessel for extracting by-products accumulated in the bottom of the vessel during the reaction. It is connected to the. The upper end portion of the melt transport pipe 13 has a flange structure for connection to other melt transport pipes, attachment of a cover plate, and the like.

操業では、炉内に設置された還元反応容器10内を溶融Mg50で満たし、残りの容器内空間をArガスで満たした状態で、四塩化チタン供給管11から液状の四塩化チタンを容器内に滴下する。容器内に滴下された四塩化チタンが容器内の溶融Mg50により順次還元されることにより、容器内にスポンジチタン60が生成されていく。スポンジチタン60の生成に伴って液状のMgCl2 70が副生する。副生物であるMgCl2 70は比重差のために、還元反応容器10の底部内に溜まる。 In operation, liquid titanium tetrachloride is supplied from the titanium tetrachloride supply pipe 11 into the container in a state where the reduction reaction container 10 installed in the furnace is filled with molten Mg50 and the remaining space in the container is filled with Ar gas. Dripping. Titanium tetrachloride dropped into the container is sequentially reduced by the molten Mg 50 in the container, whereby sponge titanium 60 is generated in the container. As the titanium sponge 60 is produced, liquid MgCl 2 70 is by-produced. By-product MgCl 2 70 accumulates in the bottom of the reduction reaction vessel 10 due to the difference in specific gravity.

副生MgCl2 70が容器内に溜まっていくと、スポンジチタン60の生成効率が低下する。これを防止するために、操業中に副生MgCl2 70が還元反応容器10から抜き出される(特許文献1)。この操作はタップと呼ばれており、操業中に何回も繰り替えされる。このタップ操作の詳細は以下のとおりである。 As the by-product MgCl 2 70 accumulates in the container, the generation efficiency of the sponge titanium 60 is lowered. In order to prevent this, by-product MgCl 2 70 is extracted from the reduction reaction vessel 10 during the operation (Patent Document 1). This operation is called tapping and is repeated many times during operation. The details of this tap operation are as follows.

特開2004−292832号公報JP 2004-292932 A

移動式の回収容器20を還元反応容器10に横付けする。回収容器20は、上部に垂直に取付けられた導入管21を有している。導入管21は溶融物輸送管であり、他の溶融物輸送管との接続等のために、上端部はフランジ構造となっている。回収容器20が還元反応容器10に横付けされると、導入管21の上端部と溶融物輸送管13の上端部を接続管30にて連結する。接続管30も溶融物輸送管13や導入管21と同じく溶融物輸送管であり、両端部がそれぞれの溶融物輸送管の管端部にフランジ結合される。   The mobile recovery container 20 is placed next to the reduction reaction container 10. The collection container 20 has an introduction pipe 21 vertically attached to the upper part. The introduction pipe 21 is a melt transport pipe, and the upper end portion has a flange structure for connection with other melt transport pipes. When the recovery container 20 is placed on the reduction reaction container 10, the upper end of the introduction pipe 21 and the upper end of the melt transport pipe 13 are connected by the connection pipe 30. The connection pipe 30 is also a melt transport pipe similar to the melt transport pipe 13 and the introduction pipe 21, and both ends thereof are flange-coupled to the pipe ends of the respective melt transport pipes.

回収容器20と還元反応容器10の連結が終わると、還元反応容器10の不活性ガス供給管12からArガスを容器内に圧入する。これにより、還元反応容器10の底部に溜まったMgCl2 70が溶融物輸送管13、同じく溶融物輸送管である接続管30及び導入管21を介して回収容器20内に排出される。効率的な排出のために、溶融物輸送管13の下端部は外周面の最下部に接続されている。 When the connection between the recovery container 20 and the reduction reaction container 10 is completed, Ar gas is pressed into the container from the inert gas supply pipe 12 of the reduction reaction container 10. As a result, MgCl 2 70 accumulated at the bottom of the reduction reaction vessel 10 is discharged into the recovery vessel 20 through the melt transport pipe 13, the connection pipe 30 that is also a melt transport pipe, and the introduction pipe 21. For efficient discharge, the lower end of the melt transport pipe 13 is connected to the lowermost part of the outer peripheral surface.

操業中にこの操作を繰り返すことにより、還元反応容器10内での、四塩化チタンと溶融Mg50との反応が円滑に進む。   By repeating this operation during operation, the reaction between titanium tetrachloride and molten Mg 50 proceeds smoothly in the reduction reaction vessel 10.

クロール法によるスポンジチタンの製造では、上述したタップの他に、追加チャージと呼ばれる作業が行われることもある。追加チャージは、操業中に溶融Mg50を補充する作業であり、操業中に副生物であるMgCl2 を抜き出すと、還元反応容器10内の空間が増大し、ここに溶融Mg50を注入すると1バッチあたりのスポンジチタン生成量が増大することを狙った操作である。この作業の詳細を図3(b)により説明する。 In the production of sponge titanium by the crawl method, in addition to the tap described above, an operation called additional charge may be performed. The additional charge is an operation for replenishing molten Mg50 during operation. When MgCl 2 which is a by-product is extracted during operation, the space in the reduction reaction vessel 10 is increased. This is an operation aimed at increasing the amount of titanium sponge produced. Details of this operation will be described with reference to FIG.

追加チャージの際には、図3(a)に示した接続管30を外し、回収容器20を遠ざける。代わりに移動式のMg容器40を還元反応容器10に横付けする。Mg容器40は内部に溶融Mg50を収容しており、上部に取付けられた垂直な不活性ガス供給管41及びMg排出管42などを装備している。Mg排出管42の上部は、接続管30を共用するために回収容器20の導入管21と同じ縦管形状になっており、下部は溶融Mg50の導出のためにMg容器40の底部に達している。   At the time of additional charging, the connecting pipe 30 shown in FIG. 3A is removed and the collection container 20 is moved away. Instead, the mobile Mg container 40 is placed next to the reduction reaction container 10. The Mg container 40 contains molten Mg 50 therein, and is equipped with a vertical inert gas supply pipe 41 and a Mg discharge pipe 42 attached to the upper part. The upper part of the Mg discharge pipe 42 has the same vertical pipe shape as the introduction pipe 21 of the recovery container 20 in order to share the connection pipe 30, and the lower part reaches the bottom of the Mg container 40 to lead out the molten Mg 50. Yes.

Mg容器40が定位置に固定されると、Mg排出管42と溶融物輸送管13を接続管30により接続する。この状態で不活性ガス供給管41からMg容器40内にArガスを圧入する。これにより、Mg容器40内の溶融Mg50が排出管42及び溶融物輸送管13を経て還元反応容器10内に注入される。   When the Mg container 40 is fixed in place, the Mg discharge pipe 42 and the melt transport pipe 13 are connected by the connection pipe 30. In this state, Ar gas is injected into the Mg container 40 from the inert gas supply pipe 41. Thereby, molten Mg 50 in the Mg container 40 is injected into the reduction reaction container 10 through the discharge pipe 42 and the melt transport pipe 13.

タップと追加チャージを繰り返すことにより、1バッチあたりのスポンジチタン60の収量が向上する。追加チャージの回数は、例えば100時間の反応の場合、十数回のタップ作業に対して数回である。   By repeating the tap and additional charge, the yield of titanium sponge 60 per batch is improved. For example, in the case of a reaction of 100 hours, the number of additional charges is several times for a dozen tap operations.

このようなクロール法によるスポンジチタンの製造における問題点の一つとして、前述したタップ作業での、溶融物輸送管の閉塞がある。具体的には、タップ作業の際に、接続管30内や還元反応容器10における溶融物輸送管13の上部内に閉塞が発生するのである。溶融物輸送管に一旦閉塞が発生すると、その交換作業や加熱溶解作業などが必要になり、作業効率が著しく低下する。溶融物輸送管を強制的に加熱すれば閉塞を防止できる可能性はあるが、この対策はコストがかかり、現実的な対策とはいえない。   One of the problems in the production of titanium sponge by such a crawl method is the blockage of the melt transport pipe in the tap operation described above. Specifically, the clogging occurs in the connection pipe 30 or in the upper part of the melt transport pipe 13 in the reduction reaction vessel 10 during the tap operation. Once the melt transport pipe is clogged, replacement work, heating and melting work, etc. are required, and work efficiency is significantly reduced. Although it may be possible to prevent clogging by forcibly heating the melt transport pipe, this measure is costly and is not a realistic measure.

本発明の目的は、タップ作業での溶融物輸送管の閉塞を簡単な操作で効果的に防止することができるスポンジチタン製造方法を提供することにある。   The objective of this invention is providing the sponge titanium manufacturing method which can prevent effectively the obstruction | occlusion of the melt transport pipe | tube by a tap operation by simple operation.

本発明者は、クロール法によるスポンジチタンの製造作業に従事しており、その過程で、タップ作業での輸送管閉塞に関して以下の事実を経験的に認識した。   The present inventor is engaged in the production of sponge titanium by the crawl method. In the process, the inventors have empirically recognized the following fact regarding the blockage of the transport pipe in the tap operation.

溶融Mgの追加チャージを行わない操業よりも追加チャージを行う操業の方が、タップ作業での輸送管閉塞の発生頻度が高い。より具体的には、追加チャージを行った後のタップ作業で輸送管の閉塞が発生しやすい。追加チャージを行わない操業でも輸送管の閉塞は発生し、それは最初のタップ作業で生じるケースが多い。本発明者の調査によると、輸送管における閉塞物質は、タップ作業で抜き出されるMgCl2 ではなく、Mgを主成分としていることが判明した。 The operation in which the additional charge is performed is higher in the operation of performing the additional charge than the operation in which the additional charge of molten Mg is not performed. More specifically, the transportation pipe is likely to be blocked by the tap operation after the additional charge is performed. Even in operations where no additional charge is performed, the transport pipe is blocked, which is often caused by the first tapping operation. According to the inventor's investigation, it was found that the clogging material in the transport pipe is mainly composed of Mg, not MgCl 2 extracted by tapping.

これらの経験的知見から、タップ作業での輸送管の閉塞の原因は、還元反応容器10の溶融物輸送管13内に残る溶融Mgであると、本発明者は推測した。すなわち、操業開始時、還元反応容器10内は溶融Mgで満たされているが、同時に溶融物輸送管13内も溶融Mgで満たされている。反応の進行に伴ってMgCl2 が副生するが、溶融MgCl2 の比重は溶融Mgの比重より大きく、溶融物輸送管13内の溶融Mgが溶融MgCl2 と入れ代わることはない。仮に溶融MgCl2 が溶融物輸送管13内に侵入しても、輸送管内の少なくとも液面付近は溶融Mgで占有されることになる。追加チャージを行った後も同様に溶融物輸送管13は溶融Mgで満たされている。その結果として、初回タップの際、或いは追加チャージ後のタップ作業の際には、抜き取り開始直後に接続管30内に溶融Mgが流入し、管内面に付着し凝固して閉塞を発生させることになる。 From these empirical findings, the present inventor speculated that the cause of the clogging of the transport pipe in the tap operation was the molten Mg remaining in the melt transport pipe 13 of the reduction reaction vessel 10. That is, at the start of operation, the reduction reaction vessel 10 is filled with molten Mg, but at the same time, the melt transport pipe 13 is also filled with molten Mg. As the reaction proceeds, MgCl 2 is produced as a by-product, but the specific gravity of molten MgCl 2 is greater than the specific gravity of molten Mg, and the molten Mg in the melt transport pipe 13 is not replaced with molten MgCl 2 . Even if molten MgCl 2 enters the melt transport pipe 13, at least the vicinity of the liquid level in the transport pipe is occupied by the molten Mg. Similarly, after the additional charging, the melt transport pipe 13 is filled with molten Mg. As a result, at the time of the first tap or when performing a tap operation after an additional charge, molten Mg flows into the connection pipe 30 immediately after the start of extraction, adheres to the inner surface of the pipe, and solidifies to generate a blockage. Become.

溶融MgCl2 より溶融Mgの方が閉塞を発生させやすい理由は不明であるが、両者の熱伝導率などの物性値の違いによるものと考えられる。 The reason why molten Mg is more likely to cause clogging than molten MgCl 2 is unclear, but is thought to be due to differences in physical properties such as thermal conductivity between the two.

本発明者は、これらの事実を総合的に検討した結果、タップ作業の前に、溶融物輸送管13内を不活性ガスにより逆方向に加圧し、溶融物輸送管13内の溶融物を還元反応容器10内へ押し戻すのが、合理的、効率的な対策となり得るとの結論に到達した。すなわち、タップ作業の際に還元反応容器10と接続された回収容器20内に不活性ガスを圧入すれば、溶融物輸送管13内の溶融物は還元反応容器10内へ容易に押し戻される〔図3(a)参照〕。還元反応容器10内へ押し戻された溶融物中の溶融Mgは、還元反応容器10内の溶融MgCl2 より比重が小さいので、還元反応容器10内の溶融物中を浮上する。その後、加圧を停止すれば、還元反応容器10の底部内に溜まった比重の大きい溶融MgCl2 のみが溶融物輸送管13内に流入し、溶融物輸送管13内が溶融MgCl2 に完全置換される。 As a result of comprehensively examining these facts, the present inventor reduced the melt in the melt transport pipe 13 by pressurizing the melt transport pipe 13 in the reverse direction with an inert gas before the tap operation. The conclusion was reached that pushing back into the reaction vessel 10 could be a rational and efficient measure. That is, when an inert gas is injected into the recovery container 20 connected to the reduction reaction container 10 during the tap operation, the melt in the melt transport pipe 13 is easily pushed back into the reduction reaction container 10 [FIG. 3 (a)]. Molten Mg in the melt pushed back into the reduction reaction vessel 10 has a lower specific gravity than the molten MgCl 2 in the reduction reaction vessel 10, and thus floats in the melt in the reduction reaction vessel 10. Thereafter, when the pressurization is stopped, only the molten MgCl 2 having a large specific gravity accumulated in the bottom of the reduction reaction vessel 10 flows into the melt transport pipe 13, and the inside of the melt transport pipe 13 is completely replaced with the molten MgCl 2. Is done.

このようにして、タップ作業の前に、一旦、溶融物輸送管13内の溶融Mgを溶融MgCl2 に置換することにより、接続管30などの一連の輸送管における閉塞が防止される。 Thus, before the tapping operation, once the molten Mg in the melt transport pipe 13 is replaced with molten MgCl 2 , blockage in a series of transport pipes such as the connection pipe 30 is prevented.

本発明のスポンジチタン製造方法は、かかる知見を基礎として完成されたものであり、還元反応容器の内部に溶融Mgを保持し、炉内で溶融MgとTiCl4 を反応させることによりスポンジチタンを生成し、副生物である溶融MgCl2 を反応途中に還元反応容器の底部から縦管状の溶融物輸送管を介して還元反応容器外へ抜き取るスポンジチタン製造方法において、前記溶融物輸送管を介して還元反応容器内の溶融MgCl2 を還元反応容器外へ抜き取る前に、溶融物輸送管内に気体を圧入して溶融物輸送管内の溶融物液面を溶融物輸送管の容器底部側開口部まで下げ、しかる後に溶融MgCl2 の抜き取りを行うものである。 The method for producing sponge titanium according to the present invention has been completed on the basis of such knowledge, and is produced by holding molten Mg inside the reduction reaction vessel and reacting molten Mg with TiCl 4 in the furnace. Then, in the titanium sponge production method in which molten MgCl 2 as a by-product is extracted from the bottom of the reduction reaction vessel to the outside of the reduction reaction vessel through the vertical tubular tube in the course of the reaction, it is reduced through the melt delivery tube. Before extracting the molten MgCl 2 in the reaction vessel out of the reduction reaction vessel, pressurize the gas into the melt transport pipe to lower the melt liquid level in the melt transport pipe to the opening on the container bottom side of the melt transport pipe, Thereafter, molten MgCl 2 is extracted.

本発明のスポンジチタン製造方法においては、溶融物輸送管を介して還元反応容器内の溶融MgCl2 を還元反応容器外へ抜き取る前に、溶融物輸送管内に気体を圧入して溶融物輸送管内の溶融物液面を溶融物輸送管の容器底部側開口部まで下げる。溶融物輸送管内を押し下げられた溶融物は還元反応容器内に流入し、溶融物中に溶融Mgが存在すれば、比重の小さい溶融Mgは容器内の溶融物中を浮上する。この後に溶融MgCl2 の抜き取りを行えば、溶融物輸送管内の溶融物中に溶融Mgが混入している場合でも、その溶融Mgが溶融物輸送管内から排除されるため、溶融Mgの排出が防止され、溶融Mgの排出に起因する輸送管の閉塞が防止される。 In the titanium sponge production method of the present invention, before extracting molten MgCl 2 in the reduction reaction vessel out of the reduction reaction vessel through the melt transfer tube, a gas is injected into the melt transfer tube to The melt liquid level is lowered to the container bottom side opening of the melt transport pipe. The melt pushed down in the melt transport pipe flows into the reduction reaction vessel, and if molten Mg is present in the melt, the molten Mg having a small specific gravity floats in the melt in the vessel. If the molten MgCl 2 is extracted after this, even if the molten Mg is mixed in the melt in the melt transport pipe, the molten Mg is excluded from the melt transport pipe, thereby preventing discharge of the molten Mg. Thus, the transportation pipe is prevented from being blocked due to the discharge of molten Mg.

溶融物輸送管を経由して還元反応容器内へ溶融Mgをチャージし、そのチャージの後に溶融物輸送管内の溶融物液面を溶融物輸送管の容器底部側開口部まで下げ、溶融MgCl2 の抜き取りを行うならば、追加チャージを行った後のタップ操作の際に、溶融物輸送管内の溶融Mgが溶融MgCl2 と置換され、そのタップ操作時の輸送管の閉塞が防止される。この点において、本発明のスポンジチタン製造方法は、還元反応中に追加チャージを行う操業に特に有効であり、溶融Mgの追加チャージ、並びにこれに続く溶融物輸送管内の溶融物の下降及び溶融MgCl2 の抜き取りを複数回繰り返すスポンジチタン製造方法に更に有効である。 Via melt transfer tube was charged with molten Mg to a reduction reaction vessel, lowering the melt liquid surface of the melt transport tube to the container bottom side opening of the melt transport tube after the charge, the melt MgCl 2 If extraction is performed, the molten Mg in the melt transport pipe is replaced with molten MgCl 2 in the tap operation after the additional charge is performed, and blockage of the transport pipe during the tap operation is prevented. In this respect, the method for producing sponge titanium according to the present invention is particularly effective for an operation in which an additional charge is performed during the reduction reaction. The additional charge of molten Mg, and the subsequent lowering of the melt in the melt transport pipe and the molten MgCl. This is more effective for a sponge titanium manufacturing method in which the extraction of 2 is repeated a plurality of times.

還元反応容器の溶融物輸送管内を気体の圧入により輸送管内の溶融物を押し下げると、それに伴って、その溶融物が還元反応容器内に注入される。溶融物輸送管の容積は還元反応容器の容積に比べて非常に小さいので、溶融物輸送管内の溶融物が還元反応容器内に注入されても、その注入による容器内圧力の上昇は軽微である。輸送管内の溶融物の押し下げを続け、その溶融物の液面が容器底部側開口部まで下がると、溶融物輸送管内に圧入される気体が還元反応容器内の溶融物中へバブルとして吹き出す。これにより還元反応容器内の圧力が急激に上昇する。この容器内圧力の上昇を検知すれば、溶融物の液面が容器底部側開口部に達した時点を簡単かつ正確に把握できるので、還元反応容器内の圧力が急激に上昇した段階で気体の圧入を中止すればよい。   When the melt in the transport pipe is pushed down by gas injection into the melt transport pipe of the reduction reaction container, the melt is injected into the reduction reaction container. Since the volume of the melt transport pipe is very small compared to the volume of the reduction reaction container, even if the melt in the melt transport pipe is injected into the reduction reaction container, the increase in the pressure in the container due to the injection is slight. . When the melt in the transport pipe is continuously pushed down and the liquid level of the melt falls to the opening at the bottom of the container, the gas injected into the melt transport pipe is blown out as a bubble into the melt in the reduction reaction container. As a result, the pressure in the reduction reaction vessel rapidly increases. By detecting this increase in the internal pressure of the vessel, it is possible to easily and accurately grasp the time when the liquid level of the melt has reached the opening on the bottom side of the vessel, so that when the pressure in the reduction reaction vessel suddenly increases, The press-fitting can be stopped.

溶融物輸送管内に気体を圧入する方法については、後の実施形態のところで詳しく説明する。   The method for press-fitting gas into the melt transport pipe will be described in detail in a later embodiment.

溶融物輸送管内に圧入する気体は、水分が除去されているものでなければならない。しかし、乾燥空気や窒素ガスが反応中の還元反応容器内に入ると、スポンジチタンの品質が低下するので、これらは望ましい気体とは言えない。望ましい気体はArガスに代表される不活性ガスである。   The gas that is pressed into the melt transport tube must be free of moisture. However, if dry air or nitrogen gas enters the reduction reaction vessel during the reaction, the quality of the titanium sponge deteriorates, so these are not desirable gases. A desirable gas is an inert gas typified by Ar gas.

本発明のスポンジチタン製造方法は、溶融物輸送管を介して還元反応容器内の溶融MgCl2 を還元反応容器外へ抜き取る前に、溶融物輸送管内に気体を圧入して溶融物輸送管内の溶融物液面を溶融物輸送管の容器底部側開口部まで下げ、還元反応容器内へ戻すという簡単な操作により、溶融物中の溶融Mgを溶融物輸送管内から排除できるので、タップ作業での溶融物輸送管の閉塞を低コストで効果的に防止することができる。また、本来なら排出されるべき溶融物輸送管内の溶融Mgを、還元反応容器内へ送ってスポンジチタンの生成に活用できるので、溶融Mgの利用効率を上げることができる。 In the titanium sponge production method of the present invention, before the molten MgCl 2 in the reduction reaction vessel is drawn out of the reduction reaction vessel through the melt transfer tube, a gas is injected into the melt transfer tube to melt the melt in the melt transfer tube. The molten liquid in the melt can be removed from the melt transport pipe by a simple operation of lowering the liquid level to the opening on the container bottom side of the melt transport pipe and returning it to the reduction reaction container. Blockage of the object transport pipe can be effectively prevented at low cost. Moreover, since the molten Mg in the melt transport pipe that should be discharged can be sent into the reduction reaction vessel and used for the production of sponge titanium, the utilization efficiency of the molten Mg can be increased.

以下に本発明の実施形態を図面に基づいて説明する。図1(a)(b)(c)は本発明のスポンジチタン製造方法の一実施形態を工程順に示す模式図である。   Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1A, 1B and 1C are schematic views showing an embodiment of the method for producing sponge titanium according to the present invention in the order of steps.

本実施形態のスポンジチタン製造方法では、まず、図3(b)に示すように、Mg容器40を接続管30により還元反応容器10と接続する。このとき、還元反応容器10内はArガスにて置換されている。Mg容器40と還元反応容器10との接続が終わると、Mg容器40の不活性ガス供給管41から容器内にArガスを圧入する。これにより、Mg容器40内の溶融Mg50がMg排出管42、接続管30及び溶融物輸送管13を介して還元反応容器10内に注入される。これが初期チャージである。   In the sponge titanium manufacturing method of the present embodiment, first, as shown in FIG. 3B, the Mg container 40 is connected to the reduction reaction container 10 through the connection pipe 30. At this time, the inside of the reduction reaction vessel 10 is replaced with Ar gas. When the connection between the Mg container 40 and the reduction reaction container 10 is completed, Ar gas is injected into the container from the inert gas supply pipe 41 of the Mg container 40. Thereby, molten Mg 50 in the Mg container 40 is injected into the reduction reaction container 10 through the Mg discharge pipe 42, the connection pipe 30 and the melt transport pipe 13. This is the initial charge.

初期チャージが終わると、還元反応容器10から接続管30、Mg容器40を分離し、溶融物輸送管13の上端部を閉止して、還元反応容器10の四塩化チタン供給管11から液状の四塩化チタンを容器内に滴下する。これにより、還元反応容器10内にスポンジチタン60が生成される。同時に液状のMgCl2 70が副生し、還元反応容器10の底部内に溜まる〔図3(a)及び図1(a)参照〕。 When the initial charge is finished, the connection pipe 30 and the Mg container 40 are separated from the reduction reaction vessel 10, the upper end of the melt transport pipe 13 is closed, and the liquid tetrachloride is supplied from the titanium tetrachloride supply pipe 11 of the reduction reaction vessel 10. Titanium chloride is dropped into the container. Thereby, sponge titanium 60 is generated in the reduction reaction vessel 10. At the same time, liquid MgCl 2 70 is by-produced and accumulates in the bottom of the reduction reaction vessel 10 (see FIGS. 3A and 1A).

操業が一定期間経過し、タップのタイミングが到来すると、図1(a)に示すように、還元反応容器10に回収容器20を連結する。具体的には、還元反応容器10の溶融物輸送管13と回収容器20の導入管21とを接続管30により接続する。このとき、溶融物輸送管13内は、還元反応容器10内と同レベルの高さまで溶融Mgで満たされている。回収容器20は、図3(a)に示した回収容器20と異なり、容器上部に接続された不活性ガス供給管22を有している。   When the operation has elapsed for a certain period and the tap timing has come, the recovery container 20 is connected to the reduction reaction container 10 as shown in FIG. Specifically, the melt transport pipe 13 of the reduction reaction container 10 and the introduction pipe 21 of the recovery container 20 are connected by a connection pipe 30. At this time, the inside of the melt transport pipe 13 is filled with molten Mg to the same level as the inside of the reduction reaction vessel 10. Unlike the collection container 20 shown in FIG. 3A, the collection container 20 has an inert gas supply pipe 22 connected to the upper part of the container.

還元反応容器10と回収容器20の連結が終わると、図1(b)に示すように、回収容器20の不活性ガス供給管22からArガスを圧入する。その加圧ガスは、回収容器20の導入管21、接続管30を経て溶融物輸送管13に達し、溶融物輸送管13内の溶融Mg50の液面を下方へ押し下げる。これにより、溶融物輸送管13内の溶融Mg50が還元反応容器10内に流入する。加圧を続けると、溶融物輸送管13内の溶融Mg50の液面が溶融物輸送管13の下端開口部まで下がる。これにより溶融物輸送管13内から溶融Mg50が排除され、還元反応容器10内の溶融物中に注入される。還元反応容器10内の溶融物中に注入された溶融Mg50は比重差によりMgCl2 より上に浮上する。 When the connection between the reduction reaction container 10 and the recovery container 20 is finished, Ar gas is injected from the inert gas supply pipe 22 of the recovery container 20 as shown in FIG. The pressurized gas reaches the melt transport pipe 13 through the introduction pipe 21 and the connection pipe 30 of the recovery container 20 and pushes down the liquid level of the molten Mg 50 in the melt transport pipe 13 downward. As a result, molten Mg 50 in the melt transport pipe 13 flows into the reduction reaction vessel 10. When the pressurization is continued, the liquid level of molten Mg 50 in the melt transport pipe 13 is lowered to the lower end opening of the melt transport pipe 13. As a result, molten Mg 50 is removed from the melt transport pipe 13 and injected into the melt in the reduction reaction vessel 10. Molten Mg50 injected into the melt in the reduction reaction vessel 10 floats above MgCl 2 due to the difference in specific gravity.

同時に、加圧ガスは還元反応容器10内の溶融物中にバブルとなって注入され、還元反応容器10内の圧力を急激に上昇させる。すなわち、溶融物輸送管13内の溶融Mg50が還元反応容器10内に押し込まれる間は、溶融物輸送管13の容積が小さいこともあり、還元反応容器10内の圧力の上昇は僅かであるが、加圧ガスが還元反応容器10内の溶融物中に注入され始めると、還元反応容器10内の圧力が急激に上昇する。還元反応容器10内の圧力は図示されない圧力計により監視されており、加圧ガスの侵入による急激な圧力上昇を検知した時点で、加圧ガスの注入を停止する。   At the same time, the pressurized gas is injected into the melt in the reduction reaction vessel 10 as bubbles, and the pressure in the reduction reaction vessel 10 is rapidly increased. That is, while the molten Mg 50 in the melt transport pipe 13 is pushed into the reduction reaction container 10, the volume of the melt transport pipe 13 may be small, and the pressure in the reduction reaction container 10 is slightly increased. When the pressurized gas begins to be injected into the melt in the reduction reaction vessel 10, the pressure in the reduction reaction vessel 10 rapidly increases. The pressure in the reduction reaction vessel 10 is monitored by a pressure gauge (not shown), and the injection of the pressurized gas is stopped when a sudden pressure increase due to the intrusion of the pressurized gas is detected.

このようにして、溶融物輸送管13から溶融Mg50を含む溶融物が排除されると、図1(c)に示すように、還元反応容器10の不活性ガス供給管12から容器内へArガスを圧入する。これにより、還元反応容器10の底部内に溜まった副生MgCl2 が溶融物輸送管13、接続管30及び導入管21を通って回収容器20内へ排出される。このとき溶融物輸送管13、同じく溶融物輸送管である接続管30及び導入管21のいずれをも溶融Mg50は通過しない。このため、接続管30を始めとする溶融物輸送管の閉塞が防止される。 When the melt containing molten Mg 50 is removed from the melt transport pipe 13 in this way, as shown in FIG. 1 (c), Ar gas enters the container from the inert gas supply pipe 12 of the reduction reaction container 10. Press fit. As a result, the by-product MgCl 2 accumulated in the bottom of the reduction reaction vessel 10 is discharged into the recovery vessel 20 through the melt transport pipe 13, the connection pipe 30 and the introduction pipe 21. At this time, the molten Mg 50 does not pass through the melt transport pipe 13, the connection pipe 30, which is also a melt transport pipe, and the introduction pipe 21. For this reason, blockage of the melt transport pipe including the connection pipe 30 is prevented.

こうしてタップ作業がスムーズ且つ安全に行われると、還元反応容器10から接続管30及び回収容器20を分離し、次のタップ作業に備える。還元反応容器10からMgCl2 を抜き取るタップ作業時に、排出されるMgCl2 に溶融Mgの一部が懸濁して混入し、溶融物輸送管13内に溶融Mg50が侵入することがある。溶融物輸送管13内に溶融Mg50が侵入すると、比重差によりMgCl2 より上に浮上し、液面近傍に集まる。このため、次のタップ作業を行う際にも、予め溶融物輸送管13内から溶融物を還元反応容器10内へ押し込み、しかる後にタップ作業を開始する。 When the tapping operation is performed smoothly and safely in this way, the connecting pipe 30 and the recovery container 20 are separated from the reduction reaction vessel 10 to prepare for the next tapping operation. During the tap operation for extracting MgCl 2 from the reduction reaction vessel 10, a part of the molten Mg may be suspended and mixed in the discharged MgCl 2, and the molten Mg 50 may enter the melt transport pipe 13. When molten Mg 50 enters the melt transport pipe 13, it floats above MgCl 2 due to the difference in specific gravity and collects near the liquid surface. For this reason, also when performing the next tap operation, the melt is pushed into the reduction reaction vessel 10 from the melt transport pipe 13 in advance, and then the tap operation is started.

追加チャージを行うときは、前述した初期チャージのときと同様に、還元反応容器10にMg容器40を接続し、Mg容器40の不活性ガス供給管41から容器内へArガスを圧入する。これにより、Mg容器40内の溶融Mg50がMg排出管42、接続管30及び溶融物輸送管13を介して還元反応容器10内に注入される。追加チャージを行った後は、溶融物輸送管13内が溶融Mg50で満たされるので、追加チャージの後のタップ作業では、初期チャージの後のタップ作業と同様に、溶融物輸送管13内の溶融物の還元反応容器10内への事前の押し込みは重要である。   When performing the additional charge, similarly to the initial charge described above, the Mg container 40 is connected to the reduction reaction container 10, and Ar gas is injected into the container from the inert gas supply pipe 41 of the Mg container 40. Thereby, molten Mg 50 in the Mg container 40 is injected into the reduction reaction container 10 through the Mg discharge pipe 42, the connection pipe 30 and the melt transport pipe 13. After the additional charge is performed, the melt transport pipe 13 is filled with molten Mg50. Therefore, in the tap operation after the additional charge, the melt in the melt transport pipe 13 is the same as the tap operation after the initial charge. It is important to push the product into the reduction reaction vessel 10 in advance.

上記実施形態では、追加チャージを行う関係から、初期チャージにMg容器40を使用して、溶融物輸送管13から還元反応容器10内へ溶融Mg50を注入したが、追加チャージを行わない場合は、還元反応容器10の上蓋を開けて上方から初期チャージを行うのが一般的であり、追加チャージを行う場合にも初期チャージを上方から行うことは可能である。   In the above embodiment, from the relationship of performing the additional charge, the Mg container 40 was used for the initial charge, and the molten Mg 50 was injected from the melt transport pipe 13 into the reduction reaction container 10, but when the additional charge is not performed, In general, the upper charge of the reduction reaction vessel 10 is opened and the initial charge is performed from above. Even when additional charge is performed, the initial charge can be performed from above.

上記実施形態では又、タップ作業の際の溶融物輸送管13内の溶融物の押し込みを、溶融物輸送管13に接続された回収容器20内をArガスで加圧することにより実施したが、還元反応容器10と回収容器20を接続する接続管30から押し込み用のガスを圧入することも可能である。押し込み用ガスの圧入機構を備えた接続管30の主要部の構成を図2に示す。   In the above embodiment, the pressing of the melt in the melt transport pipe 13 during the tapping operation is performed by pressurizing the inside of the recovery container 20 connected to the melt transport pipe 13 with Ar gas. It is also possible to press-fit a pushing gas from a connecting pipe 30 that connects the reaction vessel 10 and the collection vessel 20. FIG. 2 shows the configuration of the main part of the connecting pipe 30 provided with a pushing-in gas injection mechanism.

図2は還元反応容器10と回収容器20を接続する接続管30の反応容器側の端部を示している。この接続管30は、溶融物輸送管13の上端部にフランジ結合される垂直な縦管部31と、縦管部31の中段部から回収容器20へ向けて斜め下方に延出する斜管部32と、縦管部31内を昇降する開閉機構33とを備えている。縦管部31の下部内、より詳しくは、斜管部32との接続部より下方には、前記開閉機構33によって開閉される絞り部34が設けられている。開閉機構33は逆錐状のヘッド部35と、その昇降駆動部を兼ねる不活性ガス供給管36とを有している。ヘッド部36は、不活性ガス供給管36の下端部に連通状態で取付けられると共に、先端部(下端部)に不活性ガス噴出口37を有しており、縦管部31内を下降した状態で絞り部34を閉止し、上昇した状態で斜管部32との接続部より上方に収納される。   FIG. 2 shows the end of the connecting tube 30 that connects the reduction reaction vessel 10 and the recovery vessel 20 on the reaction vessel side. This connecting pipe 30 includes a vertical vertical pipe part 31 that is flange-coupled to the upper end part of the melt transport pipe 13, and an oblique pipe part that extends obliquely downward from the middle part of the vertical pipe part 31 toward the recovery container 20. 32 and an opening / closing mechanism 33 that moves up and down in the vertical pipe portion 31. A throttle part 34 that is opened and closed by the opening and closing mechanism 33 is provided in the lower part of the vertical pipe part 31, more specifically below the connection part with the oblique pipe part 32. The opening / closing mechanism 33 includes an inverted cone-shaped head portion 35 and an inert gas supply pipe 36 that also serves as an ascending / descending drive portion. The head portion 36 is attached to the lower end portion of the inert gas supply pipe 36 in a communicating state, and has an inert gas jet port 37 at the distal end portion (lower end portion), and is lowered in the vertical pipe portion 31. Then, the throttle portion 34 is closed, and is stored above the connecting portion with the inclined tube portion 32 in the raised state.

溶融物輸送管13内の溶融物を押し下げるときは、ヘッド部36が下降して絞り部34を閉止し、この状態で先端部(下端部)の不活性ガス噴出口37からArガスを噴出する。これにより、溶融物輸送管13内の溶融物の液面が下がる。還元反応容器10内のMgCl2 を排出するタップ時には、ヘッド部36は、MgCl2 の排出を阻害しないように、斜管部32との接続部より上方の退避位置まで上昇する。 When the melt in the melt transport pipe 13 is pushed down, the head portion 36 descends to close the throttle portion 34, and in this state, Ar gas is ejected from the inert gas outlet 37 at the tip (lower end). . Thereby, the liquid level of the melt in the melt transport pipe 13 is lowered. At the time of tapping for discharging MgCl 2 in the reduction reaction vessel 10, the head portion 36 rises to a retracted position above the connecting portion with the inclined tube portion 32 so as not to hinder the discharge of MgCl 2 .

このような押し込み用ガスの圧入機構を備えた接続管30によっても、タップ作業の際の溶融物輸送管13内の溶融物の押し込みは可能である。   It is possible to push in the melt in the melt transport pipe 13 during the tapping operation also by the connecting pipe 30 provided with such a pushing-in mechanism for the pushing gas.

還元反応容器10を使用して約10トンのスポンジチタンを製造する際に、図1の方法により、タップ前に溶融物輸送管13内の溶融物の押し下げを行った。反応期間内に行ったタップ回数は11回、タップ量合計は33.5トンである。チャージは初期チャージを含め6回行った。初期チャージ量は6トン、追加チャージ量は平均2.1トンである。   When producing about 10 tons of sponge titanium using the reduction reaction vessel 10, the melt in the melt transport pipe 13 was pushed down before tapping by the method of FIG. The number of taps performed within the reaction period was 11 times, and the total tap amount was 33.5 tons. Charging was performed 6 times including the initial charge. The initial charge amount is 6 tons, and the additional charge amount is 2.1 tons on average.

タップ前の溶融物輸送管13内の溶融物の押し下げを行わなかった場合、タップ時における溶融物輸送管の詰まり頻度は、10バッチ平均で1バッチ当たり(11タップ中)約3回であったが、タップ前の溶融物輸送管13内の溶融物の押し下げを行うことによりこれが0回になった。   When the melt in the melt transport pipe 13 before tapping was not pushed down, the clogging frequency of the melt transport pipe at the time of tapping was about 3 times per batch (in 11 taps) on an average of 10 batches. However, when the melt in the melt transport pipe 13 before tapping was pushed down, this became zero.

タップ前の溶融物輸送管13内の溶融物の押し下げを行うと、溶融物輸送管13内に残っている溶融Mgが、回収容器20へ排出されることなく還元反応容器10内へ返還されて溶融Mgの無駄がなくなる。その量は本実施例では約100kgと推定される。   When the melt in the melt transport pipe 13 before tapping is pushed down, the molten Mg remaining in the melt transport pipe 13 is returned into the reduction reaction container 10 without being discharged into the recovery container 20. There is no waste of molten Mg. The amount is estimated to be about 100 kg in this embodiment.

(a)(b)(c)は本発明のスポンジチタン製造方法の一実施形態を工程順に示す模式図である。(A) (b) (c) is a schematic diagram which shows one Embodiment of the sponge titanium manufacturing method of this invention in order of a process. 押し込み用ガスの圧入機構を備えた接続管の主要部の構成図で、接続管の還元反応容器側の端部を示している。It is a block diagram of the main part of the connection pipe provided with the press-fitting mechanism for the pushing gas, and shows the end of the connection pipe on the reduction reaction vessel side. (a)(b)は従来のスポンジチタン製造方法を工程順に示す模式図である。(A) (b) is a schematic diagram which shows the conventional sponge titanium manufacturing method in order of a process.

符号の説明Explanation of symbols

10 還元反応容器
11 四塩化チタン供給管
12 不活性ガス供給管
13 溶融物輸送管
20 回収容器
21 導入管(溶融物輸送管)
22 不活性ガス供給管
30 接続管(溶融物輸送管)
31 縦管部
32 斜管部
33 開閉機構
34 絞り部
35 ヘッド部
36 不活性ガス供給管
40 Mg容器
41 不活性ガス供給管
50 溶融Mg
60 スポンジチタン
70 副生MgCl2
DESCRIPTION OF SYMBOLS 10 Reduction reaction container 11 Titanium tetrachloride supply pipe 12 Inert gas supply pipe 13 Melt transport pipe 20 Recovery container 21 Introduction pipe (melt transport pipe)
22 Inert gas supply pipe 30 Connection pipe (melt transport pipe)
31 Vertical pipe section 32 Slanted pipe section 33 Opening / closing mechanism 34 Throttle section 35 Head section 36 Inert gas supply pipe 40 Mg container 41 Inert gas supply pipe 50 Molten Mg
60 Sponge titanium 70 Byproduct MgCl 2

Claims (3)

還元反応容器の内部に溶融Mgを保持し、炉内で溶融MgとTiCl4 を反応させることによりスポンジチタンを生成し、副生物である溶融MgCl2 を反応途中に還元反応容器の炉底部から縦管状の溶融物輸送管を介して還元反応容器外へ抜き取るスポンジチタン製造方法において、
前記溶融物輸送管を介して還元反応容器内の溶融MgCl2 を還元反応容器外へ抜き取る前に、溶融物輸送管内に気体を圧入して溶融物輸送管内の溶融物液面を溶融物輸送管の容器底部側開口部まで下げ、しかる後に溶融MgCl2 の抜き取りを行うことを特徴とするスポンジチタン製造方法。
Sponge titanium is produced by holding molten Mg inside the reduction reaction vessel and reacting the molten Mg and TiCl 4 in the furnace, and the molten MgCl 2 as a by-product is formed vertically from the furnace bottom of the reduction reaction vessel during the reaction. In the method for producing sponge titanium, which is drawn out of the reduction reaction vessel through a tubular melt transport pipe,
Before extracting the molten MgCl 2 in the reduction reaction vessel to the outside of the reduction reaction vessel through the melt transfer tube, a gas is injected into the melt transfer tube and the melt liquid level in the melt transfer tube is set to the melt transfer tube. A process for producing a titanium sponge, characterized in that the molten MgCl 2 is extracted after being lowered to the opening on the container bottom side.
請求項1に記載のスポンジチタン製造方法において、前記溶融物輸送管を経由して還元反応容器内へ溶融Mgをチャージし、そのチャージの後に溶融物輸送管内の溶融物液面を溶融物輸送管の容器底部側開口部まで下げ、溶融MgCl2 の抜き取りを行うスポンジチタン製造方法。 2. The titanium sponge production method according to claim 1, wherein molten Mg is charged into the reduction reaction vessel via the melt transport pipe, and after the charge, the melt liquid level in the melt transport pipe is set to the melt transport pipe. container bottom side down to the opening, titanium sponge manufacturing method of performing extraction of molten MgCl 2 in. 請求項2に記載のスポンジチタン製造方法において、前記溶融Mgのチャージ、並びにこれに続く溶融物輸送管内の溶融物の押し下げ及び溶融MgCl2 の抜き取りを複数回繰り返すスポンジチタン製造方法。 3. The method of manufacturing titanium sponge according to claim 2, wherein the charging of the molten Mg, and the subsequent pressing of the molten material in the molten material transport pipe and the extraction of the molten MgCl 2 are repeated a plurality of times.
JP2008173380A 2008-07-02 2008-07-02 Sponge titanium manufacturing method Active JP4906121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008173380A JP4906121B2 (en) 2008-07-02 2008-07-02 Sponge titanium manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008173380A JP4906121B2 (en) 2008-07-02 2008-07-02 Sponge titanium manufacturing method

Publications (2)

Publication Number Publication Date
JP2010013686A true JP2010013686A (en) 2010-01-21
JP4906121B2 JP4906121B2 (en) 2012-03-28

Family

ID=41700051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008173380A Active JP4906121B2 (en) 2008-07-02 2008-07-02 Sponge titanium manufacturing method

Country Status (1)

Country Link
JP (1) JP4906121B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2618087A1 (en) * 2012-01-18 2013-07-24 Shenzhen Sunxing Light Alloys Materials Co., Ltd Distillation equipment for producing sponge titanium
CN103626224A (en) * 2013-11-25 2014-03-12 攀钢集团攀枝花钢铁研究院有限公司 Fused salt chlorination furnace for producing titanium tetrachloride
CN105603219A (en) * 2016-01-26 2016-05-25 攀钢集团攀枝花钢铁研究院有限公司 Reaction tank cover used for half-combined I type furnace titanium sponge production
CN106521155A (en) * 2016-12-22 2017-03-22 遵义钛业股份有限公司 Blocking prevention device for titanium sponge distillation passage
JP2018172756A (en) * 2017-03-31 2018-11-08 東邦チタニウム株式会社 Method of manufacturing sponge titanium
WO2020110440A1 (en) * 2018-11-27 2020-06-04 東邦チタニウム株式会社 Method for producing titanium sponge and method for producing titanium processed article or cast article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160839A (en) * 1984-08-29 1986-03-28 Hiroshi Ishizuka Refining method refractory metal
JP2002003959A (en) * 2000-06-14 2002-01-09 Toho Titanium Co Ltd Method for manufacturing sponge titanium and device for manufacturing the same
JP2004043872A (en) * 2002-07-10 2004-02-12 Sumitomo Titanium Corp Method of producing sponge titanium
JP2004083298A (en) * 2002-08-23 2004-03-18 Toho Titanium Co Ltd Method for manufacturing magnesium chloride anhydride and extracting apparatus for fused magnesium chloride
JP2006097107A (en) * 2004-09-30 2006-04-13 Toho Titanium Co Ltd Method for manufacturing sponge titanium
WO2006095653A1 (en) * 2005-03-08 2006-09-14 Toho Titanium Co., Ltd. Method of extracting molten metal or molten metal chloride and apparatus therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160839A (en) * 1984-08-29 1986-03-28 Hiroshi Ishizuka Refining method refractory metal
JP2002003959A (en) * 2000-06-14 2002-01-09 Toho Titanium Co Ltd Method for manufacturing sponge titanium and device for manufacturing the same
JP2004043872A (en) * 2002-07-10 2004-02-12 Sumitomo Titanium Corp Method of producing sponge titanium
JP2004083298A (en) * 2002-08-23 2004-03-18 Toho Titanium Co Ltd Method for manufacturing magnesium chloride anhydride and extracting apparatus for fused magnesium chloride
JP2006097107A (en) * 2004-09-30 2006-04-13 Toho Titanium Co Ltd Method for manufacturing sponge titanium
WO2006095653A1 (en) * 2005-03-08 2006-09-14 Toho Titanium Co., Ltd. Method of extracting molten metal or molten metal chloride and apparatus therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2618087A1 (en) * 2012-01-18 2013-07-24 Shenzhen Sunxing Light Alloys Materials Co., Ltd Distillation equipment for producing sponge titanium
CN103626224A (en) * 2013-11-25 2014-03-12 攀钢集团攀枝花钢铁研究院有限公司 Fused salt chlorination furnace for producing titanium tetrachloride
CN105603219A (en) * 2016-01-26 2016-05-25 攀钢集团攀枝花钢铁研究院有限公司 Reaction tank cover used for half-combined I type furnace titanium sponge production
CN106521155A (en) * 2016-12-22 2017-03-22 遵义钛业股份有限公司 Blocking prevention device for titanium sponge distillation passage
CN106521155B (en) * 2016-12-22 2018-05-04 遵义钛业股份有限公司 A kind of anti-block apparatus for titanium sponge distillation passageway
JP2018172756A (en) * 2017-03-31 2018-11-08 東邦チタニウム株式会社 Method of manufacturing sponge titanium
WO2020110440A1 (en) * 2018-11-27 2020-06-04 東邦チタニウム株式会社 Method for producing titanium sponge and method for producing titanium processed article or cast article

Also Published As

Publication number Publication date
JP4906121B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4906121B2 (en) Sponge titanium manufacturing method
KR101220545B1 (en) Apparatus for continuous manufacturing of titanium sponge
KR101223765B1 (en) Apparatus and method for continuously producing titanium micro-sponge
JP2012184476A (en) Method for producing sponge titanium
JP5721734B2 (en) How to remove slag from a furnace
CN204198829U (en) A kind of degasifying device of cast aluminium alloy
CN207735549U (en) A kind of horizontal block amorphous alloy die casting equipment of vacuum
CN104630506A (en) Crude magnesium reduction bottom slag smelting device and method
CN104099472A (en) Thallium ingot ejecting system and thallium ingot ejecting methods
JP2015217419A (en) Bottom-pouring ingot making method
JP2006265587A (en) Method for producing high purity sponge titanium
JP3701930B2 (en) Sponge titanium manufacturing method
CN211112070U (en) Iron storage type sand dam
JP7301590B2 (en) A method for producing sponge titanium, and a method for producing titanium processed or cast products.
CN208980783U (en) A kind of thick lithium impurity removing equipment of lithium metal
JP5466619B2 (en) Molten metal iron production equipment
CN110408784A (en) A kind of tin reclaimer and its working method
JP2003306727A (en) Method of producing sponge titanium
JP2021004399A (en) Method for producing sponge titanium
JPS5942060B2 (en) Method for producing metal Ti
JP6301665B2 (en) Vertical structure of retort
JP7448444B2 (en) Method for using magnesium chloride storage container and method for producing metallic magnesium
JP4085981B2 (en) Method of tapping at start-up after blast furnace reduced wind break
JPS6137338B2 (en)
JP4441278B2 (en) Titanium metal production equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4906121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250