JP4576801B2 - Radio wave absorbing ceiling panel, method for manufacturing the same, and method for preventing indoor wireless communication failure using the same - Google Patents

Radio wave absorbing ceiling panel, method for manufacturing the same, and method for preventing indoor wireless communication failure using the same Download PDF

Info

Publication number
JP4576801B2
JP4576801B2 JP2003127210A JP2003127210A JP4576801B2 JP 4576801 B2 JP4576801 B2 JP 4576801B2 JP 2003127210 A JP2003127210 A JP 2003127210A JP 2003127210 A JP2003127210 A JP 2003127210A JP 4576801 B2 JP4576801 B2 JP 4576801B2
Authority
JP
Japan
Prior art keywords
radio wave
carbon fiber
performance
ceiling
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003127210A
Other languages
Japanese (ja)
Other versions
JP2003328469A (en
Inventor
英之 畑中
雅人 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP2003127210A priority Critical patent/JP4576801B2/en
Publication of JP2003328469A publication Critical patent/JP2003328469A/en
Application granted granted Critical
Publication of JP4576801B2 publication Critical patent/JP4576801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、軽量で充分な曲げ強度と不燃性、吸音性、断熱性を備え、電波吸収性を有し、また意匠性を目的とした不燃吸音電波吸収性の天井板、更に該天井板に金属箔貼り加工をして電波遮蔽性を付加向上した不燃電波吸収性の金属箔貼り天井板、裏面にカーボンファイバー配合の有機系塗料を塗布した天井板に関する。
【0002】
【従来の技術】
携帯電話やPHSに代表される無線通信機器の普及は目覚ましく、オフィス・店舗・工場・倉庫などでも無線LANと言われる無線データ通信網で使用される無線通信機器が急速に普及してきている。こうした無線通信機器をオフィス等の特定の室内空間内で用いる場合には、室外からのノイズ電波の侵入を防いだり、室内の情報が室外に漏洩することを防止することを目的として、金属箔やメッシュ、導電性繊維などからなる電波遮蔽体を施工する技術が知られている。
【0003】
しかしながらこのような電波遮蔽体の施工を行った場合には、室内の電波反射性が高くなり、無線通信機器から発信される電波が、内壁や天井・床・スチール製の家具建具から反射され、受信端末に位相の異なる反射波が到達したり、天井・壁・床面などから多重的に反射波が到達して受信器側で正常な信号として認識できなくなり、通信時間が異常に長くなったり通信不能となる問題が発生している。また意図的に前記電波遮蔽体の施工を行わなくても、近年のオフィスは天井及び床面に金属製のデッキプレートが使用されたり、床面に金属製の二重床パネルが用いられる場合が多く、上下面は電波反射環境となるケースが多い。壁面についてもスチール製の間仕切り壁が用いられるケースが多く、壁面が電波反射体となる場合が増えている。
【0004】
こうした室内環境では、前記電波遮蔽体を意図的に施工した場合と同様、無線通信機器を使用した場合に位相の異なる反射波による伝送異常や、時間的に遅れて到達した反射波の影響による通信障害が発生しうる。この現象の対策としては、室内の内装材に電波の反射を抑える部材を施工することが有効であり、従来からフェライトタイルやフェライトまたは導電性物質を配合したセメント素材または石膏ボード等が用いられている。またフェルト状の電波吸収体を天井や床の裏面や下地ボードに一体化する施工方法が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来の施工方法は煩雑であるのに加え、フェライトタイルやフェライトまたは導電性物質を配合したセメント素材や石膏ボードは比重が大きいため施工に手間が掛かる上に、高価なものとなっている。また電波の反射を防止するに際し、内装建材のうちで床や壁の部位に対して電波吸収体で施工することを想定した場合、まず床面については床上にスチール製の机を設置するケースが多く、結果として床面は電波反射体となり床面に施工した電波吸収体の電波吸収効果を損なうケースが多い。また壁面に電波吸収体を施工した場合には、施工後壁の前面にスチール製の書棚やロッカーなどを設置するケースが多く、結果として壁面の大部分が電波反射体となり電波吸収体の効果を損なうケースが多い。
【0006】
これに対して、天井面に電波吸収体を施工した場合においては、施工後に天井面の室内側に電波反射体を施工するようなケースはなく、スチール製の机や書棚などが設置され室内の使用状況が変化しても天井面の電波吸収性能が損なわれることが少ない。また無線LANの発信受信装置は机上または机上のパソコンに設置されて使用されることが多く、発信された電波が天井面によって反射されるケースが多いため、反射電波を低減する為には、天井面に電波吸収体を設置することが好適である。
【0007】
しかしながら、前記従来の施工方法においては、フェライトタイルやフェライト含有石膏ボード等は比重の高い素材であるため施工が困難であるばかりでなく、高コスト、ボードの色が黒くなること、及び耐震性等の面でも問題がある。
【0008】
本発明は前記状況を鑑みてなされたものであり、無線LANの通信問題を解決するに最適な部位である内装用天井板として、軽量で充分な曲げ強度と不燃性、吸音性、断熱性を有し、且つ好適な電波吸収性能条件を備え、また意匠性も配慮された天井板を得ること、及び該天井板に金属箔貼り加工をして電波遮蔽性を付加向上させた内装用天井板を得ることを目的とする。
【0009】
【課題を解決するための手段】
前記所望の内装用天井板は、不燃性・吸音性・断熱性を付与するロックウールと、強度・耐水性を付与するための通称ジェルと呼ばれる叩解パルプ及び有機質結合剤、抄造成型時の結合材の補集性と強度向上を付与するための凝集剤、パネルの寸法安定性と外観・表面平滑性・強度を向上させるための天然鉱物繊維、撥水性を付与するための有機系撥水剤、及び電波吸収性を付与するためのカーボンファイバーとを配合した混合物を水に分散させスラリーとし、湿式抄造により製造することにより得られることが見いだされた。
【0010】
即ち本発明は、ロックウール67〜92wt%、叩解パルプ0.5〜8wt%、有機質樹脂からなる結合剤2〜13wt%、有機質高分子樹脂と無機質塩からなる凝集剤0.15〜1wt%、天然鉱物繊維0.5〜10wt%および繊維長1〜30mmのカーボンファイバー0.02〜1wt%が配合された混合物の水分散スラリーを湿式抄造して得られる、厚み1〜30mmの天井板を、課題解決の手段とする。
【0011】
また意匠性を目的とした発明として、ロックウール67〜92wt%と、叩解パルプ0.5〜8wt%と、有機質樹脂からなる結合剤2〜13wt%と、有機質高分子樹脂と無機質塩とからなる凝集剤0.15〜1wt%と、天然鉱物繊維0.5〜10wt%とを含有する1次混合物の水分散スラリーを湿式抄造して得られる層と、該1次混合物に対して繊維長1〜30mmのカーボンファイバーを0.02〜1wt%更に含有する二次混合物の水分散スラリー湿式抄造して得られる層との積層構成からなる、厚み1〜30mmの不燃吸音電波吸収性の天井板も課題解決の手段とする。
【0012】
前記不燃吸音電波吸収性の天井板に配合されるカーボンファイバーは、前処理として水中に0.5〜2wt%の割合で投入し、回転スピードが100〜400回転/分のミキサーで0.5〜3分間攪拌することも好適な手段とする。
【0013】
前記不燃吸音電波吸収性の天井板の、主成分として配合されるロックウールを置換する形で、無機充填剤等の添加剤を50wt%以下添加することも好適な手段とする。
【0014】
前記不燃吸音電波吸収性の天井板の電波遮蔽性向上並びに、反射電波の共振現象による電波吸収性を向上させるため、裏面に金属箔を貼り付けた不燃吸音電波吸収性の金属箔貼り天井板も好適な手段とする。
【0015】
一方、前記不燃吸音電波吸収性の天井板の裏面に金属箔や金属板等を配置しない条件下で電波吸収性能を効果的に発揮させる、即ち金属箔や金属板等で反射した電波の共振現象により生ずる電波吸収分を付加しない場合には、繊維長1〜30mmのカーボンファイバーの配合割合を0.08〜0.4wt%とすることにより好適な電波吸収性能を得ることができる。
【0016】
また、上記カーボンファイバー配合量が0.04〜0.08wt%と更に少なくても、天井板の裏面に、該配合量よりも多く、好ましくは1.0〜15.0wt%の配合量で、カーボンファイバーを配合した有機系塗料を100〜3000g/m2の量で塗布することにより、天井板の裏面に金属泊や金属板等を配置しない条件下でも、上記と同様の好適な電波吸収性能を得ることができる。
【0017】
【発明の実施の形態】
以下、本発明の不燃吸音電波吸収性の天井板について説明する。
本発明を構成するロックウールは、SiO235〜55wt%、Al2310〜20wt%、MgO5〜40wt%、CaO5〜40wt%、FeO0〜10wt%、Na2O、K2O、TiO2、MnO等の微量成分0〜10wt%を含有する原料の鉱物混合物をキュポラ炉または電気炉で溶解し、ブローイング法や高速回転体によるスピニング法で繊維化して得られる。繊維はウール状で、繊維長が数ミリから数十ミリの範囲にある。
【0018】
前記ロックウールの配合割合は、不燃性と吸音性、及び強度との関係で、67〜92wt%の範囲が適正で、67wt%未満では相対的に有機結合剤比率が多くなることから、不燃性・吸音性が損なわれ、92wt%を超えると相対的に有機結合剤の比率が少なくなり内装用天井板としての曲げ強度が不充分となる。
【0019】
前記叩解パルプの配合割合は、不燃性と抄造時の濾水性と内装用天井板としての強度の関係で、0.5〜8wt%の範囲が適正で、0.5wt%未満では天井板の強度が不足し、8wt%を超えると不燃性及び製造時の濾水性が劣化し、防火性及び生産性を損なうこととなる。
【0020】
前記有機質結合剤として用いられる物質は、デンプン、ポリビニルアルコール、ポリエチレン、パラフィン等の粉末やフェノール樹脂、メラミン樹脂、エポキシ樹脂等の熱硬化性の粉末樹脂やアクリル樹脂、変性アクリル樹脂、ポリ酢酸ビニル、エチレン・酢酸共重合樹脂、ポリ塩化ビニリデン樹脂、変性ポリ塩化ビニリデン樹脂、エポキシ樹脂、ウレタン樹脂等のエマルジョンのような、有機質結合剤を挙げることができる。これら有機質結合剤の配合量は、不燃性と強度との関係で2〜13wt%が適正で、13wt%を超えると不燃性が損なわれ、2wt%未満では曲げ強度が不充分となる。ただし、ロックウールを置換する形で水酸化アルミニウムを添加することにより、有機質結合剤を13〜20wt%添加することができる。
【0021】
本発明は、湿式抄造法で製造するため、有機質結合剤を効果的に保持させるポリアクリルアミドや硫酸バンド等の凝集剤を少量添加する必要がある。高分子凝集剤の配合量は強度効果、及び不燃性との関係から0.15〜1wt%の範囲が好ましい。
【0022】
また本発明は、強度・寸法安定性・耐湿撓み性の向上を目的として、アタパルジャイト、セピオライト等の天然鉱物繊維を添加する必要がある。湿式抄造時の生産性に関与する濾水性と強度との関係で0.5〜10wt%の範囲が適正で、10wt%を超えると濾水時間が長くなり生産性が損なわれ、0.5wt%未満では寸法安定性、耐湿撓み性が不充分となる。
【0023】
また本発明は、撥水性を付与するためにワックスエマルジョン、シリコン樹脂エマルジョン等の撥水剤を少量添加する必要がある。撥水剤の配合割合は、撥水性と強度、不燃性との関係から0.1〜0.5wt%の範囲が好ましい。
【0024】
本発明の構成で、電波吸収性能を付与する成分として、繊維状の導電性物質を配合する。繊維状導電性物質としては、PAN系、ピッチ系のカーボンファイバーで繊維長として1〜30mmの範囲が好ましい。係る代表例としては、大阪ガス(株)製のザイラス、東レ(株)製のトレカ、東邦レーヨン(株)製ベスファイト等を挙げることができる。カーボンファイバーの繊維長は長くなるほど、少ない配合量で良好な電波吸収性能を示す反面、抄造成型時に水に分散させ攪拌した際にカーボンファイバーが絡まり合い分散性が悪くなり、電波吸収性能の低下を引き起こすので、繊維長としては30mm以下が好ましい。また1mm未満の場合は分散性には問題ないが、電波吸収の原理である誘電損失効果が得られにくく電波吸収性能の低下を招く。
【0025】
前記カーボンファイバーの配合割合は、0.02wt%以上で良好な電波吸収性能を発揮することが判った。ここで、1wt%を超えると電波反射率の特性の方が向上しすぎて電波吸収性能の低下を引き起こし得るため、0.02〜1wt%の範囲とすることが好ましい。配合のカーボンファイバーが誘電体として働き、ギガヘルツ以上の周波数帯域で誘電損失による電波エネルギーの損失をもたらし、所望の電波吸収性能を示すものと推定される。
【0026】
本発明の不燃吸音電波吸収性の天井板は、ロックウール、有機質結合剤、結合助剤及びカーボンファイバーを含有する混合物を水に分散させ、円網または長網タイプ、ロートフォーマー等の製紙用抄造装置でウエットマットに抄造し、乾燥硬化させ、任意の形状に切削、切断することにより得られる。本発明の主要構成成分と製造方法については前記の通りであるが、防火性の向上、コストダウンを目的に有機質結合剤に難燃剤や無機質を少量配合することは可能である。
【0027】
本発明の天井板の厚みは1〜30mm、好ましくは9〜19mmである。また、天井板の嵩密度は0.3〜0.5g/cm3が好ましい。
【0028】
本発明の不燃吸音電波吸収性の天井板に於いて、カーボンファイバーを含まない層とカーボンファイバーを含む層の少なくとも二層から構成される積層構成の天井板がある。該天井板は、ロックウール67〜92wt%と、叩解パルプ0.5〜8wt%と、有機質樹脂からなる結合剤2〜13wt%と、有機質高分子樹脂と無機質塩とからなる凝集剤0.15〜1wt%と、天然鉱物繊維0.5〜10wt%とを混合した、1次混合物をまず層状に形成した後、該混合物上に、繊維長1〜30mmのカーボンファイバーを0.02〜1wt%配合した2次混合物の水分散スラリーを重ねて層状に形成するか、もしくは先に該カーボンファイバーを0.02〜1wt%の割合で配合して得た2次混合物の水分散スラリーを層状に形成した上に、1次混合物の水分散スラリーを重ねて層状に形成するかの、いずれか一方の湿式抄造にて得ることができる。
【0029】
カーボンファイバーを含む場合、その配合量にもよるが、ファイバーの黒色が線状に分散した状態で表面に出てくるため好ましくない場合があり、特に表面を純白に仕上げる製品においては障害となる。このため、カーボンファイバーを含まない層を表面側即ち、天井施工の場合室内に向く側とし、カーボンファイバーを含む層は裏面側として積層製造することが好ましい。製造方法としては、前記の通りカーボンファイバーを含む層を先に抄造するか、もしくはカーボンファイバーを含まない層を先に抄造するかはいずれでも良く、カーボンファイバーを含む層とカーボンファイバーを含まない層とを連続して抄造し、積層製造することが好ましい。カーボンファイバーを含む層は意匠性のため裏面側として製造することが好ましい。各層の厚さは特に限定しないが、通常カーボンファイバーを含まない層を薄く構成し、カーボンファイバーを含む層を厚めに構成した方が、カーボンファイバーの分散性の面で好ましい。
【0030】
前記カーボンファイバーは、繊維どうしが集束された状態から分離させるため他の配合成分と同時に水中に配合し攪拌しただけでは、カーボンファイバーの分散が不十分となり良好な電波吸収特性が得られない。係る問題点に対し発明者らは鋭意検討を加えた結果、水中に1〜30mmのカーボンファイバーを0.5〜2wt%の割合で投入し、回転スピードが100〜400回転/分のミキサーで0.5〜3分間攪拌することで良好な分散状態となることを見いだした。これを他の配合成分と混合して用いることにより、好適な電波吸収性能を発揮する不燃吸音電波吸収性の天井板を得ることができる。
【0031】
本発明の成分構成で、不燃性・密度調整を目的として水酸化アルミニウム、パーライト、シラスバルーンなどの無機充填剤を配合することができる。水酸化アルミニウムの配合割合としては、ロックウールを置換する形で50wt%以下が好ましい。50wt%を超えると濾水時間が長くなり成形時の生産性が悪くなる上に強度低下を招く。パーライト、シラスバルーンについてもロックウールを置換する形で使用され、密度と強度の関係から30wt%以下が好ましい。
【0032】
不燃吸音電波吸収性の天井板の裏面に金属箔を貼り合わせた場合には、不燃吸音性と電波吸収性の天井板としての性能に加えて、電波を遮蔽する性能を付与することができる。又電波吸収性能については、金属箔反射電波の共振現象により生ずる電波吸収性が付加向上するため、電波遮蔽性能と相まって効果的であり、裏面金属箔貼り一体成形の天井板とすることにより経済性と施工性の点からも得策である。尚、本願明細書で言う裏面とは、施工後の天井板の室内側を表面とし、天井裏側を裏面とする。前記天井板にアルミ箔、スチール箔等の金属箔を貼り合わせ加工する場合、アクリル樹脂、酢酸ビニル樹脂、エチレン樹脂、ビニル樹脂、ウレタン樹脂、エポキシ樹脂、合成ゴム等の接着剤を介して接着加工を行う。金属箔は前記天井板の裏面側に接着する。金属箔の厚みは、表面保護、パネルの施工性を考慮して5〜200μmとし、より好ましくは、50〜100μmの軟質金属箔を選択する。
【0033】
一方、前記共振現象に関して、更に効果的電波吸収条件を検討した結果を、以下に詳述する。
電波吸収体の裏面にアルミ箔などの電波反射体を設け、電波吸収体の誘電的透磁的効果により入射波と反射波の位相が反転し、電磁波エネルギーの損失を生じるいわゆる共振効果により電波吸収性能を得る方法の場合、電波反射層は必須構成要素である。しかしながら、これら電波反射体を裏面に設けた電波吸収体は、アルミ箔等の金属箔などを張り合わせた構造であるため、コストアップとなっている。またアルミ等の金属体は腐食する場合があるため、電波吸収体を他の構造体に接着する際に、樹脂接着剤との接着不良を発生するということもある。
【0034】
また、石膏ボードを捨て張りし、ロックウール板を化粧張りする際に、天井板に電波吸収性能をもたせる場合には、1つの方法として、石膏ボード内部にフェライトや導電性繊維を配合し、裏面にアルミ箔を張った電波吸収石膏ボードを用い、下面に不燃吸収性天井板をタッカーと接着剤を用いて施工する方法がある。
第2の方法としては、石膏ボードの組成は一般の石膏ボード組成とし、石膏ボードの下面にアルミ箔を張り合わせ、フェライトや導電性繊維を配合した不燃吸音電波吸収性化粧天井板をタッカーと接着剤を用いて施工する方法がある。第3の方法としては、一般の電波吸収性を持たない石膏ボードを捨て張りし、フェライトや導電性繊維を配合した不燃吸音電波吸収性の化粧天井板の裏面にアルミ箔などの金属箔を張りつけたものを、石膏ボードに接着剤とタッカーを用いて張り合わせる方法が考えられる。
【0035】
しかしながら、第1方法においては、石膏ボードのコストがアルミ箔などの金属箔を張り合わせることにより高コストとなる。第2の方法においては、同じく石膏ボードが高コストとなる点に加え石膏ボードと化粧天井板との間にアルミ箔等の金属箔が介在するため、金属箔の腐食によって化粧天井板との接着力が低下し、化粧天井板が剥離し易い。第3の方法においては、石膏ボードのコスト上昇はないが、電波吸収化粧天井板が高コストとなることに加え、第2の方法と同様の理由により金属箔の腐食によって化粧天井板との接着力が低下し、化粧天井板が剥離し易い。また、石膏ボードの捨て張りを行わない直張り方法や天井金具に化粧天井板を載せる方式(レイイン工法)や金具を化粧天井板の小口に差込み支持する工法などいわゆるシステム天井については、金属箔張りの電波吸収石膏ボードを用いることができないことは言うまでもない。また化粧天井板の裏面に金属箔を張った不燃吸音電波吸収天井板は高コストとなりまだ汎用化されるに至っていない。
【0036】
前記の状況を踏まえた上で、電波吸収性能試験結果を種々検討したところ、電波吸収試験設定上、試験体天井板の裏面に金属板を設置しているため、電波反射からのいわゆる共振による吸収特性が付加されていることも好適吸収性能を示している原因となっていることを見出した。そこで、カーボンファイバーは、従来の電波吸収試験では、0.02wt%以上の配合量で良好な電波吸収性能を発揮するが、裏面に金属箔等による電波反射体がない場合には、0.02wt%から0.08wt%未満までの配合量の場合は、電波吸収性能は低下し、より望ましい好適吸収性能を示す迄には至らないことが判った。
【0037】
一方、0.4wt%から1.5wt%まではある程度の電波吸収性能を示すが、0.4wt%から配合量を増加させるにつれて電波反射特性が強くなり、結果として吸収性能が低下してしまうデメリットがある。また1.5wt%を超えるとパネルの電波反射率が強くなりすぎて電波吸収性能の低下が著しく起きる。従って、繊維長1〜30mmのカーボンファイバーの配合割合を0.08〜0.4wt%の範囲とすることにより、不燃吸音電波吸収性の天井板の裏面に金属箔を貼り合わせなくても、所望の好適な電波吸収を行うことができ、好ましいことが判った。
【0038】
更に、上記の通りカーボンファイバー配合量が低いと、裏面に金属箔等の電波反射体がないと所望の好適吸収性能が得られにくいが、かかる低配合量の場合であっても、その裏面にカーボンファイバーが更に多く配合した有機系塗料を100〜3000g/m2の量で塗布することにより、所望の好適な電波吸収性能が得られることが判った。配合割合の異なるカーボンファイバー層が隣接することで、両層間において共振効果が増大し、吸収特性が向上するものと推定される。
さらに、表側のカーボンファイバー配合量が少なくてすむため、美観上も有利である。
【0039】
表面側のカーボンファイバー配合量は、好ましくは0.08wt%以下、より好ましくは0.04〜0.08wt%であり、裏面側の有機塗料中のカーボンファイバー配合量は、好ましくは1.0wt%以上、より好ましくは1.0〜15.0wt%である。
【0040】
本発明の有機系塗料としては、酢酸ビニル系エマルジョン塗料が好ましく用いられ、例えば、ポリ酢酸ビニル系エマルジョン塗料(PCコート)、ポリビニルアルコール系エマルジョン塗料、ポリビニルアセタール系エマルジョン塗料等が挙げられる。
上記有機系塗料中に配合されるカーボンファイバーとしては、上記と同様のものを挙げることができ、その繊維長は特に限定的ではないが、0.1〜30mmが好ましく、均一分散や混合の容易性の点から、特に0.5〜2mmが好ましい。
【0041】
【実施例】
以下、本発明の不燃吸音電波吸収性の天井板及び金属箔貼り天井板とを実施例1〜11並びに比較例1〜2を表1、表2と共に、実施例12〜19、比較例3および参考例1〜2を表3、表4と共に、また実施例20を表5と共に説明する。
【0042】
<実施例1>
SiO241wt%、CaO36wt%、MgO6wt%、Al2312wt%、その他Na2O、K2O等の微量成分5wt%の組成からなる繊維長100〜500μmの鉄鋼スラグ系ロックウール89.6wt%、パルプを水に分散しリファイナーで叩解した叩解パルプ1wt%、澱粉5.5wt%、水に分散して解繊したアタパルジャイト2.85wt%、15%濃度ポリアクリルアミド水溶液0.2wt%(固形分ベース)、硫酸アルミニウム0.6wt%、前処理として水中に1wt%の割合で投入し、200回転/分の回転速度で2分間ミキサーにて攪拌した、繊維長4mmのカーボンファイバー(大阪ガス(株)製;ザイラス)を0.25wt%(固形分ベース)を加えて混合し、ミキサーで分散して約5wt%濃度の水性スラリーを調整する。該スラリーを長網抄造機で抄造し脱水乾燥して原板を製造する。さらにこの原板の表面を切削加工して板厚12mm、嵩密度0.4g/cm3の内装用天井板のパネルAを得た。パネルAの強度、防火性、熱抵抗、吸音率、電波遮蔽性能、電波吸収性能等を表1に示す。
【0043】
<実施例2>
実施例1のカーボンファイバーの配合割合を0.025wt%、ロックウールの配合割合を89.825wt%とし、その他は実施例1と同一設定条件で内装用天井板のパネルBを得た。パネルBの性能等を表1に同じく示す。
【0044】
<実施例3>
実施例1のカーボンファイバーの配合割合を0.33wt%、ロックウールの配合割合を89.52wt%とし、その他は実施例1と同一設定条件で嵩密度が0.3g/cm3となるようにして内装用天井板のパネルCを得た。パネルCの性能等を表1に同じく示す。
【0045】
<実施例4>
実施例1のカーボンファイバーの配合割合を0.3wt%、ロックウールの配合割合を89.55wt%とし、その他は実施例1と同一設定条件で内装用天井板のパネルDを得た。表面を切削加工した板厚9mmのパネルDの性能等を表1に同じく示す。
【0046】
<実施例5>
実施例1のカーボンファイバーの配合割合を0.15wt%、ロックウールの配合割合を89.7wt%とし、その他は実施例1と同一設定条件で内装用天井板のパネルEを得た。表面を切削加工した板厚15mmのパネルEの性能等を表1に同じく示す。
【0047】
<実施例6>
実施例1のカーボンファイバーの配合割合を0.22wt%とし、ロックウールの配合割合を89.63wt%とし、その他は実施例1と同一設定条件で嵩密度が0.5g/cm3となるようにして内装用天井板のパネルFを製造した。パネルFの性能等を表1に同じく示す。
【0048】
<実施例7>
実施例1のカーボンファイバーの長さを1mm、配合割合を0.4wt%とし、ロックウールの配合割合を89.45wt%とし、その他は実施例1と同一設定条件で内装用天井板のパネルGを製造した。パネルGの性能等を表1に同じく示す。
【0049】
<実施例8>
実施例1のカーボンファイバーの長さを12mm、配合割合を0.18wt%とし、ロックウールの配合割合を89.67wt%とし、その他は実施例1と同一設定条件で内装用天井板のパネルHを製造した。パネルHの性能等を表2に同じく示す。
【0050】
<実施例9>
実施例1で得られたパネルの裏面に、厚み50μmの軟質アルミ箔をエチレン酢酸ビニル系の接着剤で貼り合わせ、アルミ箔貼りの内装用天井板のパネルIを製造した。アルミ箔貼りのパネルIの性能等を表2に同じく示す。
【0051】
<実施例10>
ロックウール85.95wt%、叩解パルプ3wt%、ポリビニルアルコール7wt%、アタパルジャイト3wt%、15%濃度ポリアクリルアミド水溶液0.2wt%(固形分ベース)、硫酸アルミニウム0.6wt%からなる混合物に、前処理として水中に1wt%の割合で投入し、200回転/分の回転速度で2分間ミキサーにて攪拌した、繊維長4mmのカーボンファイバー(大阪ガス(株)製;ザイラス)を0.25wt%(固形分ベース)を加えてミキサーで分散し、約5wt%濃度の水性スラリーを調整する。該スラリーを長網抄造機で抄造し脱水乾燥して原板を製造する。さらにこの原板の表面を切削し内装天井板としての充分な強度を有する板厚12mmの内装用天井板のパネルJを得た。パネルJの強度、防火性、熱抵抗、吸音率、電波遮蔽性能、電波吸収性能等の性能を表2に示す。
【0052】
<実施例11>
ロックウール60.95wt%、叩解パルプ3wt%、ポリビニルアルコール7wt%、アタパルジャイト3wt%、15%濃度ポリアクリルアミド水溶液0.2wt%(固形分ベース)、硫酸アルミニウム0.6wt%、水酸化アルミニウム25wt%からなる混合物に、前処理として水中に1wt%の割合で投入し、200回転/分の回転速度で2分間ミキサーにて攪拌した、繊維長4mmのカーボンファイバー(大阪ガス(株)製;ザイラス)を0.25wt%(固形分ベース)を加えてミキサーで分散し、約5wt%濃度の水性スラリーを調整する。
該スラリーを長網抄造機で抄造し脱水乾燥して原板を製造する。さらにこの原板の表面を切削し内装天井板としての充分な強度を有する板厚12mm、嵩密度0.45g/cm3の内装用天井板のパネルKを得た。パネルKの強度、防火性、熱抵抗、吸音率、電波遮蔽性能、電波吸収性能等の性能を表2に示す。
【0053】
[比較例1]
ロックウール90.25wt%、叩解パルプ1wt%、澱粉5.5wt%、アタパルジャイト2.85wt%、15%濃度ポリアクリルアミド水溶液0.2wt%(固形分ベース)、硫酸アルミニウム0.6wt%からなる混合をミキサーで分散し、約5wt%濃度の水性スラリーを調整する。該スラリーを長網抄造機で抄造し脱水乾燥して板厚12mmの内装用天井板のパネルLを得た。パネルLの強度、防火性、熱抵抗、吸音率、電波遮蔽性能、電波吸収性能等の性能を表2に示す。
【0054】
[比較例2]
ロックウール88.35wt%、叩解パルプ1wt%、澱粉5.5wt%、アタパルジャイト2.85wt%、15%濃度ポリアクリルアミド水溶液0.2wt%(固形分ベース)、硫酸アルミニウム0.6wt%、繊維長4mmのカーボンファイバー(大阪ガス(株)製;ザイラス)1.5wt%からなる混合物をミキサーで分散し、約5wt%濃度の水性スラリーを調整する。該スラリーを長網抄造機で抄造し脱水乾燥して原板を製造する。更にこの原板の表面を切削し内装天井板としての充分な強度を有する板厚12mmの内装用天井板のパネルMを得た。パネルMの強度、防火性、熱抵抗、吸音率、電波遮蔽性能、電波吸収性能等の性能を表2に示す。
【0055】
【表1】

Figure 0004576801
【0056】
【表2】
Figure 0004576801
【0057】
<表1及び表2の評価測定方法>
曲げ強度:JIS A 1408(5号試験体)法による。
熱抵抗 :JIS A 1420法による。
防火性能:JIS A 1321法による。
吸音率 :JIS A 1409(残響室)法による。
電波遮蔽性能:各試験毎の厚さ9〜15mm、縦横の長さが400mm×400mmの試験体のみを、電波送信アンテナと受信アンテナの間に設置し、タイムドメイン法により透過レベルを測定する。透過係数は、試験体を設置しない場合の透過レベルとの対比にて算出し電波遮蔽性能とした。
電波吸収性能:日本建築学会にて検討を進めている「電波吸収体性能評価計測方法」に従い、各試験毎の厚さ9〜15mm、縦横の長さが400mm×400mmの試験体の裏面に、縦横の長さが400mm×400mmの金属板を貼り合わせたものを用い、自由空間タイムドメイン法による反射係数を測定。反射係数は、金属板のみの反射レベルとの対比にて算出し電波吸収性能とした。
【0058】
《表1及び表2の実施例と比較例との対比》
1.曲げ強度については、いずれも内装天井板としての適性値を示している。
2.熱抵抗については、いずれも充分な断熱性をしめし、優位差はない。
3.防火性については、実施例1〜9及び実施例11、及び比較例1〜2は不燃、実施例10は準不燃で合格。
4.吸音率については、実施例1〜11、ならびに比較例1〜2において、いずれも適性な吸音率を示し、優位差はない。
5.電波遮蔽性能は、実施例1〜8および実施例10〜11、ならびに比較例2において2〜5.5dBの遮蔽性能を示しているが、一般的な電波遮蔽材としての充分な性能は有していない。実施例9において、31dB以上の遮蔽性能を示しており、一般的な電波遮蔽材としての充分な性能である30dB以上を満たしている。比較例1では、電波遮蔽性能は示していない。
6.電波吸収性能については、実施例1〜11において2.45GHzで6〜15dB、5.1GHzで6〜12dBを示しており、無線LANシステム用として用いられる2.4GHz帯及び5GHz帯でのオフィス内等での無線通信において、通信障害対策として、十分な吸収性能を有している。一方導電物質としてのカーボンファイバーを配合していない比較例1の場合、吸収性能が得られず前記条件を満たしていない。又、比較例2においては、カーボンファイバーが高配合のため、電波反射の影響を受け、充分な吸収性能を示していない。
【0059】
実施例1〜11及び比較例1〜2については、前記日本建築学会にて検討を進めている「電波吸収体性能評価計測方法」に従い、金属板に試験体を貼り合わせた状態で電波吸収を測定している。このため、共振による電波吸収性能と試験体そのものが持つ内部損失による電波吸収性能が混在した状態で電波吸収性能が測定され、裏面に電波反射体を有さない電波吸収体の測定における試験体そのものが持つ内部損失による電波吸収性能を測定しづらいということが解った。本発明者は、試験体が持つ内部吸収特性をより正確に測定し、共振現象による吸収性能との差異をより明確に表現するために、鋭意検討した結果、試験体と金属板との間に空間を持たせることにより、共振現象の発生を防止できることを見出し、400mm×400mmの金属板の前面に100mmの空間を設けて試験体を設置し、金属板と試験体が一体化しないようにして共振現象が発生しない状態とし、自由空間タイムドメイン法による反射係数を測定した。反射係数は、金属板のみの反射レベルとの対比にて算出し電波吸収性能とした。つづいて試験体の裏面にアルミ箔を張った構造とし、共振現象が発生する状態としたものについても、自由空間タイムドメンイン法による反射係数を測定した。この方法により、より実効性の高い電波吸収性を測定することができる。
【0060】
以下、本発明の不燃吸音電波吸収性の天井板に関し、前記共振現象を生じさせない条件と裏面にアルミ箔を貼った共振現象を生じさせる条件との対比を含めて、以下実施例12〜19、比較例3および参考例1〜2により説明する。
【0061】
<実施例12>
SiO241wt%、CaO36wt%、MgO6wt%、Al2312wt%、その他Na2O、K2O等の微量成分5wt%の組成からなる繊維長100〜500μmの鉄鋼スラグ系ロックウール89.75wt%、パルプを水に分散しリファイナーで叩解した叩解パルプ1wt%、澱粉5.5wt%、水に分散して解繊したアタパルジャイト2.85wt%、15%濃度ポリアクリルアミド水溶液0.2wt%(固形分ベース)、硫酸アルミニウム0.6wt%、前処理として水中に1wt%の割合で投入し、200回転/分の回転速度で2分間ミキサーにて攪拌した、繊維長4mmのカーボンファイバー(大阪ガス(株)製;ザイラス)を0.1wt%(固形分ベース)を加えて混合し、ミキサーで分散して約5wt%濃度の水性スラリーを調整する。該スラリーを長網抄造機で抄造し脱水乾燥して原板を製造する。さらにこの原板の表面を切削加工して板厚12mm、嵩密度0.4g/cm3の内装用天井板のパネルNを得た。パネルNの強度、防火性、熱伝導率、吸音率、電波遮蔽性能、電波吸収性能等を表3に示す。表3に示すとおり、実施例12では裏面にアルミ箔を張りつけた場合も、裏面のアルミ箔を張りつけない場合も6dB以上の良好な電波吸収性能を有している。
【0062】
<実施例13>
実施例12のカーボンファイバーの配合割合を0.40wt%、ロックウールの配合割合を89.45wt%とし、その他は実施例12と同一設定条件で内装用天井板のパネルOを得た。パネルOの性能等を表3に同じく示す。表3に示すとおり、実施例13では裏面にアルミ箔を張りつけた場合も、裏面のアルミ箔を張りつけない場合も6dB以上の良好な電波吸収性能を有している。
【0063】
<実施例14>
実施例12のカーボンファイバーの配合割合を0.3wt%、ロックウールの配合割合を89.55wt%とし、その他は実施例12と同一設定条件で内装用天井板のパネルPを得た。表面を切削加工した板厚9mmのパネルPの性能等を表3に同じく示す。表3に示すとおり、実施例14では裏面にアルミ箔を張りつけた場合も、裏面のアルミ箔を張りつけない場合も6dB以上の良好な電波吸収性能を有している。
【0064】
<実施例15>
実施例12のカーボンファイバーの配合割合を0.15wt%、ロックウールの配合割合を89.7wt%とし、その他は実施例1と同一設定条件で内装用天井板のパネルQを得た。表面を切削加工した板厚15mmのパネルQの性能等を表3に同じく示す。表3に示すとおり、実施例15では裏面にアルミ箔を張りつけた場合も、裏面のアルミ箔を張りつけない場合も6dB以上の良好な電波吸収性能を有している。
【0065】
<実施例16>
実施例12のカーボンファイバーの濃度を0.3wt%とし、ロックウールの配合割合を89.55wt%とし、その他は実施例12と同一設定条件で嵩密度が0.5g/cm3となるように内装用天井板のパネルRを得た。パネルRの性能等を表3に同じく示す。表3に示すとおり、実施例16では裏面にアルミ箔を張りつけた場合も、裏面のアルミ箔を張りつけない場合も6dB以上の良好な電波吸収性能を有している。
【0066】
<実施例17>
実施例12のカーボンファイバー長さを12mm、濃度を0.18wt%とし、ロックウールの配合割合を89.67wt%とし、その他は実施例12と同一設定条件で内装用天井板のパネルSを得た。パネルSの性能等を表3に同じく示す。表3に示すとおり、実施例17では裏面にアルミ箔を張りつけた場合も、裏面のアルミ箔を張りつけない場合でも6dB以上の良好な電波吸収性能を有している。
【0067】
<実施例18>
ロックウール86.1wt%、ジェル3wt%、ポリビニルアルコール7wt%、アタパルジャイト3wt%、15%濃度ポリアクリルアミド水溶液0.2wt%(固形分ベース)、硫酸アルミニウム0.6wt%、繊維長4mmのカーボンファイバー(大阪ガス(株)製;ザイラス)を0.1wt%(固形分ベース)をからなる混合をミキサーで分散し、約5wt%濃度の水性スラリーを調整する。該スラリーを長網抄造機で抄造し脱水乾燥して原板を製造する。さらにこの原板の表面を切削し内装天井板としての充分な強度を有する内装用天井板のパネルTを得た。パネルTの強度、防火性、熱伝導率、吸音率、電波遮蔽性能、電波吸収性能等の性能を表4にまとめた。表4に示すとおり、実施例18では裏面にアルミ箔を張りつけた場合も、裏面のアルミ箔を張りつけない場合も6dB以上の良好な電波吸収性能を有している。
【0068】
<実施例19>
ロックウール61.1wt%、ジェル3wt%、ポリビニルアルコール7wt%、アタパルジャイト3wt%、15%濃度ポリアクリルアミド水溶液0.2wt%(固形分ベース)、硫酸アルミニウム0.6wt%、水酸化アルミニウム25wt%、繊維長4mmのカーボンファイバー(大阪ガス(株)製;ザイラス)を0.1wt%(固形分ベース)をからなる混合をミキサーで分散し、約5wt%濃度の水性スラリーを調整する。該スラリーを長網抄造機で抄造し脱水乾燥して原板を製造する。さらにこの原板の表面を切削し内装天井板としての充分な強度を有する内装用天井板のパネルUを得た。パネルUの強度、防火性、熱伝導率、吸音率、電波遮蔽性能、電波吸収性能等の性能を表4にまとめた。表4に示すとおり、実施例19では裏面にアルミ箔を張りつけた場合も、裏面のアルミ箔を張りつけない場合も6dB以上の良好な電波吸収性能を有している。
【0069】
[比較例3]
ロックウール89.85wt%、ジェル1wt%、澱粉5.5wt%、アタパルジャイト2.85wt%、15%濃度ポリアクリルアミド水溶液0.2wt%(固形分ベース)、硫酸アルミニウム0.6wt%からなる混合をミキサーで分散し、約5wt%濃度の水性スラリーを調整する。該スラリーを長網抄造機で抄造し脱水乾燥して原板を製造する。さらにこの原板の表面を切削し内装天井板としての充分な強度を有する内装用天井板のパネルVを得た。パネルVの強度、防火性、熱伝導率、吸音率、電波遮蔽性能、電波吸収性能等の性能を表4にまとめた。表4に示すとおり、比較例3では裏面にアルミ箔を張りつけた場合も、裏面のアルミ箔を張りつけない場合も電波吸収性能を有していない。
【0070】
[参考例1]
ロックウール89.80wt%、ジェル1wt%、澱粉5.5wt%、アタパルジャイト2.85wt%、15%濃度ポリアクリルアミド水溶液0.2wt%(固形分ベース)、硫酸アルミニウム0.6wt%、繊維長4mmのカーボンファイバー(大阪ガス(株)製;ザイラス)0.05wt%からなる混合をミキサーで分散し、約5wt%濃度の水性スラリーを調整する。該スラリーを長網抄造機で抄造し脱水乾燥して原板を製造する。さらにこの原板の表面を切削し内装天井板としての充分な強度を有する内装用天井板のパネルWを得た。パネルWの強度、防火性、熱伝導率、吸音率、電波遮蔽性能、電波吸収性能等の性能を表4にまとめた。表4に示すとおり、参考例1では裏面にアルミ箔を張りつけた場合は所望の電波吸収性能をえられたが、裏面のアルミ箔を張りつけない場合は十分な電波吸収性能を得られない。
【0071】
[参考例2]
ロックウール89.25wt%、ジェル1wt%、澱粉5.5wt%、アタパルジャイト2.85wt%、15%濃度ポリアクリルアミド水溶液0.2wt%(固形分ベース)、硫酸アルミニウム0.6wt%、繊維長4mmのカーボンファイバー(大阪ガス(株)製;ザイラス)0.6wt%からなる混合をミキサーで分散し、約5wt%濃度の水性スラリーを調整する。該スラリーを長網抄造機で抄造し脱水乾燥して原板を製造する。さらにこの原板の表面を切削し内装天井板としての充分な強度を有する内装用天井板のパネルXを得た。パネルXの強度、防火性、熱伝導率、吸音率、電波遮蔽性能、電波吸収性能等の性能を表4にまとめた。表4に示すとおり、参考例2では裏面にアルミ箔を張りつけた場合、裏面のアルミ箔を張りつけない場合いずれも6dB以上の十分な電波吸収性能を得られていない。
【0072】
【表3】
Figure 0004576801
【0073】
【表4】
Figure 0004576801
【0074】
<表3及び表4の評価測定方法>
曲げ強度:JIS A 1408(5号試験体)法による。
熱抵抗 :JIS A 1420法による。
防火性能:JIS A 1321法による。
吸音率 :JIS A 1409(残響室)法による。
電波遮蔽性能:各試験毎の厚さ9〜15mm、縦横の長さが400mm×400mmの試験体のみを、電波送信アンテナと受信アンテナの間に設置し、タイムドメイン法により透過レベルを測定する。透過係数は、試験体を設置しない場合の透過レベルとの対比にて算出し電波遮蔽性能とした。
電波吸収性能:反射電波からの共振現象を防止し、試験体そのものが持つ内部損失による電波吸収性能のみを測定するため、縦横の長さが400mm×400mmの金属板の前面に100mmの空間を設けて各試験毎の厚さ9〜15mm、縦横の長さが400mm×400mmの試験体を設置し、電波反射による共振現象が発生しない状態で自由空間タイムドメイン法による反射係数を測定。反射係数は、金属板のみの反射レベルとの対比にて算出し電波吸収性能とした。つづいて試験体裏面にアルミ箔を貼った構成の試験体とし、電波反射による共振現象が発生する状態としたものについても、自由空間タイムドメイン法による反射係数を測定した。
【0075】
《表3及び表4の実施例と比較例との対比》
1.曲げ強度については、いずれも内装天井板としての適性値を示している。
2.熱抵抗については、いずれも充分な断熱性をしめし、優位差はない。
3.防火性については、実施例12〜17及び実施例19、及び比較例3、参考例1〜2は不燃、実施例18は準不燃で合格。
4.吸音率については、実施例12〜19、比較例3および参考例1〜2において、いずれも適性な吸音率を示し、優位差はない。
5.電波遮蔽性能は、アルミ箔無しの条件で実施例12〜19、並びに参考例1〜2において2〜6.8dBの遮蔽性能を示しているが、一般的な電波遮蔽材としての充分な性能は有していない。比較例3では、電波遮蔽性能はほとんど示していない。
6.電波吸収性能についてば、実施例12〜19において、裏面にアルミ箔を一体化した場合、及び裏面にアルミ箔を一体化しない場合のいずれにおいても、2.45GHzで6〜9dB、5.1GHzで6〜9dBを示しており、無線LANシステム用として用いられる2.4GHz帯及び5GHz帯でのオフィス内等での無線通信において、通信障害対策として、十分な吸収性能である6dB以上をいずれも満たしている。従って、実施例12〜19のカーボンファイバー配合の条件では、裏面にアルミ箔を一体化しない場合においても良好な電波吸収性能が得られることを示している。一方導電物質としのカーボンファイバーを配合していない比較例3の場合、吸収性能が得られていない。又、参考例1においては、カーボンファイバーが低配合のため、裏面にアルミ箔を張り合わせた場合は共振現象による電波損失の付加により所望の電波吸収性能を示すが、裏面にアルミ箔を張り合わせない場合は充分な吸収性能を示さず、参考例2においては、カーボンファイバーが高配合のため、裏面にアルミ箔を張り合わせない場合でも電波反射の影響を受け、充分な吸収性能を示していない。
【0076】
実施例20
上記参考例1記載の天井板におけるカーボンファイバー配合量のみを種々変えた天井板に、それぞれ繊維長0.7mmのピッチ系カーボンファイバーを種々の配合量で含有する酢酸ビニル系エマルジョン塗料(ポリ酢酸ビニル系PCコート)を625g/m2の量でローラーコート塗布することにより、各天井板を得た。各天井板の表面および裏面(PCコート中)のカーボンファイバーの配合量およびその電波吸収性能を表5に示す。
なお、電波吸収性能の測定は、実施例12〜19と同様の方法で測定した。
【0077】
【表5】
Figure 0004576801
【0078】
表5の結果から、表面のカーボンファイバー配合量(特に「CF1」と称する)が0.10wt%以上であればPCコート中にカーボンファイバーを配合しなくても非常に優れた電波吸収性能が得られるが、CF1が0.08wt%以下の配合量の場合には、アルミ箔を貼らない構造では十分な電波吸収性能が得られない。これに対して、CF1が低配合量の場合であっても、それより多量のカーボンファイバーを配合するPCコート(PCコート中の配合量を特に「CF2」と称する)を裏面に塗布することにより、顕著に電波吸収性能が向上することがわかる。
【0079】
特に、両者の配合量を工夫することにより、無線通信用途(無線LAN)に好適な吸収性能である6dB以上の吸収性能が得られる。特に表面側天井板のカーボンファイバー配合量(CF1)が0.04wt%〜0.08wt%、PCコート中の配合量(CF2)が1.0wt%〜15.0wt%において、上記好適な吸収性能が得られる。
【0080】
【発明の効果】
以上述べたように、本発明の不燃吸音電波吸収性の天井板は、軽量で準不燃から不燃の防火性能を備え、吸音性、断熱性、電波吸収性を合わせ持ち、低コストでしかも充分な曲げ強度を有するため、建築物の構造及び建築部材としての多様な機能ニーズに好適に対応できる不燃吸音電波吸収性の天井板としての効果を有する。
【0081】
また、前記不燃吸音電波吸収性の天井板において、カーボンファイバーを含まない層と、カーボンファイバーを含む二層の積層構成を採用することにより、施工後の室内側表面に意匠的効果を付加させた内装用天井板を得ることができる。
【0082】
更に、不燃吸音電波吸収性の金属箔貼り天井板を採用した場合には、反射電波の共振現象による電波吸収を付加向上した電波吸収効果に加え、電波遮蔽性を付加向上する効果を有する。
【0083】
本発明の不燃吸音電波吸収性の天井板は、前記繊維長1〜30mmのカーボンファイバーの配合割合を0.08〜0.4wt%とすることにより、反射電波からの共振現象による電波吸収性を付加せずとも、優れた電波吸収性能を得ることができ、特に無線通信用途(無線LAN)の好適電波吸収性能、特に6dB以上の電波吸収性能を得ることができる効果を有する。
【0084】
さらに、前記繊維長1〜30mmのカーボンファイバーの配合割合を0.04〜0.08wt%とし、さらにその裏面に該カーボンファイバー配合量よりも多量にカーボンファイバーを配合する有機系塗料を塗布することによっても、優れた電波吸収性能を得ることができ、特に無線通信用途の好適吸収性能を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention is lightweight and has sufficient bending strength, incombustibility, sound absorption, heat insulation, radio wave absorption, and non-combustion sound absorption radio wave absorption ceiling plate for the purpose of design, and further to the ceiling plate The present invention relates to a nonflammable radio wave absorptive metal foil-clad ceiling board that has been subjected to a metal foil pasting process to improve radio wave shielding, and a ceiling board in which an organic paint containing carbon fiber is applied to the back surface.
[0002]
[Prior art]
Wireless communication devices such as mobile phones and PHS have been widely used, and wireless communication devices used in wireless data communication networks called wireless LANs are rapidly spreading in offices, stores, factories and warehouses. When such a wireless communication device is used in a specific indoor space such as an office, metal foil or the like is used for the purpose of preventing intrusion of noise radio waves from the outside or preventing indoor information from leaking outside. A technique for constructing a radio wave shield made of mesh, conductive fiber, or the like is known.
[0003]
However, when such a radio wave shield is installed, the radio wave reflectivity in the room is increased, and the radio wave transmitted from the wireless communication device is reflected from the interior wall, ceiling, floor, and steel furniture fittings, Reflected waves with different phases arrive at the receiving terminal, or multiple reflected waves arrive from the ceiling, wall, floor, etc. and cannot be recognized as a normal signal on the receiver side, resulting in an abnormally long communication time. There is a problem that disables communication. Even if the radio wave shield is not intentionally installed, recent offices may use metal deck plates on the ceiling and floor, or metal double floor panels on the floor. In many cases, the upper and lower surfaces have an electromagnetic wave reflection environment. As for the wall surface, there are many cases in which a steel partition wall is used, and the case where the wall surface becomes a radio wave reflector is increasing.
[0004]
In such an indoor environment, as in the case where the radio wave shield is intentionally constructed, communication due to a transmission abnormality caused by reflected waves having different phases when a wireless communication device is used, or communication due to the influence of reflected waves that arrived with a delay in time. Failure can occur. As a countermeasure against this phenomenon, it is effective to install a member that suppresses the reflection of radio waves in the interior material of the room. Conventionally, cement tiles or gypsum boards containing ferrite tiles, ferrites or conductive materials have been used. Yes. In addition, a construction method has been proposed in which a felt-shaped electromagnetic wave absorber is integrated with the back surface of a ceiling or floor or a base board.
[0005]
[Problems to be solved by the invention]
However, in addition to the complexity of the conventional construction method, cement tiles and gypsum boards containing ferrite tiles, ferrites, or conductive materials have a large specific gravity, which is troublesome for construction and expensive. Yes. In addition, in order to prevent the reflection of radio waves, it is often the case that a steel desk is installed on the floor for the floor surface when it is assumed that construction is performed on the floor and wall parts of the interior building materials. As a result, the floor surface becomes a radio wave reflector, which often impairs the radio wave absorption effect of the radio wave absorber constructed on the floor surface. In addition, when an electromagnetic wave absorber is constructed on the wall surface, there are many cases where a steel bookcase or locker is installed on the front surface of the wall after construction. There are many cases of loss.
[0006]
On the other hand, when a radio wave absorber is constructed on the ceiling surface, there is no case where a radio wave reflector is constructed on the indoor side of the ceiling surface after construction, and a steel desk or bookcase is installed in the room. Even if the usage situation changes, the radio wave absorption performance of the ceiling surface is rarely impaired. In addition, wireless LAN transmission / reception devices are often installed on a desk or a personal computer on a desk, and the transmitted radio waves are often reflected by the ceiling surface. It is preferable to install a radio wave absorber on the surface.
[0007]
However, in the conventional construction method, ferrite tiles, ferrite-containing gypsum boards, etc. are not only difficult to construct because they are high specific gravity materials, but also costly, the board color becomes black, and earthquake resistance, etc. There is also a problem in terms of.
[0008]
The present invention has been made in view of the above situation, and as a ceiling board for interiors, which is the most suitable part for solving wireless LAN communication problems, it is lightweight and has sufficient bending strength, incombustibility, sound absorption, and heat insulation. The ceiling plate for interiors has a favorable radio wave absorption performance condition and has a design property taken into consideration, and the ceiling plate is further improved by adding metal foil to the ceiling plate to improve radio wave shielding. The purpose is to obtain.
[0009]
[Means for Solving the Problems]
The desired interior ceiling board is composed of rock wool that imparts incombustibility, sound absorption and heat insulation, beating pulp called organic gel for imparting strength and water resistance, an organic binder, and binding during papermaking Flocculants for imparting material collection and strength, natural mineral fibers for improving panel dimensional stability and appearance, surface smoothness and strength, and organic water repellents for imparting water repellency It has been found that a mixture obtained by mixing a carbon fiber for imparting radio wave absorbability with water is dispersed in water to form a slurry, which is produced by wet papermaking.
[0010]
That is, the present invention includes rock wool 67 to 92 wt%, beaten pulp 0.5 to 8 wt%, binder 2 to 13 wt% composed of organic resin, flocculant 0.15 to 1 wt% composed of organic polymer resin and inorganic salt, A ceiling board having a thickness of 1 to 30 mm, obtained by wet-making a water-dispersed slurry of a mixture of natural mineral fibers 0.5 to 10 wt% and carbon fibers 0.02 to 1 wt% having a fiber length of 1 to 30 mm, It is a means for solving problems.
[0011]
As an invention for the purpose of design, it comprises rock wool 67 to 92 wt%, beating pulp 0.5 to 8 wt%, a binder 2 to 13 wt% made of an organic resin, an organic polymer resin and an inorganic salt. A layer obtained by wet-making a water-dispersed slurry of a primary mixture containing 0.15 to 1 wt% of a flocculant and 0.5 to 10 wt% of natural mineral fibers, and a fiber length of 1 for the primary mixture An incombustible sound absorbing radio wave absorbing ceiling board having a thickness of 1 to 30 mm, comprising a layered structure obtained by wet-making a water dispersion slurry of a secondary mixture further containing 0.02 to 1 wt% of carbon fiber of ˜30 mm. It is a means for solving problems.
[0012]
The carbon fiber blended in the non-combustible sound absorbing radio wave absorbing ceiling board is put into water at a rate of 0.5 to 2 wt% as a pretreatment, and the rotation speed is 0.5 to 500 with a mixer at 100 to 400 rpm. Stirring for 3 minutes is also a suitable means.
[0013]
It is also preferable to add 50 wt% or less of an additive such as an inorganic filler in the form of replacing rock wool blended as a main component of the non-combustible sound absorbing radio wave absorbing ceiling board.
[0014]
In order to improve the radio wave shielding of the non-combustible sound-absorbing radio wave absorbing ceiling plate and to improve the radio wave absorption due to the resonance phenomenon of the reflected radio wave, the non-combustible sound-absorbing radio wave absorbing metal foil-attached ceiling plate also has a metal foil attached to the back surface. This is a suitable means.
[0015]
On the other hand, the radio wave absorption performance is effectively exhibited under the condition that the metal foil or the metal plate is not disposed on the back surface of the non-combustible sound absorbing radio wave absorbing ceiling plate, that is, the resonance phenomenon of the radio wave reflected by the metal foil or the metal plate. When the amount of radio wave absorption generated by the above is not added, a preferable radio wave absorption performance can be obtained by setting the blending ratio of carbon fibers having a fiber length of 1 to 30 mm to 0.08 to 0.4 wt%.
[0016]
Moreover, even if the carbon fiber blending amount is 0.04 to 0.08 wt%, it is more on the back surface of the ceiling board than the blending amount, preferably 1.0 to 15.0 wt%. 100 to 3000 g / m of organic paint blended with carbon fiber 2 By applying in this amount, a suitable radio wave absorption performance similar to the above can be obtained even under conditions where no metal stays or metal plates are arranged on the back surface of the ceiling plate.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the nonflammable sound absorbing radio wave absorbing ceiling plate of the present invention will be described.
The rock wool constituting the present invention is SiO 2 35-55 wt%, Al 2 O Three 10-20 wt%, MgO 5-40 wt%, CaO 5-40 wt%, FeO 0-10 wt%, Na 2 O, K 2 O, TiO 2 It is obtained by melting a raw material mineral mixture containing trace components of 0 to 10 wt% such as MnO in a cupola furnace or an electric furnace and fiberizing it by a blowing method or a spinning method using a high-speed rotating body. The fiber is wooly and the fiber length is in the range of several millimeters to several tens of millimeters.
[0018]
The blending ratio of the rock wool is appropriate in the range of 67 to 92 wt% in relation to nonflammability, sound absorption, and strength, and if it is less than 67 wt%, the organic binder ratio is relatively high, so that it is nonflammable. -Sound absorption is impaired, and if it exceeds 92 wt%, the ratio of the organic binder is relatively reduced and the bending strength as an interior ceiling board becomes insufficient.
[0019]
The blending ratio of the beating pulp is in the range of 0.5 to 8 wt% in relation to nonflammability, drainage during paper making, and strength as a ceiling plate for interior, and the strength of the ceiling plate is less than 0.5 wt%. If the amount exceeds 8 wt%, nonflammability and drainage during production deteriorate, and fire resistance and productivity are impaired.
[0020]
Substances used as the organic binder include starch, polyvinyl alcohol, polyethylene, paraffin powder, etc., phenol resin, melamine resin, thermosetting powder resin such as epoxy resin, acrylic resin, modified acrylic resin, polyvinyl acetate, Examples thereof include organic binders such as emulsions of ethylene / acetic acid copolymer resins, polyvinylidene chloride resins, modified polyvinylidene chloride resins, epoxy resins, urethane resins and the like. The blending amount of these organic binders is appropriately 2 to 13 wt% in relation to nonflammability and strength. If it exceeds 13 wt%, the nonflammability is impaired, and if it is less than 2 wt%, the bending strength is insufficient. However, 13-20 wt% of organic binder can be added by adding aluminum hydroxide in the form of replacing rock wool.
[0021]
Since the present invention is produced by a wet papermaking method, it is necessary to add a small amount of an aggregating agent such as polyacrylamide or sulfuric acid band that effectively retains the organic binder. The blending amount of the polymer flocculant is preferably in the range of 0.15 to 1 wt% in view of strength effect and nonflammability.
[0022]
In the present invention, it is necessary to add natural mineral fibers such as attapulgite and sepiolite for the purpose of improving strength, dimensional stability, and moisture deflection resistance. The range of 0.5 to 10 wt% is appropriate due to the relationship between the drainage and the strength involved in the productivity at the time of wet papermaking, and if it exceeds 10 wt%, the drainage time becomes longer and the productivity is impaired. If it is less than the range, the dimensional stability and moisture deflection resistance are insufficient.
[0023]
In the present invention, it is necessary to add a small amount of a water repellent such as wax emulsion or silicone resin emulsion in order to impart water repellency. The blending ratio of the water repellent is preferably in the range of 0.1 to 0.5 wt% from the relationship between water repellency, strength and nonflammability.
[0024]
In the configuration of the present invention, a fibrous conductive material is blended as a component that imparts radio wave absorption performance. The fibrous conductive material is preferably a PAN-based or pitch-based carbon fiber with a fiber length in the range of 1 to 30 mm. Representative examples include Zyrus manufactured by Osaka Gas Co., Ltd., trading card manufactured by Toray Industries, Inc. and Besfight manufactured by Toho Rayon Co., Ltd. The longer the fiber length of the carbon fiber, the better the radio wave absorption performance with a small blending amount, but the carbon fiber becomes entangled and dispersed when it is dispersed in water during paper making and the dispersion becomes worse, and the radio wave absorption performance decreases. Therefore, the fiber length is preferably 30 mm or less. When the thickness is less than 1 mm, there is no problem in dispersibility, but it is difficult to obtain the dielectric loss effect which is the principle of radio wave absorption, and the radio wave absorption performance is lowered.
[0025]
It has been found that the blending ratio of the carbon fiber exhibits good radio wave absorption performance at 0.02 wt% or more. Here, if it exceeds 1 wt%, the characteristics of the radio wave reflectivity are excessively improved and the radio wave absorption performance may be deteriorated. Therefore, the range of 0.02 to 1 wt% is preferable. It is presumed that the blended carbon fiber acts as a dielectric, causes radio wave energy loss due to dielectric loss in a frequency band of gigahertz or higher, and exhibits desired radio wave absorption performance.
[0026]
The incombustible sound absorbing radio wave absorbing ceiling board of the present invention is a mixture of rock wool, an organic binder, a binding aid and carbon fiber dispersed in water, and is used for paper making such as a circular net or a long net type, a rot former. It is obtained by making a wet mat with a paper making machine, drying and curing, and cutting and cutting into an arbitrary shape. The main components and the production method of the present invention are as described above, but it is possible to add a small amount of a flame retardant or an inorganic substance to the organic binder for the purpose of improving fire resistance and reducing costs.
[0027]
The thickness of the ceiling board of the present invention is 1 to 30 mm, preferably 9 to 19 mm. Moreover, the bulk density of the ceiling board is 0.3 to 0.5 g / cm. Three Is preferred.
[0028]
In the incombustible sound absorbing radio wave absorbing ceiling plate of the present invention, there is a laminated ceiling plate composed of at least two layers of a layer not containing carbon fiber and a layer containing carbon fiber. The ceiling board is made of rock wool 67 to 92 wt%, beaten pulp 0.5 to 8 wt%, binder 2 to 13 wt% made of organic resin, and flocculant 0.15 made of organic polymer resin and inorganic salt. First, a primary mixture in which ˜1 wt% and natural mineral fiber 0.5 to 10 wt% are mixed is first formed into a layer, and then carbon fiber having a fiber length of 1 to 30 mm is formed on the mixture by 0.02 to 1 wt%. Form the water dispersion slurry of the blended secondary mixture in layers, or form the water dispersion slurry of the secondary mixture obtained by blending the carbon fibers at a ratio of 0.02 to 1 wt% first. In addition, it can be obtained by any one of wet papermaking, in which the aqueous dispersion slurry of the primary mixture is layered to form a layer.
[0029]
When carbon fiber is included, although depending on the amount of the carbon fiber, the black color of the fiber appears on the surface in a linearly dispersed state, which may be undesirable, particularly in products that finish the surface pure white. For this reason, it is preferable to laminate and manufacture the layer not containing carbon fiber as the front side, that is, the side facing the room in the case of ceiling construction, and the layer containing carbon fiber as the back side. As described above, as described above, the layer containing carbon fiber may be made first, or the layer containing no carbon fiber may be made first, and the layer containing carbon fiber and the layer not containing carbon fiber may be used. It is preferable to continuously produce and laminate them. The layer containing carbon fiber is preferably manufactured as the back side for design. Although the thickness of each layer is not particularly limited, it is preferable in terms of dispersibility of the carbon fiber that the layer not containing carbon fiber is usually thin and the layer containing carbon fiber is thick.
[0030]
Since the carbon fiber is separated from the state in which the fibers are converged, if the carbon fiber is mixed in water simultaneously with other compounding components and stirred, the dispersion of the carbon fiber becomes insufficient and good radio wave absorption characteristics cannot be obtained. As a result of diligent investigations on the problems, the inventors have introduced 1 to 30 mm carbon fiber in water at a rate of 0.5 to 2 wt%, and the rotation speed is 0 with a mixer of 100 to 400 rpm. It was found that a good dispersion state was obtained by stirring for 5 to 3 minutes. By using this in combination with other blending components, it is possible to obtain a non-combustible sound-absorbing radio wave-absorbing ceiling board that exhibits suitable radio wave absorption performance.
[0031]
In the component constitution of the present invention, inorganic fillers such as aluminum hydroxide, pearlite, and shirasu balloon can be blended for the purpose of nonflammability and density adjustment. The mixing ratio of aluminum hydroxide is preferably 50 wt% or less in the form of replacing rock wool. If it exceeds 50 wt%, the drainage time becomes longer, the productivity at the time of molding becomes worse, and the strength is lowered. Perlite and shirasu balloons are also used in the form of replacing rock wool, and preferably 30 wt% or less from the relationship between density and strength.
[0032]
In the case where a metal foil is bonded to the back surface of the nonflammable sound absorbing and radio wave absorbing ceiling plate, in addition to the performance as a nonflammable sound absorbing and radio wave absorbing ceiling plate, the performance of shielding radio waves can be imparted. In addition, the radio wave absorption performance is effective in combination with the radio wave shielding performance because the radio wave absorptivity caused by the resonance phenomenon of the metal foil reflected radio wave is added and is effective. It is also a good idea from the viewpoint of workability. In addition, with the back surface said by this-application specification, let the indoor side of the ceiling board after construction be a surface, and let a ceiling back side be a back surface. When bonding metal foil such as aluminum foil and steel foil to the ceiling plate, it is bonded via an adhesive such as acrylic resin, vinyl acetate resin, ethylene resin, vinyl resin, urethane resin, epoxy resin, synthetic rubber, etc. I do. The metal foil is bonded to the back side of the ceiling board. The thickness of the metal foil is set to 5 to 200 μm in consideration of surface protection and panel workability, and more preferably, a soft metal foil of 50 to 100 μm is selected.
[0033]
On the other hand, the results of studying more effective radio wave absorption conditions regarding the resonance phenomenon will be described in detail below.
A radio wave reflector such as an aluminum foil is provided on the back of the radio wave absorber, and the phase of the incident wave and the reflected wave is reversed by the dielectric permeability effect of the radio wave absorber. In the case of a method for obtaining performance, the radio wave reflection layer is an essential component. However, the radio wave absorber provided with these radio wave reflectors on the back surface has a structure in which a metal foil such as an aluminum foil is laminated, which increases the cost. Moreover, since metal bodies, such as aluminum, may corrode, when adhering a radio wave absorber to another structure, the adhesion failure with a resin adhesive may occur.
[0034]
Also, when throwing away the gypsum board and decorating the rock wool board, if you want the ceiling board to have radio wave absorption performance, one way is to add ferrite or conductive fiber inside the gypsum board, There is a method in which an electromagnetic wave absorbing gypsum board with aluminum foil is used, and a non-combustible absorbent ceiling board is applied to the lower surface using a tucker and an adhesive.
As a second method, the composition of the gypsum board is a general gypsum board composition, an aluminum foil is laminated on the lower surface of the gypsum board, and an incombustible sound absorbing radio wave absorbing decorative ceiling board blended with ferrite and conductive fibers is used as a tacker and an adhesive. There is a method of construction using. The third method is to throw away the ordinary gypsum board that does not absorb radio waves, and paste metal foil such as aluminum foil on the back of the non-combustible sound-absorbing radio wave absorbing decorative ceiling board containing ferrite and conductive fibers. A method may be considered in which the paste is attached to a gypsum board using an adhesive and a tucker.
[0035]
However, in the first method, the cost of the gypsum board becomes high due to bonding of metal foil such as aluminum foil. In the second method, in addition to the high cost of the gypsum board, a metal foil such as an aluminum foil is interposed between the gypsum board and the decorative ceiling board. The force is reduced and the decorative ceiling board is easy to peel off. In the third method, there is no increase in the cost of the gypsum board, but in addition to the high cost of the radio wave absorption decorative ceiling board, the adhesive to the decorative ceiling board is caused by the corrosion of the metal foil for the same reason as the second method. The force is reduced and the decorative ceiling board is easy to peel off. Metal ceilings are used for so-called system ceilings, such as direct installation methods that do not throw away plasterboards, methods that place decorative ceiling plates on ceiling fittings (lay-in method), and methods in which fittings are inserted into the edge of decorative ceiling plates and supported. It goes without saying that the radio wave absorption gypsum board of can not be used. Incombustible sound-absorbing radio wave-absorbing ceiling panels with metal foil on the back of decorative ceiling panels are expensive and have not yet been widely used.
[0036]
Based on the above situation, we examined various results of the radio wave absorption performance test. As a result of setting the radio wave absorption test, a metal plate was installed on the back side of the ceiling plate of the test specimen, so absorption due to so-called resonance from radio wave reflection. It has been found that the addition of the characteristics is also a cause of the preferable absorption performance. Therefore, carbon fiber exhibits good radio wave absorption performance with a blending amount of 0.02 wt% or more in a conventional radio wave absorption test, but 0.02 wt% when there is no radio wave reflector such as a metal foil on the back surface. In the case of a blending amount from% to less than 0.08 wt%, it was found that the radio wave absorption performance was lowered and did not reach a more desirable preferable absorption performance.
[0037]
On the other hand, from 0.4 wt% to 1.5 wt% shows a certain amount of radio wave absorption performance, but as the blending amount is increased from 0.4 wt%, the radio wave reflection characteristics become stronger, resulting in a demerit that the absorption performance is reduced. There is. On the other hand, if it exceeds 1.5 wt%, the radio wave reflectivity of the panel becomes too strong, and the radio wave absorption performance is significantly reduced. Therefore, by setting the blending ratio of the carbon fiber having a fiber length of 1 to 30 mm in the range of 0.08 to 0.4 wt%, it is desirable even if the metal foil is not bonded to the back surface of the non-combustible sound absorbing radio wave absorbing ceiling plate. It was found that the preferred radio wave absorption can be performed.
[0038]
Furthermore, as described above, when the carbon fiber content is low, it is difficult to obtain a desired suitable absorption performance without a radio wave reflector such as a metal foil on the back surface. 100 to 3000 g / m of organic paint containing more carbon fiber 2 It was found that the desired and suitable radio wave absorption performance can be obtained by coating in the amount of. It is presumed that when the carbon fiber layers having different blending ratios are adjacent to each other, the resonance effect is increased between the two layers, and the absorption characteristics are improved.
Furthermore, since the amount of carbon fiber on the front side is small, it is advantageous in terms of aesthetics.
[0039]
The carbon fiber content on the front side is preferably 0.08 wt% or less, more preferably 0.04 to 0.08 wt%, and the carbon fiber content in the organic paint on the back side is preferably 1.0 wt%. As mentioned above, More preferably, it is 1.0-15.0 wt%.
[0040]
As the organic paint of the present invention, a vinyl acetate emulsion paint is preferably used, and examples thereof include a polyvinyl acetate emulsion paint (PC coat), a polyvinyl alcohol emulsion paint, and a polyvinyl acetal emulsion paint.
The carbon fiber blended in the organic paint can include the same carbon fiber as described above. The fiber length is not particularly limited, but is preferably 0.1 to 30 mm, and easy to uniformly disperse and mix. From the point of property, 0.5-2 mm is especially preferable.
[0041]
【Example】
Examples 1 to 11 and Comparative Examples 1 to 2 together with Tables 1 and 2 and Examples 12 to 19, Comparative Example 3 and Non-combustible sound absorbing and radio wave absorbing ceiling panels of the present invention are shown below. Reference Examples 1 and 2 will be described together with Tables 3 and 4, and Example 20 will be described together with Table 5.
[0042]
<Example 1>
SiO 2 41wt%, CaO36wt%, MgO6wt%, Al 2 O Three 12wt%, other Na 2 O, K 2 89.6 wt% of steel slag rock wool with a fiber length of 100 to 500 μm composed of 5 wt% of trace components such as O, 1 wt% of beaten pulp dispersed in water and beaten with a refiner, 5.5 wt% of starch, Dispersed and defatted attapulgite 2.85 wt%, 15% polyacrylamide aqueous solution 0.2 wt% (solid content base), aluminum sulfate 0.6 wt%, pre-treated in water at a rate of 1 wt%, 200 revolutions Stirring with a mixer at a rotation speed of 2 min / min, carbon fiber with a fiber length of 4 mm (Osaka Gas Co., Ltd .; Zyrus) was added and mixed with 0.25 wt% (based on solid content), and dispersed with a mixer. To prepare an aqueous slurry having a concentration of about 5 wt%. The slurry is made with a long net making machine, dehydrated and dried to produce an original plate. Further, the surface of this original plate is cut to obtain a plate thickness of 12 mm and a bulk density of 0.4 g / cm. Three Panel A of the ceiling board for interior was obtained. Table 1 shows the strength, fire resistance, thermal resistance, sound absorption rate, radio wave shielding performance, radio wave absorption performance, and the like of panel A.
[0043]
<Example 2>
The carbon fiber blending ratio of Example 1 was 0.025 wt%, the rock wool blending ratio was 89.825 wt%. The performance of panel B is also shown in Table 1.
[0044]
<Example 3>
The carbon fiber blending ratio of Example 1 was 0.33 wt%, the rock wool blending ratio was 89.52 wt%, and the bulk density was 0.3 g / cm under the same setting conditions as in Example 1. Three As a result, panel C for interior ceiling board was obtained. The performance and the like of panel C are also shown in Table 1.
[0045]
<Example 4>
Panel D of the interior ceiling board was obtained under the same setting conditions as in Example 1 except that the blending ratio of carbon fiber of Example 1 was 0.3 wt%, the blending ratio of rock wool was 89.55 wt%. Table 1 also shows the performance and the like of a panel D having a plate thickness of 9 mm whose surface is cut.
[0046]
<Example 5>
Panel E for interior ceiling boards was obtained under the same setting conditions as in Example 1 except that the blending ratio of carbon fiber of Example 1 was 0.15 wt%, the blending ratio of rock wool was 89.7 wt%. Table 1 also shows the performance and the like of a panel E having a plate thickness of 15 mm whose surface is cut.
[0047]
<Example 6>
The carbon fiber blending ratio of Example 1 is 0.22 wt%, the rock wool blending ratio is 89.63 wt%, and the bulk density is 0.5 g / cm under the same setting conditions as in Example 1. Three The panel F for the ceiling board for interior was manufactured as follows. The performance of the panel F is also shown in Table 1.
[0048]
<Example 7>
The length of the carbon fiber of Example 1 is 1 mm, the blending ratio is 0.4 wt%, the blending ratio of rock wool is 89.45 wt%, and the other is the same as in Example 1, and the panel G of the ceiling board for interior use Manufactured. The performance of the panel G is also shown in Table 1.
[0049]
<Example 8>
The length of the carbon fiber of Example 1 is 12 mm, the blending ratio is 0.18 wt%, the blending ratio of rock wool is 89.67 wt%, and the other is the panel H of the ceiling board for interior use under the same setting conditions as in Example 1. Manufactured. The performance of the panel H is also shown in Table 2.
[0050]
<Example 9>
Panel I, an interior ceiling board with aluminum foil, was manufactured by bonding a soft aluminum foil with a thickness of 50 μm to the back of the panel obtained in Example 1 with an ethylene vinyl acetate adhesive. Table 2 also shows the performance and the like of the panel I attached with aluminum foil.
[0051]
<Example 10>
A mixture of 85.95% by weight of rock wool, 3% by weight of beating pulp, 7% by weight of polyvinyl alcohol, 3% by weight of attapulgite, 0.2% by weight of 15% strength polyacrylamide aqueous solution (based on solid content), and 0.6% by weight of aluminum sulfate 0.25 wt% (solid) of carbon fiber having a fiber length of 4 mm (manufactured by Osaka Gas Co., Ltd .; Zyrus) was added to water at a rate of 1 wt% and stirred with a mixer at a rotation speed of 200 rpm. Minute basis) and dispersing with a mixer to prepare an aqueous slurry having a concentration of about 5 wt%. The slurry is made with a long net making machine, dehydrated and dried to produce an original plate. Further, the surface of the original plate was cut to obtain a panel J of an interior ceiling plate having a thickness of 12 mm and having sufficient strength as an interior ceiling plate. Table 2 shows the performance, such as strength, fire resistance, thermal resistance, sound absorption rate, radio wave shielding performance, and radio wave absorption performance of panel J.
[0052]
<Example 11>
Rock wool 60.95 wt%, beaten pulp 3 wt%, polyvinyl alcohol 7 wt%, attapulgite 3 wt%, 15% polyacrylamide aqueous solution 0.2 wt% (solid content base), aluminum sulfate 0.6 wt%, aluminum hydroxide 25 wt% Carbon fiber with a fiber length of 4 mm (manufactured by Osaka Gas Co., Ltd .; Zyrus) was added to the resulting mixture as a pretreatment at a rate of 1 wt% in water and stirred with a mixer for 2 minutes at a rotation speed of 200 rpm. 0.25 wt% (based on solid content) is added and dispersed with a mixer to prepare an aqueous slurry having a concentration of about 5 wt%.
The slurry is made with a long net making machine, dehydrated and dried to produce an original plate. Further, the surface of the original plate is cut to have a sufficient strength as an interior ceiling plate, a plate thickness of 12 mm and a bulk density of 0.45 g / cm. Three Panel K for interior ceiling board was obtained. Table 2 shows the performance, such as strength, fire resistance, thermal resistance, sound absorption rate, radio wave shielding performance, and radio wave absorption performance of the panel K.
[0053]
[Comparative Example 1]
Mixing of rock wool 90.25 wt%, beaten pulp 1 wt%, starch 5.5 wt%, attapulgite 2.85 wt%, 15% polyacrylamide aqueous solution 0.2 wt% (solid content base), aluminum sulfate 0.6 wt% Disperse with a mixer to prepare an aqueous slurry having a concentration of about 5 wt%. The slurry was made with a long net making machine, dehydrated and dried to obtain an interior ceiling panel L having a thickness of 12 mm. Table 2 shows the performance, such as strength, fire resistance, thermal resistance, sound absorption rate, radio wave shielding performance, and radio wave absorption performance of the panel L.
[0054]
[Comparative Example 2]
Rock wool 88.35 wt%, beaten pulp 1 wt%, starch 5.5 wt%, attapulgite 2.85 wt%, 15% strength polyacrylamide aqueous solution 0.2 wt% (solid content base), aluminum sulfate 0.6 wt%, fiber length 4 mm A mixture of 1.5 wt% of carbon fiber (Osaka Gas Co., Ltd .; Zyrus) is dispersed with a mixer to prepare an aqueous slurry having a concentration of about 5 wt%. The slurry is made with a long net making machine, dehydrated and dried to produce an original plate. Further, the surface of the original plate was cut to obtain an interior ceiling panel M having a thickness of 12 mm and having sufficient strength as an interior ceiling plate. Table 2 shows the performance of the panel M, such as strength, fire resistance, thermal resistance, sound absorption rate, radio wave shielding performance, and radio wave absorption performance.
[0055]
[Table 1]
Figure 0004576801
[0056]
[Table 2]
Figure 0004576801
[0057]
<Evaluation measurement method of Table 1 and Table 2>
Bending strength: According to JIS A 1408 (No. 5 specimen) method.
Thermal resistance: According to JIS A 1420 method.
Fire prevention performance: According to JIS A 1321 method.
Sound absorption rate: According to JIS A 1409 (reverberation room) method.
Radio wave shielding performance: A test specimen having a thickness of 9 to 15 mm and a vertical and horizontal length of 400 mm × 400 mm for each test is installed between the radio wave transmitting antenna and the receiving antenna, and the transmission level is measured by the time domain method. The transmission coefficient was calculated by comparing with the transmission level when the test specimen was not installed, and was defined as the radio wave shielding performance.
Radio wave absorption performance: In accordance with "Radio wave absorber performance evaluation and measurement method" that is being studied by the Architectural Institute of Japan, on the back side of a test body having a thickness of 9 to 15 mm and a length and width of 400 mm x 400 mm for each test, Using a metal plate with a length and width of 400 mm x 400 mm bonded together, the reflection coefficient is measured by the free space time domain method. The reflection coefficient was calculated by comparing with the reflection level of only the metal plate, and used as the radio wave absorption performance.
[0058]
<< Comparison between Examples and Comparative Examples in Tables 1 and 2 >>
1. About bending strength, all have shown the aptitude value as an interior ceiling board.
2. As for thermal resistance, all show sufficient heat insulation, and there is no significant difference.
3. About fireproofness, Examples 1-9 and Example 11, and Comparative Examples 1-2 are nonflammable, Example 10 is semi-incombustible and passes.
4). As for the sound absorption rate, in Examples 1 to 11 and Comparative Examples 1 and 2, all show appropriate sound absorption rates, and there is no significant difference.
5). The radio wave shielding performance shows a shielding performance of 2 to 5.5 dB in Examples 1 to 8 and Examples 10 to 11 and Comparative Example 2, but has sufficient performance as a general radio wave shielding material. Not. In Example 9, the shielding performance of 31 dB or more is shown, which satisfies 30 dB or more, which is sufficient performance as a general radio wave shielding material. In Comparative Example 1, radio wave shielding performance is not shown.
6). Regarding the electromagnetic wave absorption performance, 6 to 15 dB at 2.45 GHz and 6 to 12 dB at 5.1 GHz in Examples 1 to 11, and in the 2.4 GHz band and 5 GHz band used for the wireless LAN system. In the wireless communication such as the above, it has sufficient absorption performance as a countermeasure against communication failure. On the other hand, in the case of the comparative example 1 which does not mix | blend the carbon fiber as an electroconductive substance, absorption performance is not acquired and the said conditions are not satisfy | filled. Moreover, in the comparative example 2, since carbon fiber is highly blended, it is affected by radio wave reflection and does not show sufficient absorption performance.
[0059]
About Examples 1-11, and Comparative Examples 1-2, according to the "radio wave absorber performance evaluation measurement method" which has been examined by the Architectural Institute of Japan, radio wave absorption is performed in a state in which a specimen is bonded to a metal plate. Measuring. Therefore, the radio wave absorption performance is measured in a state where the radio wave absorption performance due to resonance and the radio wave absorption performance due to internal loss of the test specimen itself are mixed, and the test specimen itself in the measurement of the radio wave absorber that does not have a radio wave reflector on the back surface It was found that it was difficult to measure the radio wave absorption performance due to internal loss. As a result of intensive studies in order to measure the internal absorption characteristics of the test specimen more accurately and to express the difference from the absorption performance due to the resonance phenomenon more clearly, the present inventor It is found that the generation of resonance phenomenon can be prevented by providing a space, and a 100 mm space is provided in front of a 400 mm × 400 mm metal plate so that the test body is installed so that the metal plate and the test body are not integrated. The reflection coefficient was measured by the free space time domain method with no resonance phenomenon. The reflection coefficient was calculated by comparing with the reflection level of only the metal plate, and used as the radio wave absorption performance. Subsequently, the reflection coefficient was measured by a free space timed domain-in method for a structure in which an aluminum foil was stretched on the back surface of the test specimen and a resonance phenomenon occurred. By this method, more effective radio wave absorption can be measured.
[0060]
Hereinafter, regarding the incombustible sound absorbing radio wave absorptive ceiling plate of the present invention, including the comparison between the condition that does not cause the resonance phenomenon and the condition that causes the resonance phenomenon with the aluminum foil pasted on the back surface, Examples 12 to 19, below. This will be described with reference to Comparative Example 3 and Reference Examples 1-2.
[0061]
<Example 12>
SiO 2 41wt%, CaO36wt%, MgO6wt%, Al 2 O Three 12wt%, other Na 2 O, K 2 89.75 wt% of steel slag rock wool with a fiber length of 100 to 500 μm composed of a composition of 5 wt% of trace components such as O, 1 wt% of beaten pulp dispersed in water and beaten with a refiner, 5.5 wt% starch, Dispersed and defatted attapulgite 2.85 wt%, 15% polyacrylamide aqueous solution 0.2 wt% (solid content base), aluminum sulfate 0.6 wt%, pre-treated in water at a rate of 1 wt%, 200 revolutions Stirring with a mixer for 2 minutes at a rotation speed of / min. Carbon fiber with a fiber length of 4 mm (Osaka Gas Co., Ltd .; Zyrus) was added and mixed with 0.1 wt% (solid content base), and dispersed with a mixer. To prepare an aqueous slurry having a concentration of about 5 wt%. The slurry is made with a long net making machine, dehydrated and dried to produce an original plate. Further, the surface of this original plate is cut to obtain a plate thickness of 12 mm and a bulk density of 0.4 g / cm. Three Panel N for the interior ceiling board was obtained. Table 3 shows the strength, fire resistance, thermal conductivity, sound absorption coefficient, radio wave shielding performance, radio wave absorption performance, and the like of panel N. As shown in Table 3, Example 12 has good radio wave absorption performance of 6 dB or more both when the aluminum foil is attached to the back surface and when the aluminum foil is not attached to the back surface.
[0062]
<Example 13>
The carbon fiber blending ratio of Example 12 was 0.40 wt%, the rock wool blending ratio was 89.45 wt%, and other components were obtained under the same setting conditions as in Example 12 to obtain an interior ceiling panel O. The performance of the panel O is also shown in Table 3. As shown in Table 3, Example 13 has good radio wave absorption performance of 6 dB or more both when the aluminum foil is attached to the back surface and when the aluminum foil is not attached to the back surface.
[0063]
<Example 14>
The carbon fiber blending ratio of Example 12 was 0.3 wt%, the rock wool blending ratio was 89.55 wt%, and the others were the same setting conditions as in Example 12 to obtain an interior ceiling panel P. Table 3 also shows the performance and the like of a panel P having a plate thickness of 9 mm whose surface is cut. As shown in Table 3, Example 14 has good radio wave absorption performance of 6 dB or more both when the aluminum foil is attached to the back surface and when the aluminum foil is not attached to the back surface.
[0064]
<Example 15>
Panel Q of interior ceiling board was obtained under the same setting conditions as in Example 1 except that the blending ratio of carbon fiber of Example 12 was 0.15 wt%, the blending ratio of rock wool was 89.7 wt%. Table 3 also shows the performance and the like of a panel Q having a plate thickness of 15 mm whose surface is cut. As shown in Table 3, Example 15 has good radio wave absorption performance of 6 dB or more both when the aluminum foil is attached to the back surface and when the aluminum foil is not attached to the back surface.
[0065]
<Example 16>
The carbon fiber concentration of Example 12 was 0.3 wt%, the blending ratio of rock wool was 89.55 wt%, and the bulk density was 0.5 g / cm under the same setting conditions as in Example 12. Three The panel R of the ceiling board for interior was obtained so that it might become. The performance of the panel R is also shown in Table 3. As shown in Table 3, Example 16 has good radio wave absorption performance of 6 dB or more both when the aluminum foil is attached to the back surface and when the aluminum foil is not attached to the back surface.
[0066]
<Example 17>
The carbon fiber length of Example 12 is 12 mm, the concentration is 0.18 wt%, the blending ratio of rock wool is 89.67 wt%, and the other is the same as in Example 12, and an interior ceiling panel S is obtained. It was. The performance of the panel S is also shown in Table 3. As shown in Table 3, Example 17 has a good radio wave absorption performance of 6 dB or more both when the aluminum foil is attached to the back surface and when the aluminum foil is not attached to the back surface.
[0067]
<Example 18>
Rock wool 86.1 wt%, gel 3 wt%, polyvinyl alcohol 7 wt%, attapulgite 3 wt%, 15% polyacrylamide aqueous solution 0.2 wt% (solid content base), aluminum sulfate 0.6 wt%, fiber length 4 mm carbon fiber ( A mixture of 0.1 wt% (based on solid content) of Osaka Gas Co., Ltd. (Zyrus) is dispersed with a mixer to prepare an aqueous slurry having a concentration of about 5 wt%. The slurry is made with a long net making machine, dehydrated and dried to produce an original plate. Further, the surface of the original plate was cut to obtain an interior ceiling panel T having sufficient strength as an interior ceiling plate. Table 4 summarizes the performance of the panel T, such as strength, fire resistance, thermal conductivity, sound absorption rate, radio wave shielding performance, and radio wave absorption performance. As shown in Table 4, Example 18 has good radio wave absorption performance of 6 dB or more both when the aluminum foil is attached to the back surface and when the aluminum foil is not attached to the back surface.
[0068]
<Example 19>
Rock wool 61.1 wt%, gel 3 wt%, polyvinyl alcohol 7 wt%, attapulgite 3 wt%, 15% strength polyacrylamide aqueous solution 0.2 wt% (solid content base), aluminum sulfate 0.6 wt%, aluminum hydroxide 25 wt%, fiber A mixture of 0.1 wt% (solid content base) of carbon fiber having a length of 4 mm (Osaka Gas Co., Ltd .; Zyrus) is dispersed with a mixer to prepare an aqueous slurry having a concentration of about 5 wt%. The slurry is made with a long net making machine, dehydrated and dried to produce an original plate. Further, the surface of the original plate was cut to obtain a panel U of an interior ceiling plate having sufficient strength as an interior ceiling plate. Table 4 summarizes the performance of the panel U, such as strength, fire resistance, thermal conductivity, sound absorption rate, radio wave shielding performance, and radio wave absorption performance. As shown in Table 4, Example 19 has good radio wave absorption performance of 6 dB or more both when the aluminum foil is attached to the back surface and when the aluminum foil is not attached to the back surface.
[0069]
[Comparative Example 3]
Mixer consisting of 89.85wt% rock wool, 1wt% gel, 5.5wt% starch, 2.85wt% attapulgite, 0.2wt% 15% strength polyacrylamide aqueous solution (solid content base), 0.6wt% aluminum sulfate To prepare an aqueous slurry having a concentration of about 5 wt%. The slurry is made with a long net making machine, dehydrated and dried to produce an original plate. Further, the surface of the original plate was cut to obtain a panel V of an interior ceiling plate having sufficient strength as an interior ceiling plate. Table 4 summarizes the performance of panel V, such as strength, fire resistance, thermal conductivity, sound absorption rate, radio wave shielding performance, and radio wave absorption performance. As shown in Table 4, Comparative Example 3 does not have radio wave absorption performance when the aluminum foil is pasted on the back surface or when the aluminum foil on the back surface is not pasted.
[0070]
[Reference Example 1]
Rock wool 89.80 wt%, gel 1 wt%, starch 5.5 wt%, attapulgite 2.85 wt%, 15% polyacrylamide aqueous solution 0.2 wt% (based on solid content), aluminum sulfate 0.6 wt%, fiber length 4 mm A mixture of 0.05 wt% carbon fiber (Osaka Gas Co., Ltd .; Zyrus) is dispersed with a mixer to prepare an aqueous slurry having a concentration of about 5 wt%. The slurry is made with a long net making machine, dehydrated and dried to produce an original plate. Further, the surface of the original plate was cut to obtain an interior ceiling panel W having sufficient strength as an interior ceiling plate. Table 4 summarizes the performance of panel W such as strength, fire resistance, thermal conductivity, sound absorption rate, radio wave shielding performance, and radio wave absorption performance. As shown in Table 4, in Reference Example 1, the desired radio wave absorption performance was obtained when the aluminum foil was attached to the back surface, but sufficient radio wave absorption performance was not obtained when the back surface aluminum foil was not applied.
[0071]
[Reference Example 2]
Rock wool 89.25 wt%, gel 1 wt%, starch 5.5 wt%, attapulgite 2.85 wt%, 15% polyacrylamide aqueous solution 0.2 wt% (solid content base), aluminum sulfate 0.6 wt%, fiber length 4 mm A mixture composed of 0.6 wt% of carbon fiber (Osaka Gas Co., Ltd .; Zyrus) is dispersed with a mixer to prepare an aqueous slurry having a concentration of about 5 wt%. The slurry is made with a long net making machine, dehydrated and dried to produce an original plate. Furthermore, the surface of the original plate was cut to obtain a panel X of an interior ceiling plate having sufficient strength as an interior ceiling plate. Table 4 summarizes the performance of panel X, such as strength, fire resistance, thermal conductivity, sound absorption rate, radio wave shielding performance, radio wave absorption performance, and the like. As shown in Table 4, in Reference Example 2, when the aluminum foil is pasted on the back surface and when the back surface aluminum foil is not pasted, sufficient radio wave absorption performance of 6 dB or more cannot be obtained.
[0072]
[Table 3]
Figure 0004576801
[0073]
[Table 4]
Figure 0004576801
[0074]
<Evaluation measurement method of Table 3 and Table 4>
Bending strength: According to JIS A 1408 (No. 5 specimen) method.
Thermal resistance: According to JIS A 1420 method.
Fire prevention performance: According to JIS A 1321 method.
Sound absorption rate: According to JIS A 1409 (reverberation room) method.
Radio wave shielding performance: A test specimen having a thickness of 9 to 15 mm and a vertical and horizontal length of 400 mm × 400 mm for each test is installed between the radio wave transmitting antenna and the receiving antenna, and the transmission level is measured by the time domain method. The transmission coefficient was calculated by comparing with the transmission level when the test specimen was not installed, and was defined as the radio wave shielding performance.
Radio wave absorption performance: In order to prevent resonance phenomenon from reflected radio waves and measure only radio wave absorption performance due to internal loss of the specimen itself, a space of 100 mm is provided in front of a metal plate 400 mm x 400 mm in length and width. A test specimen having a thickness of 9 to 15 mm for each test and a vertical and horizontal length of 400 mm × 400 mm was installed, and the reflection coefficient was measured by a free space time domain method in a state where a resonance phenomenon due to radio wave reflection did not occur. The reflection coefficient was calculated by comparing with the reflection level of only the metal plate, and used as the radio wave absorption performance. Subsequently, the reflection coefficient of the test body having a configuration in which an aluminum foil was pasted on the back surface of the test body and in which a resonance phenomenon due to radio wave reflection occurred was measured by the free space time domain method.
[0075]
<< Comparison between Examples and Comparative Examples in Tables 3 and 4 >>
1. About bending strength, all have shown the aptitude value as an interior ceiling board.
2. As for thermal resistance, all show sufficient heat insulation, and there is no significant difference.
3. About fireproofness, Examples 12-17 and Example 19, and the comparative example 3 and the reference examples 1-2 are nonflammable, Example 18 is non-flammable and passes.
4). As for the sound absorption rate, Examples 12 to 19, Comparative Example 3 and Reference Examples 1 and 2 all show appropriate sound absorption rates, and there is no significant difference.
5). The radio wave shielding performance shows a shielding performance of 2 to 6.8 dB in Examples 12 to 19 and Reference Examples 1 to 2 under the condition without an aluminum foil, but sufficient performance as a general radio wave shielding material is I don't have it. In Comparative Example 3, the radio wave shielding performance is hardly shown.
6). As for the radio wave absorption performance, in Examples 12 to 19, both when the aluminum foil is integrated on the back surface and when the aluminum foil is not integrated on the back surface, it is 6 to 9 dB at 5.45 GHz and 5.1 GHz. 6 to 9 dB is shown, and in wireless communication in the 2.4 GHz band and 5 GHz band used for wireless LAN systems, etc., both satisfy 6 dB or more, which is sufficient absorption performance as a countermeasure against communication failures. ing. Therefore, the conditions for blending the carbon fibers of Examples 12 to 19 indicate that good radio wave absorption performance can be obtained even when the aluminum foil is not integrated on the back surface. On the other hand, in the case of the comparative example 3 which does not mix | blend the carbon fiber as an electroconductive substance, absorption performance is not acquired. In Reference Example 1, carbon fiber is low in composition, so when aluminum foil is laminated on the back side, the desired radio wave absorption performance is exhibited by the addition of radio wave loss due to resonance phenomenon, but the aluminum foil is not laminated on the back side. Does not show sufficient absorption performance, and in Reference Example 2, since carbon fiber is highly blended, even when aluminum foil is not laminated on the back surface, it is affected by radio wave reflection and does not show sufficient absorption performance.
[0076]
Example 20
A vinyl acetate emulsion paint (polyvinyl acetate) containing various pitches of pitch-based carbon fibers having a fiber length of 0.7 mm, respectively, on the ceiling plate in which only the carbon fiber content in the ceiling plate described in Reference Example 1 is changed. 625 g / m) 2 Each ceiling board was obtained by carrying out roller coat application in the quantity of. Table 5 shows the blending amounts of carbon fibers on the front and back surfaces (in the PC coat) of each ceiling panel and their radio wave absorption performance.
The radio wave absorption performance was measured by the same method as in Examples 12-19.
[0077]
[Table 5]
Figure 0004576801
[0078]
From the results in Table 5, if the amount of carbon fiber on the surface (especially referred to as “CF1”) is 0.10 wt% or more, very good radio wave absorption performance can be obtained without adding carbon fiber to the PC coat. However, when the CF1 content is 0.08 wt% or less, a sufficient radio wave absorption performance cannot be obtained with a structure in which no aluminum foil is applied. On the other hand, even when CF1 is in a low blending amount, by applying a PC coat that blends a larger amount of carbon fiber (the blending amount in the PC coat is particularly referred to as “CF2”) to the back surface. It can be seen that the radio wave absorption performance is significantly improved.
[0079]
In particular, by devising the blending amount of both, an absorption performance of 6 dB or more, which is an absorption performance suitable for wireless communication applications (wireless LAN), can be obtained. In particular, when the carbon fiber blending amount (CF1) of the surface side ceiling board is 0.04 wt% to 0.08 wt% and the blending amount (CF2) in the PC coat is 1.0 wt% to 15.0 wt%, the above preferable absorption performance Is obtained.
[0080]
【The invention's effect】
As described above, the non-combustible sound absorbing radio wave absorbing ceiling board of the present invention is lightweight and has a fireproof performance from semi-incombustible to non-combustible, and has both sound absorbing property, heat insulating property, and radio wave absorbing property, and is low in cost and sufficient. Since it has bending strength, it has an effect as a non-combustible sound absorbing radio wave absorbing ceiling board that can suitably meet various functional needs as a building structure and building members.
[0081]
In addition, in the non-combustible sound-absorbing and radio-absorbing ceiling board, a design effect is added to the indoor side surface after construction by adopting a laminated structure of a layer not including carbon fiber and a two-layer structure including carbon fiber. An interior ceiling board can be obtained.
[0082]
Furthermore, in the case of adopting a metal foil-clad ceiling board that absorbs non-combustible sound-absorbing radio waves, it has the effect of adding and improving radio wave shielding in addition to the radio wave absorption effect that additionally improves radio wave absorption due to the resonance phenomenon of reflected radio waves.
[0083]
The incombustible sound-absorbing radio wave absorbing ceiling plate of the present invention has a radio wave absorptivity due to a resonance phenomenon from a reflected radio wave by setting the mixing ratio of the carbon fiber having a fiber length of 1 to 30 mm to 0.08 to 0.4 wt%. Even without the addition, excellent radio wave absorption performance can be obtained, and in particular, there is an effect that it is possible to obtain suitable radio wave absorption performance particularly for radio communication applications (wireless LAN), particularly radio wave absorption performance of 6 dB or more.
[0084]
Furthermore, the blending ratio of the carbon fiber having a fiber length of 1 to 30 mm is set to 0.04 to 0.08 wt%, and an organic paint for blending the carbon fiber in a larger amount than the blending amount of the carbon fiber is applied to the back surface thereof. Therefore, excellent radio wave absorption performance can be obtained, and particularly suitable absorption performance for wireless communication can be obtained.

Claims (3)

ロックウール67〜92wt%、叩解パルプ0.5〜8wt%、有機質樹脂からなる結合剤2〜13wt%、凝集剤0.15〜1wt%、天然鉱物繊維0.5〜10wt%、および、前処理として水に対して0.5〜2wt%の割合で水中に投入して攪拌した繊維長1〜30mmのカーボンファイバー0.02〜1wt%を配合した混合物の水分散スラリーを湿式抄造して得られる厚み1〜30mmの板の裏面に金属箔を貼り付けて得られる室内無線通信用の電波吸収性天井板。Rock wool 67 to 92 wt%, beaten pulp 0.5 to 8 wt%, organic resin binder 2 to 13 wt%, flocculant 0.15 to 1 wt%, natural mineral fiber 0.5 to 10 wt% , and pretreatment It is obtained by wet-making a water-dispersed slurry of a mixture containing 0.02 to 1 wt% of carbon fibers having a fiber length of 1 to 30 mm, which is stirred by introducing into water at a ratio of 0.5 to 2 wt% with respect to water A radio wave absorptive ceiling board for indoor wireless communication obtained by attaching a metal foil to the back surface of a board having a thickness of 1 to 30 mm. 前処理として繊維長1〜30mmのカーボンファイバーを水中に0.5〜2wt%の割合で投入し、回転スピードが100〜400回転/分のミキサーで0.5〜3分間攪拌し、  Carbon fiber having a fiber length of 1 to 30 mm is introduced into water at a rate of 0.5 to 2 wt% as a pretreatment, and the mixture is stirred for 0.5 to 3 minutes with a mixer having a rotation speed of 100 to 400 rpm,
ロックウール67〜92wt%、叩解パルプ0.5〜8wt%、有機質樹脂からなる結合剤2〜13wt%、凝集剤0.15〜1wt%、天然鉱物繊維0.5〜10wt%および前記前処理したカーボンファイバー0.02〜1wt%を配合した混合物の水分散スラリーを得、  Rock wool 67 to 92 wt%, beaten pulp 0.5 to 8 wt%, organic resin binder 2 to 13 wt%, flocculant 0.15 to 1 wt%, natural mineral fiber 0.5 to 10 wt% and the above pretreatment An aqueous dispersion slurry of a mixture containing 0.02 to 1 wt% of carbon fiber is obtained,
該水分散スラリーを湿式抄造し、  Wet-making the water-dispersed slurry,
該湿式抄造した水分散スラリーを脱水乾燥して原板を得、  The wet-made water-dispersed slurry is dehydrated and dried to obtain an original plate,
該原板を切削加工してパネルを得、並びに  Cutting the original plate to obtain a panel; and
該パネルに金属箔を貼り付ける、室内無線通信用の電波吸収性天井板の製造方法。  A method for manufacturing a radio wave absorbing ceiling board for indoor wireless communication, wherein a metal foil is attached to the panel.
請求項1記載の天井板を用いた、室内無線通信障害の防止方法。Using ceiling plate of claim 1 Symbol mounting method prevents the indoor wireless communication failure.
JP2003127210A 1999-06-15 2003-05-02 Radio wave absorbing ceiling panel, method for manufacturing the same, and method for preventing indoor wireless communication failure using the same Expired - Lifetime JP4576801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127210A JP4576801B2 (en) 1999-06-15 2003-05-02 Radio wave absorbing ceiling panel, method for manufacturing the same, and method for preventing indoor wireless communication failure using the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP11-168356 1999-06-15
JP16835699 1999-06-15
JP27412799 1999-09-28
JP11-274127 1999-09-28
JP37434999 1999-12-28
JP11-374349 1999-12-28
JP2003127210A JP4576801B2 (en) 1999-06-15 2003-05-02 Radio wave absorbing ceiling panel, method for manufacturing the same, and method for preventing indoor wireless communication failure using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000158578A Division JP3473691B2 (en) 1999-06-15 2000-05-29 Method of manufacturing ceiling panel having non-combustible sound absorbing radio wave absorption and ceiling panel obtained thereby

Publications (2)

Publication Number Publication Date
JP2003328469A JP2003328469A (en) 2003-11-19
JP4576801B2 true JP4576801B2 (en) 2010-11-10

Family

ID=29716214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127210A Expired - Lifetime JP4576801B2 (en) 1999-06-15 2003-05-02 Radio wave absorbing ceiling panel, method for manufacturing the same, and method for preventing indoor wireless communication failure using the same

Country Status (1)

Country Link
JP (1) JP4576801B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102746763B (en) * 2011-04-22 2016-04-20 北京建筑技术发展有限责任公司 A kind of take expanded and vitrified small ball as the steel structure fire-proof paint of base material
JP6835393B2 (en) * 2015-03-31 2021-02-24 ニッタ株式会社 Manufacturing method of carbon fiber reinforced molded product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363451A (en) * 1991-05-09 1992-12-16 Matsushita Electric Works Ltd Ceiling
JPH0548289A (en) * 1991-08-08 1993-02-26 Showa Denko Kk Shield material for electromagnetic waves
JPH09275295A (en) * 1996-04-05 1997-10-21 Nec Corp Radio wave absorbent
JPH09283971A (en) * 1996-04-19 1997-10-31 Ii & C Eng Kk Radio wave absorber made of calcium silicate
JPH1072799A (en) * 1996-08-26 1998-03-17 Nitto Boseki Co Ltd Production of mineral fiber board
JPH10145075A (en) * 1996-11-08 1998-05-29 Shimizu Corp Electromagnetic shielding building
JPH1187978A (en) * 1997-09-09 1999-03-30 Nitto Boseki Co Ltd Incombustible radio wave absorber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363451A (en) * 1991-05-09 1992-12-16 Matsushita Electric Works Ltd Ceiling
JPH0548289A (en) * 1991-08-08 1993-02-26 Showa Denko Kk Shield material for electromagnetic waves
JPH09275295A (en) * 1996-04-05 1997-10-21 Nec Corp Radio wave absorbent
JPH09283971A (en) * 1996-04-19 1997-10-31 Ii & C Eng Kk Radio wave absorber made of calcium silicate
JPH1072799A (en) * 1996-08-26 1998-03-17 Nitto Boseki Co Ltd Production of mineral fiber board
JPH10145075A (en) * 1996-11-08 1998-05-29 Shimizu Corp Electromagnetic shielding building
JPH1187978A (en) * 1997-09-09 1999-03-30 Nitto Boseki Co Ltd Incombustible radio wave absorber

Also Published As

Publication number Publication date
JP2003328469A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP3473691B2 (en) Method of manufacturing ceiling panel having non-combustible sound absorbing radio wave absorption and ceiling panel obtained thereby
CN100353015C (en) Composite sand wiched wall board
EP1396509A1 (en) Low formaldehyde emission panel
EP3353132B1 (en) Acoustical ceiling tile
KR100333568B1 (en) Incombustible honeycomb radio absorptive material and radio absorber using the same
CN1269385A (en) Coating composition for fire-preventing and acoustics use
CN110306711A (en) Multilayer ceiling brick
EP1160387A2 (en) A scratch resistant discontinuous acoustical surface coating
RU2198442C2 (en) Electricity conducting sheet of cellulose fibers and composite material produced from them
JP4224703B2 (en) Electromagnetic wave absorber
JP4576801B2 (en) Radio wave absorbing ceiling panel, method for manufacturing the same, and method for preventing indoor wireless communication failure using the same
US20210002890A1 (en) Sag-resistant acoustic board
JP2003011259A (en) Inorganic board
JP4226140B2 (en) Non-combustible radio wave absorbing felt and felt with composite panel and metal foil
AU755660B2 (en) Incombustible sound-absorbing Electric radiation-absorbing ceiling panel
EP3683373B1 (en) Utilization of porous building materials in sound absorption
JPH0951190A (en) Wideband electromagnetic wave absorbing material
JPH09186485A (en) Room for radio communication
KR20030086784A (en) Sound and electromagnetic wave-proof sheet
CN212446563U (en) Environment-friendly flame-retardant sound-absorbing sandstone composite board
JPH11274788A (en) Electromagnetic wave absorbing material and method therefor
JPH0951191A (en) Low reflection panel for office
JP2933564B2 (en) Vibration damping sound insulating plate and method of manufacturing the same
JP2001073266A (en) Non-inflammable sound-absorbing electric wave- absorbing interior material
JPH0262153B2 (en)

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4576801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term