WO2003064561A1 - Method and plant for converting plastic into oil - Google Patents

Method and plant for converting plastic into oil Download PDF

Info

Publication number
WO2003064561A1
WO2003064561A1 PCT/JP2003/000413 JP0300413W WO03064561A1 WO 2003064561 A1 WO2003064561 A1 WO 2003064561A1 JP 0300413 W JP0300413 W JP 0300413W WO 03064561 A1 WO03064561 A1 WO 03064561A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
plastic
cylinder
conversion plant
decomposition
Prior art date
Application number
PCT/JP2003/000413
Other languages
French (fr)
Japanese (ja)
Inventor
Yoichi Wada
Original Assignee
Murata, Jiro
Ishikawa, Yasuo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002017650A external-priority patent/JP2003213276A/en
Priority claimed from JP2002301895A external-priority patent/JP2004137335A/en
Application filed by Murata, Jiro, Ishikawa, Yasuo filed Critical Murata, Jiro
Priority to US10/502,624 priority Critical patent/US20050075521A1/en
Priority to KR10-2003-7001944A priority patent/KR20040048368A/en
Publication of WO2003064561A1 publication Critical patent/WO2003064561A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/32Other processes in ovens with mechanical conveying means
    • C10B47/44Other processes in ovens with mechanical conveying means with conveyor-screws
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Definitions

  • the present invention relates to a method for liquefying plastics for collecting oil from plastics and a liquefied blunt.
  • the present invention has been made mainly in view of these problems.
  • An oiling method capable of oiling a large amount of plastics, treating hydrogen chloride gas, and completely treating off-gas, and the like.
  • the main purpose is to provide a petrochemical plant.
  • the oiling method of the present invention is characterized in that a plastic is heated and dissolved to form a foamed plastic, and the foamed plastic is taken out, heated and depolymerized, and then cooled to produce an oil. And At this time, the foamed plastic should be pulled out diagonally upward, preferably at an angle of 25 to 30 ° with respect to the horizontal. Further, it is preferable to heat the foamed plastic while pulling the foamed plastic diagonally upward, and to heat the foamed plastic at a higher temperature as the foamed plastic is positioned higher. Further, food oil, animal oil or mineral oil may be added to the decomposed plastic and heated to produce a foamed plastic composed of a mixture thereof.
  • hydrogen chloride gas generated when plastics are dissolved is separated from other decomposed gases, and then reacted with slaked lime to recover chlorinated calcium.
  • the off-gas that has not been turned into oil may be treated by catalytic decomposition with high-temperature ceramics.
  • the oil-forming plant of the present invention comprises a dissolving section for heating and melting the plastic to form a foamed plastic, and removing the foamed plastic, heating and depolymerizing, and then cooling to produce oil.
  • a disassembly section that performs the following.
  • the decomposition section may be provided with a take-out means for taking up and taking out the foamy plastic obliquely upward, preferably at an angle of 25 to 30 ° with respect to the horizontal.
  • the decomposition section is provided with a heating means for heating while pulling the foamy plastic diagonally upward, and for heating the foamy plastic at a higher temperature as the foamed plastic is positioned upward.
  • an oil injection means for injecting food oil, animal oil, or mineral oil into the joint between the melting part and the decomposition part may be provided.
  • the melting part may be formed by a plurality of melting cylinders having different temperature distributions
  • the decomposition part may be formed by a plurality of inclined decomposition cylinders having different temperature distributions.
  • the oil conversion plant of the present invention may be provided with a dechlorination device for treating the hydrogen chloride gas generated in the dissolving section.
  • the dechlorination device is used for decomposing the hydrogen chloride gas and other cracked gas.
  • a reactor in which hydrogen chloride gas separated by the separator is reacted with slaked lime to form calcium chloride.
  • a residue collecting means is provided at the upper end of the final stage of the decomposition tube among the multistage decomposition tubes.
  • the lower opening is preferably formed of a cylinder positioned in an inert gas atmosphere heavier than air.
  • the oil conversion plant of the present invention is provided with a hopper for storing and supplying the plastic to the melting section, and the hopper is preferably provided with a lead screw having spiral blades. It is preferable to provide a non-heated portion between the hopper and the melting portion, which is formed by a region not heated with a predetermined length. Further, the plurality of melting cylinders are provided with a lead screw having a spiral blade for transporting the plastic, and the lead screw of the melting cylinder positioned at the head is adjusted to the lead screw pitch of the other melting cylinder. It is recommended that the pitch be larger than the pitch of the blades.
  • the melting section and the decomposition section are formed by an inner cylinder, an outer cylinder formed on the outer periphery of the inner cylinder, and hot air circulated between the inner cylinder and the outer cylinder.
  • a hot air space and a temperature sensor for detecting the temperature of the melting part or the decomposition part. Further, when the temperature sensor detects an abnormal temperature exceeding a predetermined temperature, the carbon dioxide gas is sent into the hot air space.
  • a carbon dioxide supply device may be provided.
  • the oil conversion plant of the present invention comprises: It comprises an outer cylinder formed on the outer circumference of the inner cylinder, and a hot air space formed between the inner cylinder and the outer cylinder and circulating hot air, and further burns hot air to supply the hot air space. It is preferable to provide a hot air generator for generating the hot air and a drying device for drying the plastic supplied to the melting furnace, and supply the air in the drying device to the hot air generator to deodorize by combustion. Alternatively, the air in the drying device may be supplied to the off-gas treatment device and decomposed by catalytic decomposition with a high-temperature ceramics.
  • the oil conversion plant of the present invention uses a telescopic cylinder formed to be freely expandable and contractable for a part of the melting cylinder, and this telescopic cylinder is arranged on the inner cylinder and on the outer periphery of the inner cylinder, and one end is formed inside.
  • the bellows may be formed of a bellows fixed to the cylinder and having the other end slidable with respect to the inner cylinder, and an outer cylinder fixed to the other end of the bellows and containing the inner cylinder slidably therein.
  • the dissolving section includes an inner cylinder, an outer cylinder formed on the outer periphery of the inner cylinder, and a liquid heat medium circulated between the inner cylinder and the outer cylinder. It is preferable that the heat medium space further include a heat medium supply device for supplying a liquid heat medium to the heat medium space.
  • FIG. 1 is a configuration diagram showing the basic principle of the present invention.
  • FIG. 2 is a configuration diagram showing an embodiment based on the basic principle of the present invention.
  • FIG. 3 is a perspective view of an oil conversion plant showing one embodiment of the present invention.
  • FIG. 4 is a front view of an oil conversion plant showing one embodiment of the present invention.
  • FIG. 5 is a plan view of an oil conversion plant showing one embodiment of the present invention.
  • FIG. 6 is an explanatory diagram of a schematic configuration of FIG.
  • FIG. 7 is an explanatory diagram of a schematic configuration of FIG.
  • FIG. 8 is a cross-sectional view of the melting cylinder.
  • FIG. 9 is a cross-sectional view of the disassembly tube. .
  • FIG. 10 is a block diagram of the dechlorination unit.
  • FIG. 11 is a configuration diagram of an off-gas processing unit.
  • FIG. 12 is a schematic structural explanatory view showing another embodiment.
  • FIG. 13 is a configuration diagram of a joining portion between a melting portion and a disassembling portion.
  • FIG. 14 is a diagram showing the recovery rate according to the plastic to be treated.
  • FIG. 15 is an explanatory view of a state in which the foamed plastic is pulled up.
  • FIG. 16 is a cross-sectional view of the hopper.
  • FIG. 17 is a perspective view of a non-heating section.
  • FIG. 18 is a configuration diagram of a sludge tank.
  • FIG. 19 is a configuration diagram of the telescopic cylinder.
  • FIG. 20 is a schematic configuration diagram of an accident prevention system and a deodorizing system.
  • FIG. 21 is a schematic diagram showing another embodiment. [Best Mode for Carrying Out the Invention]
  • FIG. 1 is a conceptual diagram for explaining the basic principle of the method for liquefying plastic according to the present invention.
  • the raw material plastic is melted at a temperature of 200 ° C. (up to 350 ° C.) and stored in the storage unit 1. Then, the melted plastic (dissolved plastic) is slanted upward by the decomposition cylinder 13 Raised.
  • the disassembly tube 13 includes an inner tube 2, an outer tube 6 forming a hot air space 4 around the inner tube 2, and a lead screw 7.
  • the lead screw 7 includes a rotating shaft 14 and a spiral blade 8, and is rotated at a speed of 4 to 5 rotations Z by the motor 12. Hot air is supplied to the hot air space 4 from the pipe 10, and the temperature in the inner cylinder 2 is changed to gasification of plastic. It is maintained at 350-620 for depolymerization.
  • the dissolved plastic conveyed in the inner cylinder 2 by the lead screw 7 is firstly decomposed (the first heavy gas state gasified from the dissolved state) below the decomposing cylinder 13 to become the first decomposed gas. Further, the primary decomposition gas is sent at a low speed above the decomposition cylinder 13 by the lead screw 7 and is maintained at 35 O: ⁇ 620 ° C by hot air supplied from the pipe 15. It is secondarily decomposed in the cylinder 2 (the state in which the plastic is depolymerized and turned into oil if cooled) to become a lightly decomposed gas.
  • An outer box 5 is formed outside the storage section 1 to form a hot air space 3, and hot air is sent to the hot air space 3.
  • the plastic supplied to the storage unit 1 is heated to 200 to 350 ° C and becomes molten plastic in p.
  • a foamed plastic (foamed plastic) f is formed on the surface.
  • the foamed plastic f is heated while being pulled up obliquely by the lead screw 7 in which the shaft end 14a is immersed in the molten plastic mp, but at this time the contact area with heat increases, so it is surely decomposed. (Depolymerization) to become secondary decomposition gas.
  • the secondary cracked gas is collected from the pipe 9 and liquefied by cooling and collected in the oil storage tank.
  • the speed at which the foamed plastic f is pulled up is preferably 30 to 60 cmZ. If it is less than this, the transport efficiency will be poor. If it exceeds this, sufficient decomposition will not be possible.
  • the foamed plastic f is spirally pulled up by the lead screw 7 as shown in FIG. 15, and the speed of the spiral movement at this time is preferably 30 to 6 ° cm / min. This speed The degree is adjusted, for example, by the pitch p of the lead screw 7. In this way, the foamed plastic f is conveyed inside the inner cylinder 2 at the aforementioned speed and slowly heated, so that it is sufficiently decomposed in the first decomposition temperature range and the second decomposition temperature range ( Depolymerization). It is preferable to heat the foamed plastic for about 14 to 15 minutes at around 600 ° C until it is completely decomposed.
  • the processing temperature varies depending on the type of plastic as the raw material.
  • the temperature of the force storage unit 1 is preferably set to a temperature at which the molten plastic mp becomes foamy (200 to 350 ° C), For decomposition, it is important to reduce the temperature gradient, maintain the foamy state for a long time, and increase the contact area with heat.
  • the disassembly tube 13 is preferably provided to be inclined with respect to the horizontal. In addition, in the inclined disassembly tube 13, hot air is blown into the upper part and circulated from the upper part to the lower part, so that the temperature rises sequentially from the lower part to the upper part. This method is called the reverse thermal gradient method.
  • the inclination angle ⁇ of the disassembling cylinder 27 In order to hold the foamed plastic f well for a long time, it is preferable to set the inclination angle ⁇ of the disassembling cylinder 27 to 25 ° to 30 ° as shown in FIG. If the inclination angle 0 of the disassembly tube 27 is set to less than 25 °, the foamy plastic f flows sideways quickly and disappears in a short time, and if the inclination angle 0 is set to exceed 30 °, Due to gravity, it is difficult to pull the foam plastic ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ upward from the surface of the melted plastic mp for a long distance. In this case also, the foam plastic f disappears in a short time.
  • the storage part 29 of the molten plastic mp is formed at a connection part where the supply cylinder 28 and the decomposition cylinder 27 are connected in a V-shape.
  • the supply cylinder 28 is composed of an inner cylinder 20 and an outer cylinder 21, between which hot air is supplied via a pipe 22, and the inside of the inner cylinder 20 is maintained at 200 to 350.
  • Disassembly cylinder 27 is composed of inner cylinder 25, outer cylinder 17 and lead screw 24.
  • the lead screw 24 is mounted such that the lower end of the shaft 23 is rotatably supported by the lower wall of the storage portion 29.
  • heated air at 450 to 62 ° C. is supplied from a hot air generator through a pipe 26 c. Then, the heated air descends inside the disassembly tube 27, is drawn out from the pipe 26b below the disassembly tube, and is circulated so as to flow in from the upper tube 26a.
  • the temperature distribution in the decomposition tube 27 is formed so that the temperature increases from the bottom to the top.
  • the lower part of decomposition tube 27 is maintained at 300 to 450 ° C for primary decomposition, and the upper part of decomposition tube 27 is heated to nearly 600 ° C for secondary decomposition.
  • the foamed plastic f is ripened, and the foamed plastic f is transported in a favorable state so as to rise in the inclined decomposition cylinder 27, and is heated during the transportation to become a decomposition gas. . Since the decomposition tube 27 and the supply unit 28 are connected in a V-shape and the storage unit 29 is completely closed by the molten plastic mp, the decomposition gas flows back from the decomposition tube 27 to the supply tube 28 In addition, air is prevented from entering the decomposition cylinder 29 from the outside through the storage part 29, and there is no danger of explosion.
  • an oil conversion plant 30 of the present invention includes, for example, a dissolving section 31 for dissolving waste plastic as a raw material, and a primary decomposition and dissolution of the plastic dissolved in the dissolving section 31.
  • Decomposition section 3 2 for secondary decomposition
  • dechlorination section 3 3 for dechlorination when processing chlorine-containing PVC
  • off-gas processing section 3 4 for processing off-gas generated during plastic dissolution and decomposition
  • first and second hot blast stoves 35, 36 for generating hot air as a heat source during melting and decomposition.
  • the melting section 31 includes a first melting cylinder 31 a that connects a hopper 41 into which the plastic material is supplied via a non-heating section 410, and a first melting cylinder 31.
  • the second melting tube 3 1b whose tip is connected below the tip of 1a and is orthogonal to the first melting tube 31a, and the second end of which is connected below the tip of the second melting tube 31b.
  • the third melting cylinder 3 1c orthogonal to the melting cylinder 3 1b and the fourth melting cylinder 3 1d whose rear end is connected below the tip of the third melting cylinder 31 and is orthogonal to the third melting cylinder 3 1c , And is configured. In this way, the first to fourth melting cylinders 31a, 31b ...
  • these melting tubes 31a to 31d are arranged in a rectangular shape as a whole, and the melted plastic falls sequentially from the leading end of the disassembling cylinder to the rear end of the joining melting cylinder. To be sent.
  • these melting tubes 31a to 31d may be connected horizontally.
  • the hopper 41 has a funnel-shaped casing 411, a cover 4 1 2 covering the upper surface of the casing 4 1 1, and a motor disposed at the center of the cover 4 1 2.
  • 4 13 and a rotating shaft 4 14 a connected to the motor 4 13 and extending through the lid 4 12 into the casing 4 11 1 and a spiral blade 4 1 4 attached to the rotating shaft 4 14 a
  • the spiral blades 4 14 b of the lead screw 4 14 ′ have a rotor shape as a whole that conforms to the shape of the casing 4 14.
  • An interval W of about 2 to 5 cm is provided between the inner wall of the casing 4 14 and the outer periphery of the spiral blade 4 14 b.
  • the lead screw 414 is rotated at a predetermined speed by the motor 413 to prevent light plastic from being clogged in the hopper 41. Then, the heavy plastic falls through the space W between the inner wall of the casing 4 14 and the outer periphery of the spiral blade 4 14 b, and the light plastic pieces are surely not heated by the lead screw 14 14. Sent in 4 1 0
  • the non-heating part 4 10 is formed of a cylinder and connected to the lower part of the hopper 4 1 (Fig. 17).
  • a motor 42 is provided at an end of the non-heated portion 410, and the motor 42 has a lead screw shared with a lead screw 13 7 disposed in a melting tube 31a to be described later. 1 3 7 is connected.
  • the lead star 13 7 is rotated by the motor 42 and slowly sends the plastic pieces sent from the hopper 41 forward to the melting tube 31 a.
  • the non-heating section 410 is not heated by hot air unlike the melting tube 31 described later.
  • the mounting portion of the hopper 41 is separated from the melting cylinder 31, melting of the plastic does not start near the mounting portion of the hopper 41, and the lead screw 13 7 is formed by viscous resistance of the melted plastic. Can be prevented from stopping.
  • the unmelted plastic portion is lengthened, and the unmelted plastic pushes the molten plastic. .
  • the melting cylinder 31 is composed of a rectangular outer box 13 6 and an inner cylinder i 31 provided in the outer box 13 (FIG. 8).
  • a lead screw 1337 having a rotating shaft 133 and a spiral blade 132 provided around the rotating shaft 133 is provided.
  • the pitch of the lead stalk 13 of the first melting cylinder 31a is set to be larger than the pitch of the lead screw 1337 of the other melting cylinders 31b, 31c and 31d. This is because the set temperature of the first melting cylinder 31a is lower than that of the other melting cylinders, as described later, so that the residence density of the plastic is reduced and the resistance is reduced.
  • the lead screw 1337 is rotated by a motor.
  • the first melting cylinder 31a is rotated by a motor 42 (FIGS. 4 and 5), and the second melting cylinder 31b is rotated by a motor 55. Rotated.
  • the inner cylinder 13 1 is provided with a plurality of heat absorbing blades 14 on the outer periphery thereof.
  • a hot air space 135 is formed between the inner cylinder 13 1 and the outer box 1 36.
  • the first melting cylinder 31a is controlled at 190 to 200 ° C
  • the inside of the second melting cylinder 31b is controlled at 210 to 230 ° C.
  • the four melting cylinders 31a, 31b ... 31d were arranged in a rectangular shape, and the temperature of each melting cylinder was gradually increased.
  • Hot air is supplied into each melting tube 31 from the first hot air furnace 35 through a pipe 70, and the hot air is sent from the downstream side where the plastic is sent to the upstream side. Therefore, the inside of each melting cylinder 31 has a reverse heat gradient.
  • the circulation of hot air in each melting cylinder 31 is performed by blowers 56, 57, 58 (Fig. 4) and 60 (Fig. 7).
  • a smoke tube 59 is connected to the first and second hot air generators 35 and 36.
  • the chimney 59 is formed in an inverted U-shape with branch pipes 59a and 59b and an outlet 59c (Fig. 4).
  • the disassembly section 32 is provided adjacent to the first-stage disassembly tube 47 controlled at 350 to 420 ° C and 450 to 580 ° C. And a second-stage disassembly tube 48 controlled by C (Fig. 7).
  • the disassembly cylinders 47 and 48 are disposed at an angle of 25 to 30 ° with respect to the horizontal plane.
  • the tip of the fourth melting cylinder 31 d is connected to the inside of the first-stage disassembling cylinder 47, and this connecting part forms a storage section for the molten plastic.
  • the first stage disassembly tube 47 is composed of two unit disassembly tubes 47a and 47b which are separated by a partition plate 256 and are formed in two rows on the left and right (Fig. 9). And The unit disassembly cylinders 47 a and 47 b are supplied with the inner cylinder 255, a plurality of heat absorbing fins 25 3 provided on the outer periphery of the inner cylinder 255, the lead screw 150, and hot air. Heat space 25 4. Each lead screw 150 includes a rotating shaft 25 1 and a spiral blade 25 2 and is rotated by motors 51 and 52 (FIG. 5).
  • the second-stage disassembly tube 48 has almost the same structure as the first-stage disassembly tube 47, and the unit disassembly tubes 48a and 48b (Fig. 6) are provided with an inner tube 148, respectively.
  • a lead screw 149 is provided in the inner cylinder 148, and the lead screw 149 is slowly (4 to 5 turns) driven by the motors 53, 54 (Figs. 5 and 7). / Min) and rotated.
  • a superheater 151 is provided to heat the passing decomposition gas to 580-620 ° C (Fig. 7). ).
  • the cracked gas that has been secondarily decomposed in the first-stage decomposition cylinder 47 is drawn out through the superheater 15 1 and the piping 49, and is passed through the scrubber 60 for cleaning the condenser 3 7 (the 5).
  • the decomposed gas is cooled by the condenser 37 to be turned into oil, and this oil is stored in the oil storage tank 42 through the pipe 46. Part of the oil stored in the oil storage tank 42 is supplied to the hot air generators 35, 36 via the service tank ST1.
  • a valve 49a for adjusting the flow rate of the decomposition gas flowing in the pipe 49 is provided in the middle of the pipe 49. It is necessary to send only the lightly decomposed gas completely secondarily decomposed by the first decomposing cylinder 47 to the condenser 37, but the decomposed gas derived from the pipe 49 is completely decomposed. Includes a slightly heavier incompletely cracked gas that has not been removed. When the amount of the decomposed gas discharged from the pipe 49 is small, the incompletely decomposed gas cannot return to the rising portion of the pipe 49 and returns to the first-stage decomposed cylinder 47 via the falling cylinder 120.
  • the first-stage cracking cylinder 47 is controlled at 350 to 420 ° C, so the first-stage cracking cylinder 47 has an oil component equivalent to gasoline with low cracking temperature, kerosene, and light oil. Some of the corresponding components undergo secondary decomposition after primary decomposition.
  • the gas in an insufficiently decomposed state is completely decomposed by the superheat 15 1. Then, the decomposition gas decomposed in this way is cooled by the capacitor 37 and turned into oil. Gas that is not separated into oil by the condenser 37 is sucked through a pipe 46 having a pump P and collected as off-gas in an oil storage tank 42.
  • the foamy plastic component that is not completely decomposed in the second-stage disassembly tube 4 7 is supplied to the lower end of the second-stage disassembly tube 4 8 via the dropping tube 1 20, and the second-stage disassembly tube 4 It is sent diagonally upward by lead screw 14 9 in 8.
  • the inside of the second stage disassembly tube 48 is 450-580. Since it is controlled at the temperature of C, the second-stage decomposition column 48 completely decomposes the residual portion of kerosene, light oil equivalent components, and heavy oil components completely. Residues such as metal, mud, etc., which were put in with the plastic, are collected in a sludge tank 40 via a sludge pipe 40a.
  • sludge tank 40 stores water 40b, and wire mesh 40c is provided in water 40b, and the residue is collected on wire mesh 40c. Is done. By removing the wire mesh 40c from the sludge tank 40, the residue can be removed from the sludge tank 40.
  • the upper surface of the sludge tank 40 is partially covered with a lid 40d having an opening 40e. Above the water 40 b in the sludge tank 40, the air is heavier than air such as carbon dioxide. Inert gas 40f is filled, and the lower end of the sludge pipe 40a is located in the inert gas 40f.
  • a gas cylinder 40 g is connected to the sludge tank 40, and an inert gas 40 f is supplied from the gas cylinder 40 g into the sludge tank 40. Part of the inert gas 40f supplied from the gas cylinder 40g overflows from the opening 40e.
  • the inflow of air from the sludge pipe 40a into the second-stage decomposition pipe 48 is effective. And the risk of explosion is eliminated.
  • the lower end of the sludge pipe 40a is positioned in the water 40b, the light residue will be lifted by the buoyancy of the water, and the lower end of the sludge pipe 40a will be clogged. This was prevented by positioning the lower end of the sludge pipe 40a in the gas 40f, and the residue was allowed to fall smoothly into the water 40b.
  • Hot air is supplied to the upper part of the first-stage and second-stage disassembly tubes 47 and 48 from the second hot-air generating furnace 36 via pipes 71, 71a and 71b (Fig. 5).
  • the hot air is extracted from the lower part of the decomposition tubes 47 and 48 and is returned to the upper part, and is circulated through the probes 170 and 171.
  • the decomposition tubes 47 and 48 are formed with an inverse heat gradient in which the temperature decreases from the upper part to the lower part.
  • hot air from the first hot air generating furnace 35 is supplied to the melting section 31, and the hot air is circulated by the blower 60 in, for example, the fourth melting cylinder 31 d (FIG. 7). .
  • a pipe 50 connected to the condenser 38 via a scrubber 61 for alkaline cleaning is arranged (FIG. 5).
  • the decomposed gas decomposed in the second-stage decomposing cylinder 48 is sent to a scrubber 61 through a pipe 50, and further sent to a condenser 38.
  • the cracked gas sent to the capacitor 38 is turned into oil by cooling.
  • the liquefied oil is sent to an oil storage tank 43 via a pipe 86, and a part of this oil is sent to the first and second hot air generators 35, 36 via a service tank ST2. You.
  • the condensers 37 and 38 are cooled by the cooling tower CT (Fig. 3).
  • the first and second stage disassembly cylinders 47 and 48 are connected to pipes 101 and 102 connected to the common exhaust pipe 100, respectively. Then, the exhaust gas of the first and second stage disassembly tubes 47 and 48 is discharged to the outside from the collective exhaust pipe 100 via the pipes 101 and 102. The gas not converted into oil by the capacitor 38 connected to the second-stage disassembly tube 48 is recovered by the pump P through the pipe 86 to the oil storage tank 43.
  • a telescopic cylinder 700 is used for a part of the melting cylinder 31 and the disassembling cylinders 47 and 48 described above.
  • the telescopic cylinder 700 is formed by a bellows part 700 and a slide part 720 (FIG. 19).
  • the bellows portion 701 is composed of a bellows 703 and a bellows inner cylinder 704 disposed therein, and the entire length of the bellows inner cylinder 704 is longer than the entire length of the bellows 703. Is done.
  • the bellows 703 and the bellows inner cylinder 704 are installed such that one end thereof is aligned, and the bellows inner cylinder 704 projects from the other end of the bellows 703.
  • a support cylinder 705 is arranged on the outer periphery of the protruding bellows inner cylinder 704, and the bellows inner cylinder 704 and the support cylinder 705 form a slide portion 702.
  • the inner diameter of the support cylinder 705 is formed slightly larger than the outer diameter of the bellows inner cylinder 704, and the inner peripheral surface of the support cylinder 705 and the outer peripheral surface of the bellows inner cylinder 704 form a sliding surface.
  • an inner cylinder 706 formed to have the same diameter as the bellows inner cylinder 704 is disposed at a position where the bellows inner cylinder 704 of the support cylinder 705 is not located.
  • step portions 704a and 706a are formed at the butting side ends of the bellows inner cylinder 704 and the inner cylinder 706, respectively.
  • the opposing surfaces of both step portions 704a and 706a form a sliding surface.
  • the expansion and contraction cylinders 700 arranged in a part of the melting cylinder 31 and the disassembling cylinders 47 and 48 are heated by heating the melting cylinder 31 and the disassembling cylinders 47 and 48.
  • Thermal expansion In the case where the swelling occurs, it plays a role in absorbing the amount of expansion. That is, for example, when the first melting cylinder 31a is heated from room temperature to about 200 ° C. and its overall length is extended by thermal expansion, the telescopic cylinder 70 arranged in a part of the first melting cylinder 31a A value of 0 contracts the bellows 703 so as to move the bellows inner cylinder 704 to the slide portion 702 side, thereby absorbing the expansion amount of the first melting cylinder 31a.
  • the telescopic cylinder 700 shown in FIG. 19 is provided with the slide position of the bellows inner cylinder 704 outside the bellows part 701, and a support cylinder 7 having a larger diameter than the bellows inner cylinder 704. Since the sliding portion 702 is formed by using 005, the bellows inner cylinder 704 can be made thicker without reducing the inner diameter of the bellows inner cylinder 704. . As a result, deformation of the telescopic cylinder 700 can be prevented, and thus, the bellows 703 caused by deformation of the telescopic cylinder 700 can be prevented from being damaged. It is possible to prevent fires caused by spills.
  • the pipes 75, 76, 77 extending from the top of the melting cylinders 31a, 31b, 31c of the melting part 31 are connected to the pipe 78 (Fig. 5), and the pipe 78 is the first. It is connected to the separator 37 (Fig. 10).
  • the first separator 37 is for separating the hydrogen chloride gas generated in the dissolving cylinders 31a, 31b, 31c from the decomposition gas slightly contained therein.
  • the first separator 37 has a cooling coil 301 at the top. Then, the hydrogen chloride gas flowing through the pipe 78 is cooled when passing through the cooling coil 301, and is discharged to a lower portion of the first separator 37 located below the cooling coil 301.
  • the released hydrogen chloride gas is further passed through a cooling coil 301, from above the first separator 37, to a second separator 38 having the same structure as the first separator via a pipe 79. Furthermore, the hydrogen chloride gas separated by the second separator 38 is the third separator 3 having the same structure as the first and second separators 37, 38. After being sent to 9 and completely separated from the decomposition gas by the third separator 39, it is sent to the lower part of the reactor 300 via the pipe 81. By arranging the plurality of separators 37, 38, and 39, the hydrogen chloride gas can be completely separated from the decomposition gas.
  • the reactor 300 has a stirring bar 300, and the blades 304 are attached to the stirring bar 300.
  • a slaked lime tank 83 is connected to the upper part of the reactor 300.
  • the slaked lime tank 83 has a heating cylinder 304 around the slaked lime for drying the slaked lime in the slaked lime tank 83.
  • a lead screw 303 is provided below the slaked lime tank 83, and the lead screw 303 is rotated by a motor 304.
  • a lead screw 309 is provided at the lower end of the reactor 303, and the lead screw 309 is rotated by a motor 310.
  • the periphery of the lead screw 309 is heated by a heating cylinder 313 in order to dry and remove water generated by the reaction of the reactor.
  • the calcium chloride generated by the reaction in the reactor 309 is stored in the salt calcium tank 312.
  • temperature sensors S1, S2, and S3 are provided at appropriate positions in the height direction of the reactor 300, and the heat of reaction is detected by the temperature sensors S1, S2, and S3.
  • the rotation of the motor 304 of the slaked lime tank 83 and the motor 310 of the discharge lead screw 309 of the reactor 300 is controlled by the reaction heat detection signal.
  • the stirring rod 303 of the reactor 300 is constantly rotating, and when a large amount of hydrogen chloride gas enters the reactor 300, the reaction becomes active and a large amount of reaction heat is generated.
  • the highest-order temperature sensor S3 detects reaction heat of a certain level or more
  • the lead screw 303 of the slaked lime tank 83 is rotated so as to send a large amount of slaked lime.
  • the middle temperature sensor S 2 detects a certain range of temperature During the period, slaked lime will be supplied accordingly.
  • the reaction slows down and the lowest temperature sensor S1 detects a predetermined temperature, it is determined that the reaction has ended, and the lead screw 309 for discharging the reactor 300 is generated by rotating the lead screw 309 for discharging.
  • the calcium chloride is collected in a salt calcium tank 312. After the generated calcium chloride is recovered, when the reaction starts again, the temperature sensor S1 detects the start of the reaction, and rotates the lead screw 303 to put slaked lime from the slaked lime tank 83 into the reactor 300.
  • the temperature sensors S2 and S3 sequentially detect the feed and reaction heat, the supply of slaked lime is increased, and the slaked lime supply fee is reduced as the reaction heat decreases, and the above-described operation is repeated. .
  • a vacuum pump 314 is provided to remove water generated as steam in the reaction, and to draw hydrogen chloride gas into the reactor 300.
  • a relief valve 315 for inflow of air is provided on the inlet side of the vacuum pump 314.
  • a scrubber 317 for cleaning the reactor was provided.
  • FIG. 11 is a diagram showing a schematic configuration of the off-gas processing device 34.
  • the offgas treatment device 34 has a casing 236.
  • the casing 23 The inside of the casing 236 is heated to about 1200 ° C.
  • a plurality of ceramic prisms 238 and 238-238 are erected in the casing 236.
  • the prism of this ceramic catalytically decomposes the off-gas flowing from the inlet 235 connected to the oil storage tanks 42, 43 in 1/1100 seconds to 210 seconds, and C 0 2, NO x, changing simple oxides such as H 2 0.
  • the generated heat energy is guided to the first and second hot air generators 35 and 36 through the outlet 237.
  • the off-gas is an environmental hormone such as acetaldehyde which was not turned into oil by the condensers 37 and 38.
  • the off-gas is collected in the oil storage tanks 42 and 43 and after being collected, these oil storage tanks 42 , 43 to the off-gas treatment device 34.
  • the off-gas may be sent directly from the condensers 37 and 3'8 to the off-gas treatment device 34.
  • a large number of temperature sensors S, S... S are provided in each dissolving tube of the dissolving section 31 and each inclined pipe of the dissolving section 32.
  • Each of these sensors S is connected to a controller 511, and this controller 511 controls opening and closing of a valve 513 connected to a carbon dioxide gas cylinder 512.
  • This carbon dioxide gas cylinder 5 12 is connected to a hot air circulation path P that sends hot air from the first and second hot air generating furnaces 35 and 36 into the melting section 31 and the decomposition section 32.
  • the controller 511 opens the valve 513 and sends the carbon dioxide gas through the hot air circulation path Q to the melting section 31 and the decomposition section 3. Supply within 2. Thereby, the inside of the melting section 31 and the decomposition section 32 is cooled, and the operation of the oil conversion plant 30 is stopped.
  • a plastic deposition site A to be treated has a suction fan 5 1 4a
  • the suction device 5 14 is disposed above. Then, air with an unusual odor particularly generated from the waste plastic is sucked by the suction device 514, sent to the hot air generating furnace 366, burned and deodorized.
  • the plastic flakes P pulverized by the crusher 515 are dried in a dryer 516 using warm air from a hot air generator 36, and the dried plastic flakes P are transferred to a hopper 4. Sent to 1.
  • the air in the dryer 5 16 with an unpleasant odor is sent to the hot-air generating furnace 35 for processing after the fine particles mixed into the air are removed by the cyclone 5 17 by the fan 5 16 a. You. These systems are expected to have a sufficient deodorizing effect.
  • air with an unpleasant odor may be decomposed in an off-gas processing section 34 for processing off-gas. That is, the air with an unpleasant odor is treated in the hot-air generators 35 and 36 or the off-gas treatment section 34.
  • the disassembly cylinders are provided in two stages. However, as shown in FIG. 12, after the second stage disassembly tube 48, the same structure as the second stage disassembly tube 48 is provided. A third-stage disassembly cylinder 210 inclined at the same angle is provided, and the temperature distribution is 350 to 400 ° C in the first-stage disassembly cylinder and 400 ° C in the second-stage disassembly cylinder. A melting section 200 set at 480 ° C. to 480 ° C. and in the third stage disassembly cylinder at 480 ° C. to 580 ° C. may be provided.
  • the decomposition temperature distribution can be taken more gently and the decomposition time can be extended, so that it is possible to respond to changes in the decomposition conditions due to the specific gravity of the raw material plastic, etc. Secondary decomposition is guaranteed.
  • the upper end side of the second-stage disassembly tube 48 is connected to the lower end of the third-stage disassembly tube 210 having the same inclination angle via the drop tube 218, and is extracted by the second-stage disassembly tube 48.
  • the undecomposed foamed plastic and decomposition gas that did not It is fed into the third stage disassembly cylinder 210 via 8.
  • the undecomposed foamy plastic and decomposition gas sent to the third-stage decomposition cylinder 210 are secondarily decomposed in the third-stage decomposition cylinder 210, and the second-decomposed decomposition gas is used for cleaning by the Arikari cleaning.
  • the oil is cooled by the condenser 2 13 via the scrubber 2 16 and becomes oil equivalent to heavy oil A.
  • This oil is collected in the oil storage tank 215 via the pipe 216.
  • a blower 221 is connected to the third-stage decomposition tube 210, whereby the caro-hot air circulates from the top to the bottom of the decomposition tube while forming a reverse heat gradient.
  • the residue is collected in a sludge tinder 220 into which water has been injected through a sludge pipe 219.
  • the cracked gas that has not been liquefied by the condenser 21'3 of the third stage disassembly cylinder 210 is sucked by the pump P, collected through the pipe 214, and collected in the oil storage tank 215.
  • the secondly decomposed gas is extracted from the upper end and turned into oil. Decompose from heat 15 1 and 15 2.
  • cracked gas equivalent to light oil, kerosene, and heavy oil components in the-part is obtained, and the remaining heavy oil-A equivalent components are decomposed in the third-stage cracker. It is also possible for the official to have more than four disassembly cylinders.
  • the melting portion 200 is formed in a vertical shape (vertical shape). That is, the first, second, and third melting cylinders 201, 202, and 203 are vertically connected via connecting portions 204 and 205, respectively, and are fed from the hopper 41.
  • the melted plastic is sent to the right in the first melting cylinder 201, sent to the left in the second melting cylinder 202, sent to the right in the third melting cylinder, and 4 7 is supplied to the lower end.
  • the lead screw 200 of the third melting cylinder 203 at the bottom is rotated by a motor 208, and the rotation of the motor 208 is controlled by the lead screw of the first melting cylinder 201 via the chain 209.
  • the first to fourth melting cylinders 31a, 31b ... 31d are heated by the heat medium supplied from the heat medium heating device 600.
  • the heat medium refers to a liquid heat medium, for example, various heat medium oils are used.
  • This heat medium is heated to a predetermined temperature by the heat medium heating device 600 and supplied to the heat medium space 135 of the melting cylinder 31 via the heat medium pipe 601.
  • the heat medium space 135 is formed between the inner cylinder 131 and the outer box 13'6 in the same manner as the hot air space 135 described above.
  • the heat medium is circulated by the circulation pump 62 so that the heat medium flows from the downstream side to the upstream side in the heat medium space 135 '.
  • the temperature in the first melting cylinder 31a is 190 to 200
  • the temperature in the second melting cylinder 31b is 210 to 230 ° C
  • the temperature in the third melting cylinder 31c is 230 ° C. C-260.
  • the inside of the fourth melting cylinder 31 d is controlled at 300 to 330 ° C., respectively, in the same manner as in the case of the above-described heating with hot air.
  • the heat medium Since the operating temperature of the heat medium is generally 350 ° C. or lower, the heat medium is used only for heating the melting cylinder 31.However, by selecting a more appropriate heat medium, the decomposition cylinder 47, It is also possible to use a heat medium for heating of c. Also, depending on the operating temperature of the heat medium used, a low temperature Only the melting cylinder 31 (for example, the first, second and third 'melting cylinders 31a, 31b and 31c) to be trolled may be heated by the heat medium.
  • the lower part of the fourth melting cylinder 31 d and the lower part of the first stage disassembling cylinder 47 are joined by a joint 500, and the foam melted through the joint 500 Plastic is supplied to the lower end of the inner cylinder 255 in the first stage disassembly cylinder 47.
  • the joint 500 is supplied with vegetable or animal edible oil stored in the tank 502 or waste oil after use thereof.
  • the primary and secondary components are decomposed in the disassembly tube. This makes it possible to recover the reformed oil by a chemical decomposition reaction.
  • plastics such as polyethylene, polypropylene, polystyrene, ABS resin, and acrylic resin are thermally decomposed and 90% of the oil is collected as product oil. ° / 0 ) and is treated by the off-gas treatment device 34, and the carbide (2 to 3%) is collected in the residue tank 40 as a residue.
  • Polyvinyl chloride is neutralized with slaked lime to make about 58% of calcium chloride and about 42% is pyrolyzed, but about 30% of oil is collected and collected.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention, and does not provide any similar effect. Are also included in the technical scope of the present invention. [Industrial applicability]
  • the plastic oiling method and the oiling plant according to the present invention are useful as an oiling method and an oiling brand for collecting oil from waste plastics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A method for converting a plastic into an oil, which comprises melting a plastic as a raw material in a melting section (31) so as to form an expanded plastic, sending the expanded plastic to a first step decomposition cylinder (47) and, arranged adjacent thereto, a second step decomposition cylinder (48), to thereby depolymerize the plastic to a light secondary decomposition gas, followed by separation, cooling the separated secondary decomposition gas by the use of condensers (37,38) to an oil, followed by recovering in oil storage tanks (42,43). The method can be advantageously employed for completely decomposing a large amount of plastics by heating and also for treating a toxic gas.

Description

明 細 書 プラスチックの油化方法及び油化プラント [技術分野]  Description Oiling method and oiling plant for plastics [Technical field]
本発明はプラスチックから油を採集するためのプラスチックの油化 方法及び油化ブラントに関する。  The present invention relates to a method for liquefying plastics for collecting oil from plastics and a liquefied blunt.
[背景技術] [Background technology]
廃棄プラスチックから油を採集するための油化プラントが種々提案され ているが、 いずれも十分な分解が行われず実際上は実用的に操業している プラントは存在しない。  Various oil conversion plants for collecting oil from waste plastics have been proposed, but none of them has been sufficiently decomposed and is actually operating practically.
そこで、 本件出願人は、 先に、 特開 2 0 0 0— 1 6 7 7 4号公報におい て開示した小型かつシンプルな構造の逆熱勾配方式の油化ブラントを開発 した。  Accordingly, the present applicant has previously developed a small-sized and simple-structured reverse heat gradient type oiling blunt disclosed in Japanese Patent Application Laid-Open No. 2000-167774.
しかし、 この油化プラントにおいては、 1 ) プラスチックの処理量が少 ないときには確実にプラスチックを油化できるが、 プラスチックの処理量 が多くなると完全なプラスチックの油化が困難となる、 2 ) P V C (polyvinyl chlorid) プラスチックを溶解する際に溶解部で塩化水素ガス が発生するが、 この塩化水素ガスの処理が充分に為されない、 3 ) 油化さ れなかったオフガスの処理が充分に為されない、 等の問題点があった。  However, in this oil conversion plant, 1) it is possible to reliably convert the plastic to oil when the amount of processed plastic is small, but it is difficult to completely convert the plastic to oil when the amount of processed plastic is large.2) PVC ( Polyvinyl chlorid) When dissolving plastic, hydrogen chloride gas is generated in the dissolution part, but this hydrogen chloride gas is not sufficiently treated, 3) Not oiled off gas is not sufficiently treated, etc. There was a problem.
本発明は主にこれら問題点に鑑み為されたもので、 大量のプラスチック を油化でき、 塩化水素ガスの処理が可能で、 また、 オフガスを完全に処理 できるような油化方法、 およぴ油化プラントを提供することを主な目的と する。 [発明の開示] The present invention has been made mainly in view of these problems. An oiling method capable of oiling a large amount of plastics, treating hydrogen chloride gas, and completely treating off-gas, and the like. The main purpose is to provide a petrochemical plant. [Disclosure of the Invention]
そこで、 本発明の油化方法は、 プラスチックを加熱溶解して泡状のプ ラスチックを生じさせ、 この泡状のプラスチックを取り出して加熱し解 重合させた後に冷却して油を生成することを特徴とする。 このとき、 泡 状のプラスチックを斜め上方に、 望ましくは水平に対して 2 5〜 3 0 ° の角度で引上げて取り出すとよい。 また、 泡状のプラスチックを斜め上 方に引上げながら加熱し、 且つ、 泡状のプラスチックが上方に位置する ほど高温で加熱することがよい。 更に、 瑢解されたプラスチックに食物 油、 動物油又は鉱物油を加えて加熱し、 これらの混合物からなる泡状の プラスチックを生じさるとよい。  Therefore, the oiling method of the present invention is characterized in that a plastic is heated and dissolved to form a foamed plastic, and the foamed plastic is taken out, heated and depolymerized, and then cooled to produce an oil. And At this time, the foamed plastic should be pulled out diagonally upward, preferably at an angle of 25 to 30 ° with respect to the horizontal. Further, it is preferable to heat the foamed plastic while pulling the foamed plastic diagonally upward, and to heat the foamed plastic at a higher temperature as the foamed plastic is positioned higher. Further, food oil, animal oil or mineral oil may be added to the decomposed plastic and heated to produce a foamed plastic composed of a mixture thereof.
また、 本発明の油化方法は、 プラスチックを溶解する際に発生する塩 化水素ガスを他の分解ガスと分離した後に消石灰と反応させて塩化力 ルシユームとして回収するとよレ、。 また、 油化されなかったオフガスを 高温のセラミッタスで接触分解させて処理するとよい。  According to the oiling method of the present invention, hydrogen chloride gas generated when plastics are dissolved is separated from other decomposed gases, and then reacted with slaked lime to recover chlorinated calcium. In addition, the off-gas that has not been turned into oil may be treated by catalytic decomposition with high-temperature ceramics.
また、 本発明の油化プラントは、 プラスチックを加熱して溶解させ泡 状のプラスチックを生じさせる溶解部と、 泡状のプラスチックを取り出 して加熱し解重合させた後に冷却して油を生成する分解部と、 を備える ことを特徴とする.。 この油化プラントにおいて、 分解部は泡状のプラス チックを斜め上方に、 望ましくは水平に対して 2 5〜 3 0 ° の角度で引 上げて取り出す取出手段を備えるとよい。 また、 分解部は泡状のプラス チックを斜め上方に引上げながら加熱し、 且つ、 泡状のプラスチックが 上方に位置するほど高温で加熱する加熱手段を備えるとよい。 更に、 溶 解部と分解部との接合部に食物油、 動物油又は鉱物油を注入するための 油注入手段を備えるとよい。 また、 溶解部は異なる温度分布を有する複 数の溶解筒で形成するとよく、 分解部は異なる温度分布を有する複数の 傾斜した分解筒で形成するとよい。 更に、 本発明の油化プラントは、 溶解部で発生する塩化水素ガスを処 理するための脱塩素装置を備えるとよく、 この脱塩素装置は塩化水素ガ スと他の分解ガスを分解するためのセパレータと、 セパレータにより分 離された塩化水素ガスを消石灰と反応させて塩化カルシュームとする リアクターとを備えることがよい。 また、 分解部での冷却後に油として 生成されなかったオフガスを高温のセラミックスで接触分解させて処 理するオフガス処理装置を備えるとよい。 Further, the oil-forming plant of the present invention comprises a dissolving section for heating and melting the plastic to form a foamed plastic, and removing the foamed plastic, heating and depolymerizing, and then cooling to produce oil. And a disassembly section that performs the following. In this oil conversion plant, the decomposition section may be provided with a take-out means for taking up and taking out the foamy plastic obliquely upward, preferably at an angle of 25 to 30 ° with respect to the horizontal. Further, it is preferable that the decomposition section is provided with a heating means for heating while pulling the foamy plastic diagonally upward, and for heating the foamy plastic at a higher temperature as the foamed plastic is positioned upward. Further, an oil injection means for injecting food oil, animal oil, or mineral oil into the joint between the melting part and the decomposition part may be provided. Further, the melting part may be formed by a plurality of melting cylinders having different temperature distributions, and the decomposition part may be formed by a plurality of inclined decomposition cylinders having different temperature distributions. Further, the oil conversion plant of the present invention may be provided with a dechlorination device for treating the hydrogen chloride gas generated in the dissolving section. The dechlorination device is used for decomposing the hydrogen chloride gas and other cracked gas. And a reactor in which hydrogen chloride gas separated by the separator is reacted with slaked lime to form calcium chloride. Further, it is preferable to provide an off-gas processing device for catalytically decomposing and processing off-gas that has not been generated as oil after cooling in the decomposition section with high-temperature ceramics.
更にまた、 本発明の油化プラントは、 多段に設けた分解筒のうち最終 段の分解筒の上端に残渣回収手段を設けるとよく、 この残渣回収手段は 上部開口を最終段の分解筒の上端位置に位置させ下部開口を空気よ り 重い不活性ガス雰囲気内に位置させた筒で形成するとよい。  Furthermore, in the oil conversion plant of the present invention, it is preferable that a residue collecting means is provided at the upper end of the final stage of the decomposition tube among the multistage decomposition tubes. The lower opening is preferably formed of a cylinder positioned in an inert gas atmosphere heavier than air.
更にまた、 本発明の油化プラントは、 プラスチックを貯留して溶解部 へ供給するためのホッパーを備え、 このホッパーは螺旋状の羽根を有す るリードスクリューを備えることがよい。 また、 ホッパーと溶解部の間 には所定長さの加熱されない領域で形成される非加熱部備えるとよい。 更に、 複数の溶解筒はプラスチックを搬送するための螺旋状の羽根を有 するリードスクリューを備え、 先頭に位置する溶解筒のリ一ドスク リュ 一の羽根のピッチを他の溶解筒のリードスクリ ューの羽根のピッチよ り大きく形成するとよい。  Furthermore, the oil conversion plant of the present invention is provided with a hopper for storing and supplying the plastic to the melting section, and the hopper is preferably provided with a lead screw having spiral blades. It is preferable to provide a non-heated portion between the hopper and the melting portion, which is formed by a region not heated with a predetermined length. Further, the plurality of melting cylinders are provided with a lead screw having a spiral blade for transporting the plastic, and the lead screw of the melting cylinder positioned at the head is adjusted to the lead screw pitch of the other melting cylinder. It is recommended that the pitch be larger than the pitch of the blades.
更にまた、 本発明の油化プラントは、 溶解部及び分解部を、 内筒と、 内筒の外周に形成された外筒と、 内筒と外筒との間に形成され熱風が循 環される熱風空間と、 溶解部又は分解部の温度を検出する温度センサー とを備えて構成し、 更に、 温度センサーが所定の温度以上となる異常温 度を検出したときに熱風空間に炭酸ガスを送り込む炭酸ガス供給装置 を備えるとよい。  Still further, in the oil conversion plant of the present invention, the melting section and the decomposition section are formed by an inner cylinder, an outer cylinder formed on the outer periphery of the inner cylinder, and hot air circulated between the inner cylinder and the outer cylinder. A hot air space, and a temperature sensor for detecting the temperature of the melting part or the decomposition part. Further, when the temperature sensor detects an abnormal temperature exceeding a predetermined temperature, the carbon dioxide gas is sent into the hot air space. A carbon dioxide supply device may be provided.
更にまた、 本発明の油化プラントは、 溶解部及び分解部を、 内筒と、 内筒の外周に形成された外筒と、 内筒と外筒との間に形成され熱風が循 環される熱風空間とを備えて構成し、 更に、 熱風空間に供給するための 熱風を燃焼により発生させる熱風発生装置と、 溶解炉に供給するプラス チックを乾燥させる乾燥装置とを備え、 この乾燥装置内の空気を熱風発 生装置に供給して燃焼により脱臭するとよい。 また、 乾燥装置内の空気 をオフガス処理装置に供給して高温のセラミ ッタスで接触分解させて 脱臭してもよい。 Still further, the oil conversion plant of the present invention comprises: It comprises an outer cylinder formed on the outer circumference of the inner cylinder, and a hot air space formed between the inner cylinder and the outer cylinder and circulating hot air, and further burns hot air to supply the hot air space. It is preferable to provide a hot air generator for generating the hot air and a drying device for drying the plastic supplied to the melting furnace, and supply the air in the drying device to the hot air generator to deodorize by combustion. Alternatively, the air in the drying device may be supplied to the off-gas treatment device and decomposed by catalytic decomposition with a high-temperature ceramics.
更にまた、 本発明の油化プラントは、 溶解筒の一部には伸縮自在に形 成された伸縮筒を用い、 この伸縮筒を、 内筒と、 内筒の外周に配置され 一方端が内筒に固定され他方端が内筒に対してスライ ド可能と された ベローズと、 ベローズの他方端に固定され内筒をスライ ド可能に内部に 納めた外筒とで形成するとよい。  Furthermore, the oil conversion plant of the present invention uses a telescopic cylinder formed to be freely expandable and contractable for a part of the melting cylinder, and this telescopic cylinder is arranged on the inner cylinder and on the outer periphery of the inner cylinder, and one end is formed inside. The bellows may be formed of a bellows fixed to the cylinder and having the other end slidable with respect to the inner cylinder, and an outer cylinder fixed to the other end of the bellows and containing the inner cylinder slidably therein.
更にまた、 本発明の油化プラントは、 溶解部を、 内筒と、 内筒の外周 に形成された外筒と、 内筒と外筒との間に形成され液体の熱媒体が循環 される熱媒空間とを備えて形成し、 この熱媒空間に液体の熱媒体を供給 するための熱媒供給装置を更に備えるとよい。  Still further, in the oil conversion plant of the present invention, the dissolving section includes an inner cylinder, an outer cylinder formed on the outer periphery of the inner cylinder, and a liquid heat medium circulated between the inner cylinder and the outer cylinder. It is preferable that the heat medium space further include a heat medium supply device for supplying a liquid heat medium to the heat medium space.
[図面の簡単な説明] [Brief description of drawings]
第 1図は、 本発明の基本原理を示す構成図である。  FIG. 1 is a configuration diagram showing the basic principle of the present invention.
第 2図は、 本発明の基本原理に基づく実施例を示す構成図である。 第 3図は、 本発明の一実施例を示す油化プラントの斜視図である。 第 4図は、 本発明の一実施例を示す油化プラントの正面図である。 ' 第 5図は、 本発明の一実施例を示す油化プラントの平面図である。 第 6図は、 第 5図の概略構成説明図である。  FIG. 2 is a configuration diagram showing an embodiment based on the basic principle of the present invention. FIG. 3 is a perspective view of an oil conversion plant showing one embodiment of the present invention. FIG. 4 is a front view of an oil conversion plant showing one embodiment of the present invention. FIG. 5 is a plan view of an oil conversion plant showing one embodiment of the present invention. FIG. 6 is an explanatory diagram of a schematic configuration of FIG.
第 7図は、 第 4図の概略構成説明図である。  FIG. 7 is an explanatory diagram of a schematic configuration of FIG.
第 8図は、 溶解筒の横断面図である。 第 9図は、 分解筒の横断面図である。 . FIG. 8 is a cross-sectional view of the melting cylinder. FIG. 9 is a cross-sectional view of the disassembly tube. .
第 1 0図は、 脱塩素処理部の構成図である。 ,  FIG. 10 is a block diagram of the dechlorination unit. ,
第 1 1図は、 オフガス処理部の構^図である。  FIG. 11 is a configuration diagram of an off-gas processing unit.
第 1 2図は、 他の実施例を示す概略構成説明図である。  FIG. 12 is a schematic structural explanatory view showing another embodiment.
第 1 3図は、 溶解部と分解部との接合部の構成図である。  FIG. 13 is a configuration diagram of a joining portion between a melting portion and a disassembling portion.
第 1 4図は、 処理するプラスチックに応じた回収率を示す図である。 第 1 5図は、 泡状プラスチックの引上げ状態説明図である。  FIG. 14 is a diagram showing the recovery rate according to the plastic to be treated. FIG. 15 is an explanatory view of a state in which the foamed plastic is pulled up.
第 1 6図は、 ホッパーの横断面図である。  FIG. 16 is a cross-sectional view of the hopper.
第 1 7図は、 非加熱部の斜視図である。  FIG. 17 is a perspective view of a non-heating section.
第 1 8図は、 スラッジタンクの構成図である。  FIG. 18 is a configuration diagram of a sludge tank.
第 1 9図は、 伸縮筒の構成図である。  FIG. 19 is a configuration diagram of the telescopic cylinder.
第 2 0図は、 事故防止システム及ぴ脱臭システムの概略構成図である ( 第 2 1図は、 他の実施例を示す概略檎成図である。 [発明を実施するための最良の形態] FIG. 20 is a schematic configuration diagram of an accident prevention system and a deodorizing system. ( FIG. 21 is a schematic diagram showing another embodiment. [Best Mode for Carrying Out the Invention]
以下、 図面を参照して本発明の実施態様について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1図は、 本発明に係るプラスチックの油化方法の基本原理を説明す るための概念図である。 原料であるプラスチックは 2 0 0 ° ( 〜 3 5 0 °C の温度で溶解され、 貯留部 1に貯留される。 そして、 溶解されたプラス チック (溶解プラスチック) は分解筒 1 3により斜め上方に引上げ,られ る。  FIG. 1 is a conceptual diagram for explaining the basic principle of the method for liquefying plastic according to the present invention. The raw material plastic is melted at a temperature of 200 ° C. (up to 350 ° C.) and stored in the storage unit 1. Then, the melted plastic (dissolved plastic) is slanted upward by the decomposition cylinder 13 Raised.
ここで、.分解筒 1 3は内筒 2と、 内筒 2の周囲に熱風空間 4を形成す る外筒 6と、 リードスク リ ュー 7 とを備えて構成される。 そして、 リー ドスク リ ュー 7は回転軸 1 4と螺旋羽根 8とで構成され、 モータ 1 2に よって 4〜 5回転 Z分の速度で回転される。 また、 熱風空間 4には配管 1 0から熱風が供給され、 内筒 2内の温度はプラスチックをガス化して 解重合するため 3 5 0〜 6 2 0 に維持される。 Here, the disassembly tube 13 includes an inner tube 2, an outer tube 6 forming a hot air space 4 around the inner tube 2, and a lead screw 7. The lead screw 7 includes a rotating shaft 14 and a spiral blade 8, and is rotated at a speed of 4 to 5 rotations Z by the motor 12. Hot air is supplied to the hot air space 4 from the pipe 10, and the temperature in the inner cylinder 2 is changed to gasification of plastic. It is maintained at 350-620 for depolymerization.
リードスク リ ュー 7によって内筒 2内を搬送される溶解プラスチッ クは、 分解筒 1 3の下方で 1次分解 (溶解状態からガス化した最初の重 いガス状態) され一次分解ガスとなる。 更に、 一次分解ガスは、 リード スク リ ュー 7によって分解筒 1 3の上方に低速度で送られ配管 1 5か ら供給される熱風によって 3 5 O :〜 6 2 0 °Cに維持された内筒 2内 で 2次分解 (プラスチックが解重合され冷却すれば油化される状態) さ れて軽い 2次分解ガスとなる。  The dissolved plastic conveyed in the inner cylinder 2 by the lead screw 7 is firstly decomposed (the first heavy gas state gasified from the dissolved state) below the decomposing cylinder 13 to become the first decomposed gas. Further, the primary decomposition gas is sent at a low speed above the decomposition cylinder 13 by the lead screw 7 and is maintained at 35 O: ~ 620 ° C by hot air supplied from the pipe 15. It is secondarily decomposed in the cylinder 2 (the state in which the plastic is depolymerized and turned into oil if cooled) to become a lightly decomposed gas.
なお、 原料であるプラスチックに含まれるすべての油成分の 2次分解 を分解筒の上部で行えば分解筒は 1本で足りるが、 2本の分解筒を用い て、 貯留部 1に接続されるのを第 1段分解筒とし、 この第 1段分解筒に 第 2段分解筒を接続することも可能である。  If the secondary decomposition of all the oil components contained in the raw material plastic is performed at the top of the cracking cylinder, only one cracking cylinder is sufficient, but it is connected to the storage unit 1 using two cracking cylinders. It is also possible to connect the second stage disassembly tube to this first stage disassembly tube.
また、 貯留部 1の外側には熱風空間 3を形成するため外箱 5が形成さ れ、 熱風空間 3には熱風が送られる。 貯留部 1に供給されるプラスチッ クは、 2 0 0〜 3 5 0 °Cに加熱され溶解プラスチック in p となると共に. 表面部に泡状のプラスチック (泡状プラスチック) f を形成する。 この 泡状プラスチック f は、 溶解プラスチック m p内に軸先端 1 4 aが浸漬 されたリードスク リ ュー 7によって斜めに引上げられながら加熱され るが、 このとき熱との接触面積が大きくなるため確実に分解 (解重合) されて 2次分解ガスとなる。 2次分解ガスは配管 9から採集され、 冷却 により油化されて貯油タンクに回収される。  An outer box 5 is formed outside the storage section 1 to form a hot air space 3, and hot air is sent to the hot air space 3. The plastic supplied to the storage unit 1 is heated to 200 to 350 ° C and becomes molten plastic in p. A foamed plastic (foamed plastic) f is formed on the surface. The foamed plastic f is heated while being pulled up obliquely by the lead screw 7 in which the shaft end 14a is immersed in the molten plastic mp, but at this time the contact area with heat increases, so it is surely decomposed. (Depolymerization) to become secondary decomposition gas. The secondary cracked gas is collected from the pipe 9 and liquefied by cooling and collected in the oil storage tank.
なお、 泡状プラスチック f を引上げる速度は、 3 0〜 6 0 c m Z分で あることがよく、 これ未満だと搬送効率が悪くなり、 これを超えると十 分な分解ができなくなる。 例えば、 泡状プラスチック f は、 第 1 5図に 示すようにリードスクリュー 7によって螺旋状に引上げられるが、 この ときの螺旋状に移動する速度は 3 0〜 6 ◦ c m /分が好ましい。 この速 度は、 例えばリードスクリュー 7のピッチ pによって調節される。 この ように泡状プラスチック f は内筒 2の内を前述の速度で搬送され、 ゆつ く り と加熱されることにより、 1次分解温度域おょぴ 2次分解温度域で 十分に分解 (解重合) される。泡状プラスチック ίが 6 0 0 °C近傍で完 全に 2次分解される迄に 1 4〜 1 5分程度加熱することがよい。 The speed at which the foamed plastic f is pulled up is preferably 30 to 60 cmZ. If it is less than this, the transport efficiency will be poor. If it exceeds this, sufficient decomposition will not be possible. For example, the foamed plastic f is spirally pulled up by the lead screw 7 as shown in FIG. 15, and the speed of the spiral movement at this time is preferably 30 to 6 ° cm / min. This speed The degree is adjusted, for example, by the pitch p of the lead screw 7. In this way, the foamed plastic f is conveyed inside the inner cylinder 2 at the aforementioned speed and slowly heated, so that it is sufficiently decomposed in the first decomposition temperature range and the second decomposition temperature range ( Depolymerization). It is preferable to heat the foamed plastic for about 14 to 15 minutes at around 600 ° C until it is completely decomposed.
原料であるプラスチックの種類によつて処理温度がそれぞれ異なる 力 貯留部 1の温度は溶解プラスチック m pが泡状となる温度 (2 0 0 〜 3 5 0 °C ) にすることが好ましく、 また良好な分解のためには温度傾 斜を緩やかにして泡状の状態を長く維持して熱との接触面積を大きく 取ることが重要である。 このためには、 分解筒 1 3は水平に対して傾斜 して設けるとよい。 また、 傾斜した分解筒 1 3内は、 熱風を上部に吹き 込んで上部から下部に向けて循環させることにより、 下部から上部に次 第に温度が上昇するようになつている。 この方式はいわゆる逆熱勾配方 式と言われる。  The processing temperature varies depending on the type of plastic as the raw material. The temperature of the force storage unit 1 is preferably set to a temperature at which the molten plastic mp becomes foamy (200 to 350 ° C), For decomposition, it is important to reduce the temperature gradient, maintain the foamy state for a long time, and increase the contact area with heat. For this purpose, the disassembly tube 13 is preferably provided to be inclined with respect to the horizontal. In addition, in the inclined disassembly tube 13, hot air is blown into the upper part and circulated from the upper part to the lower part, so that the temperature rises sequentially from the lower part to the upper part. This method is called the reverse thermal gradient method.
泡状プラスチック f を良好に長時間保持するためには、 第 2図に示す ように、分解筒 2 7の傾斜角度 Θ を 2 5 ° 〜 3 0 ° に設定することが好 ましい。 分解筒 2 7の傾斜角度 0を 2 5 ° 未満にすると泡状プラスチッ ク f が横に速く流れて短時間で消えてしまレ、、また、傾斜角度 0を 3 0 ° を超えるよ うに設定すると重力との関係で溶解プラスチック m pの表 面から泡状プラスチック ί を上方に長い距離引上げることが困難とな り、 この場合も泡状プラスチック f は短時間で消えてしまう。  In order to hold the foamed plastic f well for a long time, it is preferable to set the inclination angle の of the disassembling cylinder 27 to 25 ° to 30 ° as shown in FIG. If the inclination angle 0 of the disassembly tube 27 is set to less than 25 °, the foamy plastic f flows sideways quickly and disappears in a short time, and if the inclination angle 0 is set to exceed 30 °, Due to gravity, it is difficult to pull the foam plastic プ ラ ス チ ッ ク upward from the surface of the melted plastic mp for a long distance. In this case also, the foam plastic f disappears in a short time.
第 2図においては、 溶解プラスチック m pの貯留部 2 9は、 供給筒 2 8と分解筒 2 7とが V字状に接続された接続部に形成される。 供給筒 2 8は内筒 2 0と外筒 2 1 とからなり、 その間に配管 2 2を介して熱風が 供給され、 内筒 2 0内は 2 0 0〜 3 5 0でに維持される。  In FIG. 2, the storage part 29 of the molten plastic mp is formed at a connection part where the supply cylinder 28 and the decomposition cylinder 27 are connected in a V-shape. The supply cylinder 28 is composed of an inner cylinder 20 and an outer cylinder 21, between which hot air is supplied via a pipe 22, and the inside of the inner cylinder 20 is maintained at 200 to 350.
分解筒 2 7は内筒 2 5 と、 外筒 1 7と、 リードスク リュー 2 4とから なり、 リードスク リ ュー 2 4は軸 2 3の下端が貯留部 2 9の下壁に回転 自在に支持されるように取り付けられる。 内筒 2 5 と外筒 1 7の間には 熱風発生炉から 4 5 0〜 6 2 0 °Cの加熱空気が配管 2 6 cを介して供 給される。 そして、 この加熱空気は、 分解筒 2 7内を降下して分解筒下 '部の配管 2 6 bから引出され、 上部の配管 2 6 aから流入するように循 環される。 このよ うに高温空気が分解筒 2 7内を上部から下部に向かつ て循環すると、 分解筒 2 7内の温度分布は下から上へ温度が高くなるよ うに形成される。 分解筒 2 7の下部は 1次分解を行うために 3 0 0〜 4 5 0 °Cに維持され、 分解筒 2 7の上部は 2次分解を行うために 6 0 0 °C 近くまで加熱される。 ― Disassembly cylinder 27 is composed of inner cylinder 25, outer cylinder 17 and lead screw 24. The lead screw 24 is mounted such that the lower end of the shaft 23 is rotatably supported by the lower wall of the storage portion 29. Between the inner cylinder 25 and the outer cylinder 17, heated air at 450 to 62 ° C. is supplied from a hot air generator through a pipe 26 c. Then, the heated air descends inside the disassembly tube 27, is drawn out from the pipe 26b below the disassembly tube, and is circulated so as to flow in from the upper tube 26a. When the high-temperature air circulates from the upper part to the lower part in the decomposition tube 27 in this way, the temperature distribution in the decomposition tube 27 is formed so that the temperature increases from the bottom to the top. The lower part of decomposition tube 27 is maintained at 300 to 450 ° C for primary decomposition, and the upper part of decomposition tube 27 is heated to nearly 600 ° C for secondary decomposition. You. ―
貯留部 2 9では泡状プラスチック f が癸生し、 この泡状プラスチック f は良好な状態で傾斜した分解筒 2 7内を上昇するように搬送され、 搬 送途中に加熱されて分解ガスとなる。 分解筒 2 7と供給部 2 8 とが V字 状に接続され、 溶解プラスチック m pで貯留部 2 9が完全に閉鎖される ため、 分解筒 2 7から供給筒 2 8に分解ガスが逆流することがなく安全 であり、 また、 貯留部 2 9を通って外部から空気が分解筒 2 9内に入る ことが防止され爆発の危険もなくなる。  In the storage section 29, the foamed plastic f is ripened, and the foamed plastic f is transported in a favorable state so as to rise in the inclined decomposition cylinder 27, and is heated during the transportation to become a decomposition gas. . Since the decomposition tube 27 and the supply unit 28 are connected in a V-shape and the storage unit 29 is completely closed by the molten plastic mp, the decomposition gas flows back from the decomposition tube 27 to the supply tube 28 In addition, air is prevented from entering the decomposition cylinder 29 from the outside through the storage part 29, and there is no danger of explosion.
次に、 このプラスチックの油化方法を適用した油化プラントについて 説明する。  Next, an oil plant that applies this plastic oil method will be described.
第 3図乃至第 7図において、 本発明の油化プラント 3 0は、 例えば原 料としての廃棄プラスチックを溶解する溶解部 3 1 と、 この溶解部 3 1 で溶解されたプラスチックを 1次分解および 2次分解する分解部 3 2 と、 塩素を含む P V Cを処理する時に脱塩素を行う脱塩素処理部 3 3 と、 プラスチックの溶解、 分解時に発生するオフガスを処理するためのオフ ガス処理部 3 4と、 溶解及ぴ分解時の熱源である熱風を発生させる第 1、 第 2熱風炉 3 5、 3 6 とを備えている。 溶解部 3 1は、 第 6図に示すように、 原料であるプラスチックを投入 するホッパー 4 1を非加熱部 4 1 0を介して接続する第 1溶解筒 3 1 a と、 第 1溶解筒 3 1 aの先端下方にその先端が接続され第 1溶解筒 3 1 aに直交する第 2溶解筒 3 1 b と、 第 2溶解筒 3 1 bの先端下方にそ の後端が接続され第 2溶解筒 3 1 bに直交する第 3溶解筒 3 1 c と、 第 3溶解筒 3 1の先端下方にその後端が接続され第 3溶解筒 3 1 cに直 交する第 4溶解筒 3 1 dと、 を備えて構成される。 このように第 1〜第 4溶解筒 3 1 a、 3 1 b… 3 1 dは全体として矩形に配置され、 順次分 解筒の先端から継の溶解筒の後端へ溶解されたプラスチックが落下し て送られるようになつている。 なお、 これら溶解筒 3 1 a〜 3 1 dは水 平に接続されてもよい。 In FIG. 3 to FIG. 7, an oil conversion plant 30 of the present invention includes, for example, a dissolving section 31 for dissolving waste plastic as a raw material, and a primary decomposition and dissolution of the plastic dissolved in the dissolving section 31. Decomposition section 3 2 for secondary decomposition, dechlorination section 3 3 for dechlorination when processing chlorine-containing PVC, and off-gas processing section 3 4 for processing off-gas generated during plastic dissolution and decomposition And first and second hot blast stoves 35, 36 for generating hot air as a heat source during melting and decomposition. As shown in FIG. 6, the melting section 31 includes a first melting cylinder 31 a that connects a hopper 41 into which the plastic material is supplied via a non-heating section 410, and a first melting cylinder 31. The second melting tube 3 1b, whose tip is connected below the tip of 1a and is orthogonal to the first melting tube 31a, and the second end of which is connected below the tip of the second melting tube 31b. The third melting cylinder 3 1c orthogonal to the melting cylinder 3 1b and the fourth melting cylinder 3 1d whose rear end is connected below the tip of the third melting cylinder 31 and is orthogonal to the third melting cylinder 3 1c , And is configured. In this way, the first to fourth melting cylinders 31a, 31b ... 31d are arranged in a rectangular shape as a whole, and the melted plastic falls sequentially from the leading end of the disassembling cylinder to the rear end of the joining melting cylinder. To be sent. In addition, these melting tubes 31a to 31d may be connected horizontally.
ホッパー 4 1は、 第 1 6図に示すように、 ロート状のケーシング 4 1 1 と、 ケーシング 4 1 1の上面を被う蓋 4 1 2と、 蓋 4 1 2の中心部に 配置されるモータ 4 1 3 と、 モータ 4 1 3に接続され蓋 4 1 2を貫通し てケーシング 4 1 1内に延びる回転軸 4 1 4 a と回転軸 4 1 4 aに取 り付けられる螺旋羽根 4 1 4 b とで構成されるリー ドスクリ ュー 4 1 4 と、 により構成される。 リードスク リ ュー 4 1 4'の螺旋羽根 4 1 4 b は全体と してケーシング 4 1 4の形状に沿うよ うにロー ト状をなして いる。 そして、 ケーシング 4 1 4の内壁と螺旋羽根 4 1 4 bの外周との 間には 2〜 5 c m程度の間隔 Wが設けられている。 リードスク リ ュー 4 1 4は、 モータ 4 1 3により所定速度で回転され、 軽いプラスチックが ホッパー 4 1内に詰まってしまうのを防ぐためのものである。 そして、 重いプラスチックは、 ケーシング 4 1 4の内壁と螺旋羽根 4 1 4 bの外 周との間隔 Wを通って落下し、 軽いプラスチック細片はリードスクリ ュ 一 4 1 4によって確実に非加熱部 4 1 0内に送り.込まれる  As shown in FIG. 16, the hopper 41 has a funnel-shaped casing 411, a cover 4 1 2 covering the upper surface of the casing 4 1 1, and a motor disposed at the center of the cover 4 1 2. 4 13 and a rotating shaft 4 14 a connected to the motor 4 13 and extending through the lid 4 12 into the casing 4 11 1 and a spiral blade 4 1 4 attached to the rotating shaft 4 14 a It is composed of the lead screw 4 14 composed of b and b. The spiral blades 4 14 b of the lead screw 4 14 ′ have a rotor shape as a whole that conforms to the shape of the casing 4 14. An interval W of about 2 to 5 cm is provided between the inner wall of the casing 4 14 and the outer periphery of the spiral blade 4 14 b. The lead screw 414 is rotated at a predetermined speed by the motor 413 to prevent light plastic from being clogged in the hopper 41. Then, the heavy plastic falls through the space W between the inner wall of the casing 4 14 and the outer periphery of the spiral blade 4 14 b, and the light plastic pieces are surely not heated by the lead screw 14 14. Sent in 4 1 0
非加熱部 4 1 0は円筒で形成され、 ホッパー 4 1の下部に接続される (第 1 7図) 。 非加熱部 4 1 0の端部にはモータ 4 2が設けられ、 この モータ 4 2には後述する溶解筒 3 1 a 内に配置される リードスク リ ュ 一 1 3 7 と共通のリー ドスク リ ュー 1 3 7が接続される。 リー ドスタ リ ユー 1 3 7はモータ 4 2により回転され、 ホッパー 4 1から送られたプ ラスチックの細片をゆっく り と前方に送り、 溶解筒 3 1 aに供給する。 なお、 非加熱部 4 1 0は、 後述する溶解筒 3 1 とは異なり、 温風による 加熱は行われない。 したがって、 ホッパー 4 1 の取付部と溶解筒 3 1が 離されるため、 ホッパー 4 1の取付部の近傍でプラスチックの溶解が開 始さることがなく、 溶解したプラスチックの粘性抵抗により リードスク リュー 1 3 7の回転が停止してしまうことを防止できる。 つま り、 プラ スチックの溶解部分をホ'ッパー 4 1 の取付部から離すことによ り、 溶解 していないプラスチック部分を長く して、 この溶解していないプラスチ ックで溶解プラスチックを押し進めるのである。 The non-heating part 4 10 is formed of a cylinder and connected to the lower part of the hopper 4 1 (Fig. 17). A motor 42 is provided at an end of the non-heated portion 410, and the motor 42 has a lead screw shared with a lead screw 13 7 disposed in a melting tube 31a to be described later. 1 3 7 is connected. The lead star 13 7 is rotated by the motor 42 and slowly sends the plastic pieces sent from the hopper 41 forward to the melting tube 31 a. The non-heating section 410 is not heated by hot air unlike the melting tube 31 described later. Therefore, since the mounting portion of the hopper 41 is separated from the melting cylinder 31, melting of the plastic does not start near the mounting portion of the hopper 41, and the lead screw 13 7 is formed by viscous resistance of the melted plastic. Can be prevented from stopping. In other words, by separating the dissolving portion of the plastic from the mounting portion of the hopper 41, the unmelted plastic portion is lengthened, and the unmelted plastic pushes the molten plastic. .
溶解筒 3 1は矩形の外箱 1 3 6 と、 外箱 1 3 6内に備えられた内筒 i 3 1 とで構成される (第 8図) 。 内筒 1 3 1内には、 回転軸 1 3 3 と、 回転軸 1 3 3の周囲に設けられた螺旋羽根 1 3 2 と、 を備えたリ一ドス クリ ュー 1 3 7が設けられる。 なお、 第 1溶解筒 3 1 a のリードスタ リ ユー 1 3 7は、 他の溶解筒 3 1 b、 3 1 c、 3 1 dのリードスク リ ュー 1 3 7より ピッチが大きく設定されている。 これは、 後述のように第 1 溶解筒 3 1 aの設定温度が他の溶解筒よ り も低いため、 プラスチックの 滞留密度を低く して抵抗を小さくするためである。 リードスク リ ュー 1 3 7は、 モータによって回転され、 例えば第 1溶解筒 3 1 aはモータ 4 2 (第 4図、 第 5図) によって回転され、 第 2溶解筒 3 1 bはモータ 5 5によって回転される。  The melting cylinder 31 is composed of a rectangular outer box 13 6 and an inner cylinder i 31 provided in the outer box 13 (FIG. 8). In the inner cylinder 131, a lead screw 1337 having a rotating shaft 133 and a spiral blade 132 provided around the rotating shaft 133 is provided. The pitch of the lead stalk 13 of the first melting cylinder 31a is set to be larger than the pitch of the lead screw 1337 of the other melting cylinders 31b, 31c and 31d. This is because the set temperature of the first melting cylinder 31a is lower than that of the other melting cylinders, as described later, so that the residence density of the plastic is reduced and the resistance is reduced. The lead screw 1337 is rotated by a motor. For example, the first melting cylinder 31a is rotated by a motor 42 (FIGS. 4 and 5), and the second melting cylinder 31b is rotated by a motor 55. Rotated.
また、 内筒 1 3 1は、 その外周に吸熱羽根 1 3 4が複数枚設けられる。 そして、 内筒 1 3 1 と外箱 1 3 6間には熱風空間 1 3 5が形成される。 第 1溶解筒 3 1 aは 1 9 0〜 2 0 0 °Cにコン ト口ールされ、 第 2溶解筒 3 1 b内は 2 1 0〜 2 3 0 °Cにコン ト口ールされ、 第 3溶解筒 3 1 cはFurther, the inner cylinder 13 1 is provided with a plurality of heat absorbing blades 14 on the outer periphery thereof. A hot air space 135 is formed between the inner cylinder 13 1 and the outer box 1 36. The first melting cylinder 31a is controlled at 190 to 200 ° C, and the inside of the second melting cylinder 31b is controlled at 210 to 230 ° C. The third melting cylinder 3 1c
2 3 0で〜 2 6 0 °Cにコン トロールされ、 第 4溶解筒 3 1 dは 3 0 0〜At 230, it is controlled to 260 ° C, and the fourth melting cylinder 31 d is 300
3 4 0 °Cにコン ト ロールされる。 このように、 4つの溶解筒 3 1 a、 3 1 b… 3 1 dを矩形に配設して、 各溶解筒の温度を次第に高く したのは a ) 塩化ビニール等の塩素を含むプラスチックの脱塩素を確実に行うた めに滞留時間を充分 (例えば 2 0分間) に確保するためと、 b ) 多段化 により温度分布を緩やかにして温度コントロールを容易にするためと、 c ) 第 1溶解筒の 3 1 aの温度を低く して、 ホッパー 4 1近傍でのブラ スチックの回転軸 1 3 3への溶着を防止するためと、 d) プラント全体 の配設長さを短くするためである。 Controlled at 34 ° C. As described above, the four melting cylinders 31a, 31b ... 31d were arranged in a rectangular shape, and the temperature of each melting cylinder was gradually increased. A) Removal of plastic containing chlorine such as vinyl chloride. To ensure a sufficient residence time (for example, 20 minutes) to reliably perform chlorine, and b) To ease the temperature control by gradualizing the temperature distribution by using multiple stages, and c) The first melting cylinder This is to prevent the welding of the plastic to the rotating shaft 133 near the hopper 41 by lowering the temperature of 31a, and d) to shorten the length of the entire plant.
また、 各溶解筒 3 1内には、 第 1熱風炉 3 5から配管 7 0を介して熱 風が供給され、 この熱風はブラスチックが送られる下流側から上流側に 向けて送られる。 従って、 各溶解筒 3 1内は逆熱勾配になっている。 各 溶解筒 3 1内の熱風の循環は、 ブロア 5 6、 5 7、 5 8 (第 4図) 、 6 0 (第 7図) によって行われる。 なお、 第 1、 第 2熱風発生炉 3 5、 3 6には煙筒 5 9が接続される。 煙筒 5 9は、 分管 5 9 a、 5 9 b と排出 口 5 9 cを有して、 逆 U字形に形成される (第 4図) 。  Hot air is supplied into each melting tube 31 from the first hot air furnace 35 through a pipe 70, and the hot air is sent from the downstream side where the plastic is sent to the upstream side. Therefore, the inside of each melting cylinder 31 has a reverse heat gradient. The circulation of hot air in each melting cylinder 31 is performed by blowers 56, 57, 58 (Fig. 4) and 60 (Fig. 7). In addition, a smoke tube 59 is connected to the first and second hot air generators 35 and 36. The chimney 59 is formed in an inverted U-shape with branch pipes 59a and 59b and an outlet 59c (Fig. 4).
分解部 3 2は、 3 5 0〜 4 2 0 °Cにコン トロールされる第 1段分解筒 4 7と、 第 1段分解筒 4 7に隣接して設けられ 4 5 0〜 5 8 0 °Cにコン トロールされる第 2段分解筒 4 8 とで構成される (第 7図) 。 そして、 分解筒 4 7、 4 8は水平面に対して 2 5〜 3 0° で傾斜して配設される。 第 4溶解筒 3 1 dの先端部は第 1段分解筒 4 7内に連結され、 この連結 部が溶解プラスチックの貯留部を形成している。  The disassembly section 32 is provided adjacent to the first-stage disassembly tube 47 controlled at 350 to 420 ° C and 450 to 580 ° C. And a second-stage disassembly tube 48 controlled by C (Fig. 7). The disassembly cylinders 47 and 48 are disposed at an angle of 25 to 30 ° with respect to the horizontal plane. The tip of the fourth melting cylinder 31 d is connected to the inside of the first-stage disassembling cylinder 47, and this connecting part forms a storage section for the molten plastic.
第 1段分解筒 4 7は、 仕切り板 2 5 6によって仕切られ左右 2列に形 成された 2つの単位分解筒 4 7 a、 4 7 bからなる (第 9図) 。 そして 単位分解筒 4 7 a、 4 7 bは、 内筒 2 5 5 と、 内筒 2 5 5の外周に設け た複数の吸熱フィン 2 5 3と、 リードスク リ ュー 1 5 0 と、 熱風が送り 込まれる熱空間 2 5 4とを備える。 それぞれのリードスクリュー 1 5 0 は、 回転軸 2 5 1 と螺旋羽根 2 5 2とからなり、 モータ 5 1、 5 2 (第 5図) によって回転される。 The first stage disassembly tube 47 is composed of two unit disassembly tubes 47a and 47b which are separated by a partition plate 256 and are formed in two rows on the left and right (Fig. 9). And The unit disassembly cylinders 47 a and 47 b are supplied with the inner cylinder 255, a plurality of heat absorbing fins 25 3 provided on the outer periphery of the inner cylinder 255, the lead screw 150, and hot air. Heat space 25 4. Each lead screw 150 includes a rotating shaft 25 1 and a spiral blade 25 2 and is rotated by motors 51 and 52 (FIG. 5).
第 2段分解筒 4 8は、 第 1段分解筒 4 7 とほぼ同一構造をなし、 単位 分解筒 4 8 a、 4 8 b (第 6図) には、 それぞれ内筒 1 4 8が設けられ る。 内筒 1 4 8内には、 リードスクリュー 1 4 9が設けられ、 リードス クリュー 1 4 9は、 モータ 5 3、 5 4 (第 5図、 第 7図) によってゆつ く り (4〜 5回転/分) と回転される。  The second-stage disassembly tube 48 has almost the same structure as the first-stage disassembly tube 47, and the unit disassembly tubes 48a and 48b (Fig. 6) are provided with an inner tube 148, respectively. You. A lead screw 149 is provided in the inner cylinder 148, and the lead screw 149 is slowly (4 to 5 turns) driven by the motors 53, 54 (Figs. 5 and 7). / Min) and rotated.
第 1段分解筒 4 7の内筒 2 5 5 の上端には、 通過する分解ガスを 5 8 0〜 6 2 0 °Cに加熱するためのスーパーヒー ト 1 5 1が設けられる (第 7図) 。 第 1段分解筒 4 7内で 2次分解した分解ガスは、 スーパーヒー ト 1 5 1及び配管 4 9を通って引出され、 アル力リ洗浄用のスクラバー 6 0を介してコンデンサ 3 7 (第 5図) に送られる。 そして、 分解ガス はコンデンサ 3 7で冷却されて油化され、 この油は配管 4 6を通って貯 油タンク 4 2に貯えられる。 貯油タンク 4 2で蓄えられる油の一部は、 サ^ビスタンク S T 1を介して熱風発生炉 3 5、 3 6に供給される。 なお、 配管 4 9の途中には配管 4 9内を流れる分解ガスの流量を調整 するためのバルブ 4 9 aが取り付けられる。 コンデンサ 3 7へは第 1分 解筒 4 7で完全に 2次分解された軽い分解ガスのみを送る必要がある が、 配管 4 9から導出される分解ガス中には 2次分解が完全に行われて いない若干重めの不完全分解ガスが含まれる。 そして、 配管 4 9からの 分解ガスの導出量が少ないときには不完全分解ガスは配管 4 9 の立ち 上がり部を超えることができず第 1段分解筒 4 7へ戻され落下筒 1 2 0を介して第 2段分解筒 4 8へ送られるが、 配管 4 9からの分解ガスの 導出量が多くなると分解ガスの導出の勢いが増し、 不完全分解ガスも配 管 4 9の立ち上がり部を超えてコンデンサ 3 7へ送られてしまう。 従つ て、 バルブ 4 9 aにより配管 4 9から導出される分解ガスの導出量を調 整して、 不完全分解ガスがコンデンサ 3 7へ送られることを防止する。 第 1段分解筒 4 7は前述したよ うに 3 5 0〜 4 2 0 °Cにコントロー ルされるので、 第 1段分解筒 4 7では、 分解温度の低いガソリン相当の 油成分、 灯油および軽油相当成分の一部が 1次分解を経て 2次分解され る。 ここで、 不十分な分解状態のガスはスーパーヒート 1 5 1で完全に 2次分解される。 そして、 このように 2次分解された分解ガスはコンデ ンサ 3 7で冷却され油化される。 コンデンサ 3 7で +分油化されないガ スは、 ポンプ Pを有する配管 4 6を介して吸引され、 貯油タンク 4 2に オフガスとして回収される。 At the upper end of the inner cylinder 255 of the first stage decomposition cylinder 47, a superheater 151 is provided to heat the passing decomposition gas to 580-620 ° C (Fig. 7). ). The cracked gas that has been secondarily decomposed in the first-stage decomposition cylinder 47 is drawn out through the superheater 15 1 and the piping 49, and is passed through the scrubber 60 for cleaning the condenser 3 7 (the 5). Then, the decomposed gas is cooled by the condenser 37 to be turned into oil, and this oil is stored in the oil storage tank 42 through the pipe 46. Part of the oil stored in the oil storage tank 42 is supplied to the hot air generators 35, 36 via the service tank ST1. A valve 49a for adjusting the flow rate of the decomposition gas flowing in the pipe 49 is provided in the middle of the pipe 49. It is necessary to send only the lightly decomposed gas completely secondarily decomposed by the first decomposing cylinder 47 to the condenser 37, but the decomposed gas derived from the pipe 49 is completely decomposed. Includes a slightly heavier incompletely cracked gas that has not been removed. When the amount of the decomposed gas discharged from the pipe 49 is small, the incompletely decomposed gas cannot return to the rising portion of the pipe 49 and returns to the first-stage decomposed cylinder 47 via the falling cylinder 120. Is sent to the second-stage decomposition column 48, As the amount of discharge is increased, the flow of the decomposed gas is increased, and the incompletely decomposed gas is sent to the condenser 37 beyond the rising part of the pipe 49. Therefore, the amount of the decomposed gas derived from the pipe 49 is adjusted by the valve 49 a to prevent the incompletely decomposed gas from being sent to the condenser 37. As described above, the first-stage cracking cylinder 47 is controlled at 350 to 420 ° C, so the first-stage cracking cylinder 47 has an oil component equivalent to gasoline with low cracking temperature, kerosene, and light oil. Some of the corresponding components undergo secondary decomposition after primary decomposition. Here, the gas in an insufficiently decomposed state is completely decomposed by the superheat 15 1. Then, the decomposition gas decomposed in this way is cooled by the capacitor 37 and turned into oil. Gas that is not separated into oil by the condenser 37 is sucked through a pipe 46 having a pump P and collected as off-gas in an oil storage tank 42.
第 1段分解筒 4 7内で完全に 2次分解されない泡状のプラスチック 成分は、 落下筒 1 2 0を介して第 2段分解筒 4 8の下端部に供給され、 第 2段分解筒 4 8内のリー ドスク リ ュー 1 4 9によって斜め上方に送 られる。 第 2段分解筒 4 8内は 4 5 0〜 5 8 0。Cの温度にコント口ール されているので、 第 2段分解筒 4 8では灯油、 軽油相当成分の残留部分 および重油成分も完全に 2次分解される。 プラスチックと一緒に投入さ れた金属、 泥等の残渣は、 スラッジ管 4 0 aを介してスラッジタンク 4 0に回収される。  The foamy plastic component that is not completely decomposed in the second-stage disassembly tube 4 7 is supplied to the lower end of the second-stage disassembly tube 4 8 via the dropping tube 1 20, and the second-stage disassembly tube 4 It is sent diagonally upward by lead screw 14 9 in 8. The inside of the second stage disassembly tube 48 is 450-580. Since it is controlled at the temperature of C, the second-stage decomposition column 48 completely decomposes the residual portion of kerosene, light oil equivalent components, and heavy oil components completely. Residues such as metal, mud, etc., which were put in with the plastic, are collected in a sludge tank 40 via a sludge pipe 40a.
スラッジタンク 4 0は、 第 1 8図に示すように、 水 4 0 bが貯められ ており、 水 4 0 b中には金網 4 0 cが設けられ、 残渣はこの金網 4 0 c 上に回収される。 スラッジタンク 4 0から金網 4 0 cを取り出すことに より、 残渣をスラッジタンク 4 0から取り出すことができる。 スラッジ タンク 4 0の上面は、 一部に開口 4 0 eを備えた蓋 4 0 dで被われる。 スラッジタンク 4 0の水 4 0 bより上部には、 炭酸ガス等の空気より重 い不活性ガス 4 0 f が充填され、 スラッジ管 4 0 a の下端は不活性ガス 4 0 f 内に位置する。 スラッジタンク 4 0にはガスボンベ 4 0 gが接続 され、 ガスボンベ 4 0 gから不活性ガス 4 0 f がスラッジタンク 4 0内 に供給される。 ガスボンベ 4 0 gから供給される不活性ガス 4 0 f の一 部は、 開口 4 0 eから溢れている。 このように、 不活性ガス 4 0 f 中に スラ ッジ管 4 0 aの下端を位置させることにより、 スラッジ管 4 0 aか らの第 2段分解管 4 8内への空気の流入を有効に防止でき、 爆発の危険 性がなくなる。 また、 スラッジ管 4 0 aの下端を水 4 0 b中に位置させ た場合には、 軽い残渣が水の浮力で浮き上がり、 スラッジ管 4 0 aの下 端部分が詰ま.つてしまうが、 不活性ガス 4 0 f 中にスラッジ管 4 0 aの 下端を位置させることにより これを防止して、 残渣がスムーズに水 4 0 bに落下するようにした。 As shown in Fig. 18, sludge tank 40 stores water 40b, and wire mesh 40c is provided in water 40b, and the residue is collected on wire mesh 40c. Is done. By removing the wire mesh 40c from the sludge tank 40, the residue can be removed from the sludge tank 40. The upper surface of the sludge tank 40 is partially covered with a lid 40d having an opening 40e. Above the water 40 b in the sludge tank 40, the air is heavier than air such as carbon dioxide. Inert gas 40f is filled, and the lower end of the sludge pipe 40a is located in the inert gas 40f. A gas cylinder 40 g is connected to the sludge tank 40, and an inert gas 40 f is supplied from the gas cylinder 40 g into the sludge tank 40. Part of the inert gas 40f supplied from the gas cylinder 40g overflows from the opening 40e. Thus, by locating the lower end of the sludge pipe 40a in the inert gas 40f, the inflow of air from the sludge pipe 40a into the second-stage decomposition pipe 48 is effective. And the risk of explosion is eliminated. Also, if the lower end of the sludge pipe 40a is positioned in the water 40b, the light residue will be lifted by the buoyancy of the water, and the lower end of the sludge pipe 40a will be clogged. This was prevented by positioning the lower end of the sludge pipe 40a in the gas 40f, and the residue was allowed to fall smoothly into the water 40b.
第 1段、 第 2段分解筒 4 7、 4 8の上部には、 第 2熱風発生炉 3 6か ら配管 7 1、 7 1 a , 7 1 b (第 5図) を介して熱風が供給され、 この 熱風は分解筒 4 7、 4 8の下部から抜き出し上部に戻すようにしてプロ ァ 1 7 0、 1 7 1で循環される。 このようにして、 分解筒 4 7、 4 8は 上部から下部に向かって低温となる逆熱勾配に形成される。 また、 溶解 部 3 1には、 第 1熱風発生炉 3 5からの熱風が供給され、 この熱風は例 えば第 4溶解筒 3 1 dではブロア 6 0によつて循環される (第 7図) 。 第 2段分解筒 4 8の内筒 1 4 8の上端には、 アルカリ洗浄用のスクラ バー 6 1を介してコンデンサ 3 8に接続される配管 5 0が配置される (第 5図) 。 第 2段分解筒 4 8·で分解された分解ガスは、 配管 5 0を通 つてスクラバー 6 1に送られ、 更にコンデンサ 3 8に送られる。 コンデ ンサ 3 8に送られた分解ガスは冷却により油化される。 油化された油は 配管 8 6により貯油タンク 4 3に送られ、 更に、 この油の一部はサービ スタンク S T 2を介して前記第 1、 第 2熱風発生炉 3 5、 3 6に送られ る。 なお、 上記コンデンサ 3 7、 3 8はクーリングタワー C Tによって 冷却される (第 3図) 。 Hot air is supplied to the upper part of the first-stage and second-stage disassembly tubes 47 and 48 from the second hot-air generating furnace 36 via pipes 71, 71a and 71b (Fig. 5). The hot air is extracted from the lower part of the decomposition tubes 47 and 48 and is returned to the upper part, and is circulated through the probes 170 and 171. In this way, the decomposition tubes 47 and 48 are formed with an inverse heat gradient in which the temperature decreases from the upper part to the lower part. Further, hot air from the first hot air generating furnace 35 is supplied to the melting section 31, and the hot air is circulated by the blower 60 in, for example, the fourth melting cylinder 31 d (FIG. 7). . At the upper end of the inner cylinder 144 of the second stage disassembly cylinder 48, a pipe 50 connected to the condenser 38 via a scrubber 61 for alkaline cleaning is arranged (FIG. 5). The decomposed gas decomposed in the second-stage decomposing cylinder 48 is sent to a scrubber 61 through a pipe 50, and further sent to a condenser 38. The cracked gas sent to the capacitor 38 is turned into oil by cooling. The liquefied oil is sent to an oil storage tank 43 via a pipe 86, and a part of this oil is sent to the first and second hot air generators 35, 36 via a service tank ST2. You. The condensers 37 and 38 are cooled by the cooling tower CT (Fig. 3).
第 1段、 第 2段分解筒 4 7、 4 8には、 集合排気管 1 0 0に接続され る配管 1 0 1、 1 0 2が接続される。 そして、 第 1段、 第 2段分解筒 4 7、 4 8の排気は、 配管 1 0 1、 1 0 2を介して集合排気管 1 0 0から 外部に排出される。 また、 前記第 2段分解筒 4 8に接続されるコンデン サ 3 8で油化されなかったガスは、 ポンプ Pにより配管 8 6を通って貯 油タンク 4 3で回収される。  The first and second stage disassembly cylinders 47 and 48 are connected to pipes 101 and 102 connected to the common exhaust pipe 100, respectively. Then, the exhaust gas of the first and second stage disassembly tubes 47 and 48 is discharged to the outside from the collective exhaust pipe 100 via the pipes 101 and 102. The gas not converted into oil by the capacitor 38 connected to the second-stage disassembly tube 48 is recovered by the pump P through the pipe 86 to the oil storage tank 43.
以上で説明した溶解筒 3 1及び分解筒 4 7、 4 8の一部には伸縮筒 7 0 0が用いられる。 伸縮筒 7 0 0は、 ベローズ部 7 0 1 とスライ ド部 7 0 2で形成される (第 1 9図) 。 ベローズ部 7 0 1は、 ベローズ 7 0 3 と、 その内部に配置されるべローズ内筒 7 0 4とで構成され、 ベローズ 内筒 7 0 4の全長はべローズ 7 0 3の全長より長く形成される。 ベロー ズ 7 0 3とべローズ内筒 7 0 4は一端側を揃えて設置され、 ベローズ 7 0 3の他端側からはべローズ内筒 7 0 4が突出する。 そして、 突出した ベローズ内筒 7 0 4の外周に支持筒 7 0 5が配置され、 このべローズ内 筒 7 0 4と支持筒 7 0 5 とでスライ ド部 7 0 2を構成する。 支持筒 7 0 5の内径はべローズ内筒 7 0 4の外形若干大きく形成され、 支持筒 7 0 5の内周面とベローズ内筒 7 0 4の外周面は搢動面を形成する。 なお、 第 1 9図では、 支持筒 7 0 5のべローズ内筒 7 0 4が位置しない部分に は、 ベローズ内筒 7 0 4と同径に形成された内筒 7 0 6が配置され、 更 に、 ベローズ内筒 7 0 4及び内筒 7 0 6の突合せ側端部には対応する段 部 7 0 4 a、 7 0 6 aが形成される。 この場合、 両段部 7 0 4 a、 7 0 6 aの対向する面は摺動面を形成する。  A telescopic cylinder 700 is used for a part of the melting cylinder 31 and the disassembling cylinders 47 and 48 described above. The telescopic cylinder 700 is formed by a bellows part 700 and a slide part 720 (FIG. 19). The bellows portion 701 is composed of a bellows 703 and a bellows inner cylinder 704 disposed therein, and the entire length of the bellows inner cylinder 704 is longer than the entire length of the bellows 703. Is done. The bellows 703 and the bellows inner cylinder 704 are installed such that one end thereof is aligned, and the bellows inner cylinder 704 projects from the other end of the bellows 703. A support cylinder 705 is arranged on the outer periphery of the protruding bellows inner cylinder 704, and the bellows inner cylinder 704 and the support cylinder 705 form a slide portion 702. The inner diameter of the support cylinder 705 is formed slightly larger than the outer diameter of the bellows inner cylinder 704, and the inner peripheral surface of the support cylinder 705 and the outer peripheral surface of the bellows inner cylinder 704 form a sliding surface. In FIG. 19, an inner cylinder 706 formed to have the same diameter as the bellows inner cylinder 704 is disposed at a position where the bellows inner cylinder 704 of the support cylinder 705 is not located. Further, corresponding step portions 704a and 706a are formed at the butting side ends of the bellows inner cylinder 704 and the inner cylinder 706, respectively. In this case, the opposing surfaces of both step portions 704a and 706a form a sliding surface.
このように、 溶解筒 3 1及ぴ分解筒 4 7、 4 8の一部に配置された伸 ,縮筒 7 0 0は、 溶解筒 3 1及ぴ分解筒 4 7、 4 8が加熱されて熱膨張す る場合に、 その膨張量を吸収する役割を果たす。 即ち、 例えば第 1溶解 筒 3 1 aが常温から 2 0 0 °C前後に加熱され熱膨張により全長が伸ぴ た場合、 第 1溶解筒 3 1 a の一部に配置された伸縮筒 7 0 0は、 ベロー ズ 7 0 3を縮めてベローズ内筒 7 0 4をスライ ド部 7 0 2側に移動さ せるようにして収縮して第 1溶解筒 3 1 a の膨張量を吸収する。 As described above, the expansion and contraction cylinders 700 arranged in a part of the melting cylinder 31 and the disassembling cylinders 47 and 48 are heated by heating the melting cylinder 31 and the disassembling cylinders 47 and 48. Thermal expansion In the case where the swelling occurs, it plays a role in absorbing the amount of expansion. That is, for example, when the first melting cylinder 31a is heated from room temperature to about 200 ° C. and its overall length is extended by thermal expansion, the telescopic cylinder 70 arranged in a part of the first melting cylinder 31a A value of 0 contracts the bellows 703 so as to move the bellows inner cylinder 704 to the slide portion 702 side, thereby absorbing the expansion amount of the first melting cylinder 31a.
更に、 第 1 9図に示す伸縮筒 7 0 0は、 ベローズ内筒 7 0 4のスライ ド位置をべローズ部 7 0 1 の外部に設け、 ベローズ内筒 7 0 4より大径 の支持筒 7 0 5を用いてスライ ド部 7 0 2を形成したので、 ベ ϋーズ内 筒 7 0 4の内径を小さくすることなくべローズ内筒 7 0 4を厚肉にす ることが可能となる。 これにより、 伸縮筒 7 0 0の変形を防止でき、 ひ いては伸縮筒 7 0 0が変形して生じるベローズ 7 0 3 の破損をなく し、 ベローズ 7 0 3の破損部からの分解ガス等の流出による火災の発生を 防止することが可能となる。  Further, the telescopic cylinder 700 shown in FIG. 19 is provided with the slide position of the bellows inner cylinder 704 outside the bellows part 701, and a support cylinder 7 having a larger diameter than the bellows inner cylinder 704. Since the sliding portion 702 is formed by using 005, the bellows inner cylinder 704 can be made thicker without reducing the inner diameter of the bellows inner cylinder 704. . As a result, deformation of the telescopic cylinder 700 can be prevented, and thus, the bellows 703 caused by deformation of the telescopic cylinder 700 can be prevented from being damaged. It is possible to prevent fires caused by spills.
次に、 脱塩素処理装置 3 3の詳細について説明する。  Next, details of the dechlorination apparatus 33 will be described.
溶解部 3 1 の溶解筒 3 1 a、 3 1 b、 3 1 c の上面から伸びる配管 7 5、 7 6、 7 7は配管 7 8に接続され (第 5図) 、 配管 7 8は第 1セパ レータ 3 7に接続される (第 1 0図) 。 第 1セパレータ 3 7は、 溶解筒 3 1 a、 3 1 b、 3 1 cで発生する塩化水素ガスとこれに若干含有され る分解ガスとを分離するためのものである。 第 1セパレータ 3 7は、 上 部に冷却コイル 3 0 1を備えている。 そして、 配管 7 8中を流れる塩化 水素ガスは、 冷却コイル 3 0 1を通過する際に冷却され、 冷却コイル 3 0 1 より下に位置する第 1セパレータ 3 7の下部に放出さる。 放出され た塩化水素ガスは、 更に冷却コイル 3 0 1を通って第 1セパレータ 3 7 の上部から配管 7 9を経て第 1セパレータと同一構造の第 2セパレー タ 3 8に送られる。 更に、 第 2セパレータ 3 8で分離された塩化水素ガ スは、 第 1、 第 2セパレータ 3 7、 3 8と同一構造の第 3セパレータ 3 9に送られて、 第 3セパレータ 3 9で分解ガスと完全に分離された後、 配管 8 1を介してリアクター 3 0 0の下部に送られる。 これら複数のセ パレータ 3 7、 3 8、 3 9を配設することにより、 塩化水素ガスを分解 ガスから完全に分離することができる。 The pipes 75, 76, 77 extending from the top of the melting cylinders 31a, 31b, 31c of the melting part 31 are connected to the pipe 78 (Fig. 5), and the pipe 78 is the first. It is connected to the separator 37 (Fig. 10). The first separator 37 is for separating the hydrogen chloride gas generated in the dissolving cylinders 31a, 31b, 31c from the decomposition gas slightly contained therein. The first separator 37 has a cooling coil 301 at the top. Then, the hydrogen chloride gas flowing through the pipe 78 is cooled when passing through the cooling coil 301, and is discharged to a lower portion of the first separator 37 located below the cooling coil 301. The released hydrogen chloride gas is further passed through a cooling coil 301, from above the first separator 37, to a second separator 38 having the same structure as the first separator via a pipe 79. Furthermore, the hydrogen chloride gas separated by the second separator 38 is the third separator 3 having the same structure as the first and second separators 37, 38. After being sent to 9 and completely separated from the decomposition gas by the third separator 39, it is sent to the lower part of the reactor 300 via the pipe 81. By arranging the plurality of separators 37, 38, and 39, the hydrogen chloride gas can be completely separated from the decomposition gas.
リアクター 3 0 0は、 攪拌棒 3 0 6を有し、 この攪拌棒 3 0 6には羽 根 3 0 8が取り付けられている。 リアクター 3 0 0の上部には消石灰タ ンク 8 3が連結される。 消石灰タンク 8 3は、 消石灰タンク 8 3内の消 石灰を乾燥させるために、 周囲に加熱筒 3 0 5を備えている。 消石灰タ ンク 8 3の下部にはリードスクリュー 3 0 3が設けられ、 このリードス クリュー 3 0 3はモータ 3 0 4によって回転される。  The reactor 300 has a stirring bar 300, and the blades 304 are attached to the stirring bar 300. A slaked lime tank 83 is connected to the upper part of the reactor 300. The slaked lime tank 83 has a heating cylinder 304 around the slaked lime for drying the slaked lime in the slaked lime tank 83. A lead screw 303 is provided below the slaked lime tank 83, and the lead screw 303 is rotated by a motor 304.
また、 リアクター 3 0 3の下端にはリードスク リ ュー 3 0 9が設けら れ、 このリードスク リ ユー 3 0 9はモータ 3 1 0によって回転される。 リードスク リ ュー 3 0 9の周辺は、 リアクターの反応により発生した水 を乾燥除去するために加熱筒 3 1 3によって加熱される。 リアクター 3 0 9内の反応で生成された塩化カルシュームは、 塩カルタンク 3 1 2に 収納される。 また、 リアクター 3 0 0の高さ方向適宜位置には温度セン サー S l、 S 2、 S 3が設けられ、 温度センサー S l、 S 2、 S 3によ り反応熱を検出して、 この反応熱検知信号により消石灰タンク 8 3のモ ータ 3 0 4およぴリアクター 3 0 0の排出用リ一ドスク リ ユー 3 0 9 のモータ 3 1 0の回転をコン ト ロールする。 すなわち、 リアクター 3 0 0の攪拌棒 3 0 6は常時回転しており、 塩化水素ガスが多量にリアクタ 一 3 0 0内に入ってく ると反応が盛んとなり多量の反応熱が発生する。 そして、 最高位の温度センサー S 3が一定以上の反応熱を検出すると、 消石灰を多量に送り込むように消石灰タンク 8 3のリードスク リ ュー 3 0 3を回転させる。 その後、 反応が進み反応熱の発生が減り温度がや や下がって中位の温度センサー S 2が一定範囲の温度を検出している 間は、 それに合わせて消石灰が供給される。 更に、 反応が鈍くなつて最 低位の温度センサー S 1が所定温度を検出すると、 反応が終わったもの と判断し、 リアクター 3 0 0の排出用のリードスク リ ュー 3 0 9を回転 させて生成した塩化カルシュ一ムを塩カルタンク 3 1 2に回収する。 生 成した塩化カルシュームを回収した後、 再び反応が始まると、 その反応 開始を温度センサー S 1が検知し、 リードスク リュー 3 0 3を回転させ て消石灰タンク 8 3から消石灰をリアクター 3 0 0内に送り込み、 反応 熱を温度センサー S 2, S 3が順次検出するにつれ、 消石灰の供給を多 く し、 反応熱の下降にしたがって、 消石灰の供給料を減少させていき、 上述したような動作を繰り返す。 Further, a lead screw 309 is provided at the lower end of the reactor 303, and the lead screw 309 is rotated by a motor 310. The periphery of the lead screw 309 is heated by a heating cylinder 313 in order to dry and remove water generated by the reaction of the reactor. The calcium chloride generated by the reaction in the reactor 309 is stored in the salt calcium tank 312. In addition, temperature sensors S1, S2, and S3 are provided at appropriate positions in the height direction of the reactor 300, and the heat of reaction is detected by the temperature sensors S1, S2, and S3. The rotation of the motor 304 of the slaked lime tank 83 and the motor 310 of the discharge lead screw 309 of the reactor 300 is controlled by the reaction heat detection signal. In other words, the stirring rod 303 of the reactor 300 is constantly rotating, and when a large amount of hydrogen chloride gas enters the reactor 300, the reaction becomes active and a large amount of reaction heat is generated. When the highest-order temperature sensor S3 detects reaction heat of a certain level or more, the lead screw 303 of the slaked lime tank 83 is rotated so as to send a large amount of slaked lime. After that, the reaction proceeds and the heat of reaction decreases, the temperature decreases slightly, and the middle temperature sensor S 2 detects a certain range of temperature During the period, slaked lime will be supplied accordingly. Further, when the reaction slows down and the lowest temperature sensor S1 detects a predetermined temperature, it is determined that the reaction has ended, and the lead screw 309 for discharging the reactor 300 is generated by rotating the lead screw 309 for discharging. The calcium chloride is collected in a salt calcium tank 312. After the generated calcium chloride is recovered, when the reaction starts again, the temperature sensor S1 detects the start of the reaction, and rotates the lead screw 303 to put slaked lime from the slaked lime tank 83 into the reactor 300. As the temperature sensors S2 and S3 sequentially detect the feed and reaction heat, the supply of slaked lime is increased, and the slaked lime supply fee is reduced as the reaction heat decreases, and the above-described operation is repeated. .
通常塩化水素ガスは溶媒がなければ乾体の中和剤に反応しないと言 われているが、 ここでは塩化水素ガスを消石灰と反応させるとその時発 生する水が溶媒となって中和反応が促進する。 その反応式は以下の通り である。  It is generally said that hydrogen chloride gas does not react with a dry neutralizing agent without a solvent, but here, when hydrogen chloride gas is reacted with slaked lime, the water generated at that time becomes a solvent, and the neutralization reaction occurs. Facilitate. The reaction formula is as follows.
2 H C 1 + C a (OH) 2 = C a C l 2+ 2 H20 2 HC 1 + C a (OH) 2 = C a C l 2 + 2 H 2 0
なお、 この反応において水蒸気と して発生する水を抜くため、 及ぴ、 塩化水素ガスをリアクター 3 0 0に引き込むためにバキュームポンプ 3 1 4が設けられている。 このバキュームポンプ 3 1 4での吸引負荷を 一定にするために、 バキュームポンプ 3 1 4の入側には空気流入のため のレリーフバルブ 3 1 5が設けられている。 また、 リアクター 3 0 0で、 充分反応しなかった塩化水素ガスを除去するために、 アル力リ洗浄用ス クラバー 3 1 7が設けられている。  In addition, a vacuum pump 314 is provided to remove water generated as steam in the reaction, and to draw hydrogen chloride gas into the reactor 300. In order to keep the suction load of the vacuum pump 314 constant, a relief valve 315 for inflow of air is provided on the inlet side of the vacuum pump 314. Further, in order to remove hydrogen chloride gas that did not react sufficiently in the reactor 300, a scrubber 317 for cleaning the reactor was provided.
次に、 オフガス処理装置 3 4について説明する。  Next, the off-gas processing device 34 will be described.
第 1 1図はオフガス処理装置 3 4の概略構成を示した図である。 第 1 1図に示すように、 オフガス処理装置 3 4は、 ケーシング 2 3 6を有し ている。 そして、 油化プラント作動中には、 ケーシング 2 3 6に常時バ ーナ 2 3 4が連結され、 ケーシング 2 3 6内は約 1 2 0 0 °Cに加熱され る。 FIG. 11 is a diagram showing a schematic configuration of the off-gas processing device 34. As shown in FIG. As shown in FIG. 11, the offgas treatment device 34 has a casing 236. During operation of the oil plant, the casing 23 The inside of the casing 236 is heated to about 1200 ° C.
また、 前記ケーシング 2 3 6内にはセラミ ックの角柱 2 3 8、 2 3 8 - 2 3 8が複数個立設される。 このセラミ ックの角柱は、 前記貯油タン ク 4 2、 4 3に連結された入口 2 3 5から流入した'オフガスを 1 / 1 0 0秒〜 2 1 0 0秒で接触分解し、 C 02、 NO x、 H20等の単純酸化 物に変化させる。 この時、 発生する熱エネルギーは出口 2 3 7を通って 第 1、 2熱風発生炉 3 5、 3 6に導かれる。 A plurality of ceramic prisms 238 and 238-238 are erected in the casing 236. The prism of this ceramic catalytically decomposes the off-gas flowing from the inlet 235 connected to the oil storage tanks 42, 43 in 1/1100 seconds to 210 seconds, and C 0 2, NO x, changing simple oxides such as H 2 0. At this time, the generated heat energy is guided to the first and second hot air generators 35 and 36 through the outlet 237.
オフガスは、 コンデンサ 3 7、 3 8で油化されなかったァセドアルデ ヒ ド等の環境ホルモンであり、 本実施例では、 貯油タンク 4 2、 4 3で —且回収された後に、 これら貯油タンク 4 2、 4 3からオフガス処理装 置 3 4へ送られる。 なお、 オフガスはコンデンサ 3 7、 3'8から直接、 オフガス処理装置 3 4へ送られても良い。  The off-gas is an environmental hormone such as acetaldehyde which was not turned into oil by the condensers 37 and 38. In the present embodiment, the off-gas is collected in the oil storage tanks 42 and 43 and after being collected, these oil storage tanks 42 , 43 to the off-gas treatment device 34. The off-gas may be sent directly from the condensers 37 and 3'8 to the off-gas treatment device 34.
次に、 傾斜管内の安全システム及ぴ脱臭システムについて説明する。 第 2 0図に示すように、 溶解部 3 1の各溶解管、 及ぴ、 分解部 3 2の 各傾斜管には、 多数の温度センサー S、 S ...Sが設けられる。 これら各 センサー Sはコントローラ 5 1 1に接続され、 このコントローラ 5 1 1 は炭酸ガスボンベ 5 1 2に接続されたバルブ 5 1 3の開閉をコント口 ールする。 この炭酸ガスボンベ 5 1 2は、 第 1、 第 2温風発生炉 3 5、 3 6からの温風を溶解部 3 1及び分解部 3 2内に送り込む温風循環路 Pに接続される。 そして、 コントローラ 5 1 1は、 温度センサー Sが事 故等の異常温度を検出したときにバルブ 5 1 3を開き、 炭酸ガスを温風 循環路 Q内を介して溶解部 3 1及び分解部 3 2内に供給する。 これによ り溶解部 3 1及び分解部 3 2内は冷却されて、 油化プラント 3 0の運転 は停止される。  Next, the safety system and the deodorization system in the inclined pipe will be described. As shown in FIG. 20, a large number of temperature sensors S, S... S are provided in each dissolving tube of the dissolving section 31 and each inclined pipe of the dissolving section 32. Each of these sensors S is connected to a controller 511, and this controller 511 controls opening and closing of a valve 513 connected to a carbon dioxide gas cylinder 512. This carbon dioxide gas cylinder 5 12 is connected to a hot air circulation path P that sends hot air from the first and second hot air generating furnaces 35 and 36 into the melting section 31 and the decomposition section 32. Then, when the temperature sensor S detects an abnormal temperature such as an accident, the controller 511 opens the valve 513 and sends the carbon dioxide gas through the hot air circulation path Q to the melting section 31 and the decomposition section 3. Supply within 2. Thereby, the inside of the melting section 31 and the decomposition section 32 is cooled, and the operation of the oil conversion plant 30 is stopped.
処理されるプラスチックの堆積場 Aには、 吸引ファン 5 1 4 aを有す る吸引装置 5 1 4が上方に配置される。 そして、 特に廃プラスチックか ら発生する異臭を伴う空気は、 吸引装置 5 1 4で吸引され、 温風発生炉 3 6に送られて燃焼されて脱臭される。 A plastic deposition site A to be treated has a suction fan 5 1 4a The suction device 5 14 is disposed above. Then, air with an unusual odor particularly generated from the waste plastic is sucked by the suction device 514, sent to the hot air generating furnace 366, burned and deodorized.
また、 破砕機 5 1 5によって粉砕されたプラスチック細片 Pは、 乾燥 機 5 1 6で温風発生炉 3 6からの温風を用いて乾燥され、 乾燥されたプ ラスチック細片 Pはホッパー 4 1へ送られる。 ここで、 乾燥機 5 1 6内 でプラスチック細片 Pが温風で乾燥されると付近に異臭が充満する場 合がある。 そこで、 異臭を伴う乾燥機 5 1 6内の空気は、 ファン 5 1 6 aによりサイクロン 5 1 7で空気に混入した細粒を取り除かれた後に、 温風発生炉 3 5に送られて処理される。 これらのシステムにより十分な 脱臭効果が期待される。  The plastic flakes P pulverized by the crusher 515 are dried in a dryer 516 using warm air from a hot air generator 36, and the dried plastic flakes P are transferred to a hopper 4. Sent to 1. Here, when the plastic flakes P are dried with hot air in the dryer 5 16, an unpleasant odor may be filled in the vicinity. Therefore, the air in the dryer 5 16 with an unpleasant odor is sent to the hot-air generating furnace 35 for processing after the fine particles mixed into the air are removed by the cyclone 5 17 by the fan 5 16 a. You. These systems are expected to have a sufficient deodorizing effect.
なお、 異臭を伴う空気は、 オフガスを処理するためのオフガス処理部 3 4で分解してもよい。 すなわち、 異臭を伴う空気は温風発生炉 3 5、 3 6又はオフガス処理部 3 4で処理される。  In addition, air with an unpleasant odor may be decomposed in an off-gas processing section 34 for processing off-gas. That is, the air with an unpleasant odor is treated in the hot-air generators 35 and 36 or the off-gas treatment section 34.
以上の実施例においては、 分解筒が 2段に設けられているが、 第 1 2 図に示すように、 第 2段の分解筒 4 8の後に第 2段分解筒 4 8と同一構 造の同一角度で傾叙した第 3段分解筒 2 1 0を設け、 それぞれの温度分 布を第 1段分解筒においては 3 5 0〜4 0 0 °C、 第 2段分解筒において は 4 0 0〜4 8 0 °C、 第 3段分解筒においては 4 8 0〜 5 8 0 °Cに設定 した溶解部 2 0 0を設けてもよい。 この'ように分解筒.を 3段にすること により、 より分解温度分布を緩やかにとれ、分解時間も長く とれるので、 原料であるプラスチックの比重等による分解条件の変化に対応可能で あり、 確実な 2次分解が保証される。  In the above embodiment, the disassembly cylinders are provided in two stages. However, as shown in FIG. 12, after the second stage disassembly tube 48, the same structure as the second stage disassembly tube 48 is provided. A third-stage disassembly cylinder 210 inclined at the same angle is provided, and the temperature distribution is 350 to 400 ° C in the first-stage disassembly cylinder and 400 ° C in the second-stage disassembly cylinder. A melting section 200 set at 480 ° C. to 480 ° C. and in the third stage disassembly cylinder at 480 ° C. to 580 ° C. may be provided. By using three stages of decomposition cylinders in this way, the decomposition temperature distribution can be taken more gently and the decomposition time can be extended, so that it is possible to respond to changes in the decomposition conditions due to the specific gravity of the raw material plastic, etc. Secondary decomposition is guaranteed.
すなわち、 第 2段分解筒 4 8の上端側は同一傾斜角度の第 3段分解筒 2 1 0の下端に落下筒 2 1 8を介して連結され、 第 2段分解筒 4 8で抽 出されなかった未分解の泡状プラスチック及び分解ガスは、 落下筒 2 1 8を介して第 3段分解筒 2 1 0内に送り込まれる。 第 3段分解筒 2 1 0 に送り込まれた未分解の泡状プラスチック及び分解ガスは、 第 3段分解 筒 2 1 0で 2次分解され、 2次分解された分解ガスはアル力リ洗浄のス クラバー 2 1 6を介してコンデンサ 2 1 3で冷却油化されて A重油相 当の油となる。 この油は配管 2 1 4を介して貯油タンク 2 1 5に回収さ れる。 第 3段分解筒 2 1 0にはブロア 2 2 1が連結され、 これによりカロ 熱空気は分解筒の上から下へと逆熱勾配を形成しつつ循環するように なっている。 なお、 残渣は、 スラッジ管 2 1 9を通って水が注入された スラッジタンダ 2 2 0内に回収される。 なお、 前記第 3段分解筒 2 1 0 のコンデンサ 2 1 '3で油化しなかった分解ガスは、 ポンプ Pにより吸引 されて配管 2 1 4を通って貯油タンク 2 1 5に回収される。 また、 第 1 段、 第 2段の分解筒 4 7、 4 8では 2次分解した分解ガスを上端部から 引出して油化するが、 この際、 完全に 2次分解していないガスをスーパ 一ヒー ト 1 5 1、 1 5 2より分解する。第 2段分解筒では、軽油、灯油、 —部の重油成分相当の分解ガスが得られ、 残りの A重油相当成分が第 3 段分解筒で分解される。 なお、 吏に、 分解筒を 4段以上にすることも可 能である。 That is, the upper end side of the second-stage disassembly tube 48 is connected to the lower end of the third-stage disassembly tube 210 having the same inclination angle via the drop tube 218, and is extracted by the second-stage disassembly tube 48. The undecomposed foamed plastic and decomposition gas that did not It is fed into the third stage disassembly cylinder 210 via 8. The undecomposed foamy plastic and decomposition gas sent to the third-stage decomposition cylinder 210 are secondarily decomposed in the third-stage decomposition cylinder 210, and the second-decomposed decomposition gas is used for cleaning by the Arikari cleaning. The oil is cooled by the condenser 2 13 via the scrubber 2 16 and becomes oil equivalent to heavy oil A. This oil is collected in the oil storage tank 215 via the pipe 216. A blower 221 is connected to the third-stage decomposition tube 210, whereby the caro-hot air circulates from the top to the bottom of the decomposition tube while forming a reverse heat gradient. Note that the residue is collected in a sludge tinder 220 into which water has been injected through a sludge pipe 219. The cracked gas that has not been liquefied by the condenser 21'3 of the third stage disassembly cylinder 210 is sucked by the pump P, collected through the pipe 214, and collected in the oil storage tank 215. In the first and second stage decomposition cylinders 47 and 48, the secondly decomposed gas is extracted from the upper end and turned into oil. Decompose from heat 15 1 and 15 2. In the second-stage cracker, cracked gas equivalent to light oil, kerosene, and heavy oil components in the-part is obtained, and the remaining heavy oil-A equivalent components are decomposed in the third-stage cracker. It is also possible for the official to have more than four disassembly cylinders.
また、 第 1 2図に示す実施例では、 溶解部 2 0 0が縦形 (垂直形) に 形成される。即ち、 第 1、 第 2、 第 3溶解筒 2 0 1、 2 0 2、 2 0 3が、 垂直方向にそれぞれ連結部 2 0 4、 2 0 5を介して連結され、' ホッパー 4 1から送られたプラスチックは、 第 1溶解筒 2 0 1では右方向に送ら れ、 第 2溶解筒 2 0 2では左方向に送られ、 第 3溶解筒では右方向に送 られて、 第 1段分解筒 4 7の下端部に供給される。 最下段の第 3溶解筒 2 0 3のリードスクリュー 2 0 7はモータ 2 0 8によって回転され、 こ のモータ 2 0 8の回転はチェーン 2 0 9を介して第 1溶解筒 2 0 1の リードスク リ ュー 2 0 6を回転せしめ、 更に、 このリードスク リ ュー 2 0 6の回転はギア G l , G 2を介して第 2溶解筒 20 2のリードスクリ ユー 2 1 2を回転せしめる。 なお、 熱風は、 ブロア 2 1 3により溶解部 2 0 0の温度の低い上側から引抜いて下側へ配管 2 2 2を介して送り、 溶解部内を上方に向かって循環させられる。 In the embodiment shown in FIG. 12, the melting portion 200 is formed in a vertical shape (vertical shape). That is, the first, second, and third melting cylinders 201, 202, and 203 are vertically connected via connecting portions 204 and 205, respectively, and are fed from the hopper 41. The melted plastic is sent to the right in the first melting cylinder 201, sent to the left in the second melting cylinder 202, sent to the right in the third melting cylinder, and 4 7 is supplied to the lower end. The lead screw 200 of the third melting cylinder 203 at the bottom is rotated by a motor 208, and the rotation of the motor 208 is controlled by the lead screw of the first melting cylinder 201 via the chain 209. Turn screw 206, and furthermore, this lead screw 2 The rotation of 06 causes the lead screw 2 12 of the second melting cylinder 202 to rotate through the gears G l and G 2. The hot air is drawn out from the lower side of the melting part 200 at a lower temperature by the blower 2 13, sent downward through the pipe 222, and circulated upward in the melting part.
第 2 1図に示す実施例では、 第 1〜第 4溶解筒 3 1 a、 3 1 b… 3 1 dは、 熱媒加熱装置 6 0 0から供給される熱媒体により加熱される。 こ こで熱媒体とは液体の熱媒体をいい、 例えば、 各種熱媒体油が用いられ る。 この熱媒体は熱媒加熱装置 6 0 0で所定の温度に加熱され、 熱媒配 管 6 0 1を介して溶解筒 3 1の熱媒空間 1 3 5, に供給される。 熱媒空 間 1 3 5, は、 前述の熱風空間 1 3 5 と同様に内筒 1 3 1 と外箱 1 3 '6 との間に形成される。 そして、 熱媒体は、 熱媒空間 1 3 5 ' を下流側か ら上流側に向けて流れるように、 循環ポンプ 6 0 2で循環される。 第 1 溶解筒 3 1 a内は 1 9 0〜 20 0でに、 第 2溶解筒 3 1 b内は 2 1 0〜 23 0 °Cに、 第 3溶解筒 3 1 c内は 2 3 0 °C〜 2 6 0。じに、 第 4溶解筒 3 1 d内は 3 00〜 3 4 0 °Cに、 それぞれコントロールされることにつ いては、 前述の熱風による加熱の場合と同じである。  In the embodiment shown in FIG. 21, the first to fourth melting cylinders 31a, 31b ... 31d are heated by the heat medium supplied from the heat medium heating device 600. Here, the heat medium refers to a liquid heat medium, for example, various heat medium oils are used. This heat medium is heated to a predetermined temperature by the heat medium heating device 600 and supplied to the heat medium space 135 of the melting cylinder 31 via the heat medium pipe 601. The heat medium space 135 is formed between the inner cylinder 131 and the outer box 13'6 in the same manner as the hot air space 135 described above. The heat medium is circulated by the circulation pump 62 so that the heat medium flows from the downstream side to the upstream side in the heat medium space 135 '. The temperature in the first melting cylinder 31a is 190 to 200, the temperature in the second melting cylinder 31b is 210 to 230 ° C, and the temperature in the third melting cylinder 31c is 230 ° C. C-260. First, the inside of the fourth melting cylinder 31 d is controlled at 300 to 330 ° C., respectively, in the same manner as in the case of the above-described heating with hot air.
このよ うに、 熱風に変えて熱媒体を用いることにより、 a ) 伝熱効率 を大幅に改善することが可能となり、 また、 b ) 熱風に比べて熱媒体は 冷めにくいためプラントを停止した際でも溶解筒 3 1内の温度が下が りにく くプラントを立ち上げる際に短時間での立ち上げが可能となり、 更に、 c ) 溶解筒 3 1の内筒 1 3 1が破損した場合でも火災の発生を防 止することが可能となる。  By using a heat medium instead of hot air, it is possible to a) significantly improve the heat transfer efficiency, and b) dissolve even when the plant is stopped because the heat medium is harder to cool compared to hot air. When the plant is started up, it is possible to start up the plant in a short time because the temperature inside the cylinder 31 does not drop.c) Even if the inner cylinder 13 1 of the melting cylinder 31 is damaged, a fire may occur. The occurrence can be prevented.
なお、 一般に熱媒体の作動温度は 3 5 0 °C以下であるので、 溶解筒 3 1の加熱にのみ熱媒体が用いられるが、 更に適切な熱媒体を選択するこ とにより分解筒 4 7、 4 8の加熱にも熱媒体を用いることは可能である c また、 用いる熱媒体の作動温度によって、 溶解筒- 3 1のうち低蕰にコン トロールされる溶解筒 3 1 (例えば、 第 1、 第 2、 第 3'溶解筒 3 1 a、 3 1 b、 3 1 c ) のみを熱媒体で加熱してもよい。 Since the operating temperature of the heat medium is generally 350 ° C. or lower, the heat medium is used only for heating the melting cylinder 31.However, by selecting a more appropriate heat medium, the decomposition cylinder 47, It is also possible to use a heat medium for heating of c. Also, depending on the operating temperature of the heat medium used, a low temperature Only the melting cylinder 31 (for example, the first, second and third 'melting cylinders 31a, 31b and 31c) to be trolled may be heated by the heat medium.
第 1 3図に示す実施例では、 第 4溶解筒 3 1 dと第 1段分解筒 4 7の 下部は接合部 5 0 0によって接合され、 この接合部 5 0 0を介して溶解 した泡状プラスチックが第 1段分解筒 4 7内の内筒 2 5 5の下端に供 給される。 なお、 前記接合部 5 0 0には、 タンク 5 0 2内に貯留した植 物性若しくは動物性の食用油又はそれらの使用後の廃油等が供給され、 これらの油と泡状プラスチックの混合物が各分解筒で 1次、 2次分解さ れる。 これにより、 改質された油を化学分解反応により回収することが 可能となる。  In the embodiment shown in FIG. 13, the lower part of the fourth melting cylinder 31 d and the lower part of the first stage disassembling cylinder 47 are joined by a joint 500, and the foam melted through the joint 500 Plastic is supplied to the lower end of the inner cylinder 255 in the first stage disassembly cylinder 47. The joint 500 is supplied with vegetable or animal edible oil stored in the tank 502 or waste oil after use thereof. The primary and secondary components are decomposed in the disassembly tube. This makes it possible to recover the reformed oil by a chemical decomposition reaction.
一般に、 第 1 4図に示すように、 ポリエチレン、 ポリプロピレン、 ポ リスチレン、 A B S樹脂、 アク リル樹脂等のプラスチックは熱分解され て 9 0 %が生成油として採集され、 他は、 オフガス ( 7〜 8 °/0 ) として 採用されてオフガス処理装置 3 4により処理され、 炭化物 (2〜 3 % ) は残渣として残渣タンク 4 0内に採集される。 ポリ塩化ビニールは、 消 石灰で中和されて約 5 8 %が塩化カルシュームとなり、 約 4 2 %が熱分 解されるが、 油化採集されるのは約 3 0 %程度である。 In general, as shown in Fig. 14, plastics such as polyethylene, polypropylene, polystyrene, ABS resin, and acrylic resin are thermally decomposed and 90% of the oil is collected as product oil. ° / 0 ) and is treated by the off-gas treatment device 34, and the carbide (2 to 3%) is collected in the residue tank 40 as a residue. Polyvinyl chloride is neutralized with slaked lime to make about 58% of calcium chloride and about 42% is pyrolyzed, but about 30% of oil is collected and collected.
なお、 2 0 0 2年 1月 2 5 日に出願された明細書、 .特許請求の範囲、 図面、 要約を含む日本の特許出願 (No. 2002-017650) 及ぴ 2 0 0 2年 1 0月 1 6 日に出願された明細書、 特許請求の範囲、 図面、 要約を含む 日本の特許出願 (No. 2002-301895) の全ての開示は、 その全てを参照 することよって、 ここに組み込まれる。  The Japanese patent application (No. 2002-017650), including the specification, claims, drawings, and abstract filed on January 25, 2002, and October 2010 The entire disclosure of the Japanese patent application (No. 2002-301895), including the specification, claims, drawings and abstract filed on March 16, 2005, is incorporated herein by reference in its entirety. .
また、 本発明は、 上記実施形態に限定されるものではない。 上記実施 形態は、 例示であり、 本発明の特許請求の範囲に記載された技術的思想 と実質的に同一な構成を有し、 同様な作用効果を奏するものは、 いかな るものであっても本発明の技術的範囲に包含される。 [産業上の利用可能性] Further, the present invention is not limited to the above embodiment. The above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention, and does not provide any similar effect. Are also included in the technical scope of the present invention. [Industrial applicability]
以上のように、 本発明にかかるプラスチック油化方法及び油化プラント は、 は廃棄ブラスチックから油を採集するための油化方法及び油化ブラン トとして有用である。  INDUSTRIAL APPLICABILITY As described above, the plastic oiling method and the oiling plant according to the present invention are useful as an oiling method and an oiling brand for collecting oil from waste plastics.

Claims

請求の範囲 The scope of the claims
1 . プラスチックを加熱して溶解させ泡状のプラスチックを生じさせ る溶解工程と、 1. A melting step in which the plastic is heated and melted to form a foamed plastic;
前記泡状のプラスチックを取り出して加熱し解重合させた後に冷却 して油を生成する分解工程と、  A decomposition step of removing the foamed plastic, heating and depolymerizing, and then cooling to produce oil;
を含むことを特徴とするプラスチックの油化方法。  A method for liquefying a plastic, comprising:
2 . 請求項 1に記載のプラスチックの油化方法において、 2. The method according to claim 1, wherein
前記分解工程では前記泡状のプラスチックを斜め上方に引上げて取 り出すことを特徴とするプラスチックの油化方法。  In the dissolving step, the foamed plastic is pulled up diagonally upward and taken out.
3 . 請求項 1に記載のプラスチックの油化方法において、 3. The method according to claim 1, wherein
前記分解工程では前記泡状のプラスチックを水平に対して 2 5〜 3 0 ° の角度で斜め上方に引上げて取り出すことを特徴とするプラスチッ クの油化方法。  In the disassembling step, the plasticizing method is characterized in that the foamed plastic is pulled out obliquely upward at an angle of 25 to 30 ° with respect to the horizontal and taken out.
4 . 請求項 2又は 3に記載のプラスチックの油化方法において、 前記分解工程では前記泡状のプラスチックを斜め上方に引上げなが ら加熱し、 且つ、 前記泡状のプラスチックが上方に位置するほど高温で 加熱することを特徴とするプラスチックの油化方法。 4. In the method for liquefying plastic according to claim 2 or 3, in the decomposition step, the foamed plastic is heated while being pulled obliquely upward, and the foamed plastic is positioned more upwardly. A plastic oiling method characterized by heating at a high temperature.
5 . 請求項 1記載のプラスチックの油化方法において、 5. The method according to claim 1, wherein
前記溶解工程では前記プラスチックを異なる温度分布を有する複数 の溶解筒で形成した溶解部で溶解することを特徴とするプラスチック の油化方法。 In the melting step, the plastic is melted in a melting section formed by a plurality of melting cylinders having different temperature distributions.
6 . 請求項 1記載のプラスチックの油化方法において、 6. The method according to claim 1, wherein
前記溶解工程では溶解された前記プラスチックに食物油、 動物油又は 鉱物油を加えて前記プラスチックと前記食物油、 前記動物油又は前記鉱 物油との混合物からなる泡状のプラスチックを生じさせ、  In the dissolving step, food oil, animal oil or mineral oil is added to the dissolved plastic to form a foamed plastic composed of a mixture of the plastic and the food oil, the animal oil or the mineral oil,
前記分解工程では前記泡状のプラスチックを取り出して加熱し解重 合させた後に冷却して油を生成することを特徴とするプラスチックの 油化方法。  In the decomposition step, the foamed plastic is taken out, heated and de-polymerized, and then cooled to produce oil.
7 . 請求項 1記載のプラスチックの油化方法において、 7. The method according to claim 1, wherein
前記分解工程では前記泡状のプラスチックを異なる温度分布を有す る複数の分解筒で形成した分解部で取り出して加熱することを特徴と するプヲスチックの油化方法。  In the decomposing step, the foamed plastic is taken out and heated in a decomposing section formed by a plurality of decomposing cylinders having different temperature distributions and heated.
8 . 請求項 1記載のプラスチックの油化方法において、 8. The method according to claim 1, wherein
前記溶解工程で前記プラスチックを溶解する際に発生する塩化水素, ガスを他の分解ガスと分離した後に消石灰と反応させて塩化カルシュ ームとして回収する塩化水素ガス処理工程を、 更に含むことを特徴とす るプラスチックの油化方法。  A hydrogen chloride gas processing step of separating hydrogen chloride and gas generated when the plastic is melted in the melting step from other decomposed gases and then reacting with slaked lime to recover as calcium chloride. How to make plastic oil.
9 . 請求項' 1記載のプラスチックの油化方法において、 9. The method according to claim 1, wherein
前記分解工程で油化されなかったオフガスを高温のセラミ ックスで 接触分解させて処理するオフガス処理工程を、 更に含むことを特徴とす るプラスチックの油化方法。  A method for liquefying plastics, which further comprises an off-gas treatment step of subjecting the off-gas not liquefied in the decomposition step to catalytic decomposition with high-temperature ceramics for treatment.
1 0 . プラスチックを加熱して溶解させ泡状のプラスチックを生じさ せる溶解部と、 10. Heat and melt the plastic to form a foamy plastic. Dissolving part
前記泡状のプラスチックを取り出して加熱し解重合させた後に冷却 して油を生成する分解部と、  A decomposition unit that takes out the foamed plastic, heats it, depolymerizes it, and then cools it to produce oil;
を備えたことを特徴とする油化プラント。  An oil conversion plant comprising:
1 1 . 請求項 1 0に記載の油化プラントにおいて、 11. 1 In the oil conversion plant according to claim 10,
前記分解部は前記泡状のプラスチックを斜め上方に引上げて取り出 す取出手段を備えたことを特徴とする油化ブラント。  An oiling blunt, wherein the disassembling unit includes an extracting means for extracting the foamed plastic by diagonally pulling it upward.
1 2 . 請求項 1 0に記載の油化プラントにおいて、 1 2. In the oil conversion plant according to claim 10,
前記分解部は前記泡状のプラスチックを水平に対して 2 5〜 3 0 ° の 角度で斜め上方に引上げて取り出す取出手段を備えたことを特徴とす る油化ブラント。  An oily blunt characterized in that the disassembling section is provided with a take-out means for taking up and taking out the foamed plastic obliquely upward at an angle of 25 to 30 ° with respect to the horizontal.
1 3 . 請求項 1 1又は 1 2に記載の油化プラントにおいて、 前記分解部は前記泡状のプラスチックを斜め上方に引上げながら加 熱し、 且つ、 前記泡状のプラスチックが上方に位置するほど高温で加熱 する加熱手段を備えたことを特徴とする油化ブラント。 13. The oil conversion plant according to claim 11, wherein the decomposition section heats the foamed plastic while pulling the foamed plastic diagonally upward, and the higher the temperature, the higher the foamed plastic is located. 13. An oily blunt characterized by comprising a heating means for heating by heating.
1 4 . 請求項 1 0記載の油化プラントにおいて、 14. The oil conversion plant according to claim 10, wherein:
前記溶解部は異なる温度分布を有する複数の溶解筒で形成されたこ とを特徴とする油化プラント。  An oil conversion plant, wherein the melting section is formed by a plurality of melting cylinders having different temperature distributions.
1 5 . 請求項 1 0記載の油化プラントにおいて、 15. In the oil conversion plant according to claim 10,
前記溶解部と前記分解部との接合部に食物油、 動物油又は鉱物油を注 入するための油注入手段を備えたことを特徴とする油化プラント。 An oil conversion plant comprising an oil injection means for injecting food oil, animal oil, or mineral oil into a joint between the melting section and the decomposition section.
1 6 . 請求項 1 0記載の油化プラントにおいて、 16. In the oil conversion plant according to claim 10,
前記分解部は異なる温度分布を有する複数の傾斜した分解筒で形成 したことを特徴とする油化プラント。  An oil conversion plant, wherein the decomposition section is formed by a plurality of inclined decomposition cylinders having different temperature distributions.
1 7 . 請求項 1 0記載の油化プラントにおいて、 17. In the oil conversion plant according to claim 10,
前記溶解部で発生する塩化水素ガスを処理するための脱塩素装置を、 更に備え、  A dechlorination device for treating hydrogen chloride gas generated in the dissolving section,
前記脱塩素装置は塩化水素ガスと他の分解ガスを分解するためのセ パレータと、 前記セパレータにより分離された塩化水素ガスを消石灰と 反応させて塩化カルシュームとするリアクターと、 を備えて構成された ことを特徴とする油化プラント。  The dechlorination apparatus is configured to include a separator for decomposing hydrogen chloride gas and other decomposition gases, and a reactor that reacts the hydrogen chloride gas separated by the separator with slaked lime to form calcium chloride. An oil conversion plant characterized by the following.
1 8 . .請求項 1 0記載の油化プラントにおいて、 18. The oil conversion plant according to claim 10, wherein:
前記分解部での冷却後に油と して生成されなかったオフガスを高温 のセラミツタスで接触分解させて処理するオフガス処理装置を、 更に備 えたことを特徴とする油化プラント。  An oil processing plant, further comprising an off-gas treatment device for catalytically decomposing and treating off-gas not produced as oil after cooling in the decomposition section with a high-temperature ceramics.
1 9 . 請求項 1 6記載の油化プラントにおいて、 1 9. In the oil conversion plant according to claim 16,
多段に設けた分解筒の各分解筒で前記プラスチックを解重合して生 成した分解ガスを冷却して油化することを特徴とする油化ブラント。  An oily blunt characterized in that a decomposition gas generated by depolymerizing the plastic in each of the decomposition cylinders provided in multiple stages is cooled and turned into oil.
2 0 . 請求項 1 6記載の油化プラントにおいて、 20. In the oil conversion plant according to claim 16,
前記分解筒の少なく とも一部に解重合された前記プラスチックを更 に解重合するためのスーパーヒートを設けたことを特徴とする油化プ ラン ト。 An oiling plant comprising a superheat for further depolymerizing the depolymerized plastic in at least a part of the decomposition tube.
2 1 . 請求項 1 6記載の油化プラントにおいて、 2 1. In the oil conversion plant according to claim 16,
前記分解筒は下方から上方に向かって加熱温度が次第に高くなるよ う形成されることを特徴とする油化プラント。 '  An oil conversion plant, wherein the decomposition tube is formed so that the heating temperature gradually increases from below to above. '
2 2 . 請求項 1 6記載の油化プラントにおいて、 22. In the oil conversion plant according to claim 16,
前記多段に設けた分解筒のうち最終段の前記分解筒の上端に残渣回 収手段を設けたことを特徴とする油化プラント。  An oil conversion plant, wherein a residue recovery means is provided at an upper end of the final stage of the decomposition cylinder among the multistage decomposition cylinders.
2 3 . 請求項 2 2記載の油化プラントにおいて、 2 3. In the oil conversion plant according to claim 22,
前記残渣回収手段は上部開口を前記最終段の分解筒の上端位置に位 置させ下部開口を空気より重い不活性ガス雰囲気内に位置させた筒で 形成されたことを特徴とする油化プラント。  An oil conversion plant, wherein the residue recovery means is formed by a cylinder having an upper opening located at an upper end position of the final stage decomposition cylinder and a lower opening located in an inert gas atmosphere heavier than air.
2 4 . 請求項 1 0記載の油化プラントにおいて、 24. In the oil conversion plant according to claim 10,
前記プラスチックを貯留して前記溶解部へ供給するためのホッパー を、 更に備え、 . 前記ホッパ一は螺旋状の羽根を有するリードスク リューを備えてい ることを特徴とする油化プラント。  An oil conversion plant, further comprising: a hopper for storing the plastic and supplying the plastic to the melting section, wherein the hopper includes a lead screw having spiral blades.
2 5 . 請求項 2 4記載の油化プラントにおいて、 25. In the oil conversion plant according to claim 24,
前記ホッパーと前記溶解部の間に所定長さの加熱されない領域で形 成される非加熱部を、 更に備えたことを特徴とする油化プラント。  An oil-forming plant, further comprising: a non-heating portion formed by a non-heated region having a predetermined length between the hopper and the melting portion.
2 6 . 請求項 1 4記載の油化プラントにおいて、 26. In the oil conversion plant according to claim 14,
前記複数の溶解筒は前記プラスチックを搬送するための螺旋状の羽 根を有するリードスクリューを備えており、 The plurality of melting cylinders are spiral blades for conveying the plastic. It has a lead screw with a root,
前記複数の溶解筒のうち先頭に位置する前記溶解筒の前記リ一ドス ク リユーの前記羽根のピッチは他の溶解筒の前記リードスタリ ユーの 前記羽根のピッチより大きく形成されていることを特徴とする油化プ ラント。  The pitch of the blades of the lead screw of the melting cylinder positioned at the top of the plurality of melting cylinders is formed to be larger than the pitch of the blades of the lead starry of the other melting cylinders. Oiling plant.
2 7 . 請求項 1 0記載の油化プラントにおいて、 27. In the oil conversion plant according to claim 10,
前記溶解部及ぴ前記分解部は、 内筒と、 前記内筒の外周に形成された 外筒と、 前記内筒と前記外筒との間に形成され熱風が循環される熱風空 間と、 前記溶解部又は前記分解部の温度を検出する温度センサーと、 を 備えて形成され、  An inner cylinder, an outer cylinder formed on an outer periphery of the inner cylinder, a hot air space formed between the inner cylinder and the outer cylinder and circulating hot air; And a temperature sensor for detecting a temperature of the melting section or the decomposition section.
前記温度センサーが所定の温度以上となる異常温度を検出したとき に前記熱風空間に炭酸ガスを送り込む炭酸ガス供給装置を、 更に備えた ことを特徴とする油化プラント。  An oil conversion plant, further comprising: a carbon dioxide gas supply device for feeding carbon dioxide gas into the hot air space when the temperature sensor detects an abnormal temperature that is equal to or higher than a predetermined temperature.
2 8 . 請求項 1 0記載の油化プラントにおいて、 28. In the oil conversion plant according to claim 10,
前記溶解部及び前記分解部は、 内筒と、 前記内筒の外周に形成された 外筒と、 前記内筒と前記外筒との聞に形成され熱風が循環される熱風空 間と、 を備えて形成され、  The dissolving unit and the disassembling unit include an inner cylinder, an outer cylinder formed on the outer periphery of the inner cylinder, and a hot air space formed between the inner cylinder and the outer cylinder and circulating hot air. Formed in preparation for
前記熱風空間に供給するための熱風を燃焼により発生させる熱風発 '生装置と、  A hot-air generator for generating hot air by combustion for supplying to the hot-air space,
前記溶解炉に供給する前記プラスチックを乾燥させる乾燥装置と、 を 更に備え、  A drying device for drying the plastic supplied to the melting furnace,
前記乾燥装置内の空気を—前記熱風焭生装置に供給して燃焼によ り脱 臭することを特徴とする油化プラント。 An oil conversion plant, wherein the air in the drying device is supplied to the hot-air generating device and deodorized by combustion.
2 9 . 請求項 1 8記載の油化プラントにおいて、 29. In the oil conversion plant according to claim 18,
前記溶解部に供給する前記プラスチックを乾燥させる乾燥装置を、 更 に備え、  A drying device for drying the plastic supplied to the melting section, further comprising:
前記乾燥装置内の空気を前記オフガス処理装置に供給して高温のセ ラミックスで接触分解させて脱臭することを特徴とする油化プラント。  An oil conversion plant, wherein the air in the drying device is supplied to the off-gas processing device and catalytically decomposed by high-temperature ceramics to deodorize.
3 0 . 請求項 1 4記載の油化プラントにおいて、 30. In the oil conversion plant according to claim 14,
前記溶解筒の一部には伸縮自在に形成された伸縮筒が用いられ、 前記伸縮筒は、 内筒と、 前記内筒の外周に配置され一方端が前記内筒 に固定され他方端が前記内筒に対してスライ ド可能と されたベローズ と、 前記べローズの他方端に固定され前記内筒をスライ ド可能に内部に 納めた外筒と、 を備えて形成されたことを特徴とする油化プラント。  An expandable and contractible cylinder is used for a part of the dissolving cylinder, and the expandable and contractible cylinder is an inner cylinder, which is disposed on the outer periphery of the inner cylinder, one end is fixed to the inner cylinder, and the other end is the other end. A bellows slidable with respect to the inner cylinder; and an outer cylinder fixed to the other end of the bellows and housing the inner cylinder slidably therein. Oil conversion plant.
3 1 . 請求項 1 0記載の油化プラントにおいて、 31. In the oil conversion plant according to claim 10,
前記溶解部は、 内筒と、 前記内筒の外周に形成された外筒と、 前記内 筒と前記外筒との間に形成され液体の熱媒体が循環される熱媒空間と、 を備えて形成され、  The dissolving unit includes: an inner cylinder; an outer cylinder formed on the outer periphery of the inner cylinder; and a heat medium space formed between the inner cylinder and the outer cylinder, through which a liquid heat medium is circulated. Formed
前記熱媒空間に液体の熱媒体を供給するた熱媒供給装置と、  A heat medium supply device that supplies a liquid heat medium to the heat medium space,
を更に備えたことを特徴とする油化プラント。  An oil conversion plant, further comprising:
PCT/JP2003/000413 2002-01-25 2003-01-20 Method and plant for converting plastic into oil WO2003064561A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/502,624 US20050075521A1 (en) 2002-01-25 2003-01-20 Method and plant for converting plastic into oil
KR10-2003-7001944A KR20040048368A (en) 2002-01-25 2003-01-20 Method and apparatus for reclaiming oil from plastic

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002/17650 2002-01-25
JP2002017650A JP2003213276A (en) 2002-01-25 2002-01-25 Method and plant for converting plastic into oil
JP2002301895A JP2004137335A (en) 2002-10-16 2002-10-16 Oiling installation
JP2002/301895 2002-10-16

Publications (1)

Publication Number Publication Date
WO2003064561A1 true WO2003064561A1 (en) 2003-08-07

Family

ID=27667424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000413 WO2003064561A1 (en) 2002-01-25 2003-01-20 Method and plant for converting plastic into oil

Country Status (4)

Country Link
US (1) US20050075521A1 (en)
KR (1) KR20040048368A (en)
TW (1) TW200302867A (en)
WO (1) WO2003064561A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080994A2 (en) 2005-01-26 2006-08-03 General Atomics Method and system for fueling a power/heat generating unit with plastic material
WO2007138965A1 (en) * 2006-05-25 2007-12-06 Blest Co., Ltd. Liquefying apparatus

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005010151B3 (en) * 2005-03-02 2006-09-14 Clyvia Technology Gmbh Process for the catalytic depolymerization of hydrocarbon-containing residues and apparatus for carrying out this process
US8193403B2 (en) 2006-08-24 2012-06-05 Agilyx Corporation Systems and methods for recycling plastic
WO2008022790A2 (en) * 2006-08-25 2008-02-28 Granit Systems S.A. Method and device for processing plastic-containing waste
KR101536156B1 (en) * 2007-10-19 2015-07-13 쿠사츠 일렉트릭 컴퍼니 리미티드 Catalyst circulating waste plastic/organic matter decomposition apparatus and decomposition system
KR100956658B1 (en) * 2008-03-25 2010-05-10 (주)피이알이엔티 Fitness type pyrolysis oil recovery apparatus using waste material
PL212812B1 (en) 2009-03-14 2012-11-30 Bl Lab Spolka Z Ograniczona Odpowiedzialnoscia System for carrying out the scrap plastics thermolysis and the method of conducting the thermolysis by continuous method
BR112012025603A2 (en) * 2010-03-31 2018-02-14 Agilyx Corp system and methods for recycling plastic.
JP2013535539A (en) 2010-07-26 2013-09-12 アー.ヨット. ヴィーザー−リンハート エミール Plant and method for making fuel from biomass / plastic mixtures
EP2770039A4 (en) * 2011-10-19 2015-06-24 Blest Co Ltd Petrochemical apparatus
EP2981593B1 (en) 2013-04-06 2021-03-24 Agilyx Corporation Method for conditioning synthetic crude oil
WO2017007361A1 (en) * 2015-07-07 2017-01-12 Константин Владимирович ЛАДЫГИН Plant for processing organic raw material using pyrolysis method
EP3491103B1 (en) 2016-08-01 2023-08-02 SABIC Global Technologies B.V. A catalytic process of simultaneous pyrolysis of mixed plastics and dechlorination of the pyrolysis oil
KR102345829B1 (en) * 2020-05-04 2022-01-03 김학권 A Recycling Device And Method Thereof
JP2023553147A (en) 2020-12-10 2023-12-20 アジリックス コーポレイション System and method for recycling waste plastic
CN115072670B (en) * 2022-05-19 2023-06-13 西南石油大学 Reaction device for preparing elemental sulfur and hydrogen by decomposing hydrogen sulfide with molten salt

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608136A (en) * 1991-12-20 1997-03-04 Kabushiki Kaisha Toshiba Method and apparatus for pyrolytically decomposing waste plastic
JPH09291288A (en) * 1996-04-26 1997-11-11 Toshiba Corp Treatment of plastic and its apparatus
JPH11116726A (en) * 1997-10-21 1999-04-27 Nkk Plant Engineering Corp Method of processing of waste polyvinyl chloride
US6126907A (en) * 1998-06-17 2000-10-03 Wada; Youichi Thermal decomposition apparatus of reversed temperature gradient type for polymer waste

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851601A (en) * 1988-01-19 1989-07-25 Mobil Oil Corporation Processing for producing hydrocarbon oils from plastic waste
SG43674A1 (en) * 1991-03-05 1997-11-14 Bp Chem Int Ltd Polymer cracking
US5756871A (en) * 1995-05-23 1998-05-26 California Engineering Consultants Co., Ltd. Treating method for converting wastes into resources and its equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608136A (en) * 1991-12-20 1997-03-04 Kabushiki Kaisha Toshiba Method and apparatus for pyrolytically decomposing waste plastic
JPH09291288A (en) * 1996-04-26 1997-11-11 Toshiba Corp Treatment of plastic and its apparatus
JPH11116726A (en) * 1997-10-21 1999-04-27 Nkk Plant Engineering Corp Method of processing of waste polyvinyl chloride
US6126907A (en) * 1998-06-17 2000-10-03 Wada; Youichi Thermal decomposition apparatus of reversed temperature gradient type for polymer waste

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080994A2 (en) 2005-01-26 2006-08-03 General Atomics Method and system for fueling a power/heat generating unit with plastic material
EP1841842A2 (en) * 2005-01-26 2007-10-10 General Atomics Method and system for fueling a power/heat generating unit with plastic material
EP1841842A4 (en) * 2005-01-26 2009-07-01 Gen Atomics Method and system for fueling a power/heat generating unit with plastic material
WO2007138965A1 (en) * 2006-05-25 2007-12-06 Blest Co., Ltd. Liquefying apparatus
JPWO2007138965A1 (en) * 2006-05-25 2009-10-08 株式会社ブレスト Oiling equipment
JP5368790B2 (en) * 2006-05-25 2013-12-18 株式会社ブレスト Oiling equipment

Also Published As

Publication number Publication date
TW200302867A (en) 2003-08-16
US20050075521A1 (en) 2005-04-07
KR20040048368A (en) 2004-06-09

Similar Documents

Publication Publication Date Title
WO2003064561A1 (en) Method and plant for converting plastic into oil
US4454427A (en) Incinerator and fume separator system and apparatus
EP0823469B1 (en) Method and apparatus for recovering oil from waste plastic
US4753181A (en) Incineration process
JP2010505021A (en) Apparatus and method for pyrolyzing oil from plastic waste
JPH07505824A (en) Thermal conversion decomposition reaction system
EP2320141A1 (en) Method for incinerating waste by two-stage swirling flow fluidized bed incinerator
EP2478298B1 (en) Waste treatment apparatus and method
JP2005272529A (en) Liquefaction equipment of waste plastics
JP2004168589A (en) Reactor for waste incineration and post-incineration dust collection, neutralization and catalysis of waste gas, post-catalytic fertilizer plant and its structure
JP2004269755A (en) Liquefaction plant
CN215799322U (en) Fast pyrolysis treatment organic pollution solid waste system
JP2923909B2 (en) Pyrolysis furnace for polymer waste
JP2007154201A (en) Decomposition treatment method and decomposition treatment apparatus for waste plastic material
JP2003213276A (en) Method and plant for converting plastic into oil
PL194973B1 (en) Apparatus for thermal decomposition of scrap plastic
RU2473841C1 (en) Method and device to recycle organic components of urban and industrial wastes
JP3507807B2 (en) Pyrolysis equipment
JP3732640B2 (en) Waste pyrolysis melting combustion equipment
JPH11118124A (en) Fluidized gassifying/melting apparatus, and method thereof
JP3327786B2 (en) Oil recovery method from waste plastic
JPH08110024A (en) Heat treatment method of rubber waste
JP3459758B2 (en) Thermal decomposition combustion melting equipment for waste
JP6932401B1 (en) Waste plastic oiling equipment and oiling method
JP4702869B2 (en) Waste treatment method and treatment equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020037001944

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020037001944

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10502624

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (EPO FORM 1205A DATED 20.10.04 )

122 Ep: pct application non-entry in european phase