WO2003064780A1 - Electromagnetic-wave absorber - Google Patents

Electromagnetic-wave absorber Download PDF

Info

Publication number
WO2003064780A1
WO2003064780A1 PCT/JP2002/000785 JP0200785W WO03064780A1 WO 2003064780 A1 WO2003064780 A1 WO 2003064780A1 JP 0200785 W JP0200785 W JP 0200785W WO 03064780 A1 WO03064780 A1 WO 03064780A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
weight
wave absorbing
absorbing material
conductive material
Prior art date
Application number
PCT/JP2002/000785
Other languages
French (fr)
Japanese (ja)
Inventor
Hideyuki Hatanaka
Masato Ohtsubo
Sadaaki Arikawa
Original Assignee
Nitto Boseki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co., Ltd. filed Critical Nitto Boseki Co., Ltd.
Priority to PCT/JP2002/000785 priority Critical patent/WO2003064780A1/en
Priority to US10/488,781 priority patent/US20050008845A1/en
Priority to JP2003564361A priority patent/JP4224703B2/en
Publication of WO2003064780A1 publication Critical patent/WO2003064780A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/002Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using short elongated elements as dissipative material, e.g. metallic threads or flake-like particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/008Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with a particular shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249971Preformed hollow element-containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the present invention relates to an electromagnetic wave absorbing material for improving an electromagnetic wave environment in the field of construction, civil engineering, and the like.
  • wireless communication devices typified by mobile phones and PHS
  • wireless communication devices used in wireless data communication networks called wireless LANs are rapidly spreading in offices, stores, factories, warehouses, etc.
  • a metal foil is used to prevent intrusion of noise electromagnetic waves from the outside and to prevent information in the room from leaking to the outside.
  • Techniques for constructing an electromagnetic wave shield made of mesh, conductive fiber, and the like are known. However, when such an electromagnetic wave shield is constructed, the electromagnetic wave reflection inside the room increases, and the electromagnetic waves emitted from the wireless communication device will not be able to be used for the interior walls and ceilings, floors and steel furniture fittings.
  • the reflected wave is reflected from the receiver, and the reflected wave with a different phase reaches the receiving terminal, or the reflected wave arrives multiple times from the ceiling, wall, floor, etc., and the receiver cannot recognize it as a normal signal, and the communication time
  • the problem is that communication becomes unusually long or communication becomes impossible. Also, there are obstacles to electromagnetic wave communication outdoors, such as in TV ghosts and expressway toll collection systems.
  • the carbon fibers in the member described in U.S. Pat.No. 6,214,454 are oriented in the direction of the slurry flow during molding, so that the two-dimensional orientation parallel to the thickness direction is required. It has what it has.
  • the fibers are pressed in the dewatering process during wet molding mainly using wick wool, and the fiber orientation becomes horizontal.
  • the one-bon fiber has a two-dimensional orientation parallel to the thickness direction.
  • electromagnetic wave absorbers are required to have good workability and workability for interior materials and exterior materials.
  • the present invention has been made in view of the above circumstances, and has been made to reduce the dependence on electromagnetic wave absorption angle, which is a positional relationship between a wireless terminal, a base station, and a building / civil engineering member, in order to effectively use wireless communication characteristics. It is an object of the present invention to provide an electromagnetic wave absorbing material having a wide angle electromagnetic wave absorbing property, and excellent workability and workability.
  • the inorganic hollow body 50 to 85% by weight of the inorganic hollow body, 0.01 to 35% by weight of the conductive material, 5 to 47.5% by weight of the binder, and 0.1 to 5% by weight of the filler. It was achieved by an electromagnetic wave absorber characterized by containing 47.5% by weight.
  • the conductive material is three-dimensionally oriented or the dispersion of the conductive material becomes non-uniform due to the presence of the predetermined amount of the inorganic hollow body in the above composition, and the electromagnetic wave absorption angle is increased.
  • the dependence is remarkably reduced, and an electromagnetic wave absorber excellent in workability and workability can be obtained.
  • FIG. 1 shows a preferred embodiment of the electromagnetic wave absorbing material of the present invention.
  • the electromagnetic wave absorbing material of the present invention contains an inorganic hollow body in the range of 50 to 85% by weight.
  • the inorganic hollow body to be used is mainly composed of an inorganic material.
  • the particles are hollow particles, they may be natural or synthetic.
  • the inorganic hollow body preferably has an average particle diameter of 50 to 400 m, and more preferably 100 to 2000 / m. If the average particle size is smaller than 50 ⁇ m, the orientation of the conductive material may not be sufficiently three-dimensional.If the average particle size is larger than 400 ⁇ m, hollow portions increase and sufficient strength is obtained. May not be.
  • Preferred inorganic hollow bodies include, for example, perlite, shirasu balloon, silica balun, glass foam beads, and alumina silica balun.
  • the inorganic hollow body can be used alone or in combination of two or more.
  • the content of the inorganic hollow body is 50 to 85% by weight. If the amount is less than 50% by weight, fibers and powders inevitably increase, and the orientation of the conductive material becomes two-dimensional, and the dispersion of the conductive material becomes uniform. In addition, the reduction in sound absorption due to densification will be caused. On the other hand, if it is more than 85% by weight, the amount of the binder decreases, and the strength decreases.
  • the thickness of the electromagnetic wave absorbing material is thin (about 12 mm or less)
  • the particle diameter of the inorganic hollow body is preferably 1 to 3 or less of the thickness of the electromagnetic wave absorbing material, and more preferably 1 Z 4 or less. If the thickness exceeds 1/3 of the thickness of the electromagnetic wave absorber, the proportion of the hollow portion of the inorganic hollow body in the thickness direction increases, and the strength may be reduced.
  • An object of the present invention is to provide an electromagnetic wave absorbing material that has excellent sound absorbing characteristics in the Hz band and also has excellent functions as a sound absorbing member.
  • the electromagnetic wave absorbing material of the present invention contains the conductive material in the range of 0.01 to 35% by weight.
  • the conductive material used here is preferably at least one selected from a fibrous conductive material, carbon black, and graphite.
  • the fibrous conductive material is not particularly limited as long as it has conductivity and is fibrous, but typically, carbon fibers and metal fibers can be exemplified.
  • the term “fibrous” is a concept including spiral fibers.
  • the carbon fibers may be either PAN-based or peach-based.
  • the fiber length of the carbon fiber is preferably in the range of 1 to 30 mm.
  • the longer the fiber length the better the electromagnetic wave absorption performance with a small blending amount.However, when dispersed in water during paper molding and agitated, the fibers are entangled and the dispersibility becomes poor, resulting in poor electromagnetic wave absorption.
  • the fiber length is preferably 30 mm or less, because it causes a decrease in performance. If the diameter is less than l mm, there is no problem with the dispersibility, but the dielectric loss effect, which is the principle of electromagnetic wave absorption, is hardly obtained, and the electromagnetic wave absorption performance may be reduced.
  • Representative examples include Zylas manufactured by Osaka Gas Co., Ltd., Toray Co., Ltd. manufactured by Toray Co., Ltd., and Vesfight manufactured by Toho Rayon Co., Ltd.
  • the length of the fibrous conductive material is preferably 5 times or less the thickness of the electromagnetic wave absorbing material, more preferably 2 times or less. If it exceeds 5 times, the number of entangled fibers increases, and the reflection performance tends to increase. If the length is extremely long, the number of fibers in the plane direction increases, and the reflectivity may be increased.
  • the fiber length of the metal fiber is preferably in the range of 1 to 30 mm.
  • the content of the fibrous conductive material is preferably 0.01 to 2% by weight. 0 .0 single If the amount is less than%, sufficient electromagnetic wave absorbing performance may not be secured. If the amount is more than 2% by weight, electromagnetic wave reflection characteristics may appear, and the expected electromagnetic wave absorbing performance may not be obtained.
  • the total amount of carbon black and graphite is preferably 0.01 to 35% by weight. is there. If the content is more than 35% by weight, the amount of the binder decreases, and strength may not be maintained. From the viewpoint of noncombustibility, the amount of addition is preferably 20% by weight or less.
  • Examples of the carbon black include, but are not particularly limited to, special BP grade manufactured by CABROOK Co., Ltd., and charcoal obtained by carbonizing wood and the like.
  • the graph item is not particularly limited. For example, those produced in Shandong, Heilongjiang, and Inner Mongolia, China.
  • the content thereof is 0.01 to 35% by weight, preferably 10 to 35% by weight.
  • the binder is added in an amount of 5 to 47.5% by weight, and the organic binder and the inorganic binder can be used alone or in combination.
  • Examples of the organic binder include powder or emulsion of an organic polymer compound and organic fibers
  • examples of the inorganic binder include a curable inorganic compound or a composition. Examples thereof include compounds and compositions, and compounds and compositions that are cured by dehydration such as drying and heating.
  • organic polymer compound used as the organic binder examples include starch, polyvinyl alcohol, polyethylene, paraffin, methyl cellulose, carboxymethyl cellulose, phenol resin, melamine resin, urea resin, epoxy resin, urethane resin, and acrylic resin. And modified acrylic resin, polyvinyl acetate, ethylene / acetic acid copolymer resin, polyvinylidene chloride resin, modified polyvinylidene chloride resin, polycarbonate resin, polyolefin resin and the like.
  • Organic high The molecular weight of the child compound is usually from 180 to 700,000.
  • organic fiber examples include polyolefin-based fiber, polyolefin-based composite fiber, polyvinyl alcohol-based synthetic fiber, pulp, beaten pulp, and cellulose fiber.
  • the addition amount of the organic binder is preferably in the range of 5 to 25% by weight. When used alone, strength is reduced if less than 5% by weight. On the other hand, if it exceeds 25% by weight, the incombustibility is reduced, and it may not be possible to use it as interior and exterior materials for buildings.
  • the curable inorganic compound or composition as the inorganic binder include, for example, a water-curable compound or composition that cures by adding water, such as portland cement, magnesium cement, alumina cement, gypsum, silicate, lime, and silicate. A mixture of salt and lime can be mentioned. Further, examples thereof include a phosphate aqueous solution, a silica sol, an alumina sol, and a water glass composition, which are compounds or compositions that are cured by dehydration.
  • a range of ⁇ 47.5% by weight is preferred. If it is less than 7% by weight, sufficient strength may not be obtained. On the other hand, when the content exceeds 47.5% by weight, the amount of the inorganic hollow body added decreases, and the orientation of the conductive material such as carbon fiber tends to be two-dimensional. In addition, since the amount of the fine powder increases, drainage becomes poor, which may lead to a decrease in productivity when performing dehydration molding.
  • a curing agent, a reaction accelerator, and a coagulant can be added to the binder in order to replace the binder as an auxiliary.
  • examples include para-toluenesulfonic acid, phenolsulfonic acid, ammonium chloride, calcium, a mixture of aluminate melt and modified gypsum, acrylamide, aluminum sulfate and the like. These are usually added in an amount of not more than 2.5% by weight based on the total amount of the binder and the auxiliary.
  • the electromagnetic wave absorbing material of the present invention contains a filler in the range of 0.1 to 44.999% by weight.
  • the filler include various inorganic powders and inorganic fibers.
  • Inorganic powders include, for example, clay, clay, aluminum hydroxide, calcium carbonate, kaolin, talc, myriki, diatomaceous earth, montmorillonite, zircon sand, Natural mineral powders such as magnesia, titania, alumina, silica, zirconia, kozierite, and spinel (preferably 1 ⁇ 2 mm in diameter), artificial ash such as fly ash, slag powder, and silica fume Powder (preferably, particle size 1 ⁇ ! To 500 m) can be mentioned.
  • the artificial inorganic powder may be obtained as a by-product.
  • Such an inorganic powder is preferably added in a range of 0.5 to 30% by weight.
  • inorganic fibers include natural mineral fibers such as agar palgitite, sepiolite, and wollastonite (preferably, having a diameter of 0.1 to 20 m and a length of 0.5 to 100 m), and glass. Fiber, glass wool, rock wool, slag wool, silica fiber, silica titania fiber, silica alumina fiber, zirconia fiber, alumina fiber, boron nitride fiber, silicon carbide fiber, calcium titanate fiber, potassium titanate fiber, etc. Artificial mineral fibers (preferably, having a diameter of 0.1 to 20 zm and a length of 1 to 100 / m) are exemplified.
  • Electromagnetic wave absorbers include cones, cylinders, polygonal pyramids, polygonal columns, stripes, pyramids, undulations, crevices, etc. in order to improve the angle dependence and further enhance the electromagnetic wave absorption as a wide angle absorber. It is preferable to have unevenness on at least one surface. It is preferable that the electromagnetic wave absorbing material of the present invention takes a form of a laminate in which two or more layers are laminated.
  • the amount of the conductive material in the lower layer is larger than the amount of the conductive material in the upper layer.
  • the upper layer refers to a layer disposed closer to the electromagnetic wave incident side.
  • the lower layer refers to a layer that is disposed in contact with the upper layer and that is disposed in contact with the surface of the upper layer opposite to the side on which electromagnetic waves are incident.
  • the amount of the conductive material added in the upper layer is 0 to less than 35% by weight. That is, the upper layer may be an electromagnetic wave absorbing material having the composition of the present invention, or an electromagnetic wave absorbing material having the same composition as the present invention except that the conductive material is present in an amount of from 0 to less than 0.01% by weight. Is also good.
  • the added amount of the conductive material in the upper layer is preferably 0 to less than 0.05% by weight, and the added amount in the lower layer is higher than that in the upper layer.
  • the added amount of the conductive material in the layer is set to be higher than the added amount of the upper layer by 0.05% by weight or more.
  • the conductive material in the upper layer is 0% by weight.
  • the inorganic hollow body alone has a higher dielectric constant than air, so it can be made to have low forward reflection and can be designed as a high-performance electromagnetic wave absorbing material. It is the amount added in the case. If the conductive material in the upper layer is more than 0.05% by weight, the forward reflectivity of the electromagnetic wave becomes strong, and it may be difficult to design a high-performance electromagnetic wave absorbing material.
  • these layers may have a uniform thickness, or may have a regular or random thickness.
  • At least one surface of the electromagnetic wave absorbing material of the present invention is left and the other surface is a surface having electromagnetic wave reflectivity.
  • the conductive coating may be a paint or resin containing carbon black, graphite, carbon fiber, fine metal powder, or phosphorous metal, or a conductive resin.
  • This electromagnetic wave reflective layer not only provides electromagnetic wave shielding performance, but also improves electromagnetic wave absorption performance due to the phenomenon of resonance with electromagnetic waves incident from a non-electromagnetic wave reflective surface, achieving both shielding and absorbing properties. It can be an electromagnetic wave absorbing material.
  • the electromagnetic wave absorbing material has a weather-resistant and / or water-resistant coating or cover on at least one surface.
  • the coating or cover may be, for example, polyethylene, polypropylene, polycarbonate, polyester, phenolic resin, melamine resin, urea resin, acrylic resin, modified acrylic resin, polyvinyl benzoate, ethylene copolymer, vinylidene polychloride, etc. It consists of resin, modified polyvinylidene chloride resin, epoxy resin and urethane resin, and contains pigments and fiber reinforcing materials as needed. Further, in order to improve the weather resistance of the resin, an ultraviolet reflecting agent or fluorine processing may be applied. This There is no limit on the thickness of the cover or cover, but if large electromagnetic wave absorption performance is required, 2 ⁇ ⁇ ! A thickness of ⁇ 2 mm is preferred. If it is thinner than 2, the weather resistance may decrease. If it is thicker than 2 mm, the ability to reflect electromagnetic waves on the surface will increase, which may hinder the internal absorption performance.
  • the method for producing the electromagnetic wave absorbing material of the present invention is not particularly limited, and examples thereof include the following methods.
  • Each raw material is put into a mixer and kneaded with predetermined water to obtain a mortar-like slurry.
  • Curing of the molded body obtained by each of the above molding methods can be performed, for example, by curing with a dryer, autocure curing, or steam curing.
  • Carbon fiber [Toho Rayon PAN fiber length 10 mm] 0.4% by weight Polyvinyl acetate copolymer resin emulsion
  • Example 4 The above raw materials are put into water to obtain a slurry adjusted to have a solid content of 5% by weight. This slurry is made into a Fourdrinier machine and removed with a press clearance of 11 mm. The board was watered and then dried to cut the surface of the board having a thickness of 13 mm to obtain an electromagnetic wave absorber 3 having a thickness of 12 mm.
  • Example 4
  • An electromagnetic wave absorbing material having a thickness of 30 mm was produced in the same manner as in Example 3, and was further subjected to cutting to produce an electromagnetic wave absorbing material 4 having a cut surface as shown in FIG. Example 5
  • Example 6 An aluminum foil having a thickness of 5 was attached to the back surface corresponding to the cut surface (front surface) of the electromagnetic wave absorbing material 3 obtained in Example 3 to obtain an electromagnetic wave absorber 5.
  • Example 6 An aluminum foil having a thickness of 5 was attached to the back surface corresponding to the cut surface (front surface) of the electromagnetic wave absorbing material 3 obtained in Example 3 to obtain an electromagnetic wave absorber 5.
  • Ribon fiber [PAN fiber length 10 mm, manufactured by Toho Rayon] 0% by weight Polyvinyl acetate copolymer resin emulsion
  • Portland cement 53 3% by weight Fly ash 31.9% by weight Put the above Portland cement, carbon fiber and fly ash into Omni Mixer and stir for 1 minute. Thereafter, 80 parts by weight of water and 100 parts by weight of Portland cement, and a polyvinyl acetate copolymer resin emulsion are added and stirred for 1 minute. Further, pearlite is added and the slurry obtained by stirring for 30 seconds is poured into a mold having a thickness of 25 mm coated with a release agent, and dried. After drying, the mold was removed to obtain an electromagnetic wave absorbing material a.
  • the reflection coefficient of a metal body (lmx lm X 5 mm stainless steel plate) The measurement was performed by the free space time domain method, and after removing the metal body, a specimen with the same size and the same size as the metal body was installed, and the reflection coefficient was measured in the same manner. The measurement was performed in an anechoic chamber, and 2.54 GHz electromagnetic waves were used.
  • the measurement was performed with the incident angle changed as shown in Table 1.
  • the angle of incidence means the angle between the absorber and the perpendicular to the surface to be measured. That is, an incident angle of 0 degrees means incidence at an angle perpendicular to the absorber surface.
  • the electromagnetic wave absorbing material of the present invention has a wide-angle electromagnetic wave absorbing property, it can be widely used in various fields such as construction and civil engineering in order to improve an electromagnetic wave environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Building Environments (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

An electromagnetic-wave absorber which is reduced in the angle dependence of electromagnetic-wave absorption, has a wide electromagnetic-wave absorption angle, and is satisfactory in processability and applicability. It is characterized by comprising 50 to 85 wt.% inorganic hollow material, 0.01 to 35 wt.% conductor, 5 to 47.5 wt.% binder, and 0.1 to 47.5 wt.% filler.

Description

明 細 書 電磁波吸収材 <技術分野 >  Description Electromagnetic wave absorber <Technical field>
本発明は、 建築、 土木分野などにおける電磁波璟境を改善する電磁波吸収材に 関する。  TECHNICAL FIELD The present invention relates to an electromagnetic wave absorbing material for improving an electromagnetic wave environment in the field of construction, civil engineering, and the like.
<背景技術 > <Background technology>
携帯電話や P H Sに代表される無線通信機器の普及は目覚ましく、 オフィス、 店舖、 工場、 倉庫などで、 無線 L A Nと言われる無線データ通信網で便用される 無線通信機器が急速に普及してきている。 こうした無線通信機器をオフィス等の 特定の室内空間内で用いる場合には、室外からのノイズ電磁波の侵入を防いだり、 室内の情報が室外に漏洩することを防止することを目的として、 金属箔ゃメッシ ュ、 導電性繊維などからなる電磁波遮蔽体を施工する技術が知られている。 しか しながら、 このような電磁波遮蔽体の施工を行った場合には、 室内の電磁波反射 性が高くなり、 無線通信機器から発信される電磁波が、 内壁や天井 '床 ·スチー ル製の家具建具から反射され、 受信端末に位相の異なる反射波が到達したり、 天 井 -壁,床面などから多重的に反射波が到達して受信器側で正常な信号として認 識できなくなり、 通信時間が異常に長くなつたり通信不能となる間題が発生して いる。 また、 屋外においてもテレビゴーストや高速道路の料金収受システムに代 表されるように建築等により電磁波通信の障害が発生している。  The spread of wireless communication devices typified by mobile phones and PHS is remarkable, and wireless communication devices used in wireless data communication networks called wireless LANs are rapidly spreading in offices, stores, factories, warehouses, etc. . When such a wireless communication device is used in a specific indoor space such as an office, a metal foil is used to prevent intrusion of noise electromagnetic waves from the outside and to prevent information in the room from leaking to the outside. Techniques for constructing an electromagnetic wave shield made of mesh, conductive fiber, and the like are known. However, when such an electromagnetic wave shield is constructed, the electromagnetic wave reflection inside the room increases, and the electromagnetic waves emitted from the wireless communication device will not be able to be used for the interior walls and ceilings, floors and steel furniture fittings. The reflected wave is reflected from the receiver, and the reflected wave with a different phase reaches the receiving terminal, or the reflected wave arrives multiple times from the ceiling, wall, floor, etc., and the receiver cannot recognize it as a normal signal, and the communication time The problem is that communication becomes unusually long or communication becomes impossible. Also, there are obstacles to electromagnetic wave communication outdoors, such as in TV ghosts and expressway toll collection systems.
これらの現象の対策としては、 室内の内装材ゃ外装材に電磁波の反射を抑える 部材を施工することが有効であるが、 特開 2 0 0 0— 8 2 8 9 3号にあるような 結合剤を無機接着剤とするような場合には機械的強度が低く、 更に切削切断性に が劣り、 建築 ·土木資材として使用に向かない。 また、 強度を補うため不燃層を 一体型としたものは加工費が高く、 電磁波暗室向けの電磁波吸収材を設置するに はコストが高い。 また、 米国特許 6 , 2 1 4 , 4 5 4号ゃ特閧 2 0 0 1 - 2 4 8 2 6 0号に記載のものは、 電磁波吸収性を有する安価な建材ではあるものの、 電 磁波吸収性における角度依存性が高く、 無線基地局の設置位置によっては電磁波 の入射角度が大きくなり、 吸収性能が劣るものであつた。 As a countermeasure against these phenomena, it is effective to install a member that suppresses the reflection of electromagnetic waves between the interior material and the exterior material in the room. However, as described in Japanese Patent Application Laid-Open No. 2000-82893, When the agent is an inorganic adhesive, its mechanical strength is low and its cutting and cutting properties are poor, making it unsuitable for use as a building or civil engineering material. In addition, those with an integrated non-combustible layer to supplement the strength are expensive to process, and expensive to install an electromagnetic wave absorbing material for an electromagnetic dark room. Also, U.S. Patent No. 6,214,4554 Although the material described in No. 260 is an inexpensive building material that absorbs electromagnetic waves, the angle dependence of electromagnetic wave absorption is high, and the incident angle of electromagnetic waves increases depending on the installation position of the wireless base station. The performance was inferior.
米国特許 6 , 2 1 4 , 4 5 4号に記載の部材中のカーボン繊維は、 成型時にス ラリーの流動方向に配向するため、 厚さ方向に対して平行である 2次元化の配向 性を有するものとなっている。 また、 特閧 2 0 0 1 - 2 4 8 2 6 0号の組成系で は口ックウールを主体とした湿式成型時における脱水工程においてプレスされ繊 維配向性が水平方向となってしまい、 やはり力一ボン繊維は厚さ方向に対して平 行である 2次元化の配向性を有するものとなっている。  The carbon fibers in the member described in U.S. Pat.No. 6,214,454 are oriented in the direction of the slurry flow during molding, so that the two-dimensional orientation parallel to the thickness direction is required. It has what it has. In addition, in the composition system of No. 2000-1-248 260, the fibers are pressed in the dewatering process during wet molding mainly using wick wool, and the fiber orientation becomes horizontal. The one-bon fiber has a two-dimensional orientation parallel to the thickness direction.
従って、 電磁波の入射角度が小さい場合は、 カーボン繊維に対して直交して当 る為吸収性能が大きかったが、 入射角度が大きい場合直交して当るカーボン繊維 が少なくなり吸収性能が小さくなつてしまうという問題があつた。  Therefore, when the incident angle of the electromagnetic wave is small, the absorption performance is large because it is perpendicular to the carbon fiber, but when the incident angle is large, the number of carbon fibers that are perpendicular to the carbon fiber is small and the absorption performance is reduced. There was a problem.
また、 電磁波吸収材は、 内装材ゃ外装材等への良好な加工性、 施工性が求めら れている。  In addition, electromagnetic wave absorbers are required to have good workability and workability for interior materials and exterior materials.
<発明の開示 > <Disclosure of Invention>
本発明は前記状況を鑑みてなされたものであり、 無線通信特性を最大限に有効 に使用するため、 無線端末、 基地局と建築 ·土木部材の位置関係からなる電磁波 吸収角度依存性を低減し、 広角度の電磁波吸収性を有するとともに加工性、 施工 性が良好な電磁波吸収材を提供することを目的とする。  The present invention has been made in view of the above circumstances, and has been made to reduce the dependence on electromagnetic wave absorption angle, which is a positional relationship between a wireless terminal, a base station, and a building / civil engineering member, in order to effectively use wireless communication characteristics. It is an object of the present invention to provide an electromagnetic wave absorbing material having a wide angle electromagnetic wave absorbing property, and excellent workability and workability.
このような目的は、 無機質中空体を 5 0〜8 5重量%、 導電材を 0 . 0 1〜3 5重量%、 結合材を 5〜4 7 . 5重量%及び充填剤を 0 . 1〜4 7 . 5重量%含 有することを特徴とする電磁波吸収材により達せられた。  For this purpose, 50 to 85% by weight of the inorganic hollow body, 0.01 to 35% by weight of the conductive material, 5 to 47.5% by weight of the binder, and 0.1 to 5% by weight of the filler. It was achieved by an electromagnetic wave absorber characterized by containing 47.5% by weight.
この本発明の電磁波吸収材においては、 上記の組成における無機質中空体の所 定量の存在により、 導電材が 3次元的に配向、 または、 導電材の分散が不均一化 したものとなり、 電磁波吸収角度依存性が著しく軽減されたものとなり、 また、 加工性、 施工性にも優れた電磁波吸収材を得ることができる。 <図面の簡単な説明 > In the electromagnetic wave absorbing material of the present invention, the conductive material is three-dimensionally oriented or the dispersion of the conductive material becomes non-uniform due to the presence of the predetermined amount of the inorganic hollow body in the above composition, and the electromagnetic wave absorption angle is increased. The dependence is remarkably reduced, and an electromagnetic wave absorber excellent in workability and workability can be obtained. <Brief description of drawings>
図 1は本発明の電磁波吸収材の好ましい一形態である。  FIG. 1 shows a preferred embodiment of the electromagnetic wave absorbing material of the present invention.
<発明を実施するための最良の形態 > <Best mode for carrying out the invention>
〔無機質中空体〕  (Inorganic hollow body)
本発明の電磁波吸収材は無機質中空体を 5 0〜8 5重量%の範囲で含有する。 使用される無機質中空体は、 主として無機質からなり、 中空の粒子であれば、 天然のものであっても合成されたものであってもよい。  The electromagnetic wave absorbing material of the present invention contains an inorganic hollow body in the range of 50 to 85% by weight. The inorganic hollow body to be used is mainly composed of an inorganic material. As long as the particles are hollow particles, they may be natural or synthetic.
この無機質中空体は、 平均粒子径が好ましくは 5 0〜4 0 0 0 mであり、 更 に好ましくは 1 0 0〜2 0 0 0 / mである。 平均粒子径が 5 0〃mよりも小さい と導電材の配向性が十分 3次元化しない場合があり、 また 4 0 0 0 / mよりも大 きいと中空部分が増えて十分な強度が得られない場合がある。  The inorganic hollow body preferably has an average particle diameter of 50 to 400 m, and more preferably 100 to 2000 / m. If the average particle size is smaller than 50 μm, the orientation of the conductive material may not be sufficiently three-dimensional.If the average particle size is larger than 400 μm, hollow portions increase and sufficient strength is obtained. May not be.
好ましい無機質中空体としては、 例えば、 パーライト、 シラスバルーン、 シリ カバル一ン、ガラス発泡ビーズ、アルミナシリカバル一ンを挙げることができる。 無機質中空体は、 1種のみでも、 或いは 2種以上を組み合わせて使用すること ができる。  Preferred inorganic hollow bodies include, for example, perlite, shirasu balloon, silica balun, glass foam beads, and alumina silica balun. The inorganic hollow body can be used alone or in combination of two or more.
無機質中空体の含有量は 5 0〜8 5重量%である。 5 0重量%よりも少ないと 必然的に繊維や粉体が増えてしまい、 導電材の配向性が 2次元化になったり、 導 電材の分散が均一化してしまう。 また、 緻密化による吸音率の低下を招いてしま う。 一方、 8 5重量%よりも多いと結合材の量が低下し強度が低下してしまう。 電磁波吸収材の厚さが薄い場合 (約 1 2 mm以下) には、 無機質中空体の粒子 径は、 電磁波吸収材の厚さの 1ノ3以下であることが好ましく、 更に好ましくは 厚さの 1 Z 4以下である。 電磁波吸収材の厚みの 1 / 3を超えてしまうと厚さ方 向の無機質中空体の中空部分が占める割合が大きくなり、 強度が低下してしまう 恐れがある。  The content of the inorganic hollow body is 50 to 85% by weight. If the amount is less than 50% by weight, fibers and powders inevitably increase, and the orientation of the conductive material becomes two-dimensional, and the dispersion of the conductive material becomes uniform. In addition, the reduction in sound absorption due to densification will be caused. On the other hand, if it is more than 85% by weight, the amount of the binder decreases, and the strength decreases. When the thickness of the electromagnetic wave absorbing material is thin (about 12 mm or less), the particle diameter of the inorganic hollow body is preferably 1 to 3 or less of the thickness of the electromagnetic wave absorbing material, and more preferably 1 Z 4 or less. If the thickness exceeds 1/3 of the thickness of the electromagnetic wave absorber, the proportion of the hollow portion of the inorganic hollow body in the thickness direction increases, and the strength may be reduced.
この無機質中空体の上記所定量の存在により、導電材の配向が 3次元的になり、 また、導電材の分散が不均一化し、電磁波吸収角度依存性が効果的に低減される。 また、 無機質中空体の存在は、 良好な吸音特性にも寄与し、 特に 2 5 0〜5 0 0 H z帯域において優れた吸音特性をもたらし、 吸音部材としての機能にも優れた 電磁波吸収材を提供するものである。 Due to the presence of the predetermined amount of the inorganic hollow body, the orientation of the conductive material becomes three-dimensional, the dispersion of the conductive material becomes non-uniform, and the dependence on the electromagnetic wave absorption angle is effectively reduced. In addition, the presence of the inorganic hollow body contributes to good sound absorption characteristics, and particularly, 250 to 500 An object of the present invention is to provide an electromagnetic wave absorbing material that has excellent sound absorbing characteristics in the Hz band and also has excellent functions as a sound absorbing member.
〔導電材〕  (Conductive material)
本発明の電磁波吸収材は、 導電材 0 . 0 1〜3 5重量%の範囲で含有する。 ここで使用される導電材としては、 好ましくは、 繊維状導電材、 カーボンブラ ック、 グラフアイ トから選ばれる少なくとも一つである。  The electromagnetic wave absorbing material of the present invention contains the conductive material in the range of 0.01 to 35% by weight. The conductive material used here is preferably at least one selected from a fibrous conductive material, carbon black, and graphite.
繊維状導電材としては、 導電性を有し繊維状であれば、 特に限定されないが、 代表的には、 カーボン繊維、 金属繊維を挙げることができる。 尚、 ここで繊維状 とはスパイラル繊維をも含む概念である。  The fibrous conductive material is not particularly limited as long as it has conductivity and is fibrous, but typically, carbon fibers and metal fibers can be exemplified. Here, the term “fibrous” is a concept including spiral fibers.
カーボン繊維は、 P A N系、 ピヅチ系のいずれであってもよい。  The carbon fibers may be either PAN-based or peach-based.
カーボン繊維の繊維長は 1〜 3 0 mmの範囲が好ましい。 繊維長は長くなるほ ど、 少ない配合量で良好な電磁波吸収性能を示す反面、 抄造成型時に水に分散さ せ撹絆した際に力一ボン繊維が絡まり合い分散性が悪くなり、 電磁波吸収性能の 低下を引き起こすので、 繊維長としては 3 0 mm以下が好ましい。 また l mm未 満の場合は分散性には間題ないが、 電磁波吸収の原理である誘電損失効果が得ら れにくく電磁波吸収性能の低下を招く場合がある。  The fiber length of the carbon fiber is preferably in the range of 1 to 30 mm. The longer the fiber length, the better the electromagnetic wave absorption performance with a small blending amount.However, when dispersed in water during paper molding and agitated, the fibers are entangled and the dispersibility becomes poor, resulting in poor electromagnetic wave absorption. The fiber length is preferably 30 mm or less, because it causes a decrease in performance. If the diameter is less than l mm, there is no problem with the dispersibility, but the dielectric loss effect, which is the principle of electromagnetic wave absorption, is hardly obtained, and the electromagnetic wave absorption performance may be reduced.
代表例としては、 大阪ガス (株) 製のザィラス、 東レ (株) 製のトレ力、 東邦 レーヨン (株) 製べスフアイ トを挙げることができる。  Representative examples include Zylas manufactured by Osaka Gas Co., Ltd., Toray Co., Ltd. manufactured by Toray Co., Ltd., and Vesfight manufactured by Toho Rayon Co., Ltd.
繊維状導電材の長さは、 電磁波吸収材の厚さの 5倍以下の繊維長であることが 好ましく、 2倍以下の繊維長がより好ましい。 5倍を超えると絡まる繊維が多く なり、 反射性能が強くなつてしまう傾向がある。 更に極端に長い場合は、 平面配 向の繊維が増えてしまう為反射性が強くなつてしまう恐れがある。  The length of the fibrous conductive material is preferably 5 times or less the thickness of the electromagnetic wave absorbing material, more preferably 2 times or less. If it exceeds 5 times, the number of entangled fibers increases, and the reflection performance tends to increase. If the length is extremely long, the number of fibers in the plane direction increases, and the reflectivity may be increased.
金属繊維としては、 アルミ、 ステンレス等耐腐食性に優れる金属の繊維が望ま しい。 カーボン繊維におけるのと同様の理由で、 金属繊維の繊維長も 1〜3 0 m mの範囲が好ましい。  As metal fibers, fibers of metals such as aluminum and stainless steel having excellent corrosion resistance are desirable. For the same reason as in the case of the carbon fiber, the fiber length of the metal fiber is preferably in the range of 1 to 30 mm.
代表的には、 ポンス夕一 (日本スチールウール株式会社製) 、 ナスロン (日本 精線株式会社製)、ベキニット(ベキニット株式会社製)を挙げることができる。 繊維状導電材の含有量は、 好ましくは 0 . 0 1〜2重量%である。 0 . 0 1重 量%よりも少ないと十分な電磁波吸収性能を確保できない場合があり、 2重量% よりも多くなると電磁波の反射特性が現れ、 期待する電磁波吸収性能を得ること が出来ない場合がある。 Representative examples include Yuichi Ponce (manufactured by Nippon Steel Wool Co., Ltd.), Naslon (manufactured by Nippon Seisen Co., Ltd.), and Bekinit (manufactured by Bekinit Co., Ltd.). The content of the fibrous conductive material is preferably 0.01 to 2% by weight. 0 .0 single If the amount is less than%, sufficient electromagnetic wave absorbing performance may not be secured. If the amount is more than 2% by weight, electromagnetic wave reflection characteristics may appear, and the expected electromagnetic wave absorbing performance may not be obtained.
カーボン繊維及び金属繊維と併用してカーボンブラック及び/又はグラフアイ トを使用する場合、 カーボンブラック及びグラフアイ トの添加量は、 合計で、 好 ましくは 0 . 0 1〜3 5重量%である。 3 5 %重量よりも多くなると結合材の量 が少なくなり、強度を維持する事が出来ない場合がある。尚、不燃性の点からは、 2 0重量%以下の添加量が好ましい。  When carbon black and / or graphite is used in combination with carbon fiber and metal fiber, the total amount of carbon black and graphite is preferably 0.01 to 35% by weight. is there. If the content is more than 35% by weight, the amount of the binder decreases, and strength may not be maintained. From the viewpoint of noncombustibility, the amount of addition is preferably 20% by weight or less.
カーボンブラックとしては、 特に限定されるものではないが、 例えば、 キヤブ ロヅク株式会社製スペシャル B Pグレード、 木等を炭化させた炭等を挙げること ができる。  Examples of the carbon black include, but are not particularly limited to, special BP grade manufactured by CABROOK Co., Ltd., and charcoal obtained by carbonizing wood and the like.
グラフアイ トとしては、特に限定されるものではない。例えば、中国 山東省、 黒龍江省、 内モンゴル自治区にて産出されるものが挙げられる。  The graph item is not particularly limited. For example, those produced in Shandong, Heilongjiang, and Inner Mongolia, China.
導電材としてカーボンブラック及びグラフアイ トを単独使用する場合、 これら の含有量は 0 . 0 1〜3 5重量%であり、 好ましくは 1 0〜3 5重量%である。 When carbon black or graphite is used alone as the conductive material, the content thereof is 0.01 to 35% by weight, preferably 10 to 35% by weight.
〔結合材〕 (Binder)
結合材は、 5〜4 7 . 5重量%の添加量であり、 有機結合材及び無機結合材を 単独或いは併用して使用できる。  The binder is added in an amount of 5 to 47.5% by weight, and the organic binder and the inorganic binder can be used alone or in combination.
有機結合材としては、 有機高分子化合物の粉末又はェマルジョン及び有機繊維 を挙げることができ、無機結合材としては、硬化性無機化合物又は組成物であり、 例えば、 水の添加により硬化する水硬化性化合物又は組成物、 乾燥、 加熱などの 脱水により硬化する化合物又は組成物を挙げることができる。  Examples of the organic binder include powder or emulsion of an organic polymer compound and organic fibers, and examples of the inorganic binder include a curable inorganic compound or a composition. Examples thereof include compounds and compositions, and compounds and compositions that are cured by dehydration such as drying and heating.
有機結合材として使用される有機高分子化合物としては、 例えば、 デンプン、 ボリビニルアルコール、 ボリエチレン、 パラフィン、 メチルセルロース、 カルボ キシメチルセルロース、 フエノール樹脂、 メラミン樹脂、 尿素樹脂、 エポキシ樹 脂、 ウレタン樹脂、 アクリル樹脂、 変性アクリル樹脂、 ポリ酢酸ビニル、 ェチレ ン .酢酸共重合樹脂、 ボリ塩化ビニリデン樹脂、 変性ポリ塩化ビニリデン樹脂、 ポリカーボネート樹脂、 ポリオレフイン樹脂等を挙げることができる。 有機高分 子化合物の分子量は、 通常 1 8 0 ~ 7 0 0 0万である。 Examples of the organic polymer compound used as the organic binder include starch, polyvinyl alcohol, polyethylene, paraffin, methyl cellulose, carboxymethyl cellulose, phenol resin, melamine resin, urea resin, epoxy resin, urethane resin, and acrylic resin. And modified acrylic resin, polyvinyl acetate, ethylene / acetic acid copolymer resin, polyvinylidene chloride resin, modified polyvinylidene chloride resin, polycarbonate resin, polyolefin resin and the like. Organic high The molecular weight of the child compound is usually from 180 to 700,000.
有機繊維としては、 例えば、 ポリオレフイン系繊維、 ポリオレフイン系複合繊 維、 ポリビニルアルコール系合成繊維、 パルプ、 叩解パルプ、 セルロース繊維等 を挙げることができる。  Examples of the organic fiber include polyolefin-based fiber, polyolefin-based composite fiber, polyvinyl alcohol-based synthetic fiber, pulp, beaten pulp, and cellulose fiber.
有機結合材の添加量としては 5〜 2 5重量%の範囲内が好ましい。 単独で使用 する場合は 5重量%よりも少ないと強度が低下する。 一方、 2 5重量%を超える と不燃性が低下し、 建築の内装材ゃ外装材として使用できなくなる場合がある。 無機結合材としての硬化性無機化合物又は組成物としては、 例えば、 水の添加 により硬化する水硬化性化合物又は組成物である、 ポルトランドセメント、 マグ ネシァセメント、 アルミナセメント、 石膏、 珪酸塩、 石灰、 珪酸塩と石灰との混 合物等を挙げることができる。 また、 脱水により硬化する化合物又は組成物であ る、 リン酸塩水溶液、 シリカゾル、 アルミナゾル、 水ガラス組成物等を挙げるこ とができる。  The addition amount of the organic binder is preferably in the range of 5 to 25% by weight. When used alone, strength is reduced if less than 5% by weight. On the other hand, if it exceeds 25% by weight, the incombustibility is reduced, and it may not be possible to use it as interior and exterior materials for buildings. Examples of the curable inorganic compound or composition as the inorganic binder include, for example, a water-curable compound or composition that cures by adding water, such as portland cement, magnesium cement, alumina cement, gypsum, silicate, lime, and silicate. A mixture of salt and lime can be mentioned. Further, examples thereof include a phosphate aqueous solution, a silica sol, an alumina sol, and a water glass composition, which are compounds or compositions that are cured by dehydration.
無機結合材の含有量は?〜 4 7 . 5重量%の範囲が好ましい。 7重量%よりも 少ないと強度が十分得られない場合がある。 一方、 4 7 . 5重量%を超えると無 機質中空体の添加量が低下しカーボン繊維等の導電材の配向性が 2次元化となる 傾向がある。 また微粉末体の量が増えるので濾水が悪くなり脱水成型を行う場合 に生産性を低下につながる場合がある。  What is the content of inorganic binder? A range of ~ 47.5% by weight is preferred. If it is less than 7% by weight, sufficient strength may not be obtained. On the other hand, when the content exceeds 47.5% by weight, the amount of the inorganic hollow body added decreases, and the orientation of the conductive material such as carbon fiber tends to be two-dimensional. In addition, since the amount of the fine powder increases, drainage becomes poor, which may lead to a decrease in productivity when performing dehydration molding.
前記結合材には強度を向上させるため助剤として結合材を置換する形で硬化剤、 反応促進剤、 凝集剤を添加できる。 例えば、 パラトルエンスルホン酸、 フヱノー ルスルホン酸、 塩化アンモニゥム、 カルシウム,アルミネート溶融体と変性石膏 の混合体、 アクリルアミド、 硫酸アルミニウム等が挙げられる。 これらは総量と して、 結合材及び助剤の総量に対して、 通常 2 . 5重量%以下の範囲で添加され In order to improve the strength, a curing agent, a reaction accelerator, and a coagulant can be added to the binder in order to replace the binder as an auxiliary. Examples include para-toluenesulfonic acid, phenolsulfonic acid, ammonium chloride, calcium, a mixture of aluminate melt and modified gypsum, acrylamide, aluminum sulfate and the like. These are usually added in an amount of not more than 2.5% by weight based on the total amount of the binder and the auxiliary.
^ ο ^ ο
本発明の電磁波吸収材は充填剤を 0 . 1 ~ 4 4 . 9 9重量%の範囲で含有する。 充填剤としては、 各種無機粉体、 無機繊維を挙げることができる。  The electromagnetic wave absorbing material of the present invention contains a filler in the range of 0.1 to 44.999% by weight. Examples of the filler include various inorganic powders and inorganic fibers.
無機粉体としては、 例えば、 クレー、 粘土、 水酸化アルミニウム、 炭酸カルシ ゥム、 カオリン、 タルク、 マイ力、 珪藻土、 モンモリナイ ト、 ジルコンサンド、 マグネシア、 チタニア、 アルミナ、 シリカ、 ジルコニァ、 コ一ジエライ ト、 スピ ネルのような天然鉱物粉体(好ましくは粒径 1〃m〜 2 mm)、フライアッシュ、 スラグ粉末、 シリカヒュームのような人造無機粉体 (好ましくは粒径 1〃π!〜 5 0 0 m) を挙げることができる。 人造無機粉体は副産物として得られたもので もよい。 Inorganic powders include, for example, clay, clay, aluminum hydroxide, calcium carbonate, kaolin, talc, myriki, diatomaceous earth, montmorillonite, zircon sand, Natural mineral powders such as magnesia, titania, alumina, silica, zirconia, kozierite, and spinel (preferably 1〃2 mm in diameter), artificial ash such as fly ash, slag powder, and silica fume Powder (preferably, particle size 1〃π! To 500 m) can be mentioned. The artificial inorganic powder may be obtained as a by-product.
このような無機粉体は、 好ましくは 0 . 5〜3 0重量%の範囲で添加される。 無機繊維としては、 ァ夕パルジャイ ト、 セピオライ ト、 ワラストナイ ト等の天 然鉱物繊維 (好ましくは、 径 0 . 1 ~ 2 0〃m、 長さ 0 . 5〜1 0 0〃m) 、 ガ ラス繊維、 ガラスウール、 ロックウール、 スラグウール、 シリカ繊維、 シリカチ タニア繊維、 シリカアルミナ繊維、 ジルコニァ繊維、 アルミナ繊維、 窒化ホウ素 繊維、 シリコンカーバイ ド繊維、 チタン酸カルシウム繊維、 チタン酸カリウム繊 維等の人造鉱物繊維 (好ましくは、 径 0 . 1〜2 0 zm、 長さ 1〜1 0 0 / m) が挙げられる。  Such an inorganic powder is preferably added in a range of 0.5 to 30% by weight. Examples of inorganic fibers include natural mineral fibers such as agar palgitite, sepiolite, and wollastonite (preferably, having a diameter of 0.1 to 20 m and a length of 0.5 to 100 m), and glass. Fiber, glass wool, rock wool, slag wool, silica fiber, silica titania fiber, silica alumina fiber, zirconia fiber, alumina fiber, boron nitride fiber, silicon carbide fiber, calcium titanate fiber, potassium titanate fiber, etc. Artificial mineral fibers (preferably, having a diameter of 0.1 to 20 zm and a length of 1 to 100 / m) are exemplified.
電磁波吸収材は、 角度依存性を改善し更に広角度吸収材として電磁波吸収性を 高めるために円錐、 円柱、 多角錘、 多角柱、 ストライプ、 ピラミッド形状、 うね り形状、クレ一夕一等の凹凸形状を少なくとも 1面以上に有することが好ましい。 本発明の電磁波吸収材は、 2層以上積層した積層体の形態をとることが好まし い。  Electromagnetic wave absorbers include cones, cylinders, polygonal pyramids, polygonal columns, stripes, pyramids, undulations, crevices, etc. in order to improve the angle dependence and further enhance the electromagnetic wave absorption as a wide angle absorber. It is preferable to have unevenness on at least one surface. It is preferable that the electromagnetic wave absorbing material of the present invention takes a form of a laminate in which two or more layers are laminated.
この場合、 下層の導電材の配合量が上層の導電材の配合量よりも多い構成が好 ましい。 ここで、 上層とは、 電磁波の入射側により近く配置している層を指す。 下層とは上層に接触して配置している、 上層の電磁波入射側面と反対面に接触し て配置している層を指す。 尚、 上層の導電材の添加量は 0〜 3 5重量%未満であ る。 即ち、 上層は、 本発明の組成を有する電磁波吸収材であってもよいし、 導電 材が 0〜0 . 0 1重量%未満である以外は本発明と同一組成である電磁波吸収材 であってもよい。  In this case, it is preferable that the amount of the conductive material in the lower layer is larger than the amount of the conductive material in the upper layer. Here, the upper layer refers to a layer disposed closer to the electromagnetic wave incident side. The lower layer refers to a layer that is disposed in contact with the upper layer and that is disposed in contact with the surface of the upper layer opposite to the side on which electromagnetic waves are incident. The amount of the conductive material added in the upper layer is 0 to less than 35% by weight. That is, the upper layer may be an electromagnetic wave absorbing material having the composition of the present invention, or an electromagnetic wave absorbing material having the same composition as the present invention except that the conductive material is present in an amount of from 0 to less than 0.01% by weight. Is also good.
この構成により、 上層よりの電磁波吸収特性が向上し広帯域における吸収材と する事が出きる。 上層の導電材の添加量は好ましくは 0〜0 . 0 5重量%未満で あり、 その下層における添加量は上層よりも高い添加量を有する。 好ましくは下 層の導電材の添加量を上層の添加量に対して 0 . 0 5重量%以上高くする。 With this configuration, the electromagnetic wave absorption characteristics of the upper layer are improved, and it can be used as an absorber in a wide band. The added amount of the conductive material in the upper layer is preferably 0 to less than 0.05% by weight, and the added amount in the lower layer is higher than that in the upper layer. Preferably below The added amount of the conductive material in the layer is set to be higher than the added amount of the upper layer by 0.05% by weight or more.
上層における導電材 0重量%、 即ち無添加の場合は無機質中空体単体において も空気よりも高い誘電率を有する為、 低前方反射性とする事が可能であり高性能 な電磁波吸収材として設計する場合の添加量である。 上層における導電材が 0 . 0 5重量%よりも高くなつてしまうと電磁波の前方反射性が強くなつてしまい高 性能な電磁波吸収材として設計が困難となる場合がある。  The conductive material in the upper layer is 0% by weight. In other words, when no additive is used, the inorganic hollow body alone has a higher dielectric constant than air, so it can be made to have low forward reflection and can be designed as a high-performance electromagnetic wave absorbing material. It is the amount added in the case. If the conductive material in the upper layer is more than 0.05% by weight, the forward reflectivity of the electromagnetic wave becomes strong, and it may be difficult to design a high-performance electromagnetic wave absorbing material.
また、 これらの層は、 均一な厚みを有するものでも良いが、 規則的又はランダ ムに厚さが変化しているものでも良い。  Further, these layers may have a uniform thickness, or may have a regular or random thickness.
本発明の電磁波吸収材は、 少なくとも一面を残し、 他の面を電磁波反射性を有 する面とすることが好ましい。  It is preferable that at least one surface of the electromagnetic wave absorbing material of the present invention is left and the other surface is a surface having electromagnetic wave reflectivity.
電磁波反射性を有する面とするには、メッキ処理等により導電性能を有する布、 不織布、 3軸布もしくは 4軸布、 金属繊維布、 金属、 金属箔, 金属板、 アルミク ラフト紙 (A L K ) 、 アルミガラスクロス (A L G C ) 、 金属グリツド構造体及 び導電性コ一ティングを電磁波吸収材の面に設けることなどにより付与できる。 導電性を有するコーティングとしてはカーボンブラヅク、 グラフアイ ト、 力一 ボン繊維、金属微粉末、燐辺状金属を添加している塗料又は樹脂の塗装及び接着、 又は導電性樹脂の塗装もしくは接着による方法が挙げられる。  In order to obtain a surface with electromagnetic wave reflection, a cloth, nonwoven fabric, triaxial or quadriaxial cloth, metal fiber cloth, metal, metal foil, metal plate, aluminum craft paper (ALK), It can be provided by providing an aluminum glass cloth (ALGC), a metal grid structure and a conductive coating on the surface of the electromagnetic wave absorbing material. The conductive coating may be a paint or resin containing carbon black, graphite, carbon fiber, fine metal powder, or phosphorous metal, or a conductive resin. Method.
この電磁波反射性層により、 電磁波を遮蔽する性能を付与すると共に、 非電磁 波反射性面から入射した電磁波との共振現象により電磁波吸収性能を向上させる ことができ、 遮蔽性と吸収性を両立する電磁波吸収材とすることが出来る。  This electromagnetic wave reflective layer not only provides electromagnetic wave shielding performance, but also improves electromagnetic wave absorption performance due to the phenomenon of resonance with electromagnetic waves incident from a non-electromagnetic wave reflective surface, achieving both shielding and absorbing properties. It can be an electromagnetic wave absorbing material.
電磁波吸収材は、 少なくとも一面に耐候性又は/及び耐水性の、 コーティング 又はカバーを有することが好ましい。  It is preferable that the electromagnetic wave absorbing material has a weather-resistant and / or water-resistant coating or cover on at least one surface.
このコーティング又はカバ一は、 例えばポリエチレン、 ポリプロピレン、 ポリ カーボネート、 ポリエステル、 フエノール樹脂、 メラミン樹脂、 ユリア樹脂、 ァ クリル樹脂、 変性ァクリル樹脂、 ポリ酔酸ビニル、 エチレン '酔酸共重合樹脂、 ボリ塩化ビニリデン樹脂、 変性ボリ塩化ビニリデン樹脂、 エポキシ樹脂、 ウレタ ン樹脂からなり、 必要に応じて顔料や繊維補強材を含有する。 また、 樹脂の耐候 性を向上させるために紫外線反射剤、 フッ素加工を施すこともできる。 このコー ティング又はカバーの厚さの制限はないが、 大きな電磁波吸収性能を必要とする 場合は、 2 ζ π!〜 2 mmの厚さが好ましい。 2 より薄いと耐候性が低下する 場合があり、 2 mmより厚いと電磁波を表面反射する性能が大きくなり内部の吸 収性能を阻害する要因となる恐れがある。 The coating or cover may be, for example, polyethylene, polypropylene, polycarbonate, polyester, phenolic resin, melamine resin, urea resin, acrylic resin, modified acrylic resin, polyvinyl benzoate, ethylene copolymer, vinylidene polychloride, etc. It consists of resin, modified polyvinylidene chloride resin, epoxy resin and urethane resin, and contains pigments and fiber reinforcing materials as needed. Further, in order to improve the weather resistance of the resin, an ultraviolet reflecting agent or fluorine processing may be applied. This There is no limit on the thickness of the cover or cover, but if large electromagnetic wave absorption performance is required, 2 ζ π! A thickness of ~ 2 mm is preferred. If it is thinner than 2, the weather resistance may decrease. If it is thicker than 2 mm, the ability to reflect electromagnetic waves on the surface will increase, which may hinder the internal absorption performance.
本発明の電磁波吸収材の製造方法は、特に限定されるものではないが、例えば、 以下の方法が挙げられる。  The method for producing the electromagnetic wave absorbing material of the present invention is not particularly limited, and examples thereof include the following methods.
各原料をミキサーに投入し所定の水と混練し、 モルタル状のスラリーを得て、 このスラリーを型に投入する型枠成型法、 プレス機に投入し成形するプレス成型 法、 押し出して成型する押出成型法。  Each raw material is put into a mixer and kneaded with predetermined water to obtain a mortar-like slurry. A mold forming method of putting this slurry into a mold, a press forming method of putting into a press and forming, an extrusion of extruding and forming Molding method.
また、 各原料を 1 0倍以上の水に投入しスラリーを得て、 このスラリーを湿式 抄造機にて成型する湿式製造法。  Also, a wet production method in which each raw material is put into water 10 times or more to obtain a slurry, and the slurry is molded by a wet paper machine.
上記各成型法で得られた成型体の硬化は、 例えば、 乾燥機でのキュア、 オート クレープ養生、 蒸気養生にて行うことができる。  Curing of the molded body obtained by each of the above molding methods can be performed, for example, by curing with a dryer, autocure curing, or steam curing.
<実施例 > <Example>
以下、 実施例により本発明を詳細に説明するが、 本発明はこれらに限定される ものではない。 実施例 1  Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto. Example 1
パーライ ト 〔三井金属製三井パーライ ト 2号〕 5 8 . 9重量% カーボン繊維 〔東邦レイヨン製 PAN系繊維長 1 0 mm〕 0 . 1重量% ポリ酢酸ビニル共重合樹脂エマルシヨン 3重量% ポルトランドセメント 3 0重量% フライアッシュ 8重量% 上記のポルトランドセメント、 カーボン繊維、 フライァヅシュをォムニミキ サ一へ投入し 1分間撹拌する。 その後ポルトランドセメント 1 0 0重量部に対し て 8 0重量部の水と、 ポリ酢酸ビニル共重合樹脂エマルシヨンを加えて 1分間撹 拌する。 更にパ一ライ トを添加して 3 0秒間撹抻して得たスラリーを離型剤を塗 布した厚さ 2 5 mmの型枠に投入し乾燥させる。 乾燥後型枠を外し電磁波吸収材 1を得た。 実施例 2 Perlite [Mitsui Metals Mitsui Parlite No. 2] 58.9% by weight Carbon fiber [Toho Rayon PAN fiber length 10 mm] 0.1% by weight Polyvinyl acetate copolymer resin emulsion 3% by weight Portland cement 3 0% by weight Fly ash 8% by weight Add the above Portland cement, carbon fiber and fly ash to Omni Mixer and stir for 1 minute. Thereafter, 80 parts by weight of water and 100 parts by weight of Portland cement, and a polyvinyl acetate copolymer resin emulsion are added and stirred for 1 minute. Further, the slurry was stirred for 30 seconds after adding the powder, and the release agent was applied to the slurry. Put into a 25 mm thick formwork and dry. After drying, the mold was removed to obtain an electromagnetic wave absorbing material 1. Example 2
パーライ ト 〔三井金属製三井パ一ライ ト 2号〕 5 8 .  Pearlite [Mitsui Metals Mitsui Pearllight No.2] 5 8.
カーボン繊維 〔東邦レイヨン製 PAN系繊維長 1 0 mm〕 0 . 4重量% ポリ酢酸ビニル共重合樹脂エマルシヨン  Carbon fiber [Toho Rayon PAN fiber length 10 mm] 0.4% by weight Polyvinyl acetate copolymer resin emulsion
ポルトランドセメント 3 0重量% フライアヅシュ 8重量% 上記のカーボン繊維、 ポルトランドセメント、 フライアッシュをォムニミキ サ一へ投入し 1分間撹拌する。 その後ポルトランドセメント 1 0 0重量部に対し て 8 0重量部の水と、 ポリ酢酸ビニル共重合樹脂エマルシヨンを加えて 1分間撹 拌する。 更にパ一ライトを添加して 3 0秒間撹拌して得たスラリーを離型剤を塗 布した厚さ 3 0 mmの型枠の 1 5 mm厚さまで投入する。 その上にパーライ ト 5 8 . 9 8重量%、 カーボン繊維 0 . 0 2重量%とした以外は上記と同様の組成の スラリーを同様に作成し投入し乾燥させる。 乾燥後型枠を外し電磁波吸収材 2を 得た。 実施例 3  Portland cement 30% by weight Fly ash 8% by weight Add the above carbon fiber, Portland cement and fly ash to Omnimixer and stir for 1 minute. Thereafter, 80 parts by weight of water and 100 parts by weight of Portland cement, and a polyvinyl acetate copolymer resin emulsion are added and stirred for 1 minute. Further, perlite is added and stirred for 30 seconds, and the obtained slurry is poured into a mold having a thickness of 30 mm coated with a release agent to a thickness of 15 mm. A slurry having the same composition as above except that the pearlite is 58.988% by weight and the carbon fiber is 0.02% by weight is similarly prepared, charged and dried. After drying, the mold was removed to obtain an electromagnetic wave absorbing material 2. Example 3
パーライ ト 〔三井金属製三井パーライ ト 2号〕 6 4 . 9 5重量% カーボン繊維 〔東邦レイヨン製 PAN系繊維長 1 0 mm〕 0 . 2 5重量% 夕ピオ力デンプン 7重量% パルプ 2重量% ロックゥール 2 0重量% 硫酸アルミニウム 0 . 8重量% ァ夕パルジアイ ト  Perlite [Mitsui Metals Mitsui Parlite No. 2] 64.95% by weight Carbon fiber [Toho Rayon PAN fiber length 10 mm] 0.25% by weight Yu Pio power starch 7% by weight Pulp 2% by weight Rock wool 20% by weight Aluminum sulfate 0.8% by weight
上記原料を水中に投入し固形分が 5重量%濃度となるように調整したスラリ —を得る。 このスラリーを長網抄造機で抄造しプレスクリアランス 1 1 mmで脱 水し、 その後乾燥して厚さが 1 3 mmとなったボードの表面を切削し厚さ 1 2 m mの電磁波吸収材 3を得た。 実施例 4 The above raw materials are put into water to obtain a slurry adjusted to have a solid content of 5% by weight. This slurry is made into a Fourdrinier machine and removed with a press clearance of 11 mm. The board was watered and then dried to cut the surface of the board having a thickness of 13 mm to obtain an electromagnetic wave absorber 3 having a thickness of 12 mm. Example 4
実施例 3と同様に方法にて厚さ 3 0 mmの電磁波吸収材を作製し、 更に、 切 削加工を施し、 図 1に示すように切削面を有する電磁波吸収材 4を作製した。 実施例 5  An electromagnetic wave absorbing material having a thickness of 30 mm was produced in the same manner as in Example 3, and was further subjected to cutting to produce an electromagnetic wave absorbing material 4 having a cut surface as shown in FIG. Example 5
実施例 3において得た電磁波吸収材 3の切削面 (表面) に対応する裏面に 5 の厚さのアルミニウム箔を貼り付け、 電磁波吸収体 5を得た。 実施例 6  An aluminum foil having a thickness of 5 was attached to the back surface corresponding to the cut surface (front surface) of the electromagnetic wave absorbing material 3 obtained in Example 3 to obtain an electromagnetic wave absorber 5. Example 6
パーライ ト 〔三井金属製三井パーライ ト 2号〕 6 4 9重量% カーボン繊維 〔東邦レイヨン製 PAN系繊維長 3 mm〕 0 3重量% 夕ピオ力デンプン 7重量% パルプ 2重量% 口ックウール 2 0重量% 硫酸アルミニウム 0 . 8重量% ァ夕パルジアイ ト 5重量% 上記原料を水中に投入し固形分が 5重量%濃度となるように調整したスラリ 一を得る。 このスラリーを長網抄造機で抄造しプレスクリアランス 2 mmで脱水 し、 その後乾燥して表面を切削し厚さ 4 mmの所定の電磁波吸収体 6を得た。 比較例 1  Perlite [Mitsui Metals Mitsui Parlite No. 2] 6 4 9% by weight Carbon fiber [Toho Rayon PAN fiber length 3 mm] 0 3% by weight Evening Pio power starch 7% by weight Pulp 2% by weight Mouth wool 20% by weight % Aluminum sulfate 0.8% by weight Agar paldiite 5% by weight The above raw materials are put into water to obtain a slurry adjusted to have a solid content of 5% by weight. This slurry was paper-formed with a fourdrinier paper machine, dehydrated with a press clearance of 2 mm, then dried and the surface was cut to obtain a predetermined electromagnetic wave absorber 6 having a thickness of 4 mm. Comparative Example 1
パーライ ト 〔三井金属製三井パ一ライ ト 2号〕  Pearlite (Mitsui Metals Mitsui Pearllight No. 2)
力一ボン繊維 〔東邦レイヨン製 PAN系繊維長 1 0 mm〕 0 重量% ポリ酢酸ビニル共重合樹脂エマルション  Ribon fiber [PAN fiber length 10 mm, manufactured by Toho Rayon] 0% by weight Polyvinyl acetate copolymer resin emulsion
ポルトランドセメント 5 3重量% フライアッシュ 3 1 . 9重量% 上記のポルトランドセメント、 カーボン繊維、 フライァヅシュをォムニミキ サ一へ投入し 1分間撹拌する。 その後ポルトランドセメント 1 0 0重量部に対し て 8 0重量部の水と、 ポリ酢酸ビニル共重合樹脂エマルシヨンを加えて 1分間撹 拌する。 更にパーライ トを添加して 3 0秒間撹拌して得たスラリーを離型剤を塗 布した厚さ 2 5 mmの型枠に投入し乾燥させる。 乾燥後型枠を外し電磁波吸収材 aを得た。 Portland cement 53 3% by weight Fly ash 31.9% by weight Put the above Portland cement, carbon fiber and fly ash into Omni Mixer and stir for 1 minute. Thereafter, 80 parts by weight of water and 100 parts by weight of Portland cement, and a polyvinyl acetate copolymer resin emulsion are added and stirred for 1 minute. Further, pearlite is added and the slurry obtained by stirring for 30 seconds is poured into a mold having a thickness of 25 mm coated with a release agent, and dried. After drying, the mold was removed to obtain an electromagnetic wave absorbing material a.
比較例 2 Comparative Example 2
パーライ ト 〔三井金属製三井パーライ ト 2号〕 2 0重量% 力一ボン繊維 〔東邦レイヨン製 PAN系繊維長 1 0 mm〕 0 2 5重量% 夕ピオ力デンプン 7重量% パルプ  Pearlite [Mitsui Metals Mitsui Pearlite No. 2] 20% by weight Rybon fiber [PAN fiber length 10 mm from Toho Rayon] 0 2 5% by weight Yu Pio power starch 7% by weight pulp
ロックゥーゾレ 6 4 . 9 5重量% 硫酸アルミニウム 0 . 8重量% ァ夕パルジアイ ト 5重量% 上記原料を水中に投入し固形分が 5重量%濃度となるように調整したスラリ 一を得る。 このスラリーを長網抄造機で抄造しプレスクリアランス 1 1 mmで脱 水し、 その後乾燥して厚さが 1 3 mmとなったボードの表面を切削し厚さ 1 2 m mの所定の電磁波吸収材 bを得た。  Rockazole 64.9 5% by weight Aluminum sulfate 0.8% by weight Agar paldiite 5% by weight The above raw materials are put into water to obtain a slurry adjusted to have a solid content of 5% by weight. This slurry is formed with a Fourdrinier machine, dewatered with a press clearance of 11 mm, and then dried to cut the surface of the board to a thickness of 13 mm. got b.
比較例 3 Comparative Example 3
パーライ ト 〔三井金属製三井パーライ ト 2号〕 4 0 . 0重量% 力一ボン繊維 〔東邦レイヨン製 PAN系繊維長 3 mm〕 0 . 3重量% ポバール 1 5重量% パルプ  Perlite [Mitsui Metals Mitsui Parlite No. 2] 40.0% by weight Rybon fiber [PAN fiber length 3 mm from Toho Rayon] 0.3% by weight Povar 15% by weight pulp
ガラス繊維 2 5重量% 硫酸アルミニウム 0 . 8重量% 水酸化アルミニウム 17. 9重量% 上記原料を水中に投入し固形分が 5重量%濃度となるように調整したスラリ 一を得る。 このスラリーを長網抄造機で抄造しプレスクリアランス 9 mmで脱水 し、 その後乾燥して表面を切削し厚さ 12 mmの所定の電磁波吸収体 cを得た。 上記で得た電磁波吸収材 1〜 6及び a〜 cについて、 以下のようにして曲げ強 度、 防火性能、 電磁波吸収性能、 施工性を評価した。 結果を下記表 1に示す。 〔曲げ強度〕 Glass fiber 25% by weight Aluminum sulfate 0.8% by weight Aluminum hydroxide 17.9% by weight The above raw materials are put into water to obtain a slurry adjusted to have a solid content of 5% by weight. This slurry was paper-formed with a fourdrinier paper machine, dehydrated with a press clearance of 9 mm, dried and cut to obtain a predetermined electromagnetic wave absorber c having a thickness of 12 mm. For the electromagnetic wave absorbing materials 1 to 6 and a to c obtained above, the bending strength, fire prevention performance, electromagnetic wave absorption performance, and workability were evaluated as follows. The results are shown in Table 1 below. (Bending strength)
J I S A 1408に従い測定した。  It was measured according to JIS A 1408.
〔防火性能〕  (Fire protection performance)
2000年日本国建設省告示第 1400号 (不燃材料) に関わる試験に合格し たものを不燃とした。  Those that passed the test related to the Japanese Ministry of Construction Notification 1400 (non-combustible materials) were declared non-combustible.
2000年日本国建設省告示第 1401号 (準不燃材料) に関わる試験に合格 したものを準不燃とした。  Those that passed the test related to Notification 1401 of the Ministry of Construction of Japan (quasi-noncombustible materials) in 2000 were classified as nonflammable.
〔電磁波吸収性能〕  (Electromagnetic wave absorption performance)
建築、 土木分野へ使用するため、 反射電磁波からの共振現象を防止し、 試験体 そのものが持つ内部損失による電磁波吸収を測定するため、 金属体 (lmx lm X 5 mmのステンレス板) の反射係数を自由空間タイムドメイン法で計測し、 金 属体を撤去後に金属体と同じ位置、 同じサイズの試験体を設置し同様に反射係数 を測定した。 測定は、 電波暗室内で行い、 2. 54GHzの電磁波を使用した。  For use in the construction and civil engineering fields, to prevent resonance phenomena from reflected electromagnetic waves, and to measure electromagnetic wave absorption due to the internal loss of the specimen itself, the reflection coefficient of a metal body (lmx lm X 5 mm stainless steel plate) The measurement was performed by the free space time domain method, and after removing the metal body, a specimen with the same size and the same size as the metal body was installed, and the reflection coefficient was measured in the same manner. The measurement was performed in an anechoic chamber, and 2.54 GHz electromagnetic waves were used.
電磁波吸収性能 (dB)  Electromagnetic wave absorption performance (dB)
= 金属体の反射レベル (dB) —吸収体の反射レベル (dB)  = Reflection level of metal body (dB) — Reflection level of absorber (dB)
尚、 入射角を表 1に示すように変更して測定を行った。 入射角は、 吸収材の測 定対象面の垂線との角度を意味する。 即ち、 入射角 0度とは、 吸収材面に垂直な 角度での入射を意味する。  The measurement was performed with the incident angle changed as shown in Table 1. The angle of incidence means the angle between the absorber and the perpendicular to the surface to be measured. That is, an incident angle of 0 degrees means incidence at an angle perpendicular to the absorber surface.
〔施工性〕 カッター及び鋸で容易に加工できるものを〇、 容易に加工できないも のを Xとした。 実施例 1 実施例 2 実施例 3 実施例 実施例 5 実施例 6 比較例 比較例 b 比較例 c 曲げ強度 (kgf/cm2) 24.5 21.8 18.7 16.5 28.2 20.5 44.2 19. 1 20.5 防火性能 不燃 不燃 不燃 不燃 不燃 準不燃 不燃 不燃 準不燃 電磁波吸収性能 (Db) [Workability] A sample that can be easily machined with a cutter and a saw was marked as “A”, and a sample that could not be machined easily was marked as “X”. Example 1 Example 2 Example 3 Example 5 Example 5 Example 6 Comparative example Comparative example b Comparative example c Flexural strength (kgf / cm 2 ) 24.5 21.8 18.7 16.5 28.2 20.5 44.2 19.1 20.5 Fireproof performance Non-combustible Semi-combustible Non-combustible Non-combustible Semi-combustible Electromagnetic wave absorption performance (Db)
入射角 0度 8. 1 16.4 6.9 15.9 13 8.2 7.6 7.2 6.5 入射角 20度 7.7 15.8 6.5 16.5 11.7 7.6 5.3 5.0 5.2 入射角 40度 6.5 14.6 5.8 13.0 9.6 7.6 4. 1 3.6 3.3 入射角 60度 6.2 10.8 5.7 10.6 9.5 7.0 2.8 1.9 2.5 施工性 〇 〇 〇 〇 〇 〇 X 〇 〇 Incident angle 0 degree 8.1 16.4 6.9 15.9 13 8.2 7.6 7.2 6.5 Incident angle 20 degrees 7.7 15.8 6.5 16.5 11.7 7.6 5.3 5.0 5.2 Incident angle 40 degrees 6.5 14.6 5.8 13.0 9.6 7.6 4.1 3.6 3.3 Incident angle 60 degrees 6.2 10.8 5.7 10.6 9.5 7.0 2.8 1.9 2.5 Workability 〇 〇 〇 〇 〇 〇 X 〇 〇
表 1に結果におけるように、 本発明の電磁波吸収材は各種性能に優れているこ とがわかる。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。 As shown in Table 1, the results show that the electromagnetic wave absorbing material of the present invention is excellent in various performances. Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
<産業上の利用可能性 > <Industrial applicability>
本発明の電磁波吸収材は広角度の電磁波吸収性を有しているので、 電磁波環境 を改善するために、 建築、 土木分野などの各種分野において広く利用することが できる。  Since the electromagnetic wave absorbing material of the present invention has a wide-angle electromagnetic wave absorbing property, it can be widely used in various fields such as construction and civil engineering in order to improve an electromagnetic wave environment.

Claims

請 求 の 範 囲 The scope of the claims
1 . 無機質中空体を 5 0〜 8 5重量%、 導電材を 0 . 0 1〜 3 5重量%、 結 合材を 5〜4 7 . 5重量%、 及び充填剤を 0 . 1 ~ 4 7 . 5重量%含有すること を特徴とする電磁波吸収材。 1. 50 to 85% by weight of inorganic hollow body, 0.01 to 35% by weight of conductive material, 5 to 47.5% by weight of binder, and 0.1 to 47% of filler. An electromagnetic wave absorber characterized by containing 5% by weight.
2 . 無機質中空体がパ一ライ ト、 シラスバルーン、 シリカバルーン、 ガラス ビーズ及びアルミナシリカバル一ンから選ばれる少なくとも 1種であることを特 徴とする請求の範囲第 1項記載の電磁波吸収材。  2. The electromagnetic wave absorbing material according to claim 1, wherein the inorganic hollow body is at least one member selected from the group consisting of parlite, shirasu balloon, silica balloon, glass beads, and alumina silica balloon. .
3 . 導電材が繊維状導電材、 力一ボンブラック及びグラフアイ トから選ばれ る少なくとも 1種であることを特徴とする請求の範囲第 1項記載の電磁波吸収材 c  3. The electromagnetic wave absorbing material according to claim 1, wherein the conductive material is at least one selected from fibrous conductive material, carbon black and graphite.
4 . 繊維状導電材がカーボン繊維及び金属繊維から選ばれる少なくとも 1種 であることを特徴とする請求の範囲第 3項記載の電磁波吸収材。  4. The electromagnetic wave absorbing material according to claim 3, wherein the fibrous conductive material is at least one selected from carbon fibers and metal fibers.
5 . 繊維状導電材の含有量が 0 . 0 1〜2重量%であることを特徴とする請 求の範囲第 4項記載の電磁波吸収材。  5. The electromagnetic wave absorbing material according to claim 4, wherein the content of the fibrous conductive material is 0.01 to 2% by weight.
6 . 導電材が繊維状導電材であり、 繊維状導電材の長さが、 電磁波吸収材の 厚さの 5倍以下であることを特徴とする請求の範囲第 3項記載の電磁波吸収材。  6. The electromagnetic wave absorbing material according to claim 3, wherein the conductive material is a fibrous conductive material, and the length of the fibrous conductive material is five times or less the thickness of the electromagnetic wave absorbing material.
7 . 結合材が、 有機高分子化合物の粉末又はェマルジヨン及び有機繊維から 選ばれる少なくとも一つであることを特徴とする請求の範囲第 1項記載の電磁波 吸収材。  7. The electromagnetic wave absorber according to claim 1, wherein the binder is at least one selected from an organic polymer compound powder or an emulsion and an organic fiber.
8 . 結合材の含有量が 5〜2 5重量%であることを特徴とする請求の範囲第 7項記載の電磁波吸収材。  8. The electromagnetic wave absorbing material according to claim 7, wherein the content of the binder is 5 to 25% by weight.
9 . 結合材が、 硬化性無機化合物又は組成物から選ばれる少なくとも一つで あることを特徴とする請求の範囲第 1項記載の電磁波吸収材。  9. The electromagnetic wave absorbing material according to claim 1, wherein the binder is at least one selected from a curable inorganic compound or a composition.
1 0 . 充填剤が、 無機粉体及び無機繊維から選ばれる少なくとも一つである ことを特徴とする請求の範囲第 1項記載の電磁波吸収材。  10. The electromagnetic wave absorbing material according to claim 1, wherein the filler is at least one selected from an inorganic powder and an inorganic fiber.
1 1 . 電磁波吸収材が凹凸形状を有していることを特徴とする請求の範囲第 1項記載の電磁波吸収材。  11. The electromagnetic wave absorbing material according to claim 1, wherein the electromagnetic wave absorbing material has an uneven shape.
1 2 . 電磁波反射性を有する面と電磁波反射性を有しない面とを有する請求 の範囲第 1項記載の電磁波吸収材。 1 2. A claim having a surface having electromagnetic wave reflection and a surface having no electromagnetic wave reflection 2. The electromagnetic wave absorbing material according to item 1 above.
1 3 . 請求の範囲第 1項記載の電磁波吸収材 2層以上の積層構造からなり、 但し、 上層の導電材の添加量は 0 ~ 3 5重量%であり、 導電材の含有量が上層よ り下層のほうが高いことを特徴とする電磁波吸収材積層体。  13. The electromagnetic wave absorbing material according to claim 1 has a laminated structure of two or more layers, provided that the amount of the conductive material in the upper layer is 0 to 35% by weight, and the content of the conductive material is lower than that of the upper layer. An electromagnetic wave absorber laminate wherein the lower layer is higher.
PCT/JP2002/000785 2002-01-31 2002-01-31 Electromagnetic-wave absorber WO2003064780A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2002/000785 WO2003064780A1 (en) 2002-01-31 2002-01-31 Electromagnetic-wave absorber
US10/488,781 US20050008845A1 (en) 2002-01-31 2002-01-31 Electromagnetic-wave absorber
JP2003564361A JP4224703B2 (en) 2002-01-31 2002-01-31 Electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/000785 WO2003064780A1 (en) 2002-01-31 2002-01-31 Electromagnetic-wave absorber

Publications (1)

Publication Number Publication Date
WO2003064780A1 true WO2003064780A1 (en) 2003-08-07

Family

ID=27639275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000785 WO2003064780A1 (en) 2002-01-31 2002-01-31 Electromagnetic-wave absorber

Country Status (3)

Country Link
US (1) US20050008845A1 (en)
JP (1) JP4224703B2 (en)
WO (1) WO2003064780A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093908A (en) * 2003-09-19 2005-04-07 Fine Rubber Kenkyusho:Kk Electromagnetic wave controller, method for manufacturing same, and portable telephone
WO2010113303A1 (en) * 2009-04-01 2010-10-07 特種製紙株式会社 Electromagnetic wave absorption structure
KR101421995B1 (en) 2014-04-07 2014-07-23 인지전기공업 주식회사 Electromagnetic wave shielding composition and electromagnetic wave shielding appartus
KR101864843B1 (en) * 2017-01-13 2018-06-07 황홍기 Electromagnetic wave shielding pad member and method of manufacturing pad member

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688246B2 (en) * 2005-05-10 2010-03-30 Fuji Xerox Co., Ltd. Radio wave absorber, electromagnetic field measurement system and radiated immunity system
US7732381B2 (en) * 2007-11-30 2010-06-08 Schlumberger Technology Corporation Conductive cement formulation and application for use in wells
CN102627422B (en) * 2012-04-20 2014-06-11 大连理工大学 Pumice wave absorbing aggregate with electromagnetic wave absorbing function and preparation method of pumice wave absorbing aggregate
US8734613B1 (en) 2013-07-05 2014-05-27 Usg Interiors, Llc Glass fiber enhanced mineral wool based acoustical tile
US20160285171A1 (en) * 2015-03-27 2016-09-29 John Bernard Moylan Flexible Asymmetric Radio Frequency Data Shield
RU2594363C1 (en) * 2015-05-07 2016-08-20 Андрей Николаевич Пономарев Electromagnetic wave absorber based on hybrid nanocomposite structures
JP6661919B2 (en) * 2015-08-25 2020-03-11 東洋インキScホールディングス株式会社 Electromagnetic wave suppression sheet for flexible printed circuit board or flexible flat cable and electromagnetic wave suppression adhesive sheet using the same
JP6546824B2 (en) * 2015-09-30 2019-07-17 日本グラスファイバー工業株式会社 Divider for preventing IC tag misrecognition
US20230105161A1 (en) * 2020-04-01 2023-04-06 Hokuetsu Corporation Electromagnetic wave shield sheet manufacturing method and electromagnetic wave shield sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354974A (en) * 1998-06-05 1999-12-24 Tech Res & Dev Inst Of Japan Def Agency Wide band syntactic foam radio wave absorbing material
EP0986294A2 (en) * 1998-09-04 2000-03-15 TDK Corporation Electric wave absorber
JP2000353893A (en) * 1999-06-11 2000-12-19 Kagoshima Prefecture Wave absorber and its manufacture
JP2001156487A (en) * 1999-11-26 2001-06-08 Kyocera Corp Electromagnetic wave absorber and its manufacturing method
JP2001322194A (en) * 2000-05-16 2001-11-20 Nitto Boseki Co Ltd Electric wave absorber and method for applying interior trimming material
JP2001339190A (en) * 2000-03-23 2001-12-07 Mitsubishi Cable Ind Ltd Radio wave absorbent and its manufacturing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189699A (en) * 1985-02-19 1986-08-23 日東紡績株式会社 Radio wave absorbent element
US5238975A (en) * 1989-10-18 1993-08-24 Minnesota Mining And Manufacturing Company Microwave radiation absorbing adhesive
US5830548A (en) * 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Articles of manufacture and methods for manufacturing laminate structures including inorganically filled sheets
JPH088576A (en) * 1994-06-23 1996-01-12 Takenaka Komuten Co Ltd Composition for wave absorber and manufacture of wave absorber
JP3394848B2 (en) * 1994-06-23 2003-04-07 株式会社竹中工務店 Radio wave absorber member, radio wave absorber, and method of manufacturing radio wave absorber member
JPH08181480A (en) * 1994-12-21 1996-07-12 Matsushita Electric Works Ltd Electromagnetic wave absorber
US5576358A (en) * 1995-02-03 1996-11-19 Alliedsignal Inc. Composition for use in friction materials and articles formed therefrom
JP3519562B2 (en) * 1996-12-28 2004-04-19 日本ペイント株式会社 Electromagnetic wave absorber
US6214454B1 (en) * 1996-09-25 2001-04-10 Nippon Paint Co., Ltd. Electromagnetic wave absorbing material
JP2000082892A (en) * 1998-09-04 2000-03-21 Tdk Corp Radio wave absorbing body
JP2000082893A (en) * 1998-09-04 2000-03-21 Tdk Corp Radio wave absorbing body
JP2000269680A (en) * 1999-03-17 2000-09-29 Nippon Paint Co Ltd Electromagnetic wave absorbing board
JP3473691B2 (en) * 1999-06-15 2003-12-08 日東紡績株式会社 Method of manufacturing ceiling panel having non-combustible sound absorbing radio wave absorption and ceiling panel obtained thereby

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354974A (en) * 1998-06-05 1999-12-24 Tech Res & Dev Inst Of Japan Def Agency Wide band syntactic foam radio wave absorbing material
EP0986294A2 (en) * 1998-09-04 2000-03-15 TDK Corporation Electric wave absorber
JP2000353893A (en) * 1999-06-11 2000-12-19 Kagoshima Prefecture Wave absorber and its manufacture
JP2001156487A (en) * 1999-11-26 2001-06-08 Kyocera Corp Electromagnetic wave absorber and its manufacturing method
JP2001339190A (en) * 2000-03-23 2001-12-07 Mitsubishi Cable Ind Ltd Radio wave absorbent and its manufacturing method
JP2001322194A (en) * 2000-05-16 2001-11-20 Nitto Boseki Co Ltd Electric wave absorber and method for applying interior trimming material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093908A (en) * 2003-09-19 2005-04-07 Fine Rubber Kenkyusho:Kk Electromagnetic wave controller, method for manufacturing same, and portable telephone
JP4615200B2 (en) * 2003-09-19 2011-01-19 株式会社ファインラバー研究所 Electromagnetic wave control body and mobile phone
WO2010113303A1 (en) * 2009-04-01 2010-10-07 特種製紙株式会社 Electromagnetic wave absorption structure
KR101421995B1 (en) 2014-04-07 2014-07-23 인지전기공업 주식회사 Electromagnetic wave shielding composition and electromagnetic wave shielding appartus
KR101864843B1 (en) * 2017-01-13 2018-06-07 황홍기 Electromagnetic wave shielding pad member and method of manufacturing pad member

Also Published As

Publication number Publication date
JPWO2003064780A1 (en) 2005-05-26
JP4224703B2 (en) 2009-02-18
US20050008845A1 (en) 2005-01-13

Similar Documents

Publication Publication Date Title
WO2003064780A1 (en) Electromagnetic-wave absorber
CN102503333B (en) Siliceous heat-insulation composite material for wall
AU2006203284A1 (en) Gypsum building materials having increased thermal conductivity and shielding attenuation
JP2017502916A (en) Dry building material mixture and thermal insulation gypsum formed therefrom
JP3473691B2 (en) Method of manufacturing ceiling panel having non-combustible sound absorbing radio wave absorption and ceiling panel obtained thereby
CN102503276A (en) Porous perlite sound absorption material
CA2822256C (en) Ceiling tile base mat
CN111187032A (en) High-performance sound-absorbing damping soft porcelain decorative material and preparation method thereof
JPH10215097A (en) Radio wave absorption building material
JP5433314B2 (en) Soundproofing material, soundproofing synthetic resin pipe member and manufacturing method thereof
JP2002176286A (en) Flame resistant radio wave absorbing sheet and three dimensional structure for absorbing flame resistant radio wave
KR20140132488A (en) A paint composition for reducing noise and A paint and things used it
CN209413187U (en) A kind of composite fireproof heat preservation board
JP3519562B2 (en) Electromagnetic wave absorber
CN108218340B (en) Protein soil-based inorganic environment-friendly material with sound absorption and noise reduction functions and preparation method and construction method thereof
JP2001028492A (en) Electromagnetic wave absorbing material and manufacture thereof
CN111635250A (en) Microporous ceramsite sound absorption plate and preparation method thereof
JP2001220198A (en) Electromagnetic wave-absorbable fireproof wall material
JP4043963B2 (en) Sound absorption and electromagnetic wave absorption panels
JP4576801B2 (en) Radio wave absorbing ceiling panel, method for manufacturing the same, and method for preventing indoor wireless communication failure using the same
CN219642542U (en) Basalt fiber composite sound-absorbing board
JP2003229693A (en) Etc nonflammable radio wave absorbing panel
CN117027232B (en) Sound-insulation assembled net mold wall
JP4664539B2 (en) Flame-retardant sound-absorbing material and method for producing the same
JPH11274788A (en) Electromagnetic wave absorbing material and method therefor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP KR US

WWE Wipo information: entry into national phase

Ref document number: 2003564361

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10488781

Country of ref document: US