WO2003063078A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2003063078A1
WO2003063078A1 PCT/JP2003/000474 JP0300474W WO03063078A1 WO 2003063078 A1 WO2003063078 A1 WO 2003063078A1 JP 0300474 W JP0300474 W JP 0300474W WO 03063078 A1 WO03063078 A1 WO 03063078A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
stage
lens
imaging
imaging device
Prior art date
Application number
PCT/JP2003/000474
Other languages
French (fr)
Japanese (ja)
Inventor
Akinori Kinugawa
Yoshihiro Hanagata
Kazuhito Dobashi
Masahide Shirasu
Original Assignee
Matsushita Ecology Systems Co., Ltd.
Nisca Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002011782A external-priority patent/JP2005215711A/en
Priority claimed from JP2002011791A external-priority patent/JP3948962B2/en
Priority claimed from JP2002011787A external-priority patent/JP2005215712A/en
Priority claimed from JP2002011798A external-priority patent/JP4005373B2/en
Priority claimed from JP2002011795A external-priority patent/JP4222759B2/en
Application filed by Matsushita Ecology Systems Co., Ltd., Nisca Corporation filed Critical Matsushita Ecology Systems Co., Ltd.
Publication of WO2003063078A1 publication Critical patent/WO2003063078A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Definitions

  • the light when light of a plurality of different wavelength regions is irradiated, the light is illuminated by the irradiation light.
  • the present invention relates to an image pickup apparatus for picking up an image of a minute individual that is excited and generates light having a wavelength different from the wavelength region of the irradiation light (hereinafter referred to as “fluorescence”) and converts the image into an electric signal.
  • the pateria When bacteria are given special reagents and irradiated with light in a plurality of different specific wavelength regions, the pateria are known to produce fluorescence in a wavelength region different from the irradiated light depending on their life and death. I have. For this reason, a specimen containing bacteria to which such a special reagent has been given is loaded on a stage, the fluorescence of the specimen is imaged, and the obtained image data is subjected to image processing to thereby determine the number of battery cells in the specimen. It is possible to count.
  • the brightness of the fluorescence of the battery is usually weak, but increases with the amount of light applied. Therefore, in an imaging device for imaging the fluorescence of bacteria, in order to receive fluorescence of illuminance of a predetermined amount or more from the bacteria in the sample, the stage on which the sample is loaded is irradiated uniformly and with an illuminance of a predetermined amount or more. There is a need.
  • the photoelectric conversion means (means for converting an optical image into an electric signal; hereinafter, appropriately referred to as an “image sensor”) such as a CCD camera must be directed in a direction to observe the fluorescence of bacteria. Therefore, when observing the image sensor from above the sample loading stage, light cannot be illuminated from below the stage. For this reason, light is illuminated obliquely from above the stage, but in order to irradiate light on the stage with uniform illuminance and at a predetermined illuminance, it is necessary to irradiate light from multiple positions. . For this reason, in the imaging device of the prior art, in order to irradiate the stage with high illuminance light, the irradiation light from the light source is used. Light was shining on the stage.
  • an image reading device such as an image scanner for reading an image of a document document or the like
  • a three-color switchable color separation is performed in an optical path between an imaging lens and an image sensor.
  • a color filter is arranged.
  • the color image reader reads the image data, for example, for each of the three primary colors in the document document by switching between the three color filters.
  • Japanese Patent Application Laid-Open No. 2000-322214 discloses an example of such a color image reading apparatus.
  • the thickness of a color filter in the form of a photoelectric conversion chip in a color image sensor is changed to adjust the optical path length for each color.
  • the wavelength range of the light source is limited, such a method can be used.However, when light in a plurality of wavelength ranges is imaged by the same imaging means, such as fluorescence from a battery, Such a method of adjusting the optical path length for each color cannot be adopted because the structure becomes very complicated and the apparatus becomes large. Also, a method of reducing chromatic aberration by designing a combination of a plurality of lenses having different refractive indexes complicates the structure and increases the cost. The same applies to the configuration in which the switching filter is inserted into the lens unit (lens means).
  • an imaging apparatus for imaging weak fluorescence from bacteria in a specimen a magnifying optical system has to be employed in order to precisely image a subject having a weak light amount. Therefore, in such an image pickup apparatus, the depth of focus is extremely small, and the adjustment of the focal position for each light receiving wavelength range is indispensable.
  • the outline of the pateria cannot be grasped on the basis of the imaging data, and the number of individuals of the nocteria can be reduced. Accurate counting cannot be performed.
  • the size of the individual to be imaged is extremely small.
  • the stage must be divided into a plurality of imaging unit areas for imaging (several micrometers). For this reason, an image is taken while the stage is moved in the X and Y directions.
  • the distance between the imaging surface and the condenser lens is fixed (for example, It is necessary to maintain the focal length of the lens within the range of (number + microphone).
  • the distance between the imaging surface and the condenser lens must be kept constant according to the difference in the shape and the like of the collection kit. Disclosure of the invention
  • An object of the present invention is to provide an imaging apparatus capable of imaging weak fluorescence from a subject having a plurality of different wavelength regions having various problems as described above by using a mechanism as simple as possible.
  • the present invention also provides such an image pickup apparatus, in which an almost uniform irradiation of the entire imaging region is realized by a small-sized stage and a fixing means having a simple structure without mounting an automatic focus adjustment device, It is an object of the present invention to provide an imaging device that can keep a distance between an imaging surface and a collection kit within a certain depth of focus range corresponding to a plurality of types of collection kits.
  • the present invention further irradiates a uniform amount of light of a predetermined amount or more on the upper surface of the stage on which the sample is mounted, and easily adjusts the position of the light source in relation to the spot center of the light source and the optical axis of the imaging camera. It is an object of the present invention to provide an imaging device capable of performing such operations.
  • the present invention is an imaging apparatus that captures an image of a minute subject that emits light in a wavelength region different from this wavelength region in accordance with irradiation light of at least two wavelength regions and converts the image into an electric signal.
  • a stage for loading a subject including an individual, light source means for illuminating a surface of the stage on which the subject is loaded, light switching means for switching irradiation light emitted by the light source means to light rays of a plurality of different wavelength regions, A lens means for condensing light from the subject irradiated by the plurality of light beams having different wavelength ranges, and an image sensor for converting the two-dimensional image light condensed by the lens means into an electric signal Is switched according to the switching of the light beam by the light switching unit.
  • An imaging apparatus comprising: two or more filter units, wherein the filter unit is disposed in an optical path between the lens unit and a position where the irradiation light of the light source unit is emitted.
  • the present invention provides an imaging device for imaging light in a plurality of different wavelength regions from a subject including an individual, in which a difference in optical path length caused by a difference in the wavelength region can be adjusted with a simple mechanism.
  • a difference in optical path length caused by a difference in the wavelength region can be adjusted with a simple mechanism.
  • the present invention also provides a stage on which a collection kit including an individual to be imaged is loaded, and a fixing means provided on the stage so as to be openable and closable, and fixing the collection kit and providing an imaging opening.
  • Light emitting means for converging light from the light emitting means and projecting it as a light beam onto the stage; light source means for irradiating the stage with light; and a direction substantially perpendicular to the stage.
  • An imaging device is provided, wherein the imaging opening is opened such that the light beam emitted from the light converging means is applied to the entire region to be read on the stage. It is intended.
  • substantially uniform light beams can be radiated to the entire imaging area by the small-sized stage and the fixing means having a simple structure without mounting the automatic focus adjustment apparatus.
  • the present invention further includes a stage for loading a subject including an individual to be imaged, light source means for irradiating a light beam to a stage surface of the stage, and condensing light from the subject irradiated by the light source means.
  • a lens unit that converts the two-dimensional image light condensed by the lens unit into an electric signal, and the light source unit irradiates the stage surface with light obliquely from above.
  • Rays Means holder means for supporting the plurality of light means so that light emitted from the plurality of light means irradiates substantially the same position on the stage surface, holder means and the lens means And a fixing means for integrally fixing and, and an image pickup apparatus characterized by having:
  • the light beam means includes a first light beam means having a light beam means for emitting a light ray in a first wavelength region, a second light beam means having a light beam means for emitting a light beam in a second wavelength region, Wherein each of the first light beam means and the second light beam means further comprises a plurality of light beam means for irradiating the stage surface with light beams from a plurality of directions symmetrical to the lens means. It is composed.
  • the present invention irradiates the upper surface of the stage on which the sample is mounted with a uniform amount of light of a predetermined amount or more, and easily adjusts the position of the light source in relation to the center of the light spot and the optical axis of the imaging camera.
  • an image pickup device capable of performing the above was realized.
  • FIG. 1 is a side view of an imaging device of the present invention and a data processing device connected to the imaging device.
  • FIG. 2 is an overall perspective view of the imaging apparatus.
  • FIG. 3 is a plan view mainly showing the vicinity of a light source when the imaging device of FIG. 1 is viewed from above.
  • FIG. 4 is an enlarged side view showing a part where a lens unit (lens means) and a light source (light, di means) are attached to a flange (holder means).
  • FIG. 5 shows a sectional view of the internal structure of the rod light source.
  • FIG. 6 is a plan view of the stage of the imaging apparatus when observed from above.
  • FIG. 7 shows (a) a side view and (b) a cross-sectional view in which an emblem kit is mounted on a stage of the imaging apparatus.
  • FIG. 8 shows (a) a side view and (b) a cross-sectional view in which a film kit is mounted on a stage of the imaging apparatus.
  • FIG. 9 is a diagram for explaining details of the imaging opening of the kit holder.
  • FIG. 10 is a control block diagram of the imaging apparatus.
  • FIG. 11 shows a perspective view of the filter moving means.
  • FIG. 12 shows a configuration diagram of a subject, a filter unit, and a lens unit.
  • FIG. 13 shows a flowchart of the imaging operation of the present apparatus.
  • FIG. 14 is a diagram showing terminals of an imaging means (image sensor).
  • FIG. 15 is a flowchart showing background level removal.
  • Figure 16 is a graph showing the exposure time at the ideal subject (bacteria image) level.
  • FIG. 17 is a diagram showing the appearance of “bright spots”.
  • FIG. 18 is a diagram showing the line of the “fungus + background” level and the background level of each frame.
  • FIG. 19 is a diagram showing a usable range of a pixel frame.
  • FIG. 20 is a diagram showing that background outputs overlap and white noise and the like specific to semiconductors are superimposed.
  • FIG. 21 is a diagram showing that ⁇ ⁇ is the black level in the ith frame, and that the white noise person Nw is always superimposed regardless of the exposure.
  • FIG. 22 is a diagram showing that white noise soil Nw is superimposed on the video level of a certain bacterium.
  • FIG. 23 is a diagram showing a list of various forms of the adding means.
  • FIG. 24 shows the wavelength relationship between irradiation light and exposure (including filter characteristics) to the photoelectric conversion element.
  • This imaging device is an inspection system equipped with an optical system and a photoelectric conversion element such as a CCD camera, which is used for acquiring images containing bacteria (fungi) and examining the numbers of living bacteria and dead bacteria.
  • a photoelectric conversion element such as a CCD camera
  • MOS complementary metal-oxide-semiconductor
  • the type is limited to CCDs. Do not mean.
  • a general camera captures the reflected light from the illuminated subject and obtains image data for the image.
  • a special chemical solution (reagent) is included in the specimen, which is the measurement object in the subject. In this method, the photoreaction depends on the state of the living or dying bacteria to be detected.
  • This photoreaction is photoexcitation caused by light of a specific wavelength, and the energy of the fluorescence generated by bacteria is very small compared to the light energy to be irradiated. I can't do it. If the strong irradiation light enters the photoelectric conversion element as it is, it will be saturated. Therefore, it is necessary to cut between the irradiation light and the fluorescence of bacteria excited by the irradiation light. Further, after the light is cut, the exposure time of the photoelectric conversion element is set to be considerably longer than usual in order to acquire weak fluorescence and convert the image data into image data, so that the charge is sufficiently accumulated in each photodiode. Required. In addition, it is necessary to remove background noise and white noise generated at this time.
  • the charge storage time in the photodiode constituting each pixel is on the order of several tenths of a second in a normal standard, whereas in the case of the present example, it may be several seconds.
  • a phenomenon of generation of a bright spot occurs due to imperfect formation of a semiconductor.
  • a luminescent spot is a pixel whose charge is not normally accumulated in a photodiode in response to light input, or which has an abnormally high voltage output due to an abnormal process of charge accumulation and transfer. Means When a bright spot occurs, the bright spot is treated as if it were fluorescent light generated by a pattern.If the size of the detection target is smaller than a few pixels, the relevant bright spot is mistaken for the detection target. Weave.
  • the background (where the individual is not present in the specimen) is a resin-containing specimen or a film with an adhesive layer to adhere bacteria. Both are colored as dark as possible in order to obtain the fluorescence of the batteria efficiently (with good contrast). It is dark gray rather than completely black, When emitted, it produces reflected light.
  • the inspection is not performed with the reflected light of the irradiated light, but a special chemical solution is contained in the pat- ter, and ultraviolet light or green light is irradiated in this state.
  • bacteria containing the chemical solution generate fluorescence.
  • ultraviolet light with a dominant wavelength of 370 nm N SHU 590
  • bacteria emit fluorescence with a dominant wavelength of 461 nm.
  • green light with a dominant wavelength of 525 nm N SHU 590
  • fluorescence with a dominant wavelength of 617 nm is generated.
  • FIG. 24 (c) shows the spectral characteristics of the filter. Fluorescent light is weak to the illuminating light, and because the wavelengths are close to each other, the wavelength of the illuminating light must be adjusted in the light path to receive light.
  • UV light is attenuated from 360 nm and is irradiated with a cut filter (U360), which has the characteristic of attenuating the transmittance to 0% at the point of about 400 nm.
  • U360 cut filter
  • a filter called L42 that transmits a wavelength longer than 420 nm is inserted.
  • fluorescence with a dominant wavelength of 461 nm can be acquired properly. This fluorescence occurs with live and dead bacteria.
  • the green side uses a filter.
  • a bandpass filter BP 535 that transmits only from 450 nm to 550 nm is attached to the green light source (dominant wavelength 536 nm).
  • the light source LED NS PG 500 S emits light with a dominant wavelength of 525 nm from 450 nm to 650 nm, but its tail is emphasized by the bandpass filter described above.
  • a filter called O58 that transmits 580 nm or more. Fluorescence with a dominant wavelength of 617 nm can be obtained. This fluorescence is generated only for dead bacteria. Since the intensity of this fluorescent light is weak, it requires an exposure time of about 2 seconds, during which the bright spots described above are generated. Therefore, it is preferable to proceed to the counting of the number of individuals after performing the processing for suppressing the generation of the bright spot.
  • the color filter is turned off.
  • This is a device that acquires monotone images for two wavelengths.
  • the subject is irradiated with irradiation light of two different wavelengths (ultraviolet light and green light) from two pairs of light sources.
  • all pixels have the same wavelength at the acquisition timing of certain image data, and the difference in optical path length for each wavelength is constant unless the lens system is changed. It is optional to do so.
  • the amount of optical path length correction will change, and adjustment means will have to be replaced. Needless to say.
  • the object, the switching filter, the lens unit, and the image sensor are configured in this order, and the switching filter has a configuration in which the thickness of each of two different wavelength filters is changed.
  • FIG. 1 is a side view of an imaging apparatus 1 for counting the number of individuals of a subject according to the present invention, and an entire data processing apparatus 100 connected to the imaging apparatus 1.
  • FIG. 2 is an overall perspective view of the imaging device 1.
  • the imaging apparatus 1 performs command control, and is connected to a data processing apparatus 100 that determines the number of individuals such as bacteria from an image via an interface cape 101. I have.
  • the imaging device 1 includes, as main components, a stage 2 on which a subject to be inspected is placed, a front cover 5 which is opened and closed for operations such as placing a subject (sample) on the stage 2, and the like.
  • a filter moving unit 23 that supports a plurality of filters and moves to switch the filters according to the switching of light emission; and a filter moving unit 23 that moves the position from the operability when the sample is placed on the stage 2. Stage moving part 9 and power.
  • Stage 2 consists of an emblem kit 40 (first collection kit, shown in Fig. 7) or a film formed between the upper surface of the upper tape 20 Install kit 41 (second collection kit, shown in Figure 8).
  • Kit Honoreder 21 is fixed with lock lever 22.
  • the upper table 20 is fixed on the X table 25, and the X table 25 is fixed on the Y table 26. It is.
  • the upper table 20 on the X table 25 is supported at four points by elastic plates (panels) 35 at four places.
  • the positioning jig is temporarily fixed, and the upper table 20 that is energized by the panel is this jig. Is brought into contact with it, and it is made to be level.
  • the upper table 20 is screwed by the lock plate 36 while positioning. After that, different jigs are attached to the lens unit 3, and the final alignment of the stage 2 (upper table 20) and the lens unit 3 is performed.
  • the stage moving section 9 is provided with an X1 sleeve 31 and an X2 sleeve 32 that are slidably fitted to the X1 shaft 27 and the X2 shaft 28 at the lower part of the X table 25, respectively.
  • the lower part of the Y table 26 is provided with a Y1 sleeve 33 and a Y2 sleeve 34 that are slidably fitted to the Y1 shaft 29 and the Y2 shaft 30, respectively.
  • Each is driven by the belt by the X drive unit 8 and the Y drive unit 7, respectively.
  • the power is turned on to the device by the power switch 10, and the initial operation starts.
  • the stage 2 is first moved to the reference position. This reference position is a position where the subject is imaged, and is set directly below the lens unit 3.
  • Stage 2 has X—HP sensor 1 that indicates the reference position in the X direction along the X1 shaft 27, X2 shaft 28, Y1 shaft 29, and Y2 shaft 30 shaft directions. Move to the position where both 1 and Y-HP sensor 1 and 2 indicate the reference position in the Y direction.
  • a standby state is entered.
  • a signal indicating that the operator has opened the front cover 5 is issued from a cover sensor (not shown). According to this signal (cover open signal), the stage 2 moves to the front position where the front cover 5 is opened.
  • the open state of the front cover 5 is maintained by the coil spring 5a.
  • the signal of the cover sensor is transmitted to the data connected via a predetermined interface. It is sent to the processing unit 100 and displays on the display that the preparation is completed.
  • the operator instructs the data processing device 100 to start measurement.
  • the instructed data processing device 100 sends a measurement start command to the imaging device 1.
  • the control unit of the imaging device 1 controls the Y drive unit 7. To move the stage 2 to the initial shooting position, which is the home position for shooting.
  • the data processing device 100 is a personal computer.
  • the photographing of the object to be photographed in this apparatus is repeatedly performed while the position of the stage 2 is gradually changed.
  • the difference between measuring the emblem kit 40 and measuring the film kit 41 is different.However, if the external shape of the specimen, which is a sample, is extremely small with a size of several microns, for example, the entire area to be photographed is the emblem kit 40. In this case, the area is 12 mm * 9 mm, and the area that can be acquired in one shot is 1.2 mm * 0.9 mm, so 100 shooting frames are required. In the shooting process, shooting is performed 10 times while moving in the Y direction, and is repeated in the X direction.
  • the image data is transmitted to the data processing device 100.
  • the data processing device 100 requests the imaging device to acquire the next frame, whereby the imaging device performs position movement and re-shooting. In this way, necessary frames are repeatedly photographed. After all necessary frames have been captured, Stage 2 returns to the home position described above. A detailed description of this imaging operation will be described later.
  • Fig. 3 is a plan view of the light beam unit 4 as viewed from above and below the device.
  • Fig. 4 is an enlarged view of a portion where the lens unit 3 and the light source 6 are attached to the flange 51 (holder means). Is shown.
  • the light source, part 4 includes a pair of a mouth light source 6a and a mouth light source 6b as a first irradiation means, and a pair of a rod light source 6c and a mouth light source 6d as a second irradiation means. It consists of books.
  • Each of the aperture light sources 6 has a substrate 50a, 50b, 50c, 50d at an end, and a light emitting diode is installed on the substrate facing inward of the aperture.
  • the light source 6a and the rod light source 6b (NSHU590) emit light of the same wavelength (ultraviolet light having a wavelength of 370 nm) and work as a pair.
  • a second light source is a mouth light source.
  • the rod light source d (NSPG500 S) emit light of the same wavelength (green light with a wavelength of 525 nm) and work as a pair.
  • the reason that the two rod light source pairs (6a and 6b) are placed at the target position is to complement each other to make the illuminated surface almost uniform.
  • the light source pair (6a and 6b) and the rod light source pair (6c and 6d) cannot be turned on at the same time. And need not be orthogonal.
  • the six pairs of rod light sources irradiate the irradiation stage having the imaging means arranged above, so as to have the same illuminance at the same wavelength and diagonally from two force points symmetrical to the stage on the side of the imaging means.
  • the projection area matched the irradiation stage so that there was no uneven illuminance.
  • the stage 2 is located below the light emitting end opposite to the end where the light from the light source unit 4 is mounted on the substrate.
  • a lens unit 3 of lens means is provided above the light emitting end, and a filter unit 55 that advances and retreats in parallel to the surface of the stage 2 is located between the lens unit 3 and the light emitting end.
  • the filter unit 55 is equipped with an L42 finalizer 55b that cuts the wavelength band below 420 nm and an O58 filter 55a that cuts the wavelength band below 580 nm. ing. With this filter unit 55, the lens unit 3 can obtain clear fluorescence in which the overlapping wavelength bands are cut.
  • the sample to be tested for a battery is a sample that is fixed on a sample device called an emblem kit that can absorb water after the object has been stirred in the solution and then absorbs the test reagent. In some cases, it was directly collected on a film having Further, it may be possible to consider a fixing device having a different shape. As described above, since the enlarged image is formed on the photoelectric conversion element 96 (Fig. 12) using the magnifying optical system and photographed, the distance to the subject is extremely strict due to the small depth of focus. Is done.
  • Stage 2 has four adjustment points to adjust not only the height but also the level.
  • An attachment portion (not shown) of the lens unit 3 to the frame has an elongated hole so that an approximate adjustment can be performed so that the adjustment margin can be adjusted at these adjustment points. These adjustments determine the position of the stage and the position of the image sensor.
  • the rod light sources 6a, 6b, 6c, and 6d which are four rod-shaped light sources, are configured to be attached to one mounting flange 51 (holder means).
  • the mounting flange 51 has an X-shape when viewed from above, and includes a ring portion 57 for mounting the lens unit 3 and four arms 5 6a radially protruding from the ring portion 57. It consists of 56b, 56c and 56d.
  • the arms 56a, 56b, 56c, 56d are respectively provided with the mountings 62a, 2b, 62c, provided on the rod light sources 6a, 6b, 6c, 6d.
  • 6 2 d are provided with a mouth mounting part so that they can be adjusted and fixed by screwing.
  • Each of the four mounting portions of the flange 51 is formed such that when the mouth light source 6 is mounted, the irradiation light of the mouth light source 6 has an angle positioned on the optical axis of the lens means.
  • four rod light sources 6 a, 6 b, 6 c, and 6 d are used, but the number of the rod light sources in the present imaging device is not necessarily limited to the four rod light sources exemplified above. The number is not limited to six or eight, for example.
  • every other 3 of the 6 light sources have ultraviolet light at the position corresponding to the vertex position of the equilateral triangle, and the other 3 light sources have Green light is provided at the position corresponding to the vertex position of the equilateral triangle.
  • a pair of open light sources that emit irradiation light of the same wavelength irradiates the lens unit 3 symmetrically to the lens unit 3 on the stage 2 and obliquely from the opposite position to make the irradiation surface almost uniform in brightness. ing.
  • Each port light source 6 is fixed to one flange 5 1 so that the power of the two rod light sources can be evenly distributed over the entire photographing area on the stage 2 where the subject is photographed.
  • the steps 52 a, 52 b, 52 c, and 52 d formed on the outer wall of each rod are engaged with the flange 51 to perform positioning.
  • the control voltage is sent by sending data from the CPU to the DZA.
  • the illuminance is adjusted by adjusting the current for each line.
  • the step 52 of flange 6, and the mounting part of the flange 51 adjust the position, and then use the bracket 6 2 to attach the flange. 5 Screw it to the mounting part of 1.
  • This step is machined so that the tip of the rod light source 6 is positioned at a desired position with almost no design adjustment. If it is necessary to further adjust the position of the light source after screwing, the screws are loosened to facilitate adjustment.
  • the convergence position of the light is located on the optical axis of the lens means. It is configured to be adjustable to be placed.
  • a unit assembling step of the light source 6 and the flange 51 is performed in a light source means assembling step before an assembling step to the lens means.
  • the adjustment was almost completed, and by attaching the light source unit 4 to the lens means, the adjustment of the positions of the lens means and the light source means was completed, and the adjustment process was simplified.
  • FIG. 5 is a new view showing the structure of the mouth light source 6 using the mouth light source 6a as an example.
  • the colors, lenses, etc. of the light-emitting diodes of the mouth light source 6 differ between the 370 nm light source and the 525 nm light source.
  • the basic structure is the same. It can be broadly divided into a rod light source 60a and a rod light source 61a having a smaller diameter.
  • a light emitting diode 64a is fixed to the substrate by soldering via a diode spacer 63a to the substrate 50a.
  • Light emitting diode 6 A lens fixed with a ring 7 2a ahead of the light emitting direction of 4 a 6
  • the mouth light source 61a is inserted into the other end of the mouth light source 60a.
  • a ring 7 4a and spacer are attached.
  • the band cut filter 73a has a function of cutting an unnecessary foot portion in each light emission distribution, and the U360 filter 73a is provided in the rod light sources 6a and 6b, and similarly in the 5 35 5 is provided in the rod light sources 6 c and 6 d to sharpen the light emission distribution.
  • a lens 68a and a lens 69a fixed with a ring 70a and a spacer 71a. Further, a mounting portion 62 a for mounting to the flange 51 is provided. Then, a step 52 a formed by a difference in diameter between the rod 60 a and the rod 61 a is engaged with the flange 51. The mounting of the rod 61 is accurately positioned with respect to the mounting position of the rod of the flange 51 by the step 52a.
  • the rod light source is not fixed to four rods, and is used not only for the light source used by switching to two wavelengths but also for spot irradiation as a light beam without switching.
  • the purpose is to match the center to the optical axis of the lens unit (lens means) 3 so that the fluorescence of bacteria can be imaged.
  • the present invention is not limited to such a device.
  • FIG. 6 is a diagram in which the stage 2 of the imaging apparatus is observed from above.
  • the stage 2 is irradiated with light from the light source unit 4.
  • the light source unit 4 is composed of four rod light sources 6a, 6b, 6c and 6d.
  • Each of the mouth light sources 6 has a substrate 50a, 50b, 50c, and 5Od at an end.
  • the stage 2 is provided with fixing means 21 for holding the sampling kit, and an imaging opening W is provided at the center of the fixing means 21.
  • the stage 2 moves in the X and Y directions in the horizontal direction.
  • the center of the imaging aperture W is imaged through the lens unit 3.
  • the center is made to coincide.
  • the fixing means 21 corresponds to the lens unit (lens means) 3 corresponding to substantially the same position on the stage surface of the stage 2 illuminated by the plurality of light sources (light means) 6. It is configured to be movably supported.
  • the stage 2 moves right and left and up and down from the center by 8.5 mm, a half of 17 mm in both X and Y directions. For this reason, the imaging opening W is required to be 17 mm wider than the imaging region of 17 mm.
  • the size of the opening W is such that the illumination light from the light source 6 enters obliquely, and it is necessary to retract the edge of the window so as not to be blocked by the thickness of the fixing means 21 having the window. Therefore, the size of the opening W must be further enlarged.
  • the imaging opening W is circular and has the same size as the area for reading, the light (light ray) from each rod light source 6 will be blocked.
  • the diameter of the imaging aperture W must be larger than the diameter of the 34 mm circle so as to be larger than the beam diameter so that the irradiation light from the rod light source 6 is not blocked.
  • the size of the opening W becomes considerably large.
  • the lock portion 21a of the intermediate plate 42 used when the film kit is used is further lowered below the drawing shown in FIG. The necessity increases the size of the equipment, affecting the surrounding design.
  • the bulging angles Wa, Wb, Wc, and Wd allow a wide range of light irradiation, and the side The overhang is small and the device can be made more compact.
  • the kit holder 21 for fixing the collection kit on the stage 2 is equipped with an elastic body. By directly fixing the collection kit (emblem kit 40 or film kit 41) itself, the stage 2 Can be eliminated while moving in the XY direction.
  • the fixing elastic body (set leaf spring) is an elastic plate (panel) 25 2 and is attached to the kit holder 21 and the contact means (pin) attached to the kit holder 21 to the slider bull. In conjunction with, fix by pressing the sampling kit. If an attempt is made to provide a projection on the fixing elastic body that comes into contact with the contact pin, processing failures such as cracks may occur. In order to avoid this, no protrusion is provided on the fixing elastic body, and a protrusion is provided on the contact pin side in this embodiment. Further, operability can be improved by attaching a handle to the film holding plate.
  • the kit holder 21 automatically closes with the movement by engaging with the fixing plate holding means above the entrance near the case. I have.
  • the stage 2 on which a sample is placed is different only in the type of collection kit to be set in the kit holder 21.
  • the basic structure of both collection kits is the same. However, in the case of the film kit 41, the hole for accommodating the loading of the emblem kit 40 is closed, and the intermediate plate 42 (mounting means) having a height adjusting function is loaded.
  • FIG. 5 shows a state in which the en-prem kit 40 is mounted on the stage 2 of the imaging apparatus 1.
  • " which is not shown in the figure, is connected to the measurement unit and extends downward.
  • the object to be inspected is finely crushed and immersed in water to suck up the solution or directly remove the liquid in food. It is possible to observe the presence or absence of bacteria by impregnating the measuring part with the sucked liquid Even if the solution is spilled from the injection needle onto the device, there is no effect on the device As described above, the cover 20 c is provided on the lower surface of the stage 2.
  • FIG. 8 shows a state where the film kit 41 is mounted on the stage 2 of the imaging apparatus 1.
  • Film kit 4 1 has an adhesive surface and a protective film is deposited during storage. However, it should be removed from the specimen when used.
  • the emblem kit 40 Since the emblem kit 40 has a measuring portion above the flange portion 40a, the emblem kit 40 is positioned higher than the flange portion 40a.
  • the film kit 41 is in the form of a film and does not have such a height (thickness). Furthermore, the film may bend depending on how it is held down.
  • the lens unit 3 since the lens unit 3 is not only a magnifying optical system but also the contour of the individual is important for the measurement of the number of subjects, the depth of focus of photography is extremely narrowed.
  • the size of the bacteria to be imaged is small and is of the order of xm, there is only about one pixel (one pixel is 1.6 ⁇ ). Therefore, the height of the imaging surface needs to be set at the same level position in the two types of sampling kits.
  • the intermediate plate 42 is used also as a support for the film.
  • the stage 2 since the stage 2 has a hole 20a for inserting the emblem kit 40, if the film kit 41 is loaded as it is, the center will sink and the desired focal position will be set. Is no longer obtained.
  • the light emitted from each of the rod light sources 6a, 6b, 6c, and 6d does not contain many infrared components, but is not completely absent. If loaded, subsidence in the center would be accelerated.
  • FIG. 9 is for explaining the details of the imaging opening W of the kit holder 21.
  • FIG. 9 (a) shows a top view of the kit hono-redder 21 and
  • FIG. 9 (b) shows a cross-sectional view of the kit hono-leder 21.
  • the kit holder 21 has an opening (imaging opening) W O.
  • the shape of the imaging opening W O is substantially square except for the cut C formed in the side.
  • Symbols L1, L2, L3, and L4 in the figure indicate irradiation spots (light rays) from each light source.
  • the stage 2 moves with the imaging position fixed, the area W1 indicated by the broken line when the state shown in FIG. W2 moves to capture an image. Then, taking the X direction as an example, at least, if there is a window in the area W1, the light beam will not be blocked, but it will move by M, so The imaging aperture must also be increased by M. Therefore, the actual imaging opening has a size of WO.
  • the imaging aperture becomes large, in order to pursue a little more compactness, if the apex angle of the rectangle is located in the direction in which the light beam is projected, the position of the side that is not related to the projection Should be cut out like C.
  • the kit holder 21 is fixed between the intermediate plate 42 and the sampling kit holding pin 251, which is urged by the elastic plate (panel) 25, holding the film kit 41 at point P.
  • the sampling kit holding pin 2 51 By bringing the sampling kit holding pin 2 51 closer to the irradiation position S 1, the size can be reduced, and the stability of the subject in the area W 3 to be read increases.
  • the imaging opening W0 in order to set the rightmost column in the entire reading area W2 to be read, the imaging opening W0 is moved to the left and the wall A1 is moved to A2. Move to the line position of. Therefore, the light spots L l and L 3 are not obstructed.
  • the imaging opening W0 in order to set the leftmost column in the entire reading area W2 to be read, the imaging opening W0 is moved to the right, and the wall surface B1 is moved to the line position of B2. I do. Therefore, the light spots L 2 and L 4 are not obstructed.
  • the minimum imaging opening W1 is, in other words, the area where the light beam is not blocked even when the stage (imaging opening) moves in any direction at the time of maximum movement. I can say.
  • the imaging opening W of the kit holder 21 is used to allow the object to be read to be seen in the direction of the imaging means.
  • the aperture was formed in a square shape with the direction in which the light source was arranged at the apex.
  • the kit holder 21 has a considerable thickness. This is to ensure the rigidity required to tighten the depth of focus and the rest position. Accordingly, since each ray entering obliquely is collected and irradiated to the central spot S1 within an unobstructed range, at least a window in a region W1 indicated by a wavy line is required. This is when stage 2 does not move, This is because the small reading area W3 located substantially at the center of the spot S1 is repeatedly read while moving in the X and Y directions in the entire reading area W2. As described above, in FIG. 9, the entire reading area W 2 is drawn as a square for easy understanding, but the area including the individual to be detected is not necessarily a square. To the extent that the presence of the individual is guaranteed. Further, in the example of FIG. 9, the film kit 41 is used as an example, but an intermediate plate 42 is provided below the film kit 41. (See Fig. 8)
  • FIG. 10 shows a control block diagram of the present apparatus.
  • the operator instructs the data processor 100 (see FIG. 1) connected to the interface 80 to start measurement.
  • the instructed data processing device 100 sends a measurement start command to the imaging device 1.
  • the control means 81 that has received the measurement start command via the interface 80 transmits measurement instruction data to the exposure control means 82.
  • Control means 81 adding means for cumulatively adding image data received a plurality of times with the same or different exposure times, counting means for counting the number of individuals (for example, the number of bacteria) based on the image data, And a clock means for controlling the exposure time, a pixel value hierarchy dividing means, a background position specifying means, a background position calculating means, and a filter moving means.
  • the counting means need not be in this imaging device, but rather it may be more convenient, if any, in the data processing device 100 to be partly or entirely present as a program. Counting the number of individuals requires a high-speed real number operation when the contour extraction method is used to identify the white area existing in the black background, and this requires an external device such as a personal computer. This is because it is preferable to use a data processing device. It is also convenient in terms of upgrading this algorithm.
  • the added image data is sent to the data processing device 100 via the interface 80, and the number of individuals (for example, the number of bacteria) of the subject is determined based on the image data in the data processing device. Is counted by the counting means.
  • Fig. 23 shows a list of modes in which such individual number adding means and counting means are mounted.
  • control means 81 controls the exposure instruction data instructed to each rod light source 6, the irradiation instruction data transmitted to the irradiation means 83, and the current If it is necessary to move the filter unit 55 based on the current position of the filter unit 55, a move instruction is issued to the filter moving unit 23.
  • the fluorescence of the specimen on the stage 2 that emits light by the irradiation light is collected by the lens unit (lens means) 3 and transmitted to the photoelectric conversion means 84.
  • the photoelectric conversion means 84 transmits the received two-dimensional image signal to the A / D converter 85 to convert it into binary image data, and the AZD converter 85 converts the digitally converted data into measurement data.
  • Stage 2 is located below the light-emitting end of the light source unit 4 opposite to the end where the light from the light-emitting unit 4 is transmitted.
  • a lens unit 3 is provided above the light emitting end, and a filter unit 55 that advances and retreats in parallel with the surface of the stage 2 is located between the lens unit 3 and the light emitting end.
  • the filter unit 55 the light in the wavelength band below 420 nm is turned on.
  • the L42 filter 55b and in the light in the wavelength band below 580 ⁇ are turned on.
  • O58 Finoleta 55a is installed.
  • FIG. 11 shows a perspective view of a filter moving section (filter moving means) 23.
  • the filter moving unit 23 includes a driving unit 90 for driving the support frame 94, the filter unit 55, and the stage 2 in parallel with the surface of the stage 2, and a driving force of the driving unit 90. "The drive port 9 1 for transmitting to the unit 5 5 and the panel 9 2 which is locked to the support frame 9 4 and the drive port 9 1 and urges the drive port 9 1 to the stage 2 side. Has been done.
  • the light source switching determines that the filter unit 55 needs to be moved. Then, the control means 81 gives a drive instruction for moving the filter unit 55 to the drive means 90 of the filter moving means.
  • the driving means 90 drives the filter unit 55 to advance and retreat in parallel with the surface of the stage 2 via the driving port 91.
  • FIG. 11 shows a state in which the O 580 filter 55 a that focuses on a wavelength of 580 nm or less has moved to the imaging position.
  • the driving means 90 performs driving for movement, moves the filter unit 55 in the direction of the arrow A, and moves the filter unit 55 in a wavelength band lower than 420 11 m. Move the L42 filter 55b that cuts light to the imaging position.
  • the focal length of the lens 3a changes depending on the wavelength.
  • the UV light received by the L42 filter 55b which cuts the wavelength in the band below 420nm
  • the O58 filter which cuts the wavelength band where the focal length of the lens 3a is 580nm or less. 5 Shorter than the focal length of the green light received at 5a.
  • the light received by the L42 finoletor 55b which cuts the wavelength band below 420 nm, has a focal position before the CCD96 (see FIG. 12).
  • the image when this light reaches the CCD 96 is in a so-called out-of-focus state. Therefore, in order to properly adjust the focal position, it is necessary to adjust (exchange) the position of the lens 3a, adjust the position of the CCD 96, or adjust the position of the object.
  • the image pickup device 1 is an enlarged optical system, and the contour of an individual cannot be clearly extracted unless the depth of focus is strictly observed. Since it is a square-radiation exposure system, there is little background noise, and even if edge-enhanced image processing is performed, the original image quality is required sufficiently.
  • an optical path length adjusting means 95 for adjusting the optical path length is provided in one of the filters of the filter unit 55 for adjusting the focal length.
  • FIG. 12 shows a configuration diagram of the sample 99, the filter unit 55, and the lens means (lens unit) 3.
  • FIG. 12 ( a ) shows that the lens 3a is focused through a filter 55b (in the case of green light, the filter 55a) to receive the fluorescence generated by the subject 99.
  • the focal position X is the fluorescent light (6 (17 nm), the focal position coincides with the light receiving surface of the CCD 96 at the focal position.
  • the focal position Y is the focal position when the fluorescent light (461 nm) of the subject 99 irradiated with the ultraviolet light is received, and the focal position Y is in front of the light receiving surface of the CCD 96.
  • the difference in optical path length chromatic aberration
  • a member separate from the filter In order to adjust the optical path length, there is provided an optical path length adjusting means that can be replaced by a member separate from the filter.
  • the optical path length adjusting member 95 is placed on the filter 55b.
  • the optical path length adjusting member 95 is an adjusting glass 95.
  • the fluorescence of the subject 99 is refracted by the adjusting glass 95, and the optical path length is adjusted. With this adjustment, the focal position of the image passing through the lens 3a matches the light receiving surface of the CD 96. With the adjusting glass 95, the optical path length is adjusted, so that it is possible to obtain precise light having the same focal length even for light in different wavelength regions from the subject.
  • the optical path length adjusting means adjusts the focal position by superimposing the adjusting glass 95 on a predetermined filter. Then, the movement of the filter unit 55 is performed by the filter moving unit 23 according to an instruction from the control unit 81 based on the information on the exposure unit, the irradiation unit, and the information on the current filter type.
  • the stage 2 when mounting the subject 99, the stage 2 is moved to the front cover 5 open position, the front cover 5 (shown in FIG. 2) is opened, and the subject 99 is mounted.
  • the filter can be operated from above the filter unit 55 at the time of maintenance of the apparatus, even if dust adheres to the filter, maintenance can be easily performed.
  • a filter unit 55 is provided in the space between the stage 2 and the lens unit 3, and the filter is positioned above the light emitting position of the light source. There is no need to increase it. Furthermore, it can be said that the configuration is optically stable.
  • the imaging apparatus makes it possible to adjust, with a simple mechanism, different optical path lengths in a wavelength region in imaging weak fluorescence from an object having a plurality of different wavelength regions. It was possible to image minute specimens precisely without increasing noise light.
  • the imaging operation of the present apparatus will be described based on the flowchart shown in FIG.
  • the switch 10 of the device When the switch 10 of the device is turned on and the power is turned on (Sl), the CPU of the main body performs an initialization operation for starting imaging (S2).
  • S2 When the door (front cover 5) is opened, a signal to open the door is issued (S3).
  • the stage 2 moves to the front, which is the open position of the front cover 5, based on a movement command from the data processing device 100 receiving this signal.
  • the sample (subject) 99 of the emblem kit 40 or the fiem / rem kit 41 is mounted on the stage 2 (S4).
  • the stage 2 moves to the origin (home position, which is the initial position of the photographing position) (S6).
  • the signal of the cover sensor is sent to the data processing device 100 connected to the interface, and the preparation is displayed on the display.
  • the operator instructs the data processing device 100 to move the stage 2 to the measurement position (S7). Switch the LED filter (S8).
  • a measurement start command is sent to the imaging device to start measurement (S9), and data is taken in (S10).
  • the designated data processing device sends a measurement start command to the imaging device (S12).
  • the control unit of the imaging device moves the stage 2 to the home position. S7 to S12 are repeated until the measurement is completed.
  • an initialization operation for completing the measurement is performed (S13).
  • the stage 2 moves to the front where the front cover 5 is opened, opens the door (S14), and takes out the sampling sheet (S15).
  • the operations from S4 to S16 are repeated. If there is no next sampling sheet, close the door (S17), turn off the power and finish (S18, S19) o
  • the imaging aperture is opened so that the light beam from the light converging means is irradiated on the entire area to be read on the stage. Thus, light is applied to the entire area to be read in.
  • the sampling corresponding to a plurality of types of sampling kits can be performed without installing an expensive automatic focusing device.
  • a kit placement device was realized.
  • the photoelectric conversion means CCD966 itself, which is the control target, will be briefly described. Note that, here, the CCD 96 is described as an example of the photoelectric conversion means, but the invention can be applied to photoelectric conversion elements of the MS type or other types similarly.
  • photo sensors (such as photodiodes) are two-dimensionally arranged in a package.
  • the rooster area has transparent windows to allow light to enter.
  • Terminals VDD and GND apply the basic voltage.
  • Extract video signal There are ⁇ ⁇ ⁇ ⁇ ⁇ 1 and ⁇ ⁇ 2 terminals for clocks synchronized with horizontal video signal transfer from the VOUT terminal.
  • V ⁇ 1, V ⁇ 2, ⁇ 3, ⁇ 4 are vertical synchronization clocks for repeating horizontal synchronization in the vertical direction, and operate in four phases.
  • the ⁇ RG terminal is a reset gate that controls the exposure time of one screen.
  • the ⁇ SUB terminal is a clock terminal for clearing a small amount of charge that is internally accumulated due to photoelectric conversion by exposure and remains after passing by the transfer clock.
  • the exposure control means transmits exposure instruction data controlled for each rod light source to the irradiation means 83 based on the instruction data received from the control means 81.
  • Exposure control means 8 2 At least the first exposure time, which is longer than the minimum time for the individual to emit fluorescent light, and the second exposure time, which is the time when the photoelectric conversion means generates a pixel having an abnormal value due to long-time exposure, is set. The third time to perform is instructed to the irradiation means 83.
  • the irradiating means 83 which has received the exposure data, irradiates the specimen on the stage with light of a specific wavelength region for a predetermined exposure time and for a predetermined number of times. At this time, the control means 81 adjusts the exposure time by controlling the transfer clock and the Z or reset pulse of the photoelectric conversion means 84.
  • the irradiating means 83 has a light source control having a first mode in which the light source is turned on and exposed during multiple exposures according to the exposure time, and a second mode in which the light source is turned off and exposed.
  • the control means includes subtraction means for subtracting the image data acquired in the second mode from the image data acquired in the first mode.
  • the first method for counting the number of individuals contained in a sample is performed as follows.
  • the fluorescence data of the individual (bacteria) in the specimen on the stage 2 that emits light by the irradiation light is transmitted to the photoelectric conversion means 84.
  • Frame memory photoelectric converter 8 4 transmits to AZD converter 8 5 to convert the video signal received binary image data, A Roh D Compur motor 8 5 digital converted data as the measurement data 8 Send to 6.
  • the frame memory 86 transmits the stored data to the control means 81.
  • the counting means counts the number of individuals in the specimen that emit fluorescent light of a main wavelength different from the irradiated light of the specific wavelength region.
  • the adding means counts the number of individuals included in the specimen by cumulatively adding the image data at the same pixel position of the photoelectric conversion means.
  • the imaging device 1 includes an interface means 80 for transmitting image data, and an external data processing apparatus 100 connected via the interface means 80 to form the control means 81.
  • the processing is configured to be performed in cooperation with the data processing device 100. Therefore, both the adding means and the counting means may be on the imaging device 1 side having the photoelectric conversion element 96, or the data processing apparatus 1 which controls the imaging apparatus 1 having the photoelectric conversion element 96. It may be on the 0 side.
  • the adding means and / or the counting means may exist and be connected as independent units, or may be provided as a form such as an AS IC or a mask ROM.
  • the point is to find the background level when subtracting the background value from each image data.
  • the control means captures one shot of a partial area (for example, 20 dots X 20 dots) of the entire sample with a predetermined exposure time, for example, 2 seconds.
  • the pixel value hierarchy dividing means divides the received image data into a plurality of pixel hierarchies.
  • the pixel value level (8Bit: 0 to 255) is divided into, for example, four sections of 0 to 63, 64 to: L27, 128 to 191 and 192 to 255.
  • the background position specifying means records the pixel positions that fall into the 0 to 63 sections. For example, coordinates (5, 3), (7, 10), (11, 12).
  • the record may be all or about five points, but here, three points are P1, P2, and P3. This is the representative of the three backgrounds.
  • the background position calculation means resets the CCD and starts again.
  • the value after 2 seconds was fixed and recorded in the memory.
  • the AZD conversion is continuously and repeatedly recorded focusing on only the three points Pl, P2, and P3. For example, it is performed in units of 1 O Oms.
  • LV (X, Y) When X and Y are the coordinates of the area, calculate LV (X, Y) one Bk for all X and Y. This entire data is transmitted to the data processing device via the interface as imaging data obtained by irradiation with ultraviolet light.
  • green light irradiation imaging is performed, and transmitted to the data processing device via the interface as image data acquired with green light.
  • the data processor uses these two frame images to count bacteria and calculate viable bacteria.
  • the imaging device 1 is connected to an interface means 80 for transmitting image data, and an external data processing device via the interface means 80, and the processing by each means constituting the control means 81 includes: It is configured to be performed in cooperation with the data processing device.
  • any of the pixel value hierarchy division means, the background pixel hierarchy division means, the background position calculation means, and the counting means may be provided on the imaging device side having the photoelectric conversion element 96 or the photoelectric conversion element 96 may be provided. It may be on the side of the data processing device that controls the imaging device provided.
  • any of these pixel value hierarchy division means, background pixel hierarchy division means, background position calculation means, and counting means may exist and be connected as independent units, or may be in the form of an ASIC or a mask ROM. It may be provided.
  • the present invention also makes it possible to emphasize the number of individuals of the subject by utilizing the characteristic shown in FIG. 24.
  • Figure 16 is a graph of ideal subject (bacteria image) level exposure time.
  • the background level around the subject is exposed as shown in FIG. 20, so that the background level acts greatly like the line of “bacterium + background” level in FIG.
  • the system can be used to irradiate batteries with ultraviolet or green light. Is a system that obtains the excitation energy to generate fluorescence, and the system tries to acquire the fluorescence. Therefore, not only the light reception level is low, but also the contrast between the background and the subject is low.
  • FIG. 18 shows this appearance state, in which the appearance frequency of the bright spot increases from the time exceeding the predetermined time TMT is graphed.
  • the fluorescence onset time T s shown in FIG. 16 is a predetermined time during which light of a specific wavelength given to a large molecule such as a bacterium accumulates energy, and fluorescence is generated after this T s . Therefore, the time period t which can expose (the CCD 96) without generating in abnormality signal to the brightness as seen from FIG. 16 and FIG. 17, the usable range shown in FIG. 17, "T S rather t ⁇ T LMT .
  • the CCD Since the CCD is guaranteed for the amount of light input to each pixel and the clarity of the output voltage, it is possible to perform a line meter calculation, which is equivalent to the result of continuous exposure by calculating V1 + V2 + V3. And an image with no bright spots.
  • an image without luminescent spots generated in this manner is subjected to binary elimination using a predetermined value experimentally obtained in advance, only the bacterial portion can be recognized as white. If binarization is performed while including the bright spots, the bright spots will be mistakenly recognized as tactics.
  • the individual is detected by binarization.However, the individual can be raised by filtering such as contour emphasis, etc.
  • the detection processing algorithm for performing You will consider the best method.
  • the brightness of the fluorescent light since the brightness of the fluorescent light is small, it does not have sufficient contrast with the reflected light level of the background, and in fact the background output shown in Fig. 20 overlaps, and white noise peculiar to the semiconductor is superimposed. ing.
  • a level for performing the above-described binarization must be set between the background value and the target value.
  • the black level is excluded from the video levels V1, V2, and V3 obtained by dividing into frames.
  • the black level B F is obtained for each frame as B F or B F2 , B F3 , and VI- B F V2—B F2 or V3—B F3 to obtain a beautiful image. But it's actually different.
  • White noise has a random cycle and cannot be canceled by image data processing. For this reason, the result of the above subtraction may rather increase the noise width (in some cases, the negative and negative and the positive and the positive may be deviated). Therefore, the address of the level N w ho Wa Itonoizu, it is preferable treated separately phase and deal with the black level B F.
  • the weight of N w is set to 1 Z 3 by using the value of the black level B tota 1 exposed at T 1 + T 2 + T 3 hours as V1 + V2 + V3—B total as shown in FIG. Can be reduced.
  • the AZD conversion is repeatedly performed with the exposure (sampling) before and after the target time T + T 2 + T 3 o'clock, and the number before and after digitally obtained is, for example, 10 points. By averaging the values, it can be approximated to the value of the center of B tota 1. Specifically, assuming that T1 + T2 + T3 uses 10 points before and after every 2ms in 2 seconds, 1.90, 1.91, 1.92, ... 1.9.9 9, 2, 2.01, 2.02, ⁇ The values that were A / D converted at 21 points in 2.1 are stored in the memory, and these values, 90 , V x .91 , V 2 .
  • V out V 1 + V 2 + V 3
  • the same pixel is sampled multiple times by exposure at different times, and background removal and noise cancellation are performed using the pixel values of the multiple times. Therefore, it is possible to use a plurality of neighboring points without making the pixel position of the operation value acquisition target strictly the same.
  • B Fi is black level in the i-th frame, always white noise ⁇ N W regardless of the exposure is superimposed.
  • each frame time T1, T2, T3 (assuming continuous exposure start) includes a fluorescence start time Ts (must be longer than Ts, Tl> Ts, T2> Ts, T3> Ts).
  • the range of the bright spot noise is not generated. Since the image data of the subject from multiple exposure times is added, the occurrence of luminance noise (bright spots) in the CCD 96 is eliminated, and the number of individuals included in the measured object with low light intensity can be saved. It was done.
  • FIG. 23 (a) shows an integrated device in which all of the imaging means, the adding means, and the counting means (individual counting means) are included.
  • Fig. 23 (b) shows a form in which an imaging device is interfaced to a combi- ter, and the individual is counted by the combi- ter.
  • Fig. 23 (c) shows a case where the addition means is unitized and only the accumulation function is independent. This is the case where the computer is sent to the computer and the individual power is counted on the computer side.
  • Fig. 23 (d) shows a form in which a normal camera is connected to a computer, and is an example in which accumulation processing and individual count processing are performed in the computer. In this case, it is often realized by software (program), but it is also possible to convert it to hardware and mount it on an option board.
  • This program may already exist in the computer, or may be recorded on a storage medium such as a CDRQM as a product attached to the imaging device.
  • Fig. 23 (e) is a networked case where the cable between the camera and the computer in Fig. 23 (d) is a cable, and this network is not limited to wired, wired and wireless. Can take a wide range of forms, LAN, Internet. Further, the CCD 96 has been described as an example of the photoelectric conversion means, but the present invention may be a MOS type or other type of photoelectric conversion element. Industrial applicability
  • the present invention is applicable to an imaging apparatus for imaging a minute individual that is excited by irradiation light in a plurality of different wavelength regions and generates light having a wavelength different from the wavelength region of the irradiation light, and converts the light into an electric signal. It is possible.

Abstract

An imaging device for measuring the number of minute objects that are excited by irradiation light in a plurality of different wavelength areas and produce feeble light having wavelengths respectively different from the wavelength areas of the irradiation light. An imaging device for imaging minute objects to be picked up that emit light, according to irradiation light in at least two wavelength areas, at wavelengths different from the wavelengths of the irradiation light, for conversion into electric signals, the device comprising a stage mounting thereon an object to be picked up including minute objects, a light source means for irradiating the object-mounting surface of the stage, a light switching means for switching irradiation light beamed from the light source means to rays of light in a plurality of different wavelength areas, a lens means for condensing light from the object irradiated with rays of light in the different wavelength areas, a photoelectric conversion means for converting a two-dimensional image light condensed by the lens means into an electric signal, and at least two filter means switched according to the switching of rays of light by the light switching means, the filter means being disposed between the lens means and the irradiation light emitting position of the light source means on the light path.

Description

技術分野  Technical field
本発明は、 異なる複数の波長領域の光が照射された時に、 この照射光によって 明  According to the present invention, when light of a plurality of different wavelength regions is irradiated, the light is illuminated by the irradiation light.
励起され、当該照射光の波長領域とは夫々異なる波長の光(以下、 「蛍光」という) を生じる微小個体を撮像して電気信号に変換するための撮像装置に関する。 The present invention relates to an image pickup apparatus for picking up an image of a minute individual that is excited and generates light having a wavelength different from the wavelength region of the irradiation light (hereinafter referred to as “fluorescence”) and converts the image into an electric signal.
 book
背景技術  Background art
バクテリアに特殊な試薬を与え、 これに異なる複数の特定波長領域の光を照射 すると、 パクテリァはその生死等の状態に応じて照射光とは異なる波長領域の蛍 光を生じさせることが知られている。 このため、 このような特殊な試薬を与えた バクテリアを含む検体をステージ上に装填し、 当該検体の蛍光を撮像し、 得られ た撮像データを画像処理することにより検体中のバタテリァの個体数を計数する ことが可能である。  When bacteria are given special reagents and irradiated with light in a plurality of different specific wavelength regions, the pateria are known to produce fluorescence in a wavelength region different from the irradiated light depending on their life and death. I have. For this reason, a specimen containing bacteria to which such a special reagent has been given is loaded on a stage, the fluorescence of the specimen is imaged, and the obtained image data is subjected to image processing to thereby determine the number of battery cells in the specimen. It is possible to count.
バタテリァの蛍光の輝度は、 通常微弱であるが照射される光の光量に応じて強 まる。 よって、 バクテリアの蛍光を撮像するための撮像装置においては、 検体中 のバクテリアから所定量以上照度の蛍光を受けるために、 検体を装填するステー ジ上を均一に且つ所定量以上の照度で照射する必要がある。  The brightness of the fluorescence of the battery is usually weak, but increases with the amount of light applied. Therefore, in an imaging device for imaging the fluorescence of bacteria, in order to receive fluorescence of illuminance of a predetermined amount or more from the bacteria in the sample, the stage on which the sample is loaded is irradiated uniformly and with an illuminance of a predetermined amount or more. There is a need.
また、 このような撮像装置においては、 C C Dカメラ等の光電変換手段 (光学 イメージを電気信号に変換する手段。 以下、 適宜 「イメージセンサ」 という) を バクテリアの蛍光を観察する方向に向けなければならないことから、 イメージセ ンサを検体の装填ステージの上から観察する場合、 ステージの下方から光を照明 することはできない。 このため、 ステージの上方斜めから光を照光することとな るが、 ステージ上を均一な照度で且つ所定以上の照度で光を照射するためには、 複数位置からの光の照射が必要である。 このため、 従来技術の撮像装置において は、 ステージ上を高照度の光で照射するために、 光源からの照射光 光してステージ上に照射していた。 In such an imaging apparatus, the photoelectric conversion means (means for converting an optical image into an electric signal; hereinafter, appropriately referred to as an “image sensor”) such as a CCD camera must be directed in a direction to observe the fluorescence of bacteria. Therefore, when observing the image sensor from above the sample loading stage, light cannot be illuminated from below the stage. For this reason, light is illuminated obliquely from above the stage, but in order to irradiate light on the stage with uniform illuminance and at a predetermined illuminance, it is necessary to irradiate light from multiple positions. . For this reason, in the imaging device of the prior art, in order to irradiate the stage with high illuminance light, the irradiation light from the light source is used. Light was shining on the stage.
ところで、 このような撮像装置におけるステージ上に光を照射するための光源、 は、 特定の波長領域の光が必要であることから、 これに適する発光ダイオードを 利用することが可能である。 近年、 広波長域の高輝度の光を発行する発光ダイォ ードが開発されているために、 これを光源、とした場合、 不要な波長領域の光を力 ットする色フィルターと組み合わせる必要がある。  By the way, since a light source for irradiating light on a stage in such an imaging apparatus needs light in a specific wavelength region, it is possible to use a light emitting diode suitable for this. In recent years, light-emitting diodes that emit high-brightness light in a wide wavelength range have been developed.If this is used as a light source, it must be combined with a color filter that emphasizes light in unnecessary wavelength ranges. is there.
一方、 文書ドキュメント等の画像を読み取るためのィメージスキャナ等の力ラ 一画像読取装置においては、 結像レンズとイメージセンサの間の光路中に、 色分 解を行うために切り替え可能な 3色のカラーフィルタが配置されている。 当該力 ラー画像読取装置は、 この 3色の力ラーフィルタの切り替えを行うことにより、 文書ドキュメントにおける例えば 3原色毎の画像データを読み取るのである。 特開 2 0 0 0— 3 2 2 1 4号公報は、 このようなカラー画像読取装置の例を開 示している。 ここに開示されている装置においては、 カラー用のイメージセンサ において光電変換チップ状の色フィルタの厚さを変更して、 色ごとの光路長を調 整するようにしている。 しかしながら、 光源の波長域が限定されている場合はこ の様な方法が利用できるものの、 バタテリァの蛍光のように、 複数の波長領域の 光を同一の撮像手段で撮像するような場合には、 このような色毎に光路長を調整 する方法は、 構造が非常に複雑になって装置が大型化こととなり採用できない。 また、 屈折率が異なる複数のレンズの組み合わせを設計することよって色収差 を減少させる方法も、 構造が複雑になりコストが高くなる。 レンズユニット (レ ンズ手段) の中に切り替えフィルタを揷入する構成も同様である。  On the other hand, in an image reading device such as an image scanner for reading an image of a document document or the like, a three-color switchable color separation is performed in an optical path between an imaging lens and an image sensor. A color filter is arranged. The color image reader reads the image data, for example, for each of the three primary colors in the document document by switching between the three color filters. Japanese Patent Application Laid-Open No. 2000-322214 discloses an example of such a color image reading apparatus. In the device disclosed herein, the thickness of a color filter in the form of a photoelectric conversion chip in a color image sensor is changed to adjust the optical path length for each color. However, if the wavelength range of the light source is limited, such a method can be used.However, when light in a plurality of wavelength ranges is imaged by the same imaging means, such as fluorescence from a battery, Such a method of adjusting the optical path length for each color cannot be adopted because the structure becomes very complicated and the apparatus becomes large. Also, a method of reducing chromatic aberration by designing a combination of a plurality of lenses having different refractive indexes complicates the structure and increases the cost. The same applies to the configuration in which the switching filter is inserted into the lens unit (lens means).
ところで、 検体中におけるバクテリアからの微弱な蛍光を撮像するための撮像 装置においては、 微弱な光量の被写体を精緻に撮像するために拡大光学系を採用 せざるを得ない。 従って、 このような撮像装置においては、 焦点深度はきわめて 小さく受光波長域ごとの焦点位置の調整は不可欠である。 また、 複数の波長領域 を有する蛍光毎に撮像する場合、 それぞれの撮像データにおいて少しでも焦点ボ ケがあれば、 当該撮像データに基づいてパクテリアの輪郭を把握できず、 ノ クテ リァの個体数の正確な計数ができないこととなる。  By the way, in an imaging apparatus for imaging weak fluorescence from bacteria in a specimen, a magnifying optical system has to be employed in order to precisely image a subject having a weak light amount. Therefore, in such an image pickup apparatus, the depth of focus is extremely small, and the adjustment of the focal position for each light receiving wavelength range is indispensable. In addition, when imaging is performed for each fluorescence having a plurality of wavelength regions, if there is any defocus in each of the imaging data, the outline of the pateria cannot be grasped on the basis of the imaging data, and the number of individuals of the nocteria can be reduced. Accurate counting cannot be performed.
さらに、 このような撮像装置においては、 撮像対象の個体のサイズが極めて小 さい (数マイクロメートル) ためにステージを複数の撮像単位領域に分割して撮 像しなければならない。 このために、 ステージを X方向及び Y方向に移動させつ つ撮像することとなるが、 個体の輪郭を精緻且つ明瞭に撮像するためには撮像面 と集光レンズとの間隔を一定 (例えば、 レンズの焦点距離である数 +ミク口ンの 範囲内) に維持する必要がある。 さらに、 検体を搭载するための採取キットが複 数種類用意されている場合には、 採取キットの形状等の違いに対応して撮像面と 集光レンズとの間隔を一定に維持しなければならない。 発明の開示 Furthermore, in such an imaging device, the size of the individual to be imaged is extremely small. For this reason, the stage must be divided into a plurality of imaging unit areas for imaging (several micrometers). For this reason, an image is taken while the stage is moved in the X and Y directions. In order to image the outline of the individual precisely and clearly, the distance between the imaging surface and the condenser lens is fixed (for example, It is necessary to maintain the focal length of the lens within the range of (number + microphone). Further, when a plurality of types of collection kits for mounting a sample are prepared, the distance between the imaging surface and the condenser lens must be kept constant according to the difference in the shape and the like of the collection kit. Disclosure of the invention
本発明は、 上述したような種々の課題を有する複数の異なる波長領域を有する 被写体からの微弱な蛍光の撮像を、 なるべく簡易な機構で撮像可能な撮像装置を 提供することを目的とする。  An object of the present invention is to provide an imaging apparatus capable of imaging weak fluorescence from a subject having a plurality of different wavelength regions having various problems as described above by using a mechanism as simple as possible.
本発明は、 また、 このような撮像装置において、 自動焦点調整装置を装着する ことなく、 撮影領域全体に略均一な光線の照射を小型形状のステージと簡易な構 造の固定手段によって実現し、 複数種類の採取キットに対応して撮像面と採取キ ット間の距離を一定の焦点深度範囲内に収めることを可能とする撮像装置を提供 することを目的とする。  The present invention also provides such an image pickup apparatus, in which an almost uniform irradiation of the entire imaging region is realized by a small-sized stage and a fixing means having a simple structure without mounting an automatic focus adjustment device, It is an object of the present invention to provide an imaging device that can keep a distance between an imaging surface and a collection kit within a certain depth of focus range corresponding to a plurality of types of collection kits.
本発明は、 さらに、 検体を搭載するステージの上面に均一で所定量以上の光量 を照射すると共に、 このための光源のスポット中心と撮像カメラの光軸との関係 において容易に光源の位置調整を行うことが可能な撮像装置を提供することを目 的とする。  The present invention further irradiates a uniform amount of light of a predetermined amount or more on the upper surface of the stage on which the sample is mounted, and easily adjusts the position of the light source in relation to the spot center of the light source and the optical axis of the imaging camera. It is an object of the present invention to provide an imaging device capable of performing such operations.
このため、 本発明は、 少なくとも 2波長領域の照射光に応じてこの波長領域と は異なる波長領域の光を発光する微小被写体を撮像して電気信号に変換する撮像 装置であって、 撮像対象の個体を含む被写体を装填するステージと、 前記ステー ジの被写体を装填した面を照明する光源手段と、 前記光源手段が発する照射光を 複数の異なる波長領域の光線に切り替えるための光切替手段と、 前記複数の異な る波長領域の光線によって照射された被写体からの光を集光するためのレンズ手 段と、 前記レンズ手段によつて集光された 2次元画像光を電気信号に変換するィ メージセンサと、 前記光切替手段による光線の切り替えに応じて切り替えられる 2以上のフィルタ手段とを備え、 前記フィルタ手段が、 前記レンズ手段と、 前記 光源手段の照射光を発する位置との間の光路に配置されたことを特徴とする撮像 装置を提供するものである。 For this reason, the present invention is an imaging apparatus that captures an image of a minute subject that emits light in a wavelength region different from this wavelength region in accordance with irradiation light of at least two wavelength regions and converts the image into an electric signal. A stage for loading a subject including an individual, light source means for illuminating a surface of the stage on which the subject is loaded, light switching means for switching irradiation light emitted by the light source means to light rays of a plurality of different wavelength regions, A lens means for condensing light from the subject irradiated by the plurality of light beams having different wavelength ranges, and an image sensor for converting the two-dimensional image light condensed by the lens means into an electric signal Is switched according to the switching of the light beam by the light switching unit. An imaging apparatus, comprising: two or more filter units, wherein the filter unit is disposed in an optical path between the lens unit and a position where the irradiation light of the light source unit is emitted. .
これにより、 本発明は、 個体を含む被写体からの複数の異なる波長領域の光を 撮像するための撮像装置において、 波長領域が異なることによって生じる光路長 の相違を簡易な機構で調整可能にすることにより微小サイズの個体の輪郭を精緻 に実現したのである。 さらに、 2以上のフィルタ手段を、 レンズ手段と光源手段 の照射光を発する位置の間の光路内に配置したことにより、 レンズ手段を倍率の 異なるものに付け替えする場合にも、 容易に光路長の再調整を可能にしたのであ る。  As a result, the present invention provides an imaging device for imaging light in a plurality of different wavelength regions from a subject including an individual, in which a difference in optical path length caused by a difference in the wavelength region can be adjusted with a simple mechanism. As a result, the outline of a minute-sized individual was precisely achieved. Furthermore, by arranging two or more filter means in the optical path between the lens means and the position where the light emitted from the light source means emits light, even if the lens means is replaced with one having a different magnification, the optical path length can be easily adjusted. This made it possible to readjust.
本発明は、 また、 撮像対象の個体を含む採取キットが装填されるステージと、 前記ステージに開閉自在に備えられており、 前記採取キットを固定すると共に撮 像用開口部を設けた固定手段と、 発光手段と当該発光手段からの光を収斂して前 記ステージ上へ光線として投光する光収斂手段と、 を備える前記ステージに対し て光を照射する光源手段と、 前記ステージの略垂直方向に位置し、 前記個体から の光を集光するレンズ手段と、 前記レンズ手段によって集光された光を電気信号 に変換する光電変換手段と、 を有する個体撮影用の撮像装置であって、 前記撮像 用開口部は、 前記光収斂手段から照射された光線が前記ステージ上における読取 対象領域の全域に照射されるように開口されていることを特徴とする撮像装置を 提供するものである。  The present invention also provides a stage on which a collection kit including an individual to be imaged is loaded, and a fixing means provided on the stage so as to be openable and closable, and fixing the collection kit and providing an imaging opening. Light emitting means; light converging means for converging light from the light emitting means and projecting it as a light beam onto the stage; light source means for irradiating the stage with light; and a direction substantially perpendicular to the stage. A lens means for condensing light from the individual, and a photoelectric conversion means for converting the light condensed by the lens means to an electric signal. An imaging device is provided, wherein the imaging opening is opened such that the light beam emitted from the light converging means is applied to the entire region to be read on the stage. It is intended.
これにより、 本発明に係る撮像装置においては、 自動焦点調整装置を装着する ことなく、 撮影領域全体に略均一な光線を照射を小型形状のステージと簡易な構 造の固定手段によって実現し、 複数種類の採取キットに対応して撮像面と採取キ ット間の距離を一定の焦点深度範囲内に収めることを可能にしたのである。 本発明は、 さらに、 撮像対象の個体を含む被写体を装填するステージと、 前記 ステージのステージ面に対して光線を照射する光源手段と、 前記光源手段により 照射された前記被写体からの光を集光するレンズ手段と、 前記レンズ手段により 集光された 2次元画像光を電気信号に変換するイメージセンサと、 を備え、 前記 光源手段は、 前記ステージ面に対して斜め上方向から光を照射する複数個の光線 手段と、 前記複数個の光線手段から照射された光が前記ステージ面における略同 一の位置に照射するように前記複数個の光線手段を支持するホルダー手段と、 前 記ホルダー手段と前記レンズ手段とを一体に固定するための固定手段と、 を有す ることを特徴とする撮像装置を提供するものである。 ここで、 前記光線手段は、 第 1の波長領域の光線を発する光線手段を備えた第 1の光線手段と、 第 2の波長 領域の光線を発する光線手段を備えた第 2の光線手段と、 からなり、 前記第 1の 光線手段及び前記第 2の光線手段の各々は、 さらに、 前記レンズ手段に対して対 称な複数方向から前記ステージ面に対して光線を照射する複数個の光線手段から 構成されるのである。 Accordingly, in the imaging apparatus according to the present invention, substantially uniform light beams can be radiated to the entire imaging area by the small-sized stage and the fixing means having a simple structure without mounting the automatic focus adjustment apparatus. This enabled the distance between the imaging surface and the sampling kit to be within a certain depth of focus range, corresponding to each type of sampling kit. The present invention further includes a stage for loading a subject including an individual to be imaged, light source means for irradiating a light beam to a stage surface of the stage, and condensing light from the subject irradiated by the light source means. A lens unit that converts the two-dimensional image light condensed by the lens unit into an electric signal, and the light source unit irradiates the stage surface with light obliquely from above. Rays Means, holder means for supporting the plurality of light means so that light emitted from the plurality of light means irradiates substantially the same position on the stage surface, holder means and the lens means And a fixing means for integrally fixing and, and an image pickup apparatus characterized by having: Here, the light beam means includes a first light beam means having a light beam means for emitting a light ray in a first wavelength region, a second light beam means having a light beam means for emitting a light beam in a second wavelength region, Wherein each of the first light beam means and the second light beam means further comprises a plurality of light beam means for irradiating the stage surface with light beams from a plurality of directions symmetrical to the lens means. It is composed.
これにより、 本発明は、 検体を搭載するステージの上面に均一で所定量以上の 光量を照射すると共に、 このための光 のスポット中心と撮像カメラの光軸との 関係において容易に光源の位置調整を行うことが可能な撮像装匱を実現したので ある。 簡単な図面の説明  As a result, the present invention irradiates the upper surface of the stage on which the sample is mounted with a uniform amount of light of a predetermined amount or more, and easily adjusts the position of the light source in relation to the center of the light spot and the optical axis of the imaging camera. Thus, an image pickup device capable of performing the above was realized. Brief description of the drawings
第 1図は、 本発明の撮像装置と撮像装置に接続されたデータ処理装置の側面図 を示す。  FIG. 1 is a side view of an imaging device of the present invention and a data processing device connected to the imaging device.
第 2図は、 本撮像装置の全体斜視図を示す。  FIG. 2 is an overall perspective view of the imaging apparatus.
第 3図は、 図 1の撮像装置を上面から見た主に光源周辺を示す平面図である。 第 4図は、 フランジ (ホルダー手段) にレンズュニッ (レンズ手段) 及び口ッ ド光源 (光,棣手段) を取り付けた部分を拡大した側面図を示す。  FIG. 3 is a plan view mainly showing the vicinity of a light source when the imaging device of FIG. 1 is viewed from above. FIG. 4 is an enlarged side view showing a part where a lens unit (lens means) and a light source (light, di means) are attached to a flange (holder means).
第 5図は、 ロッド光源の内部構造の断面図を示す。  FIG. 5 shows a sectional view of the internal structure of the rod light source.
第 6図は、 本撮像装置におけるステージを上方から観察した平面図である。 第 7図は、 本撮像装置のステージにエンブレムキットを装着した (a ) 側面図 と、 (b ) 断面図を示す。  FIG. 6 is a plan view of the stage of the imaging apparatus when observed from above. FIG. 7 shows (a) a side view and (b) a cross-sectional view in which an emblem kit is mounted on a stage of the imaging apparatus.
第 8図は、本撮像装置のステージにフィルムキットを装着した(a )側面図と、 ( b ) 断面図を示す。  FIG. 8 shows (a) a side view and (b) a cross-sectional view in which a film kit is mounted on a stage of the imaging apparatus.
第 9図は、 キットホルダーの撮像用開口部の詳細を説明するための図を示す。 第 1 0図は、 本撮像装置の制御プロック図を示す。 第 1 1図は、 フィルタ移動手段の斜視図を示す。 FIG. 9 is a diagram for explaining details of the imaging opening of the kit holder. FIG. 10 is a control block diagram of the imaging apparatus. FIG. 11 shows a perspective view of the filter moving means.
第 1 2図は、 被写体と、 フィルタユニットとレンズユニットの構成図を示す。 第 1 3図は、 本装置の撮像動作のフローチャートを示す。  FIG. 12 shows a configuration diagram of a subject, a filter unit, and a lens unit. FIG. 13 shows a flowchart of the imaging operation of the present apparatus.
第 1 4図は、 撮像手段 (イメージセンサ) の端子を示す図である。  FIG. 14 is a diagram showing terminals of an imaging means (image sensor).
第 1 5図は、 背景レベル除去を示すフローチャートである。  FIG. 15 is a flowchart showing background level removal.
第 1 6図は、 理想的な被写体 (バクテリア映像) レベルの露光時間を示すグラ フである。  Figure 16 is a graph showing the exposure time at the ideal subject (bacteria image) level.
第 1 7図は、 「輝点」 の出現状態を示した図である。  FIG. 17 is a diagram showing the appearance of “bright spots”.
第 1 8図は、「菌 +背景」 レベルの線とフレームごとの背景レベルを示した図で ある。  FIG. 18 is a diagram showing the line of the “fungus + background” level and the background level of each frame.
第 1 9図は、 画素フレームの使用可能範囲を示す図である。  FIG. 19 is a diagram showing a usable range of a pixel frame.
第 2 0図は、 背景出力が重なり、 さらに半導体特有のホワイ トノイズ等が重畳 していることを示す図である。  FIG. 20 is a diagram showing that background outputs overlap and white noise and the like specific to semiconductors are superimposed.
第 2 1図は、 Β Ι が i番目のフレームにおける黒レベルであり、露出にかかわ らず常にホワイトノィズ士 Nwが重畳していることを示す図である。  FIG. 21 is a diagram showing that Β 黒 is the black level in the ith frame, and that the white noise person Nw is always superimposed regardless of the exposure.
第 2 2図は、 あるバクテリアのビデオレベルにホワイトノイズ土 Nwが重畳し ていることを示す図である。  FIG. 22 is a diagram showing that white noise soil Nw is superimposed on the video level of a certain bacterium.
第 2 3図は、 加算手段の各種形態の一覧を示す図である。  FIG. 23 is a diagram showing a list of various forms of the adding means.
第 2 4図は、 照射光と光電変換素子への露光 (フィルタ特性を含む) の波長関 係を示す。 発明を実施するための最良の形態  FIG. 24 shows the wavelength relationship between irradiation light and exposure (including filter characteristics) to the photoelectric conversion element. BEST MODE FOR CARRYING OUT THE INVENTION
ここで、本発明の撮像装置の詳細を説明する前に、その技術的背景を説明する。 ( 1 ) 本撮像装置の技術的背景  Here, before describing the details of the imaging apparatus of the present invention, its technical background will be described. (1) Technical background of the imaging device
本撮像装置は、 バクテリア (菌) を含む撮像を取得して生きているバクテリア と死んでいるバクテリアの個体数を調べる目的で使用される、 光学系と C C D力 メラなどの光電変換素子を備える検査装置である。 尚、 光電変換素子 (光電変換 手段) としては、 C C Dの他に MO S型と呼ばれるものなど何種類かあるが、 基 本的に本発明が適用できるものであるから、 C C Dに限定しているわけではない。 通常一般的なカメラは照射された被写体からの反射光をとらえて映像に対する 画像データを得るが、 このシステムでは特殊な薬液 (試薬) を被写対象中の被測 定物である検体に含ませて、 検出したいバクテリアの生死状態に応じて、 光反応 が異なる関係を利用するものである。 そしてこの光反応とは特定波長の光によつ てもたらされる光励起であって、 照射する光エネルギーに比較して、 バクテリア 発生する蛍光のエネルギーが微小であるから単純に被写体撮影を行うことでは達 成できない。 強力な照射光をそのまま光電変換素子に入光すると飽和してしまう ために、 照射光と当該照射光により励起されるバクテリアの蛍光との間でカツト することが必要となる。 さらにカツトされた後では微弱な蛍光を取得して画像デ ータへ変換していくために光電変換素子の露光時間を通常より相当に長く行ない 各フォトダイォードへの電荷蓄積を充分行なうことが必要となる。 さらにはこの 際に発生する背景ノィズゃホワイ トノィズの除去も加えて必要となる。 This imaging device is an inspection system equipped with an optical system and a photoelectric conversion element such as a CCD camera, which is used for acquiring images containing bacteria (fungi) and examining the numbers of living bacteria and dead bacteria. Device. In addition, there are several types of photoelectric conversion elements (photoelectric conversion means) other than CCDs, such as a MOS type, but since the present invention is basically applicable, the type is limited to CCDs. Do not mean. Normally, a general camera captures the reflected light from the illuminated subject and obtains image data for the image. In this system, however, a special chemical solution (reagent) is included in the specimen, which is the measurement object in the subject. In this method, the photoreaction depends on the state of the living or dying bacteria to be detected. This photoreaction is photoexcitation caused by light of a specific wavelength, and the energy of the fluorescence generated by bacteria is very small compared to the light energy to be irradiated. I can't do it. If the strong irradiation light enters the photoelectric conversion element as it is, it will be saturated. Therefore, it is necessary to cut between the irradiation light and the fluorescence of bacteria excited by the irradiation light. Further, after the light is cut, the exposure time of the photoelectric conversion element is set to be considerably longer than usual in order to acquire weak fluorescence and convert the image data into image data, so that the charge is sufficiently accumulated in each photodiode. Required. In addition, it is necessary to remove background noise and white noise generated at this time.
ところで各画素を構成するフォトダイォードでの電荷蓄積時間は通常の規格で は数 1 0分の 1秒というオーダーであって、 これに対して本例のケースでは数秒 に及ぶことにもなる。 この様な光電変換素子の使用形態においては半導体形成の 不完全性が起因で輝点発生という現象が発生する。  By the way, the charge storage time in the photodiode constituting each pixel is on the order of several tenths of a second in a normal standard, whereas in the case of the present example, it may be several seconds. In such a usage form of the photoelectric conversion element, a phenomenon of generation of a bright spot occurs due to imperfect formation of a semiconductor.
輝点とは、 光の入力に対してフォトダイオードへの電荷蓄積が正常に行われな かったり、 電荷の蓄積 ·転送過程の異常プロセスが原因となって異常に高い電圧 出力となってしまう画素を意味する。 輝点が発生すると、 あたかも当該輝点は、 パクテリァが発生させた蛍光である様に扱われてしまい、 検出対象の大きさが数 画素以下で構成されると、 当該輝点を検出対象と誤認織してしまう。  A luminescent spot is a pixel whose charge is not normally accumulated in a photodiode in response to light input, or which has an abnormally high voltage output due to an abnormal process of charge accumulation and transfer. Means When a bright spot occurs, the bright spot is treated as if it were fluorescent light generated by a pattern.If the size of the detection target is smaller than a few pixels, the relevant bright spot is mistaken for the detection target. Weave.
この輝点を含んだままで個体数の検出プロセスに移ると、 誤ったカウント数が 計数されてしまう。 これを回避するために、 画像処理前のバクテリア映像を鮮明 にしておくことを提案する。  If you proceed to the process of detecting the number of individuals while including these bright spots, the wrong count will be counted. In order to avoid this, we propose to make the bacteria image clear before image processing.
( 2 ) 特定波長の蛍光を生じるバクテリアの説明  (2) Explanation of bacteria that emit fluorescence of a specific wavelength
背景 (検体における個体が存在していない所) は、 樹脂製の検体含有体、 もし くはバクテリアを接着するための粘着層を有するフィルムである。 どちらもバタ テリアの蛍光を効率よく (コントラストよく) 取得するために、 なるべく暗い色 で着色されている。 しカゝし、 完全に黒色ではなく濃い灰色程度であって、 光が照 射されると反射光を生じる。 The background (where the individual is not present in the specimen) is a resin-containing specimen or a film with an adhesive layer to adhere bacteria. Both are colored as dark as possible in order to obtain the fluorescence of the batteria efficiently (with good contrast). It is dark gray rather than completely black, When emitted, it produces reflected light.
この装置においては、 照射した光の反射光で検査を行うのではなく、 パクテリ ァに特殊な薬液を含有させて、 この状態で、 紫外光もしくは緑光を照射する。 こ の紫外光あるいは緑光に応じて、薬液を含有したバクテリアが蛍光を生じさせる。 図 24の (a)、 (b) に示すように、 具体的に書くと、 主波長が 370 nm (N SHU 590) の紫外光を照射すると、 バクテリアからは 461 nmの主波長の 蛍光を発する。 そして、 主波長が 525 nm (NSPG500 S) の緑光を照射 すると、 617 nmの主波長の蛍光を発生する。  In this device, the inspection is not performed with the reflected light of the irradiated light, but a special chemical solution is contained in the pat- ter, and ultraviolet light or green light is irradiated in this state. In response to the ultraviolet light or green light, bacteria containing the chemical solution generate fluorescence. Specifically, as shown in (a) and (b) in Fig. 24, when ultraviolet light with a dominant wavelength of 370 nm (N SHU 590) is irradiated, bacteria emit fluorescence with a dominant wavelength of 461 nm. . When green light with a dominant wavelength of 525 nm (NSPG500S) is irradiated, fluorescence with a dominant wavelength of 617 nm is generated.
図 24 (c) は、 フィルタの分光特性を示している。 蛍光は、 照射光に対して 微弱であるのに加えて、 それぞれの波長が近いために、 受光する光路中で照射光 の波長が力ットされねばならなレ、。  FIG. 24 (c) shows the spectral characteristics of the filter. Fluorescent light is weak to the illuminating light, and because the wavelengths are close to each other, the wavelength of the illuminating light must be adjusted in the light path to receive light.
そのため、 紫外光に対しては、 360 nmから急激に減衰して約 400 nm点 で透過率 0%にする特性を有したカットフィルタ (U360) を装着して照射す ることで、 約 400 nm点で透過率 0%にする。 これにより、 光源 LEDの NS HU 590が 400 nm点を発する少々のパワーをほとんど力ットする。 そして 受光側に L 42と称する 420 nmより長い波長を透過するフィルタを揷入する。 そうすると、 主波長が 46 1 nmの蛍光を適正に取得できる。 この蛍光は、 生菌 と死菌と共に発生する。  For this reason, UV light is attenuated from 360 nm and is irradiated with a cut filter (U360), which has the characteristic of attenuating the transmittance to 0% at the point of about 400 nm. Set the transmittance to 0% at the point. This puts the little power that the light source LED NS HU590 emits at the 400 nm point almost to power. Then, on the light receiving side, a filter called L42 that transmits a wavelength longer than 420 nm is inserted. Then, fluorescence with a dominant wavelength of 461 nm can be acquired properly. This fluorescence occurs with live and dead bacteria.
同じように緑側もフィルタを使う。 緑光に対しては、 450 n mから 550 n mまでのみ透過するバンドパスフィルタ BP 535を緑光源、(主波長 536 nm) に装着する。 光源 LEDの NS PG 500 Sは主波長 525 nmで 450 nm力 ら 650 nmまでを発光するが、 上述のバンドパスフィルタによって、 裾野は力 ットされている。 受光側に O 58と称する 580 nm以上を透過するフィルタを 揷入する。 主波長が 617 nmの蛍光を取得できる。 この蛍光は死菌のみ発生す る。 し力も、 この蛍光の輝度は弱いことから 2秒程度の露光時間を必要とし、 こ の間に既に述べた輝点を発生してしまう。 従って、 この輝点の発生を押さえる処 理を行った後に個体数のカウントに移る方が好ましい。  Similarly, the green side uses a filter. For green light, a bandpass filter BP 535 that transmits only from 450 nm to 550 nm is attached to the green light source (dominant wavelength 536 nm). The light source LED NS PG 500 S emits light with a dominant wavelength of 525 nm from 450 nm to 650 nm, but its tail is emphasized by the bandpass filter described above. On the light receiving side, insert a filter called O58 that transmits 580 nm or more. Fluorescence with a dominant wavelength of 617 nm can be obtained. This fluorescence is generated only for dead bacteria. Since the intensity of this fluorescent light is weak, it requires an exposure time of about 2 seconds, during which the bright spots described above are generated. Therefore, it is preferable to proceed to the counting of the number of individuals after performing the processing for suppressing the generation of the bright spot.
以下、 本発明に係る撮像装置の実施の形態を図面に基づいて詳しく説明する。 本装置においては、 同時にカラー画像を取得するのではなく、 色フィルタを切 り替えてモノ トーン画像を 2波長に対して取得する装置である。 2対の光源から 異なる 2種類の波長の照射光 (紫外光及び緑光) を被写体に照射する。 つまり、 ある画像データの取得タイミングでは全画素同じ波長の色であり、 また、 波長ご との光路長の差はレンズ系が変更無ければ一定であるので、 光学系のどの位置で 光路長調整を行うかは任意である。 しかし今後の展開では、 撮像対象の種類が増 えるに従って、 拡大倍率を適正化する目的で、 レンズを差し替え可能に構成すれ ば、 光路長補正の量は変化し、 調整手段を差し替えなければならなくなることは 言うまでもなレ、。 Hereinafter, an embodiment of an imaging device according to the present invention will be described in detail with reference to the drawings. In this device, instead of acquiring a color image at the same time, the color filter is turned off. This is a device that acquires monotone images for two wavelengths. The subject is irradiated with irradiation light of two different wavelengths (ultraviolet light and green light) from two pairs of light sources. In other words, all pixels have the same wavelength at the acquisition timing of certain image data, and the difference in optical path length for each wavelength is constant unless the lens system is changed. It is optional to do so. However, in future developments, as the types of imaging objects increase, if the lenses are configured to be interchangeable for the purpose of optimizing the magnification, the amount of optical path length correction will change, and adjustment means will have to be replaced. Needless to say.
この関係から、 被写体、 切り替えフィルタ、 レンズユニット、 イメージセンサ の順に構成され、 切り替えフィルタは異なる 2波長用のフィルタ各々の厚さが変 更されている構成である。  From this relationship, the object, the switching filter, the lens unit, and the image sensor are configured in this order, and the switching filter has a configuration in which the thickness of each of two different wavelength filters is changed.
図 1は、 本発明に係る被写体の個体数をカウントするための撮像装置 1と、 撮 像装置 1に接続されたデータ処理装置 1 0 0全体の側面図を示す。  FIG. 1 is a side view of an imaging apparatus 1 for counting the number of individuals of a subject according to the present invention, and an entire data processing apparatus 100 connected to the imaging apparatus 1.
図 2は、 本撮像装置 1の全体斜視図を示す。 図 1及び図 2に示すように、 本撮 像装置 1は、 コマンドコントロールを行い、 画像からバクテリアなどの個体数を 判定するデータ処理装置 1 0 0にインタフェイスケープノレ 1 0 1で継っている。 撮像装置 1は、主要な構成として、検査を行う被写体を載置するステージ 2と、 ステージ 2に被写体 (検体) を載置するなどの操作をするために開閉するフロン トカバー 5と、 対象とする被写体を光照射する光源部 4と、 この光源部 4で照射 されて試薬によつて蛍光を生じさせた被写体からの 2次元画像光を入光して電気 信号の画像データに変換するレンズュニット 3と、 複数のフィルタを支持し発光 の切り替えに応じてフィルタを切り替えるために移動するフィルタ移動部 2 3と、 そして、 先のステージ 2に検体を載置させるときの操作性から位置を移動させる ためのステージ移動部 9と力、らなる。  FIG. 2 is an overall perspective view of the imaging device 1. As shown in FIGS. 1 and 2, the imaging apparatus 1 performs command control, and is connected to a data processing apparatus 100 that determines the number of individuals such as bacteria from an image via an interface cape 101. I have. The imaging device 1 includes, as main components, a stage 2 on which a subject to be inspected is placed, a front cover 5 which is opened and closed for operations such as placing a subject (sample) on the stage 2, and the like. A light source unit 4 for irradiating the subject with light, and a lens unit 3 for receiving two-dimensional image light from the subject, which is illuminated by the light source unit 4 and emits fluorescence by a reagent, and converts the two-dimensional image light into image data of electric signals. A filter moving unit 23 that supports a plurality of filters and moves to switch the filters according to the switching of light emission; and a filter moving unit 23 that moves the position from the operability when the sample is placed on the stage 2. Stage moving part 9 and power.
ステージ 2は、 上テープ _ /レ 2 0の上面とキットホノレダー 2 1との間に形成され ていて検体を付着させたエンブレムキット 4 0 (第 1の採取キット、図 7に示す) 若しくはフィルムキット 4 1 (第 2の採取キット、 図 8に示す) を装着する。 キットホノレダー 2 1は、 ロックレバ一 2 2で固定される。 上テ一ブル 2 0は X テーブル 2 5上に固定されており、 Xテーブル 2 5は Yテーブル 2 6上に固定さ れる。 Xテーブル 2 5上の上テーブル 2 0は 4力所の弾性板 (パネ) 3 5で 4点 支持されており、 位置決め冶具を仮止めして、 パネ付勢された上テーブル 2 0が この冶具に当接し、 水平度を出すようにされている。 そして、 この上テーブル 2 0は、 位置出しをしながらロック板 3 6でネジ止めされる。 この後、 異なる冶具 がレンズニット 3に取り付けられて、 ステージ 2 (上テーブル 2 0 ) とレンズュ ニット 3との最終的な位置合わせが為される。 Stage 2 consists of an emblem kit 40 (first collection kit, shown in Fig. 7) or a film formed between the upper surface of the upper tape 20 Install kit 41 (second collection kit, shown in Figure 8). Kit Honoreder 21 is fixed with lock lever 22. The upper table 20 is fixed on the X table 25, and the X table 25 is fixed on the Y table 26. It is. The upper table 20 on the X table 25 is supported at four points by elastic plates (panels) 35 at four places. The positioning jig is temporarily fixed, and the upper table 20 that is energized by the panel is this jig. Is brought into contact with it, and it is made to be level. The upper table 20 is screwed by the lock plate 36 while positioning. After that, different jigs are attached to the lens unit 3, and the final alignment of the stage 2 (upper table 20) and the lens unit 3 is performed.
ステージ移動部 9は、 Xテーブル 2 5の下部に X 1シャフト 2 7と X 2シャフ ト 2 8へそれぞれ摺動可能に嵌合する X 1スリーブ 3 1と X 2スリーブ 3 2が備 えられ、 Yテーブル 2 6の下部には Y 1シャフト 2 9と Y 2シャフト 3 0へそれ ぞれ摺動可能に嵌合する Y 1スリーブ 3 3と Y 2スリーブ 3 4とが備えられてい る。 それぞれ、 X駆動部 8、 Y駆動部 7によりベルトで牽引され移動する。 電源スィツチ 1 0により装置へ電源が投入されて、 イニシャル動作に入る。 ィ 二シャル動作では、 まずステージ 2を基準位置に移動する。 この基準位置は、 被 写体を撮像する位置であって、 レンズュニット 3の真下に設定される。  The stage moving section 9 is provided with an X1 sleeve 31 and an X2 sleeve 32 that are slidably fitted to the X1 shaft 27 and the X2 shaft 28 at the lower part of the X table 25, respectively. The lower part of the Y table 26 is provided with a Y1 sleeve 33 and a Y2 sleeve 34 that are slidably fitted to the Y1 shaft 29 and the Y2 shaft 30, respectively. Each is driven by the belt by the X drive unit 8 and the Y drive unit 7, respectively. The power is turned on to the device by the power switch 10, and the initial operation starts. In the initial operation, the stage 2 is first moved to the reference position. This reference position is a position where the subject is imaged, and is set directly below the lens unit 3.
ステージ 2は、 X 1シャフト 2 7、 X 2シャフ卜 2 8並びに Y 1シャフト 2 9、 Y 2シャフト 3 0それぞれのシャフト方向に沿って、 X方向の基準位置を指示す る X— H Pセンサ 1 1と、 Y方向の基準位置を指示する Y— H Pセンサ 1 2と、 共に O Nとなる位置に移動する。ィ二シャル動作が完了すると、待機状態に入る。 フロントカバー 5を開放すると、 操作者によってフロントカバー 5が開放され たことを示す信号がカバーセンサ (図示せず) から発せられる。 この信号 (カバ 一開放信号) に従って、 ステージ 2はフロントカバー 5の開放位置であるフロン トに移動する。 フロントカバー 5の開放は、 コイルバネ 5 aによってその開放状 態が維持される。  Stage 2 has X—HP sensor 1 that indicates the reference position in the X direction along the X1 shaft 27, X2 shaft 28, Y1 shaft 29, and Y2 shaft 30 shaft directions. Move to the position where both 1 and Y-HP sensor 1 and 2 indicate the reference position in the Y direction. When the initial operation is completed, a standby state is entered. When the front cover 5 is opened, a signal indicating that the operator has opened the front cover 5 is issued from a cover sensor (not shown). According to this signal (cover open signal), the stage 2 moves to the front position where the front cover 5 is opened. The open state of the front cover 5 is maintained by the coil spring 5a.
ステージ 2上にエンブレムキット 4 0、 もしくはフィルムキット 4 1の被写体 (検体) が装着されてフロントカバー 5が操作者によって閉じられると、 カバー センサの信号が所定のインタフェイスを介して接続されたデータ処理装置 1 0 0 に送られ、 準備が完了したことをディスプレイ上に表示する。 操作者は、 データ 処理装置 1 0 0に指示して計測を開始する。指示されたデータ処理装置 1 0 0は、 計測開始コマンドを撮像装置 1に送る。 撮像装置 1の制御部は、 Y駆動部 7を制 御してステージ 2を撮影用のホームポジションである撮影位置の初期位置に移動 させる。 尚、 本例ではデータ処理装置 100がパソコンである。 When the subject (sample) of the emblem kit 40 or the film kit 41 is mounted on the stage 2 and the front cover 5 is closed by the operator, the signal of the cover sensor is transmitted to the data connected via a predetermined interface. It is sent to the processing unit 100 and displays on the display that the preparation is completed. The operator instructs the data processing device 100 to start measurement. The instructed data processing device 100 sends a measurement start command to the imaging device 1. The control unit of the imaging device 1 controls the Y drive unit 7. To move the stage 2 to the initial shooting position, which is the home position for shooting. In this example, the data processing device 100 is a personal computer.
本装置における被撮影体の撮影は、 ステージ 2の位置を少しずつ変更しながら 繰り返し行われる。 エンブレムキット 40を測定する場合とフィルムキット 41 を計測する場合とで異なるが、 検体である個体の外形が数ミクロンメートルの極 めて小サイズの場合、 例えば、 撮影対象の全エリアがエンブレムキット 40の場 合で 12 mm* 9 mmであり、 1回の撮影で取得できるエリアは 1.2 mm* 0. 9mmであるから、 100回の撮影フレームが必要になる。 撮影プロセスは、 Y 方向に 10回位置移動しながら撮影して、 X方向に移動してこれを繰り返す。 The photographing of the object to be photographed in this apparatus is repeatedly performed while the position of the stage 2 is gradually changed. The difference between measuring the emblem kit 40 and measuring the film kit 41 is different.However, if the external shape of the specimen, which is a sample, is extremely small with a size of several microns, for example, the entire area to be photographed is the emblem kit 40. In this case, the area is 12 mm * 9 mm, and the area that can be acquired in one shot is 1.2 mm * 0.9 mm, so 100 shooting frames are required. In the shooting process, shooting is performed 10 times while moving in the Y direction, and is repeated in the X direction.
—つのフレームの撮影が終わる毎に、 その画像データはデータ処理装置 100 へ送信される。 データ処理装置 100は画像データを取得完了したら、 次のフレ ームの取得を撮像装置に要求して、 これにより撮像装置は位置移動と再撮影を行 う。 このようにして、 必要なフレームの撮影が繰り返される。 必要な全フレーム の撮影が完了した後には、 ステージ 2は上述したホームポジションに戻る。 この 撮像動作の詳細な説明に関しては後述する。 — Each time one frame is captured, the image data is transmitted to the data processing device 100. After completing the acquisition of the image data, the data processing device 100 requests the imaging device to acquire the next frame, whereby the imaging device performs position movement and re-shooting. In this way, necessary frames are repeatedly photographed. After all necessary frames have been captured, Stage 2 returns to the home position described above. A detailed description of this imaging operation will be described later.
図 3は、 光 ¾f部 4を装置の上方上方から見た平面図であって、 図 4は、 フラン ジ 51 (ホルダー手段) にレンズュニット 3及び口ッド光源 6を取り付けた部分 を拡大した図を示す。  Fig. 3 is a plan view of the light beam unit 4 as viewed from above and below the device. Fig. 4 is an enlarged view of a portion where the lens unit 3 and the light source 6 are attached to the flange 51 (holder means). Is shown.
光源、部 4は、第 1の照射手段として口ッド光源 6 a及び口ッド光源 6 bの対と、 第 2の照射手段としてロッド光源 6 c及び口ッド光源 6 dの対の 4本で構成され ている。 各口ッド光源 6は端部に基板 50 a、 50 b、 50 c、 50 dを備え、 この基板上に口ッド内方向に向いてそれぞれ発光ダイオードが設置されている。 第 1の照射手段として、 口ッド光源 6 aとロッド光源 6 b (NSHU590) は同一の波長 (波長 370 nmの紫外光) の光を発光し、 1対として働く。 第 2 の照射手段として、 口ッド光源。とロッド光源 d (NSPG500 S) は同一の 波長 (波長 525 nmの緑光) の光を発光し、 1対として働く。 ,  The light source, part 4 includes a pair of a mouth light source 6a and a mouth light source 6b as a first irradiation means, and a pair of a rod light source 6c and a mouth light source 6d as a second irradiation means. It consists of books. Each of the aperture light sources 6 has a substrate 50a, 50b, 50c, 50d at an end, and a light emitting diode is installed on the substrate facing inward of the aperture. As a first irradiation means, the light source 6a and the rod light source 6b (NSHU590) emit light of the same wavelength (ultraviolet light having a wavelength of 370 nm) and work as a pair. A second light source is a mouth light source. And the rod light source d (NSPG500 S) emit light of the same wavelength (green light with a wavelength of 525 nm) and work as a pair. ,
既に述べたように、 2本のロッド光源対 (6 aと 6 b) を対象位置に載置され る理由は、 互いに補完して照射面をほぼ均一の照度にすることにある。 口ッド光 源対 (6 aと 6 b) と、 ロッド光源対 (6 cと 6 d) は同時点灯されることはな く、 直交する必要はない。 As already mentioned, the reason that the two rod light source pairs (6a and 6b) are placed at the target position is to complement each other to make the illuminated surface almost uniform. The light source pair (6a and 6b) and the rod light source pair (6c and 6d) cannot be turned on at the same time. And need not be orthogonal.
この構成により、 ロッド光源 6対は、 上方に撮像手段を配置した照射ステージ に対して撮像手段の側方でステージに対称な 2力所より斜めに同一の波長で同一 の照度になるよう照射するとともに、 照射ステージに投光エリアが合致して照度 ムラがないようにした。  With this configuration, the six pairs of rod light sources irradiate the irradiation stage having the imaging means arranged above, so as to have the same illuminance at the same wavelength and diagonally from two force points symmetrical to the stage on the side of the imaging means. At the same time, the projection area matched the irradiation stage so that there was no uneven illuminance.
そして、 光源部 4の光が送出される基板取り付けと反対の端の発光端の下方に ステージ 2は位置する。 発光端の上方には、 レンズ手段のレンズユニット 3が備 えられているが、 このレンズュニット 3と発光端との間にステージ 2の面に平行 に進退するフィルタユニット 5 5が位置する。 フィルタユニット 5 5には、 4 2 0 n mから下の波長帯域をカツトする L 4 2フイノレタ 5 5 bと、 5 8 0 n mから 下の波長帯域をカツトする O 5 8フィルタ 5 5 aが取り付けられている。 このフ ィルタユニット 5 5により、 レンズユニット 3には、 千渉する波長帯域をカツト した鮮明な蛍光を得ることが出来る。  Then, the stage 2 is located below the light emitting end opposite to the end where the light from the light source unit 4 is mounted on the substrate. A lens unit 3 of lens means is provided above the light emitting end, and a filter unit 55 that advances and retreats in parallel to the surface of the stage 2 is located between the lens unit 3 and the light emitting end. The filter unit 55 is equipped with an L42 finalizer 55b that cuts the wavelength band below 420 nm and an O58 filter 55a that cuts the wavelength band below 580 nm. ing. With this filter unit 55, the lens unit 3 can obtain clear fluorescence in which the overlapping wavelength bands are cut.
バタテリァを検查する検体は、 対象物が溶液中で撹拌された後に吸水して含水 し更に検査用の試薬を含水可能なエンブレムキットと呼ばれる検体器具に定着さ れる場合と、試薬を含む粘着面を有するフィルムで直接採取された場合とがある。 更に異なる形状の定着器が考えられるかもしれないから、 定着器の形状にこだわ らない。 既に述べたように光電変換素子 9 6 (図 1 2 ) に対して拡大光学系で拡 大像を形成して撮影するものであるから、 焦点深度が小さいため被写体までの距 離がきわめて厳しく要求される。  The sample to be tested for a battery is a sample that is fixed on a sample device called an emblem kit that can absorb water after the object has been stirred in the solution and then absorbs the test reagent. In some cases, it was directly collected on a film having Further, it may be possible to consider a fixing device having a different shape. As described above, since the enlarged image is formed on the photoelectric conversion element 96 (Fig. 12) using the magnifying optical system and photographed, the distance to the subject is extremely strict due to the small depth of focus. Is done.
このため、 ステージ 2には 4点の調整ポイントを備え、 .高さ調整のみならず水 平度も調整する。 これらの調整ポイントで調整できる調整しろに入るように、 レ ンズュニット 3のフレームに対する取り付け部 (図示せず) は、 長穴を有してい て概略の調整が出来る様になつている。 これらの調整で、 ステージの位置とィメ ージセンサの位置が決まる。  For this reason, Stage 2 has four adjustment points to adjust not only the height but also the level. An attachment portion (not shown) of the lens unit 3 to the frame has an elongated hole so that an approximate adjustment can be performed so that the adjustment margin can be adjusted at these adjustment points. These adjustments determine the position of the stage and the position of the image sensor.
4本のロッド状の光源であるロッド光源 6 a、 6 b、 6 c、 6 dは、 1つの取 り付けフランジ 5 1に取り付けられるように構成されている (ホルダー手段)。取 り付けフランジ 5 1は上方から見ると X字状であり、 レンズュニット 3を取り付 けるリング部 5 7と、 このリング部 5 7から放射状に出た 4本のアーム 5 6 a、 5 6 b 、 5 6 c 、 5 6 dで構成される。 The rod light sources 6a, 6b, 6c, and 6d, which are four rod-shaped light sources, are configured to be attached to one mounting flange 51 (holder means). The mounting flange 51 has an X-shape when viewed from above, and includes a ring portion 57 for mounting the lens unit 3 and four arms 5 6a radially protruding from the ring portion 57. It consists of 56b, 56c and 56d.
アーム 5 6 a 、 5 6 b 、 5 6 c 、 5 6 dは、 各々、 ロッド光源 6 a 、 6 b 、 6 c 、 6 dに設けられた取り付け具 6 2 a 、 2 b、 6 2 c、 及び 6 2 dを調整可能 にネジ締めをして固定できるように口ッド取り付け部を有している。  The arms 56a, 56b, 56c, 56d are respectively provided with the mountings 62a, 2b, 62c, provided on the rod light sources 6a, 6b, 6c, 6d. And 6 2 d are provided with a mouth mounting part so that they can be adjusted and fixed by screwing.
フランジ 5 1の 4箇所の各取り付け部は、 口ッド光源 6を取り付けた時、 口ッ ド光源 6の照射光がレンズ手段の光軸上に位置する角度になるように形成されて いる。本例示では 4本のロッド光?原 6 a 、 6 b、 6 c 、 6 dで構成されているが、 本撮像装置における当該ロッド光源の数は、 必ずしも上に例示した 4本に限定さ れるものではなく、 例えば 6本又は 8本でも良い。 ここで、 ロッド光源の本数が 6本の場合は、 6本の口ッド光源の中の一つおきの 3本を正三角形の頂点位置に 当たる位置に紫外光があり、 他の 3本を正三角形の頂点位置に当たる位置に緑光 を備えるように構成する。  Each of the four mounting portions of the flange 51 is formed such that when the mouth light source 6 is mounted, the irradiation light of the mouth light source 6 has an angle positioned on the optical axis of the lens means. In this example, four rod light sources 6 a, 6 b, 6 c, and 6 d are used, but the number of the rod light sources in the present imaging device is not necessarily limited to the four rod light sources exemplified above. The number is not limited to six or eight, for example. Here, when the number of rod light sources is 6, every other 3 of the 6 light sources have ultraviolet light at the position corresponding to the vertex position of the equilateral triangle, and the other 3 light sources have Green light is provided at the position corresponding to the vertex position of the equilateral triangle.
同じ波長の照射光を照射する口ッド光源対は、 ステージ 2上でレンズュニット 3に対して対称角度で、 且つ対向する位置からの斜め方向の照射を行い、 照射面 をほぼ均一の明るさにしている。 被写体を撮影するステージ 2上の撮影領域全般 に渡って、 し力、も、 2つのロッド光源対の照射光がどちらも均一になるよう各口 ッド光源 6は、 1つのフランジ 5 1に固定され、 各ロッド外壁に形成された段差 5 2 a 、 5 2 b 、 5 2 c 、 5 2 dがフランジ 5 1に係合して位置出しができるよ うになっている。  A pair of open light sources that emit irradiation light of the same wavelength irradiates the lens unit 3 symmetrically to the lens unit 3 on the stage 2 and obliquely from the opposite position to make the irradiation surface almost uniform in brightness. ing. Each port light source 6 is fixed to one flange 5 1 so that the power of the two rod light sources can be evenly distributed over the entire photographing area on the stage 2 where the subject is photographed. The steps 52 a, 52 b, 52 c, and 52 d formed on the outer wall of each rod are engaged with the flange 51 to perform positioning.
さらに、 位置のみならず、 光源手段である L E Dは製品精度にばらつきが大き く、 同じ動作電圧で使用すると倍くらい異なる照度のものがあるため、 C P Uか ら DZAへデータを送ることで制御電圧を発生させ、 1本ごとに電流調整をする ことにおより照度を揃えるようにしている。  Furthermore, not only the position, but also the LED, which is the light source means, has large variations in product accuracy, and when used at the same operating voltage, there are illuminances that are about twice as different.Therefore, the control voltage is sent by sending data from the CPU to the DZA. The illuminance is adjusted by adjusting the current for each line.
口ッド光源 6とフランジ 5 1の取り付けは、 口ッド光源、 6の段差 5 2とフラン ジ 5 1の取り付け部を係合させ、 位置調整を行った後、 取り付け具 6 2でフラン ジ 5 1の取り付け部にネジ止めする。 この段差は、 設計上ほぼ調整なしで所望の 位置へロッド光源 6先端が位置するよう加工されている。 ネジ止め後、 さらに光 源の位置調整が必要の場合は、ねじを緩めて調整が容易に行えるようにしている。 このようにして本発明の光源手段は、 光の収斂位置がレンズ手段の光軸上に位 置するよう調整可能に構成されているのである。 この光源手段は、 レンズ手段へ の組み付け工程の前の光源手段組立工程内で、 口ッド光源 6とフランジ 5 1との ユニット組立工程が行われる。 この段階で、 ほぼ調整は完了していて、 この光源 部 4をレンズ手段に組み付けることで、 レンズ手段と光源手段の位置は調整が完 了しており、 調整工程を簡略化した。 To attach the mouth light source 6 and flange 51, engage the mouth light source 6, the step 52 of flange 6, and the mounting part of the flange 51, adjust the position, and then use the bracket 6 2 to attach the flange. 5 Screw it to the mounting part of 1. This step is machined so that the tip of the rod light source 6 is positioned at a desired position with almost no design adjustment. If it is necessary to further adjust the position of the light source after screwing, the screws are loosened to facilitate adjustment. Thus, in the light source means of the present invention, the convergence position of the light is located on the optical axis of the lens means. It is configured to be adjustable to be placed. In this light source means, a unit assembling step of the light source 6 and the flange 51 is performed in a light source means assembling step before an assembling step to the lens means. At this stage, the adjustment was almost completed, and by attaching the light source unit 4 to the lens means, the adjustment of the positions of the lens means and the light source means was completed, and the adjustment process was simplified.
図 5は、 口ッド光源 6 aを例にして口ッド光源、 6の構造を示す新面図である。 口ッド光源 6における、 発光ダイォードゃフイノレタの色、 レンズ等は、 3 7 0 η m光源と、 5 2 5 n m光源とで異なる力 基本構造は同じである。 大きく分ける とロッド光源 6 0 aとこれより細い径のロッド光源 6 1 aとで構成されている。 口ッド光源 6 0 aの 1端に基板 5 0 aにダイォードスぺーサ 6 3 aを介して発光 ダイオード 6 4 aが基板に半田付けで固定されている。  FIG. 5 is a new view showing the structure of the mouth light source 6 using the mouth light source 6a as an example. The colors, lenses, etc. of the light-emitting diodes of the mouth light source 6 differ between the 370 nm light source and the 525 nm light source. The basic structure is the same. It can be broadly divided into a rod light source 60a and a rod light source 61a having a smaller diameter. At one end of the light source 60a, a light emitting diode 64a is fixed to the substrate by soldering via a diode spacer 63a to the substrate 50a.
発光ダイォード 6 4 aの発光方向前方にはリング 7 2 aで固定されたレンズ 6 Light emitting diode 6 A lens fixed with a ring 7 2a ahead of the light emitting direction of 4 a 6
5 aがある。口ッド光源 6 0 aの他端には、口ッド光源 6 1 aが刺入されている。 口ッ ド光源 6 1 aのロッド 6 0に刺入している端には、 リング 7 4 aとスぺーサThere is 5 a. The mouth light source 61a is inserted into the other end of the mouth light source 60a. At the end of the rod light source 6 1a penetrating the rod 60, a ring 7 4a and spacer are attached.
6 7 aとで固定されたレンズ 6 6 aと帯域カツトフィルタ 7 3 aとがある。 この帯域カツトフィルタ 7 3 aは、 それぞれの発光分布において、 不要な裾野 部分をカツトするする機能を有し、 U 3 6 0フィルタ 7 3 aがロッド光源 6 a、 6 b内に、 同様に B P 5 3 5がロッド光源 6 c, 6 d内に備えられていて発光分 布をシャープにしている。 There is a lens 66 a fixed at 67 a and a band cut filter 73 a. The band cut filter 73a has a function of cutting an unnecessary foot portion in each light emission distribution, and the U360 filter 73a is provided in the rod light sources 6a and 6b, and similarly in the 5 35 5 is provided in the rod light sources 6 c and 6 d to sharpen the light emission distribution.
そして、 ロッド 6 1 aの他端には、 リング 7 0 aとスぺーサ 7 1 aとで固定さ れたレンズ 6 8 aとレンズ 6 9 aとがある。 さらに、 フランジ 5 1へ取り付ける ための取り付け部 6 2 aを備えている。 そして、 このロッド 6 0 aとロッド 6 1 aとの径の差異によって作られる段差 5 2 aがフランジ 5 1に係合する。 この段 差 5 2 aによりフランジ 5 1のロッド取り付け位置に対してロッド 6 1の取り付 けが正確に位置決めされる。  At the other end of the rod 61a, there are a lens 68a and a lens 69a fixed with a ring 70a and a spacer 71a. Further, a mounting portion 62 a for mounting to the flange 51 is provided. Then, a step 52 a formed by a difference in diameter between the rod 60 a and the rod 61 a is engaged with the flange 51. The mounting of the rod 61 is accurately positioned with respect to the mounting position of the rod of the flange 51 by the step 52a.
また、 既に述べたように、 ロッド光源が 4本に固定されるものではないし、 2 波長に切り替えて使用される光源のみならず切り替えを行わないで照射を光線と してスポット照射し、 このスポット位置をレンズユニット (レンズ手段) 3の光 軸に中心を一致させる目的を達成するものであるから、 バクテリアの蛍光を撮像 する装置に限定されるものではない。 In addition, as described above, the rod light source is not fixed to four rods, and is used not only for the light source used by switching to two wavelengths but also for spot irradiation as a light beam without switching. The purpose is to match the center to the optical axis of the lens unit (lens means) 3 so that the fluorescence of bacteria can be imaged. The present invention is not limited to such a device.
図 6は、 本撮像装置におけるステージ 2を上方から観察した図である。 ステー ジ 2上には光源ュニット 4からの光が照射される 1 この光源ュニット 4は、 4 本のロッド光源 6 a、 6 b、 6 c、 6 dからなる。 各口ッド光源 6は、 端部に基 板 5 0 a、 5 0 b、 5 0 c、 5 O dを備えている。  FIG. 6 is a diagram in which the stage 2 of the imaging apparatus is observed from above. The stage 2 is irradiated with light from the light source unit 4. The light source unit 4 is composed of four rod light sources 6a, 6b, 6c and 6d. Each of the mouth light sources 6 has a substrate 50a, 50b, 50c, and 5Od at an end.
ステージ 2には、採取キットを押さえるための固定手段 2 1が備えられており、 この固定手段 2 1中央には、 撮像用開口部 Wが設けられている。 ステージ 2は、 水平方向に X方向、 Y方向に移動し、 ステージ 2が初期の読取設定位置 (中央位 置) に位置したときには、 撮像用開口部 Wの開口中心はレンズュニット 3を通し て撮像する中心 (いわゆる光軸) に一致させるようにしている。 また、 この固定 手段 2 1は、 複数個の口ッド光源 (光線手段) 6によつて照射されるステージ 2 のステージ面における略同一の位置に対応して、 レンズユニット (レンズ手段) 3を移動可能に支持するように構成される。  The stage 2 is provided with fixing means 21 for holding the sampling kit, and an imaging opening W is provided at the center of the fixing means 21. The stage 2 moves in the X and Y directions in the horizontal direction. When the stage 2 is located at the initial reading setting position (center position), the center of the imaging aperture W is imaged through the lens unit 3. The center (so-called optical axis) is made to coincide. Further, the fixing means 21 corresponds to the lens unit (lens means) 3 corresponding to substantially the same position on the stage surface of the stage 2 illuminated by the plurality of light sources (light means) 6. It is configured to be movably supported.
中央の停止位置からの移動は、 ステージ 2が X Y両方向に 1 7 mmの半分 8 . 5 mmずつ、 中心から左右上下に移動する。 このため、 撮像を行う領域 1 7 mm よりさらに 1 7 mm広く撮像用開口部 Wが必要である。  To move from the center stop position, the stage 2 moves right and left and up and down from the center by 8.5 mm, a half of 17 mm in both X and Y directions. For this reason, the imaging opening W is required to be 17 mm wider than the imaging region of 17 mm.
開口部 Wの大きさは、 光源 6からの照明光が斜から入るので、 窓を有する固定 手段 2 1の厚さによって遮られないように窓の縁を退避させる必要がある。 この ために開口部 Wの大きさは更に拡大しなければならなレ、。  The size of the opening W is such that the illumination light from the light source 6 enters obliquely, and it is necessary to retract the edge of the window so as not to be blocked by the thickness of the fixing means 21 having the window. Therefore, the size of the opening W must be further enlarged.
ここで、 撮像用開口部 Wが円形であって前記読み取りを行う領域と同じ大きさ であると、 各ロッド光源 6からの光 (光線) が遮られてしまう。 このため、 撮像 用開口部 Wは、 その径を 3 4 mmの円より大きくしてロッド光源 6からの照射光 線が遮られないよう光線径以上に広げなければならなレ、。  Here, if the imaging opening W is circular and has the same size as the area for reading, the light (light ray) from each rod light source 6 will be blocked. For this reason, the diameter of the imaging aperture W must be larger than the diameter of the 34 mm circle so as to be larger than the beam diameter so that the irradiation light from the rod light source 6 is not blocked.
このようにすると、開口部 Wの大きさが相当に大きくなつてしまい、たとえば、 フィルムキット使用時に使用する中間プレート 4 2のロック部 2 1 aを、さらに、 図 2に示す図面の下方にする必要性から、 周辺の設計に影響を及ぼすこととなつ て、 装置が大型化してしまう。  In this case, the size of the opening W becomes considerably large. For example, the lock portion 21a of the intermediate plate 42 used when the film kit is used is further lowered below the drawing shown in FIG. The necessity increases the size of the equipment, affecting the surrounding design.
ところが、 図 6に示したように、 開口部 Wを正方領域で開口すると、 その頂角 W a、 W b、 W c、 W dの張り出しで光線の照射範囲を広く許容すると共に、 辺 の部分は張り出しが小さくて、 装置のコンパクト化が可能になる。 However, as shown in Fig. 6, when the opening W is opened in a square area, the bulging angles Wa, Wb, Wc, and Wd allow a wide range of light irradiation, and the side The overhang is small and the device can be made more compact.
採取キットをステージ 2上に固定するためのキットホルダー 2 1においては、 弾性体が装備されており、 採取キット (エンブレムキット 4 0又はフィルムキッ ト 4 1 ) 自体を直接固定することで、 ステージ 2が X Y方向に移動する間でずれ ることを排除できる。  The kit holder 21 for fixing the collection kit on the stage 2 is equipped with an elastic body. By directly fixing the collection kit (emblem kit 40 or film kit 41) itself, the stage 2 Can be eliminated while moving in the XY direction.
この固定用弾性体 (セット板バネ) は、 弾性板 (パネ) 2 5 2であって、 キッ トホルダー 2 1に取り付けられると共に、 このキットホルダー 2 1にスライダブ ルに装着された接触手段 (ピン) に連動し、 採取キットを押すことで固定する。 固定用弾性体に接触ピンに当接する突起を設けようとすると、 割れなどの加工障 害が発生するときがある。 これを回避するために、 固定用弾性体には突起を設け ずに、 本実施例においては接触ピン側に突起を設けた。 さらに、 フィルム保持プ レートに取っ手を付けることにより操作性を改善できる。  The fixing elastic body (set leaf spring) is an elastic plate (panel) 25 2 and is attached to the kit holder 21 and the contact means (pin) attached to the kit holder 21 to the slider bull. In conjunction with, fix by pressing the sampling kit. If an attempt is made to provide a projection on the fixing elastic body that comes into contact with the contact pin, processing failures such as cracks may occur. In order to avoid this, no protrusion is provided on the fixing elastic body, and a protrusion is provided on the contact pin side in this embodiment. Further, operability can be improved by attaching a handle to the film holding plate.
キットホルダー 2 1には、 閉め忘れ防止用として計測開始のフロントからの移 動時に、 ケース近傍で入り口上方にある、 固定板押さえ手段に契合して移動と共 に自動的に閉まるようになつている。  To prevent forgetting to close the kit holder 21, when moving from the front at the start of measurement, the kit holder 21 automatically closes with the movement by engaging with the fixing plate holding means above the entrance near the case. I have.
検体を載置するステージ 2は、 キットホルダー 2 1に設置する採取キット種別 が異なるだけであって、 両採取キットにおける基本構造は同じである。 しかし、 フィルムキット 4 1の時には、 エンブレムキット 4 0を装填許容するための穴を 塞ぐとともに、 高さ合わせの機能を有する中間プレート 4 2 (載置手段) を装填 している。  The stage 2 on which a sample is placed is different only in the type of collection kit to be set in the kit holder 21. The basic structure of both collection kits is the same. However, in the case of the film kit 41, the hole for accommodating the loading of the emblem kit 40 is closed, and the intermediate plate 42 (mounting means) having a height adjusting function is loaded.
図 Ίは、 本撮像装置 1のステージ 2上へェンプレムキット 4 0を装着した状態 を示す。 エンブレムキット 4 0には図で略した注射 f| "が計測部に連結して下方に 延びている。 被検査対象物を細かく砕いて浸水させその溶液を吸い上げたり、 直 接食物中の液を吸い上げたりすることが出来る。 吸い上げた液は、 計測部に含侵 してバクテリァが存在するか否かが観察される。 この注射針から溶液が装置上に こぼれたとしても、 装置に影響がないようにカバー 2 0 cがステージ 2の下面に 備えられている。  FIG. 5 shows a state in which the en-prem kit 40 is mounted on the stage 2 of the imaging apparatus 1. In the emblem kit 40, an injection f | ", which is not shown in the figure, is connected to the measurement unit and extends downward. The object to be inspected is finely crushed and immersed in water to suck up the solution or directly remove the liquid in food. It is possible to observe the presence or absence of bacteria by impregnating the measuring part with the sucked liquid Even if the solution is spilled from the injection needle onto the device, there is no effect on the device As described above, the cover 20 c is provided on the lower surface of the stage 2.
図 8は、 本撮像装置 1のステージ 2上へフイルムキット 4 1を装着した状態を 示す。 フィルムキット 4 1には接着面があって保存時は保護フィルムが沈着して いるが、 使用時にこれをはがして被検物から採取を行う。 FIG. 8 shows a state where the film kit 41 is mounted on the stage 2 of the imaging apparatus 1. Film kit 4 1 has an adhesive surface and a protective film is deposited during storage. However, it should be removed from the specimen when used.
エンブレムキット 4 0は、 鍔部 4 0 aの上部に計測部を有しているため、 この 分、 鍔部 4 0 aより高い位置になる。 一方フィルムキット 4 1はフィルム状であ つて、 このような高さ (厚み) を有しない。 更に、 フィルムはその押さえ方に応 じて撓んでしまうこともある。 —方、 レンズユニット 3は、 拡大光学系であると 共に、 被写体の個体数計測に個体の輪郭形状が重要であることから、 撮影の焦点 深度がきわめて厳しく狭められる。 しかも撮像対象のバクテリアのサイズは小さ いもので/ x mオーダであることから、 1画素程度 (1画素は 1 . 6 μ ιη) しかな い。 よって、 撮影面の高さは、 2種類の採取キットにおいて同一のレベル位置に 載置される必要がある。  Since the emblem kit 40 has a measuring portion above the flange portion 40a, the emblem kit 40 is positioned higher than the flange portion 40a. On the other hand, the film kit 41 is in the form of a film and does not have such a height (thickness). Furthermore, the film may bend depending on how it is held down. On the other hand, since the lens unit 3 is not only a magnifying optical system but also the contour of the individual is important for the measurement of the number of subjects, the depth of focus of photography is extremely narrowed. Moreover, since the size of the bacteria to be imaged is small and is of the order of xm, there is only about one pixel (one pixel is 1.6 μιη). Therefore, the height of the imaging surface needs to be set at the same level position in the two types of sampling kits.
このレベル位置の調整のために、 フィルムキット 4 1を装着する場合には中間 プレート 4 2がフィルムの下支えを兼ねて使用される。 つまり、 ステージ 2には エンブレムキット 4 0を揷入するための穴 2 0 aが存在するので、 そのままフィ ルムキット 4 1を装填することとなると中央部が沈下することとなって、 所望の 焦点位置が得られなくなるからである。 各ロッド光源 6 a、 6 b、 6 c、 6 d力、 ら照射される光線中には、 赤外成分が多くは含まれていないものの、 全く存在し ないわけではない、 フィルムキット 4 1を装填された場合、 その中央部の沈下は 促進されてしまうこととなるからである。  In order to adjust the level position, when the film kit 41 is mounted, the intermediate plate 42 is used also as a support for the film. In other words, since the stage 2 has a hole 20a for inserting the emblem kit 40, if the film kit 41 is loaded as it is, the center will sink and the desired focal position will be set. Is no longer obtained. The light emitted from each of the rod light sources 6a, 6b, 6c, and 6d does not contain many infrared components, but is not completely absent. If loaded, subsidence in the center would be accelerated.
図 9は、 キットホルダー 2 1の撮像用開口部 Wの詳細を説明するためのもので ある。 図 9 ( a ) は、 キットホノレダー 2 1の上面を、 図 9 ( b ) は、 キットホノレ ダー 2 1を横断面図を示す。  FIG. 9 is for explaining the details of the imaging opening W of the kit holder 21. FIG. 9 (a) shows a top view of the kit hono-redder 21 and FIG. 9 (b) shows a cross-sectional view of the kit hono-leder 21.
図 9 ( a ) に示すように、 キットホルダー 2 1は、 開口 (撮像用開口部) W O を備えている。 この撮像用開口部 W Oの形状は、 辺に形成された切り込み Cを除 くとほぼ正方形である。 図における符号 L l、 L 2、 L 3、 L 4は、 各光源から の照射光 (光線) スポットを示している。  As shown in FIG. 9A, the kit holder 21 has an opening (imaging opening) W O. The shape of the imaging opening W O is substantially square except for the cut C formed in the side. Symbols L1, L2, L3, and L4 in the figure indicate irradiation spots (light rays) from each light source.
図 9に示した本実施の形態においては、 撮像位置を固定してステージ 2が移動 するために、 実際は図の状態を中心位置とすると破線で示した領域 W 1の中を、 読み取り全読取領域 W 2が移動して撮像する。 そして、 X方向を例にして説明す ると、最低限、領域 W 1の窓があれば光線は遮られないが、 Mだけ移動するので、 撮像用開口部も Mだけ大きくしなければならない。 そのため実際の撮像用開口部 は、 W Oの大きさになる。 In the present embodiment shown in FIG. 9, since the stage 2 moves with the imaging position fixed, the area W1 indicated by the broken line when the state shown in FIG. W2 moves to capture an image. Then, taking the X direction as an example, at least, if there is a window in the area W1, the light beam will not be blocked, but it will move by M, so The imaging aperture must also be increased by M. Therefore, the actual imaging opening has a size of WO.
このように、 撮像用開口部が大きくなつてしまうので、 少しでもコンパクト化 を追求するためには、 光線が投光される方向に四角形の頂角を位置させると投光 と関係ない辺の位置が Cの様に切り欠かれるようにすると良い。  As described above, since the imaging aperture becomes large, in order to pursue a little more compactness, if the apex angle of the rectangle is located in the direction in which the light beam is projected, the position of the side that is not related to the projection Should be cut out like C.
キットホルダー 2 1は、 弾性板 (パネ) 2 5 2で付勢された採取キット押さえ ピン 2 5 1がフィルムキット 4 1を P点で押さえ、 中間プレート 4 2との間に固 定される。 この採取キット押さえピン 2 5 1をなるベく照射位置 S 1に近づける ことでコンパクト化が出来ると共に、 読み取り対象の領域 W 3内の被写体安定性 が増す。  The kit holder 21 is fixed between the intermediate plate 42 and the sampling kit holding pin 251, which is urged by the elastic plate (panel) 25, holding the film kit 41 at point P. By bringing the sampling kit holding pin 2 51 closer to the irradiation position S 1, the size can be reduced, and the stability of the subject in the area W 3 to be read increases.
X方向の移動時で更に説明すると、 読み取り全読取領域 W 2の中の一番右列を 読み取り対象にするためには、 撮像用開口部 W 0が左に移動されて壁面 A 1が A 2のライン位置まで移動する。 そのために、 光線スポット L l、 L 3は、 遮られ ない。 同様に、 読み取り全読取領域 W 2の中の一番左列を読み取り対象にするた めには、 撮像用開口部 W 0が右に移動されて壁面 B 1が B 2のライン位置まで移 動する。 そのために、 光線スポット L 2、 L 4は、 遮られることがない。  To explain further when moving in the X direction, in order to set the rightmost column in the entire reading area W2 to be read, the imaging opening W0 is moved to the left and the wall A1 is moved to A2. Move to the line position of. Therefore, the light spots L l and L 3 are not obstructed. Similarly, in order to set the leftmost column in the entire reading area W2 to be read, the imaging opening W0 is moved to the right, and the wall surface B1 is moved to the line position of B2. I do. Therefore, the light spots L 2 and L 4 are not obstructed.
従って、 ステージが移動しないとしたときの最小撮像用開口部 W 1は、 言い換 えればステージ (撮像用開口部) が移動したときにどの方向の最大移動時でも光 線が遮られない領域ともいえる。  Therefore, when the stage does not move, the minimum imaging opening W1 is, in other words, the area where the light beam is not blocked even when the stage (imaging opening) moves in any direction at the time of maximum movement. I can say.
さらに、本装置の光源ュニット 4は、光源が対角状に配置されて照射するので、 キットホルダー 2 1の撮像用開口部 Wは、 読み取り対象のェリァを撮像手段方向 に司見力せるための開口をこの光源が配置された方向を頂点とする四角形状に構成 した。 撮像用開口部 Wを四角形状にしたことで、 周辺の肉を確保しながら且つ光 線が遮られない照射を、 必要最小限の面積で実現した。  Furthermore, since the light source unit 4 of the present apparatus emits light with the light source arranged diagonally, the imaging opening W of the kit holder 21 is used to allow the object to be read to be seen in the direction of the imaging means. The aperture was formed in a square shape with the direction in which the light source was arranged at the apex. By making the imaging opening W rectangular, irradiation with unobstructed light rays can be achieved with a minimum area while securing the surrounding flesh.
ところで、 図 9 ( b ) に示されているように、 キットホルダー 2 1は、 相当な 厚みを有している。 それは、 焦点深度と静止位置を厳しくするための剛性を確保 するためである。 従って、 斜めから入り込む各光線は、 遮られない範囲で中央ス ポット S 1に集められて照射されるために、 少なくとも波線で示した領域 W 1の 窓が必要となる。 これは、 ステージ 2が移動しない場合であって、 実際は、 中央 スポット S 1の略中央に位置する読み取り小エリア W 3が、 読み取り全エリア W 2の中を図の X方向、 Y方向に移動しながら繰り返し読み取られるからである。 このように、 図 9においては理解しやすいように、 全読取領域 W 2が正方形で 描かれているが、 検出対象の個体を含む領域は必ずしも正方形とは限らず、 この 読み取り全読取領域 W 2に個体の存在が保証されている程度であってもよい。 また、 図 9の例では、 フィルムキット 4 1を例にしているが、 このフィルムキ ット 4 1の下方には中間プレート 4 2がある。 (図 8参照) By the way, as shown in FIG. 9 (b), the kit holder 21 has a considerable thickness. This is to ensure the rigidity required to tighten the depth of focus and the rest position. Accordingly, since each ray entering obliquely is collected and irradiated to the central spot S1 within an unobstructed range, at least a window in a region W1 indicated by a wavy line is required. This is when stage 2 does not move, This is because the small reading area W3 located substantially at the center of the spot S1 is repeatedly read while moving in the X and Y directions in the entire reading area W2. As described above, in FIG. 9, the entire reading area W 2 is drawn as a square for easy understanding, but the area including the individual to be detected is not necessarily a square. To the extent that the presence of the individual is guaranteed. Further, in the example of FIG. 9, the film kit 41 is used as an example, but an intermediate plate 42 is provided below the film kit 41. (See Fig. 8)
図 1 0は、 本装置の制御プロック図を示す。 操作者はィンタフェイス 8 0に継 ながったデータ処理装置 1 0 0 (図 1参照) に指示して計測を開始する。 指示さ れたデータ処理装置 1 0 0は、 計測開始コマンドを撮像装置 1に送る。 インタフ ェイス 8 0を介して計測開始コマンドを受信した制御手段 8 1は計測指示データ を露光制御手段 8 2に送信する。 制御手段 8 1は、 同一又は相違する露光時間で 複数回受光した画像データを累積的に加算する加算手段、 画像データに基づいて 被写体の個体数 (例えば、 バクテリアの数) をカウントする計数手段、 及び露光 時間の制御をするクロック手段、 画素値階層区分手段、 背景位置特定手段、 背景 位置演算手段、 及びフィルタ移動手段を有している。  FIG. 10 shows a control block diagram of the present apparatus. The operator instructs the data processor 100 (see FIG. 1) connected to the interface 80 to start measurement. The instructed data processing device 100 sends a measurement start command to the imaging device 1. The control means 81 that has received the measurement start command via the interface 80 transmits measurement instruction data to the exposure control means 82. Control means 81, adding means for cumulatively adding image data received a plurality of times with the same or different exposure times, counting means for counting the number of individuals (for example, the number of bacteria) based on the image data, And a clock means for controlling the exposure time, a pixel value hierarchy dividing means, a background position specifying means, a background position calculating means, and a filter moving means.
上記の計数手段はこの撮像装置内にある必要はなく、 むしろデータ処理装置 1 0 0内に部分的にあるいは全体としてプログラムとして存在する方が都合のいい こともある。 個体数のカウントは背景の黒の中に存在する白の領域を特定するた めに、 輪郭抽出法等を採用した場合には高速の実数演算を必要とし、 このために パーソナルコンピュータ等の外部のデータ処理装置を利用する方が好ましいから である。 また、 このアルゴリズムをバージョンアップなどする点でも、 利便性が 良い。 この形態においては、 加算された画像データはインタフェイス 8 0を介し てデータ処理装置 1 0 0に送られて、 データ処理装置内で画像データに基づいて 被写体の個体数 (例えば、 バクテリアの数) を計数手段によりカウントする。 こ のような個体数の加算手段及び計数手段の搭載される形態の一覧については図 2 3に示した。  The counting means need not be in this imaging device, but rather it may be more convenient, if any, in the data processing device 100 to be partly or entirely present as a program. Counting the number of individuals requires a high-speed real number operation when the contour extraction method is used to identify the white area existing in the black background, and this requires an external device such as a personal computer. This is because it is preferable to use a data processing device. It is also convenient in terms of upgrading this algorithm. In this embodiment, the added image data is sent to the data processing device 100 via the interface 80, and the number of individuals (for example, the number of bacteria) of the subject is determined based on the image data in the data processing device. Is counted by the counting means. Fig. 23 shows a list of modes in which such individual number adding means and counting means are mounted.
さらに、 本発明における撮像装置 1において、 制御手段 8 1は各ロッド光源 6 に対し指示した露光指示データと照射手段 8 3に送信した照射指示データと、 現 在のフィルタュニット 5 5の位置とに基づいてフィルタュニット 5 5の移動が必 要な場合はフィルタ移動部 2 3に移動指示を行う。 Further, in the imaging apparatus 1 of the present invention, the control means 81 controls the exposure instruction data instructed to each rod light source 6, the irradiation instruction data transmitted to the irradiation means 83, and the current If it is necessary to move the filter unit 55 based on the current position of the filter unit 55, a move instruction is issued to the filter moving unit 23.
照射光によって発光するステージ 2上の検体の蛍光は、 レンズユニット (レン ズ手段) 3によって集光され光電変換手段 8 4に送信される。 光電変換手段 8 4 は受信した 2次元画像信号を 2進数の画像データに変換するために A/Dコンバ ータ 8 5に送信し、 AZDコンバータ 8 5はデジタル変換されたデータを計測デ ータとしてフレームメモリ 8 6に送信する。 照射が終了するとフレームメモリ 8 6は蓄積したデータを制御手段 8 1に送信する。  The fluorescence of the specimen on the stage 2 that emits light by the irradiation light is collected by the lens unit (lens means) 3 and transmitted to the photoelectric conversion means 84. The photoelectric conversion means 84 transmits the received two-dimensional image signal to the A / D converter 85 to convert it into binary image data, and the AZD converter 85 converts the digitally converted data into measurement data. To the frame memory 86. When the irradiation is completed, the frame memory 86 transmits the stored data to the control means 81.
ここで、 本発明における光路長の調整機構について説明する。  Here, the mechanism for adjusting the optical path length in the present invention will be described.
光源ュニット 4の光が送出される基板取り付けと反対の端の発光端の下方にス テージ 2は位置する。発光端の上方には、レンズュニット 3が備えられているが、 このレンズュニット 3と発光端との間にステージ 2の面に平行に進退するフィル タユニット 5 5が位置する。 フィルタユニット 5 5には、 4 2 0 n mから下の帯 域の波長光を力ットする L 4 2フィルタ 5 5 bと、 5 8 0 η ηιから下の波長帯域 の光を力ットする O 5 8フイノレタ 5 5 aが取り付けられている。  Stage 2 is located below the light-emitting end of the light source unit 4 opposite to the end where the light from the light-emitting unit 4 is transmitted. A lens unit 3 is provided above the light emitting end, and a filter unit 55 that advances and retreats in parallel with the surface of the stage 2 is located between the lens unit 3 and the light emitting end. In the filter unit 55, the light in the wavelength band below 420 nm is turned on.The L42 filter 55b and in the light in the wavelength band below 580ηηι are turned on. O58 Finoleta 55a is installed.
光源を発光端の上方に位置させたことにより、 発光が直接フイノレタに当たるこ とがさけられる。 このことは、 フィルタなどのェッジから散乱光が生じたり、 迷 光などを生じて受光に障害を発生させることがないという目的に鑑みたものであ る。  By locating the light source above the light-emitting end, light emission is prevented from directly hitting the finolators. This is in view of the purpose of preventing scattered light or stray light from being generated from an edge of a filter or the like, thereby causing an obstacle to light reception.
また、レンズュニット 3内に切り替えフィルタを構成することも考えられるが、 遮光をしなければならない点が、 難所となり、 コストアップになってしまう。 更 に、上述のように、レンズを交換可能に構成するケースでは、デメリットである。 図 1 1は、 フィルタ移動部 (フィルタ移動手段) 2 3の斜視図を示す。 フィル タ移動部 2 3は、 支持フレーム 9 4と、 フィルタユニット 5 5と、 をステージ 2 の面に平行に進退する駆動を与える駆動手段 9 0と、 駆動手段 9 0の駆動力をフ イ^"タュニット 5 5に伝える駆動口ッド 9 1と、 支持フレーム 9 4と駆動口ッド 9 1に係止され駆動口ッド 9 1をステージ 2側に付勢するパネ 9 2と、 で構成さ れている。  Further, it is conceivable to configure a switching filter in the lens unit 3, but it is a difficult point that light must be shielded, resulting in an increase in cost. Further, as described above, there is a disadvantage in the case where the lens is configured to be replaceable. FIG. 11 shows a perspective view of a filter moving section (filter moving means) 23. The filter moving unit 23 includes a driving unit 90 for driving the support frame 94, the filter unit 55, and the stage 2 in parallel with the surface of the stage 2, and a driving force of the driving unit 90. "The drive port 9 1 for transmitting to the unit 5 5 and the panel 9 2 which is locked to the support frame 9 4 and the drive port 9 1 and urges the drive port 9 1 to the stage 2 side. Has been done.
光源切り替えによって、 フィルタュニット 5 5の移動が必要であると判断され ると、 制御手段 8 1はフィルタ移動手段の駆動手段 9 0に対してフィルタュ二ッ ト 5 5を移動するための駆動指示を行う。 駆動手段 9 0は駆動口ッド 9 1を介し てフィルタュニット 5 5をステージ 2の面に平行に進退する駆動を行う。 The light source switching determines that the filter unit 55 needs to be moved. Then, the control means 81 gives a drive instruction for moving the filter unit 55 to the drive means 90 of the filter moving means. The driving means 90 drives the filter unit 55 to advance and retreat in parallel with the surface of the stage 2 via the driving port 91.
フィルタュニット 5 5には移動をガイドするガイド穴 9 3が形成され、 移動方 向及び位置が規定位置からずれないようにガイドする。 図 1 1においては、 5 8 0 n m以下の波長を力ットする O 5 8フィルタ 5 5 aが撮像位置に移動した状態 を示している。 光源ユニット 4から緑光の照射が行われる場合は、 駆動手段 9 0 は移動のための駆動を行い、 矢印の A方向にフィルタュニット 5 5を移動し 4 2 0 11 mから下の波長帯域の光をカツトする L 4 2フィルタ 5 5 bを撮像位置に移 動する。  Guide holes 93 are formed in the filter unit 55 to guide the movement so as to guide the movement direction and the position so as not to deviate from the prescribed positions. FIG. 11 shows a state in which the O 580 filter 55 a that focuses on a wavelength of 580 nm or less has moved to the imaging position. When green light is emitted from the light source unit 4, the driving means 90 performs driving for movement, moves the filter unit 55 in the direction of the arrow A, and moves the filter unit 55 in a wavelength band lower than 420 11 m. Move the L42 filter 55b that cuts light to the imaging position.
ところで、 波長の違いによりレンズ 3 aの焦点距離は変化する。 例えば 4 2 0 n mから下の帯域の波長をカツトする L 4 2フィルタ 5 5 bで受光した紫外光は、 レンズ 3 aの焦点距離が 5 8 0 n m以下の波長帯域をカツトする O 5 8フィルタ 5 5 aで受光した緑光の焦点距離より短い。  By the way, the focal length of the lens 3a changes depending on the wavelength. For example, the UV light received by the L42 filter 55b, which cuts the wavelength in the band below 420nm, is the O58 filter, which cuts the wavelength band where the focal length of the lens 3a is 580nm or less. 5 Shorter than the focal length of the green light received at 5a.
従って、 4 2 0 n mから下の波長帯域をカツトする L 4 2フィノレタ 5 5 bで受 光した光は C C D 9 6 (図 1 2参照) の手前が焦点位置となる。 この光が C C D 9 6に到達した画像は所謂ピンボケの状態となる。 そのため、 適正に焦点位置を 合わすためにはレンズ 3 a位置の調整(交換)、 C C D 9 6位置の調整、又は被写 体位置の調整が必要となる。  Therefore, the light received by the L42 finoletor 55b, which cuts the wavelength band below 420 nm, has a focal position before the CCD96 (see FIG. 12). The image when this light reaches the CCD 96 is in a so-called out-of-focus state. Therefore, in order to properly adjust the focal position, it is necessary to adjust (exchange) the position of the lens 3a, adjust the position of the CCD 96, or adjust the position of the object.
さらに、 本撮像装置 1は拡大光学系であって焦点深度を厳しく見ないと、 個体 の輪郭抽出がきれいに行えない。 角军放露光系なので、 背景ノイズが少なく、 エツ ジ強調の画像処理を行うにしても、 元画質を充分に要求する。  Furthermore, the image pickup device 1 is an enlarged optical system, and the contour of an individual cannot be clearly extracted unless the depth of focus is strictly observed. Since it is a square-radiation exposure system, there is little background noise, and even if edge-enhanced image processing is performed, the original image quality is required sufficiently.
そこで本発明においては焦点距離を調整するためフィルタュニット 5 5のフィ ルタの 1つに光路長を調整する光路長調整手段 9 5を設けた。  Therefore, in the present invention, an optical path length adjusting means 95 for adjusting the optical path length is provided in one of the filters of the filter unit 55 for adjusting the focal length.
図 1 2は、検体 9 9と、 フィルタュニット 5 5とレンズ手段(レンズュニット) 3の構成図を示す。  FIG. 12 shows a configuration diagram of the sample 99, the filter unit 55, and the lens means (lens unit) 3.
図 1 2において、 (a ) は、被写体 9 9が生じた蛍光を受光するために、 フィル タ 5 5 b (緑光の場合は、フィルタ 5 5 aとする。) を通してレンズ 3 aが合焦す る焦点位置を示している。焦点位置 Xは、緑光が照射された被写体 9 9の蛍光(6 1 7 n m) を受光した場合の焦点位置で C C D 9 6の受光面に焦点位置が一致し ている。 焦点位置 Yは、 紫外光が照射された被写体 9 9の蛍光 (4 6 1 n m) を 受光した場合の焦点位置で、 焦点位置 Yは、 C C D 9 6の受光面の手前にある。 このように検体からの光の波長の違いによる焦点位置のずれを解決するため、 図 1 2の (b ) に示すように、 照射光の変更時でも光路長の差 (色収差) を適切 に補完するため、 光路長の調整には、 フィルタと別部材で交換可能な光路長調整 手段が設けられている。 In FIG. 12, ( a ) shows that the lens 3a is focused through a filter 55b (in the case of green light, the filter 55a) to receive the fluorescence generated by the subject 99. FIG. The focal position X is the fluorescent light (6 (17 nm), the focal position coincides with the light receiving surface of the CCD 96 at the focal position. The focal position Y is the focal position when the fluorescent light (461 nm) of the subject 99 irradiated with the ultraviolet light is received, and the focal position Y is in front of the light receiving surface of the CCD 96. As shown in Fig. 12 (b), the difference in optical path length (chromatic aberration) is properly compensated for even when the irradiation light is changed, as shown in Fig. 12 (b), in order to resolve the shift of the focal position due to the difference in the wavelength of the light from the specimen. In order to adjust the optical path length, there is provided an optical path length adjusting means that can be replaced by a member separate from the filter.
図 1 2 ( b ) の例では、 紫外光の蛍光 (4 6 1 n m) を受光した場合、 フィル タ 5 5 bの上に光路長調整部材 9 5を重ねて載置している。 この例では、 光路長 調整部材 9 5は、 調整ガラス 9 5としている。  In the example shown in FIG. 12 (b), when ultraviolet fluorescent light (461 nm) is received, the optical path length adjusting member 95 is placed on the filter 55b. In this example, the optical path length adjusting member 95 is an adjusting glass 95.
被写体 9 9の蛍光は、 この調整ガラス 9 5により屈折され、 光路長が調整され る。 この調整により、 レンズ 3 aを通った画像の焦点位置は、 C. C D 9 6の受光 面と一致している。 調整ガラス 9 5により、 光路長が調整され被写体からの異な る波長領域の光に対しても焦点距離の合った精緻な光を得ることを可能としてい る。  The fluorescence of the subject 99 is refracted by the adjusting glass 95, and the optical path length is adjusted. With this adjustment, the focal position of the image passing through the lens 3a matches the light receiving surface of the CD 96. With the adjusting glass 95, the optical path length is adjusted, so that it is possible to obtain precise light having the same focal length even for light in different wavelength regions from the subject.
このように、 光路長調整手段は、 所定のフィルタに調整ガラス 9 5を重ねて焦 点位置を調整する。 そして、 フィルタユニット 5 5の移動は、 露光手段と、 照射 手段の情報と、 現在のフィルタの種類の情報に基づいて制御手段 8 1からの指示 によりフィルタ移動部 2 3によって行われる。  As described above, the optical path length adjusting means adjusts the focal position by superimposing the adjusting glass 95 on a predetermined filter. Then, the movement of the filter unit 55 is performed by the filter moving unit 23 according to an instruction from the control unit 81 based on the information on the exposure unit, the irradiation unit, and the information on the current filter type.
また、 本発明による撮像装置 1において、 被写体 9 9の装着はステージ 2をフ ロントカバー 5開放位置に移動してフロントカバー 5 (図 2に示す) を開放し被 写体 9 9を装着する。 また、 装置のメンテナンス時には、 フィルタュニット 5 5 の上方から操作できるのでフィルタにゴミが付着しても容易にメンテナンスでき る構成となっている。  Further, in the imaging apparatus 1 according to the present invention, when mounting the subject 99, the stage 2 is moved to the front cover 5 open position, the front cover 5 (shown in FIG. 2) is opened, and the subject 99 is mounted. In addition, since the filter can be operated from above the filter unit 55 at the time of maintenance of the apparatus, even if dust adheres to the filter, maintenance can be easily performed.
また、 ステージ 2とレンズュニット 3との間の空間にフィルタュニット 5 5を 設け、 更に光源の発光位置よりも上方にフィルタを位置させているので、 フィル タ移動部 2 3を設けるために装置を大きくする必要がない。 さらには、 光学的に 安定した構成といえる。  In addition, a filter unit 55 is provided in the space between the stage 2 and the lens unit 3, and the filter is positioned above the light emitting position of the light source. There is no need to increase it. Furthermore, it can be said that the configuration is optically stable.
補足すると、 説明内に上方下方という位置関係の扱いがあるが、 これは便宜的 なものであって、 装置を斜めに載置したり横置きの装置を構成することも、 同様 な構成になることは言うまでもなレ、。 Supplementally, in the explanation, there is a treatment of the positional relationship of upward and downward, but this is for convenience. It goes without saying that the same configuration is possible when the device is mounted diagonally or configured horizontally.
本発明に係る撮像装置は、 これによつて、 複数の異なる波長領域を有する被写 体からの微弱な蛍光の撮像において、 波長領域において相違する光路長を簡易な 機構で調整可能にし、 以つて微小サイズの検体を精緻に撮像することをノイズ光 を増加させることなく実現したのである。  Thus, the imaging apparatus according to the present invention makes it possible to adjust, with a simple mechanism, different optical path lengths in a wavelength region in imaging weak fluorescence from an object having a plurality of different wavelength regions. It was possible to image minute specimens precisely without increasing noise light.
また、 このような位置にフィルタを構成することで、 レンズの倍率を変更する ために付け替えをするような構成になっても、 容易に光路長の再調整を実現する ように出来た。  In addition, by configuring the filter at such a position, it was possible to easily realize readjustment of the optical path length even if the filter was replaced to change the magnification of the lens.
ここで、本装置の撮像動作を、図 13に示すフローチャートに基づき説明する。 本装置のスィッチ 10をオンさせ電源を投入すると (S l)、 本体の CPUは、 撮像開始のためのイニシャライズ動作を行う (S 2)。扉 (フロントカバー 5) を 開けると、扉を開放した信号が発せれる (S 3)。 読み取り開始時では、 この信号 を受けたデータ処理装置 100からの移動指令に基づいて、 ステージ 2は、 フロ ントカバー 5の開放位置であるフロントに移動する。  Here, the imaging operation of the present apparatus will be described based on the flowchart shown in FIG. When the switch 10 of the device is turned on and the power is turned on (Sl), the CPU of the main body performs an initialization operation for starting imaging (S2). When the door (front cover 5) is opened, a signal to open the door is issued (S3). At the start of reading, the stage 2 moves to the front, which is the open position of the front cover 5, based on a movement command from the data processing device 100 receiving this signal.
ステージ 2上に、 エンブレムキット 40、 もしくはフィ /レムキット 41の検体 (被写体) 99を装着する (S4)。 フロントカバー 5が操作者の手で閉じられる (S 5) と、 ステージ 2は原点 (撮影位置の初期位置であるホームポジション) に移動する(S 6)。カバーセンサの信号がインタフェイスに接続されたデータ処 理装置 100に送られて、 準備が出来たことをディスプレイ上に表示する。  The sample (subject) 99 of the emblem kit 40 or the fiem / rem kit 41 is mounted on the stage 2 (S4). When the front cover 5 is closed by the operator's hand (S5), the stage 2 moves to the origin (home position, which is the initial position of the photographing position) (S6). The signal of the cover sensor is sent to the data processing device 100 connected to the interface, and the preparation is displayed on the display.
ここで、 操作者は、 データ処理装置 100に指示して測定位置にステージ 2を 移動する (S 7)。 LED ·フィルタを切り替える (S 8)。 計測開始コマンドを ' 撮像装置に送り計測を開始し (S 9)、 データを取り込む (S 10)。 データの測 定が続く時には、 指示されたデータ処理装置は、 計測開始コマンドを撮像装置に 送る (S 12)。  Here, the operator instructs the data processing device 100 to move the stage 2 to the measurement position (S7). Switch the LED filter (S8). A measurement start command is sent to the imaging device to start measurement (S9), and data is taken in (S10). When the data measurement continues, the designated data processing device sends a measurement start command to the imaging device (S12).
撮像装置の制御部は、 ステージ 2をホームポジションに移動させる。 測定が終 了するまで S 7乃至 S 12を繰り返す。 測定が終了すると、 測定終了のィニシャ ライズ動作を行う (S 13)。 ステージ 2は、 フロントカバー 5の開放位置である フロントに移動し、 扉を開け (S 14)、 採取シートを取り出す (S 15)。 ここで、 次の採取シートがある時は、 S 4乃至 S 1 6の動作を繰り返し行う。 次の採取シートがない場合は、扉を閉め (S 1 7 )、電源を切って終了する (S 1 8、 S 1 9 ) o The control unit of the imaging device moves the stage 2 to the home position. S7 to S12 are repeated until the measurement is completed. When the measurement is completed, an initialization operation for completing the measurement is performed (S13). The stage 2 moves to the front where the front cover 5 is opened, opens the door (S14), and takes out the sampling sheet (S15). Here, when there is a next sampling sheet, the operations from S4 to S16 are repeated. If there is no next sampling sheet, close the door (S17), turn off the power and finish (S18, S19) o
撮像用開口部は、 光収斂手段からの光線がステージ上における読取対象領域の 全域に照射されるように開口されていること力ゝら、 より小さなサイズ形状の開口 を形成する読取によって、 ステージ上における読取対象領域の全域に光が照射さ れるようにしたのである。  The imaging aperture is opened so that the light beam from the light converging means is irradiated on the entire area to be read on the stage. Thus, light is applied to the entire area to be read in.
さらに、 本発明においては、 集光レンズと採取キット間の距離を一定の焦点深 度範囲内に収めることにより、 高価な自動焦点調整装置を装着することなく、 複 数種類の採取キットに対応した採取キットの载置装置を実現したのである。 以下に、本発明の個体数カウントシステムの主体分について詳細に説明するが、 その前にその制御対象である光電変換手段 (C C D 9 6 ) 自体について簡単に説 明する。 尚、 光電変換手段の代表としてここでは C C D 9 6を例にして説明を行 つているが、 M〇 S型や他の方式の光電変換素子でも同様に適用できる発明であ る。  Further, in the present invention, by setting the distance between the condenser lens and the sampling kit within a certain focus depth range, the sampling corresponding to a plurality of types of sampling kits can be performed without installing an expensive automatic focusing device. A kit placement device was realized. Hereinafter, the subject of the individual number counting system of the present invention will be described in detail, but before that, the photoelectric conversion means (CCD966) itself, which is the control target, will be briefly described. Note that, here, the CCD 96 is described as an example of the photoelectric conversion means, but the invention can be applied to photoelectric conversion elements of the MS type or other types similarly.
図 1 4に記載したように、 パッケージ内にフォトセンサ (フォトダイオードな ど) が 2次元状に整列配置されている。. この酉己列エリアは、 透明な窓を有して光 が入るようになつている。 端子 VD Dと G NDは基本電圧の印加を行う。 ビデオ 信号を取り出す V O U T端子からの水平のビデオ信号転送に同期するクロックの Η ψ 1、 Η φ 2端子がある。  As described in Figure 14, photo sensors (such as photodiodes) are two-dimensionally arranged in a package. The rooster area has transparent windows to allow light to enter. Terminals VDD and GND apply the basic voltage. Extract video signal There are ク ロ ッ ク ψ 1 and Η φ 2 terminals for clocks synchronized with horizontal video signal transfer from the VOUT terminal.
そして、 V φ 1、 V φ 2、 ν φ 3、 ν φ 4は水平同期を垂直方向に繰り返すた めの垂直同期クロックであって、 4相で動作する。 φ R G端子はリセットゲート であって、 1画面の露光時間を制御する。 φ S U B端子は、 露光による光電変換 で内部蓄積された電荷が、 転送クロックでの受け渡しで残留してしまう微量電荷 をクリアするためのクロック用端子である。  Vφ1, Vφ2, νφ3, νφ4 are vertical synchronization clocks for repeating horizontal synchronization in the vertical direction, and operate in four phases. The φRG terminal is a reset gate that controls the exposure time of one screen. The φ SUB terminal is a clock terminal for clearing a small amount of charge that is internally accumulated due to photoelectric conversion by exposure and remains after passing by the transfer clock.
このように、 光電変換手段の各端子に与えるクロックを制御することで、 露光 時間や出力取り出しの制御が行われる。  In this way, by controlling the clock applied to each terminal of the photoelectric conversion means, the exposure time and the output extraction are controlled.
露光制御手段は制御手段 8 1から受信した指示データに基づき各ロッド光源、に 対し制御した露光指示データを照射手段 8 3に送信する。 露光制御手段 8 2は少 なくとも個体が蛍光を発光するための最小時間以上の第 1の露光時間と、 光電変 換手段が長時間露光による異常値を持つ画素の発生時間である第 2の露光時間と に基づいて設定する第 3の時間を照射手段 8 3に指示する。 The exposure control means transmits exposure instruction data controlled for each rod light source to the irradiation means 83 based on the instruction data received from the control means 81. Exposure control means 8 2 At least the first exposure time, which is longer than the minimum time for the individual to emit fluorescent light, and the second exposure time, which is the time when the photoelectric conversion means generates a pixel having an abnormal value due to long-time exposure, is set. The third time to perform is instructed to the irradiation means 83.
露光データを受信した照射手段 8 3は、特定波長領域の光を所定の露光時間で、 所定の回数の照射をステージ上の検体に対して行う。 この時、 制御手段 8 1は光 電変換手段 8 4の転送クロック及び Z又はリセットパルスを制御することによつ て露光時間を調整する。  The irradiating means 83, which has received the exposure data, irradiates the specimen on the stage with light of a specific wavelength region for a predetermined exposure time and for a predetermined number of times. At this time, the control means 81 adjusts the exposure time by controlling the transfer clock and the Z or reset pulse of the photoelectric conversion means 84.
さらに、 また照射手段 8 3は、 露光時間により複数回露光をする際に光源を点 灯して露出する第 1のモードと光源、を消灯して露光する第 2のモードとを持つ光 源制御手段とを備え、 制御手段は、 第 1のモードにより取得した画像データから 前記第 2のモードにより取得した画像データを減算する減算手段を備えている。 検体に含まれる個体数の第 1のカウント方法は、 次のように行われる。 照射光 によって発光するステージ 2上の検体中の個体 (バクテリア) の蛍光のデータは 光電変換手段 8 4に送信される。 光電変換手段 8 4は受信したビデオ信号を 2進 数の画像データに変換するために AZDコンバータ8 5に送信し、 Aノ Dコンパ ータ 8 5はデジタル変換されたデータを計測データとしてフレームメモリ 8 6に 送信する。 Further, the irradiating means 83 has a light source control having a first mode in which the light source is turned on and exposed during multiple exposures according to the exposure time, and a second mode in which the light source is turned off and exposed. The control means includes subtraction means for subtracting the image data acquired in the second mode from the image data acquired in the first mode. The first method for counting the number of individuals contained in a sample is performed as follows. The fluorescence data of the individual (bacteria) in the specimen on the stage 2 that emits light by the irradiation light is transmitted to the photoelectric conversion means 84. Frame memory photoelectric converter 8 4 transmits to AZD converter 8 5 to convert the video signal received binary image data, A Roh D Compur motor 8 5 digital converted data as the measurement data 8 Send to 6.
光源からの照射による撮像が終了するとフレームメモリ 8 6は蓄積したデータ を制御手段 8 1に送信する。 カウント手段は照射した特定波長領域の光とは異な る主波長の蛍光を発光する検体内の個体数をカウントする。 そして、 加算手段は 光電変換手段の同一画素位置の画像データを累積的に加算することにより検体に 含まれる個体の数をカウントするのである。  When the imaging by the irradiation from the light source is completed, the frame memory 86 transmits the stored data to the control means 81. The counting means counts the number of individuals in the specimen that emit fluorescent light of a main wavelength different from the irradiated light of the specific wavelength region. Then, the adding means counts the number of individuals included in the specimen by cumulatively adding the image data at the same pixel position of the photoelectric conversion means.
撮像装置 1は、 画像データを送信するためのインタフェイス手段 8 0と、 当該 インタフェイス手段 8 0を介して外部のデータ処理装置 1 0 0と接続され、 制御 手段 8 1を構成する各手段による処理は、 データ処理装置 1 0 0と協働して行わ れるように構成されている。 従って、 加算手段、 計数手段のどちらも、 光電変換 素子 9 6を有する撮像装置 1側にあっても良いし、 光電変換素子 9 6を有する撮 像装置 1に対して制御を行うデータ処理装置 1 0 0側にあっても良い。  The imaging device 1 includes an interface means 80 for transmitting image data, and an external data processing apparatus 100 connected via the interface means 80 to form the control means 81. The processing is configured to be performed in cooperation with the data processing device 100. Therefore, both the adding means and the counting means may be on the imaging device 1 side having the photoelectric conversion element 96, or the data processing apparatus 1 which controls the imaging apparatus 1 having the photoelectric conversion element 96. It may be on the 0 side.
更に、 それらはハードウェア、 ソゥトウエアどちらで実現されても良いし、 そ のソゥトウエアは記録媒体で提供されても良いし、 通信などによるダウンロード 提供の形態でも可能である。 あるいは、 この加算手段及び/又は計数手段は独立 したュニットとして存在して接続されても良いし、 AS I Cやマスク ROMのよ うな形態として提供されても良いのである。 Furthermore, they may be realized by hardware or software, and The software may be provided on a recording medium, or may be provided in a form of download provided by communication or the like. Alternatively, the adding means and / or the counting means may exist and be connected as independent units, or may be provided as a form such as an AS IC or a mask ROM.
ここで、 本発明における検体に含まれる個体 (バクテリア) の第 2のカウント 方法例について説明する。  Here, a second example of the method of counting individuals (bacteria) included in a specimen according to the present invention will be described.
図 15のフローチャートで示すように、 概略は各画像データから背景の値を引 くに当たって、 その背景レベルを見つけることがポイントになっている。  As shown in the flowchart of FIG. 15, the point is to find the background level when subtracting the background value from each image data.
制御手段は、 検体全体の内の 1部エリア (例えば 20 d o t X 20 d o t ) に ついて所定の露光時間例えば 2秒間で 1ショット撮像する。  The control means captures one shot of a partial area (for example, 20 dots X 20 dots) of the entire sample with a predetermined exposure time, for example, 2 seconds.
そして、 画素値階層区分手段は、 受光した画像データを複数の画素階層に区分 する。画素値レベル(8B i t : 0〜255)を例えば 0〜63、 64〜: L 27、 128〜 1 91、 1 92〜 255の 4区分に区分する。  Then, the pixel value hierarchy dividing means divides the received image data into a plurality of pixel hierarchies. The pixel value level (8Bit: 0 to 255) is divided into, for example, four sections of 0 to 63, 64 to: L27, 128 to 191 and 192 to 255.
背景位置特定手段は、この内 0〜 63の区分に入ってきた画素位置を記録する。 例えば、 座標 (5、 3)、 (7、 10)、 (1 1、 12) 。  The background position specifying means records the pixel positions that fall into the 0 to 63 sections. For example, coordinates (5, 3), (7, 10), (11, 12).
記録は全部でも良いし、 5点位でも良いが、ここでは 3点としてこれらを P 1、 P 2、 P 3の 3点とする。 これを背景 3点の代表とする。  The record may be all or about five points, but here, three points are P1, P2, and P3. This is the representative of the three backgrounds.
ここで、 背景位置演算手段は CCDをリセットしてもう一度スタートする。 前 記では 2秒後の値を固定してメモリに記録したが、 今度は、 P l、 P 2、 P 3の 3点だけに着目して連続して AZD変換を繰り返して記録する。 例えば 1 O Om s単位で行う。  Here, the background position calculation means resets the CCD and starts again. In the above, the value after 2 seconds was fixed and recorded in the memory. However, this time, the AZD conversion is continuously and repeatedly recorded focusing on only the three points Pl, P2, and P3. For example, it is performed in units of 1 O Oms.
次に 2. 0秒のレベルが欲しいので、 1. 8、 1. 9、 2. 0、 2. 1、 2. 2の 5つの各秒、でのレべノレの和 e (1. 8) + e (1. 9) + e (2. 0) + e (2. 1) + e (2. 2) を 5で割るとレベルは 2. 0秒の値でホワイトノイズ をキャンセルした値になる。  Next, we want a level of 2.0 seconds, so the sum of the levels in each of the five seconds, 1.8, 1.9, 2.0, 2.1, and 2.2, e (1.8) Dividing + e (1.9) + e (2.0) + e (2.1) + e (2.2) by 5 gives a level of 2.0 seconds with white noise canceled. .
さらに、 また P l、 P2、 P 3の 3点で上記の 5点行つたと同様な処理を行レヽ 3点の平均値を算出する。 この値を、 Bkとする。 これを、 被写体上の個体背景 を示す背景画素値階層として特定する。  Further, the same processing as the above-described five-point row is performed at three points Pl, P2, and P3, and an average value of three points is calculated. This value is defined as Bk. This is specified as a background pixel value hierarchy indicating the individual background on the subject.
そして、 さきに取得した 2秒露出で 1ショットの全体画像の各画素の値を、 L V (X、 Y) : X、 Yはエリアの座標とした時、 全 X, Yについて、 L V (X、 Y) 一 B kを演算する。 この全データを紫外光照射で取得した撮像データとして インタフェイスを介してデータ処理装置に送信する。 Then, the value of each pixel of the whole image of one shot with 2 seconds exposure acquired earlier, LV (X, Y): When X and Y are the coordinates of the area, calculate LV (X, Y) one Bk for all X and Y. This entire data is transmitted to the data processing device via the interface as imaging data obtained by irradiation with ultraviolet light.
さらに、 同様に緑光の照射撮像についても行い緑光で取得した撮像データとし てインタフェイスを介してデータ処理装置に送信する。  Further, similarly, green light irradiation imaging is performed, and transmitted to the data processing device via the interface as image data acquired with green light.
データ処理装置はこの 2つのフレーム画像を用いてバクテリアのカウントをし て、 生菌を算出する。  The data processor uses these two frame images to count bacteria and calculate viable bacteria.
撮像装置 1は、 画像データを送信するためのインタフェイス手段 8 0と、 当該 インタフェイス手段 8 0を介して外部のデータ処理装置と接続され、 制御手段 8 1を構成する各手段による処理は、 前記データ処理装置と協働して行われるよう に構成されている。  The imaging device 1 is connected to an interface means 80 for transmitting image data, and an external data processing device via the interface means 80, and the processing by each means constituting the control means 81 includes: It is configured to be performed in cooperation with the data processing device.
従って、 画素値階層区分手段、 背景画素階層区分手段、 背景位置演算手段、 計 数手段のいずれも、 光電変換素子 9 6を有する撮像装置側にあっても良いし、 光 電変換素子 9 6を有する撮像装置に対して制御を行うデータ処理装置側にあって も良い。  Therefore, any of the pixel value hierarchy division means, the background pixel hierarchy division means, the background position calculation means, and the counting means may be provided on the imaging device side having the photoelectric conversion element 96 or the photoelectric conversion element 96 may be provided. It may be on the side of the data processing device that controls the imaging device provided.
更に、 それらはハードウェア、 ソゥトウエアどちらで実現されても良いし、 そ のソゥトウエアは記録媒体で提供されても良いし、 通信などによるダウンロード 提供の形態でも可能である。 あるいは、 これらの画素値階層区分手段、 背景画素 階層区分手段、 背景位置演算手段、 計数手段のいずれも独立したユニットとして 存在して接 されても良いし、 A S I Cやマスク R OMのような形態として提供 されても良いのである。  Further, they may be realized by hardware or software, and the software may be provided by a recording medium, or may be provided by download through communication or the like. Alternatively, any of these pixel value hierarchy division means, background pixel hierarchy division means, background position calculation means, and counting means may exist and be connected as independent units, or may be in the form of an ASIC or a mask ROM. It may be provided.
このカウントも図 2 4に示した特性を利用して本発明は被写体の個体数を力ゥ ントすることを可能としたのである。  The present invention also makes it possible to emphasize the number of individuals of the subject by utilizing the characteristic shown in FIG. 24.
以下、 図 1 6乃至 2 2に基づいて、 本発明における背景レベルと輝点を除いた 画素データの取得について説明する。  Hereinafter, acquisition of pixel data excluding the background level and the bright spot in the present invention will be described with reference to FIGS. 16 to 22.
図 1 6は、 理想的な被写体 (バクテリア映像) レベルの露光時間に対するグラ フである。 しかしながら現実的には、 図 2 0に示すように被写体周辺の背景レべ ルが露出するため、 図 1 8の 「菌 +背景」 レベルの線の様に背景レベルが大きく 作用する。 言い換えると、 本システムは紫外線や緑光で照射されたバ々テ n が励起エネルギーを得て蛍光を生じ、 その蛍光を取得しょうとするシステムなの で受光レベルが低いだけでなく背景と被写体とのコントラストが低い。 Figure 16 is a graph of ideal subject (bacteria image) level exposure time. However, in reality, the background level around the subject is exposed as shown in FIG. 20, so that the background level acts greatly like the line of “bacterium + background” level in FIG. In other words, the system can be used to irradiate batteries with ultraviolet or green light. Is a system that obtains the excitation energy to generate fluorescence, and the system tries to acquire the fluorescence. Therefore, not only the light reception level is low, but also the contrast between the background and the subject is low.
このような悪条件下で被写体を捕らえるためには、 通常 C C D 96の使用可能 な露光時間を大きく越えて、 例えば星座の撮影をするように一定時間開放露光し なければならない。  In order to capture a subject under such adverse conditions, it is necessary to perform open exposure for a certain period of time, for example, to take a picture of a constellation, much longer than the available exposure time of the CCD96.
ところが、 CCD 96はその製造プロセス上の欠陥から使用可能時間を越えた 時間帯で使用すると、 画素中に 「輝点」 と呼ばれる異常値を呈する画素が存在す る。 この出現状態を示したのが図 18であって所定時間 T MTを越えた時間から この輝点が出現する度数が上昇していく様子がグラフ化されている。 However, when the CCD 96 is used in a time zone exceeding the usable time due to a defect in the manufacturing process, some pixels exhibit abnormal values called “bright spots” in the pixels. FIG. 18 shows this appearance state, in which the appearance frequency of the bright spot increases from the time exceeding the predetermined time TMT is graphed.
また、 図 16に現された蛍光開始時間 Tsであるが、 バクテリアのような大き い分子に与えられた特定波長光がエネルギー蓄積する所定時間であつてこの T s 後に蛍光発生する。 従って、 図 16と図 17から判るように輝度に於ける異常信 号を発生することなく露出 (CCD 96を) できる時間帯 tは、 図 17に示した 使用可能範囲の 「TSく t <TLMT」 ある。 The fluorescence onset time T s shown in FIG. 16 is a predetermined time during which light of a specific wavelength given to a large molecule such as a bacterium accumulates energy, and fluorescence is generated after this T s . Therefore, the time period t which can expose (the CCD 96) without generating in abnormality signal to the brightness as seen from FIG. 16 and FIG. 17, the usable range shown in FIG. 17, "T S rather t < T LMT .
図 19は、以上説明した 「TSく t <TLMTj を満足する時間ごとに露光を 1 s tフレーム、 2n dフレーム、 3 r dフレームと繰り返している図でありそれぞ れあるバクテリアの白レベルが V 1、 V 2、 V 3に達している。 19, above described "T S rather 1 st frame exposure for each time satisfying t <T LMT j, 2n d frame, 3 a diagram is repeatedly rd frame white level of bacteria in, respectively it Have reached V1, V2 and V3.
そして、 CCDは各画素への入力光量と出力電圧のクリアリティが保証されて いるために、 線計演算が可能であって V 1+V2+V3を演算することにより連 続露光した結果と同等であり、 かつ、 輝点の存在しない映像となる。 このように 生成された輝点のない映像を、 あらかじめ実験的に求めておいた所定値を用レ、て 2値ィ匕すると、 バクテリア部分だけが白と認識できる。 もし輝点を含んだまま 2 値化すれば、 その輝点をパクテリァと誤認識してしまうことになる。  Since the CCD is guaranteed for the amount of light input to each pixel and the clarity of the output voltage, it is possible to perform a line meter calculation, which is equivalent to the result of continuous exposure by calculating V1 + V2 + V3. And an image with no bright spots. When an image without luminescent spots generated in this manner is subjected to binary elimination using a predetermined value experimentally obtained in advance, only the bacterial portion can be recognized as white. If binarization is performed while including the bright spots, the bright spots will be mistakenly recognized as tactics.
従って、 この輝点が発生しない範囲での露光時間で取得した映像を、 所望のレ ベル程度になるまで複数回重ね合わせを行った後に、 2値化することはきわめて 重要である。  Therefore, it is extremely important to binarize images acquired with an exposure time within the range where no bright spots are generated, after superimposing the images several times until a desired level is reached.
また、 以上においては 2値化することで、 個体の検出を行うと述べているが、 輪郭強調等のフィルタリングによって個体を浮き上がらせることも可能であって、 この種々の方法の選定は、個体認識を行うための検出処理アルゴリズムによって、 最適な方法を検討することになる。 In the above description, it is described that the individual is detected by binarization.However, the individual can be raised by filtering such as contour emphasis, etc. The detection processing algorithm for performing You will consider the best method.
さて、 蛍光の輝度は小さいため、 その背景の反射光レベルに対して十分なコン トラストを有してなく、 実際には図 20で示す背景出力が重なり、 さらに半導体 特有のホワイトノイズ等が重畳している。 このために、 上述のような 2値化を行 うためのレベルが、 背景値と目的値との間に設定されなければならない。  Now, since the brightness of the fluorescent light is small, it does not have sufficient contrast with the reflected light level of the background, and in fact the background output shown in Fig. 20 overlaps, and white noise peculiar to the semiconductor is superimposed. ing. For this purpose, a level for performing the above-described binarization must be set between the background value and the target value.
そこで、 フレームに分けて取得したビデオレベル V 1、 V 2、 V 3から黒レべ ルを排除することを行う。 この時、 図 21のように各フレームごとに黒レベル B Fを BFい BF2、 BF3のように取得し、 VI— BFい V2— BF2、 V3— BF3 とすることで綺麗になりそうだが、 実際には異なる。 Therefore, the black level is excluded from the video levels V1, V2, and V3 obtained by dividing into frames. At this time, as shown in Fig. 21, the black level B F is obtained for each frame as B F or B F2 , B F3 , and VI- B F V2—B F2 or V3—B F3 to obtain a beautiful image. But it's actually different.
ホワイトノイズは、 その発生周期がランダムであって画像のデータ処理によつ て打ち消すことは出来ない。 そのため、 上記引き算の結果は、 むしろノイズ幅を 増大させ (負 +負、 正 +正の様に悪ィ匕させるケースがある) る。 このため、 ホヮ ィトノイズのレベル Nwの対処と、黒レベル BFの対処とはフェーズを分けて処理 した方が好ましい。 White noise has a random cycle and cannot be canceled by image data processing. For this reason, the result of the above subtraction may rather increase the noise width (in some cases, the negative and negative and the positive and the positive may be deviated). Therefore, the address of the level N w ho Wa Itonoizu, it is preferable treated separately phase and deal with the black level B F.
例えば、 図 20のように T 1 +T 2 +T 3時間で露光する黒レベル B t o t a 1の値を用いて V1+V2+V3— B t o t a lとすることで Nwの重みを 1 Z 3に減らせられる。 For example, as shown in FIG. 20, the weight of N w is set to 1 Z 3 by using the value of the black level B tota 1 exposed at T 1 + T 2 + T 3 hours as V1 + V2 + V3—B total as shown in FIG. Can be reduced.
又、 黒レベルがリユアに上昇する性質を用いて目標時間 T + T2 + T 3時の前 後を繰り返し露出 (サンプリング) で AZD変換し、 デジタル上で得た前後数た とえば 10ポイントの値を平均すると B t o t a 1のセンターの値に近似できる。 この方法は具体的には、 例えば T 1+T2 + T3が 2秒で前後 10ポイントを 10msごとに使用するとすれば、 1. 90、 1. 91、 1. 92、 · · · 1. .9 9、 2、 2. 01、 2. 02、 · · ■ 2. 1の 21ポイントで A/D変換された値 をメモリ上に保持し、 これらの値、 90、 Vx. 91、 ■ · · V2. に対して、 【数 1】 In addition, using the property that the black level rises to the red, the AZD conversion is repeatedly performed with the exposure (sampling) before and after the target time T + T 2 + T 3 o'clock, and the number before and after digitally obtained is, for example, 10 points. By averaging the values, it can be approximated to the value of the center of B tota 1. Specifically, assuming that T1 + T2 + T3 uses 10 points before and after every 2ms in 2 seconds, 1.90, 1.91, 1.92, ... 1.9.9 9, 2, 2.01, 2.02, ··· The values that were A / D converted at 21 points in 2.1 are stored in the memory, and these values, 90 , V x .91 , V 2 .
2.1  2.1
i ^T上∑ 1 QV とするのである ( 或いは、 i ^ T upper ∑ 1 QV ( Or,
【数 2】  [Equation 2]
1皿( Vl Q〜 V2.1) + min( Vi.9〜 V2.1) 1 dish (Vl Q ~ V2.1) + min (Vi.9 ~ V2.1)
2 とすることも可能である。  It is also possible to set it to 2.
このようにして得た Nwを除いた BF*を開いて、 Open B F * except N w obtained in this way,
V「 BF*、 V2— BF*、 V3— BF* V “ BF *, V 2BF *, V 3BF *
とする。 And
さらに、 この BF*を得た時と同一の考え方の処理によって Furthermore, by the processing of the same idea as when this B F * was obtained,
【数 3】  [Equation 3]
Vi = ( VI-BF)、V2 = (V2 - BF)、V3 = (V3_BF) Vi = (VI-BF), V 2 = (V 2 - B F), V 3 = (V 3 _B F)
を得て、 画像処理に供する最終出力値 V o u tを、 , And the final output value Vout for image processing is
【数 4】  [Equation 4]
V o u t = V 1 + V 2 + V 3 V out = V 1 + V 2 + V 3
が得られる。 尚、 以上の説明では、 同一画素を異なる時間での露出にて複数回サ ンプリングして、 その複数回の画素値を利用して背景除去とノイズキャンセルを 行っているが、 背景点は近傍点で略同一であると見なせるから演算値取得対象の 画素位置を厳密に同一にしないで近傍点を複数利用することでも良い。 Is obtained. In the above description, the same pixel is sampled multiple times by exposure at different times, and background removal and noise cancellation are performed using the pixel values of the multiple times. Therefore, it is possible to use a plurality of neighboring points without making the pixel position of the operation value acquisition target strictly the same.
図 21において、 BFiは i番目のフレームにおける黒レベルであり、 露出にか かわらず常にホワイトノイズ ±NWが重畳している。 In Figure 21, B Fi is black level in the i-th frame, always white noise ± N W regardless of the exposure is superimposed.
図 20乃至 22において各フレームタイム T 1、 T2、 T3 (連続して露光ス タートが出来るとして) は、各々蛍光開始時間 Tsを含む(Ts以上でなければな らない、 Tl >Ts、 T2〉Ts、 T3>Ts)。  In FIGS. 20 to 22, each frame time T1, T2, T3 (assuming continuous exposure start) includes a fluorescence start time Ts (must be longer than Ts, Tl> Ts, T2> Ts, T3> Ts).
以上詳しく説明したように、 本発明においては、 輝点ノイズが生じない範囲の 複数の露光時間による被写体の画像データを加算するので、 C CD 96における 輝度ノイズ (輝点) の発生を排除すると共に、 光量が低い被測定対象内に含まれ る個体数の力ゥントを可能にしたのである。 As described in detail above, in the present invention, the range of the bright spot noise is not generated. Since the image data of the subject from multiple exposure times is added, the occurrence of luminance noise (bright spots) in the CCD 96 is eliminated, and the number of individuals included in the measured object with low light intensity can be saved. It was done.
図 23 (a) は、 一体型の装置であって、 撮像手段、 加算手段とカウント手段 (個体の計数手段) が全て含まれるケースである。 図 23 (b) は、 コンビユー タに撮像装置がインタフェイスされた形であって、 個体のカウントはコンビユー タが行うケースである。  FIG. 23 (a) shows an integrated device in which all of the imaging means, the adding means, and the counting means (individual counting means) are included. Fig. 23 (b) shows a form in which an imaging device is interfaced to a combi- ter, and the individual is counted by the combi- ter.
図 23 (c) は、 加算手段がユニット化された形であって、 累積加算の機能の みを独立したケースで、 低明度レベルの画像データを複数回取得して累積した画 像データをコンピュータに送って、 コンピュータ側で個体力ゥントするケースで ある。  Fig. 23 (c) shows a case where the addition means is unitized and only the accumulation function is independent. This is the case where the computer is sent to the computer and the individual power is counted on the computer side.
図 23 (d) は、 通常のカメラをコンピュータに接続した形態であって、 コン ピュータ内で累積処理と個体のカウント処理を行う例である。 この場合ソゥトウ エア (プログラム) で実現されることが多いが、 ハードウェア化してオプション ボードに搭載させることも可能である。 そして、 このプログラムは、 コンビユー タ内に既に存在してもいいし、 撮像装置に添付するなどの製品として、 CDRQ Mなどの記憶媒体に記録されていても良い。  Fig. 23 (d) shows a form in which a normal camera is connected to a computer, and is an example in which accumulation processing and individual count processing are performed in the computer. In this case, it is often realized by software (program), but it is also possible to convert it to hardware and mount it on an option board. This program may already exist in the computer, or may be recorded on a storage medium such as a CDRQM as a product attached to the imaging device.
図 23 (e) は、 図 23 (d) のカメラとコンピュータの間がケーブルである のに対してネットワーク化されたケースであって、 このネットワークは有,線、 無 線を問わないばかりでなく、 LAN、 インターネットと幅広い形態を取り得る。 更に、 光電変換手段の代表として CCD 96を例にして説明を行ってきたが、 本発明は MO S型や他の方式の光電変換素子でもよい。 産業上の利用可能性  Fig. 23 (e) is a networked case where the cable between the camera and the computer in Fig. 23 (d) is a cable, and this network is not limited to wired, wired and wireless. Can take a wide range of forms, LAN, Internet. Further, the CCD 96 has been described as an example of the photoelectric conversion means, but the present invention may be a MOS type or other type of photoelectric conversion element. Industrial applicability
本宪明は、 異なる複数の波長領域の照射光により励起され、 当該照射光の波長 領域とは夫々異なる波長の光を生じる微小個体を撮像して電気信号に変換するた めの撮像装置に適応可能である。  INDUSTRIAL APPLICABILITY The present invention is applicable to an imaging apparatus for imaging a minute individual that is excited by irradiation light in a plurality of different wavelength regions and generates light having a wavelength different from the wavelength region of the irradiation light, and converts the light into an electric signal. It is possible.

Claims

請 求 の 範 囲 The scope of the claims
1 . 少なくとも 2波長領域の照射光に応じてこの波長領域とは異なる波長領域の 光を発光する微小被写体を撮像して電気信号に変換する撮像装置であって、 撮像対象の個体を含む被写体を装填するステージと、 1. An imaging device that captures an image of a minute subject that emits light in a wavelength region different from this wavelength region according to irradiation light in at least two wavelength regions and converts the image into an electric signal. The stage to load,
前記ステージの被写体を装填した面を照明する光源手段と、  Light source means for illuminating a surface of the stage loaded with the subject,
前記光源手段が発する照射光を複数の異なる波長領域の光線に切り替えるため の光切替手段と、  Light switching means for switching the irradiation light emitted by the light source means to light rays of a plurality of different wavelength ranges,
前記複数の異なる波長領域の光線によつて照射された被写体からの光を集光す るためのレンズ手段と、  Lens means for condensing light from the subject illuminated by the plurality of different wavelength regions;
前記レンズ手段によつて集光された 2次元画像光を電気信号に変換する光電変 換手段と、  Photoelectric conversion means for converting the two-dimensional image light collected by the lens means into an electric signal,
前記光切替手段による光線の切り替えに応じて切り替えられる 2以上のフィル タ手段とを備え、  And two or more filter units that are switched according to switching of light beams by the light switching unit,
前記フィルタ手段が、 前記レンズ手段と、 前記光源手段の照射光を発する位置と の間の光路に配置されたことを特徴とする撮像装置。 The imaging apparatus according to claim 1, wherein the filter unit is disposed in an optical path between the lens unit and a position where the light source unit emits light.
2 . 前記 2以上のフィルタ手段を支持すると共に当該フィルタ手段を前記レンズ 手段の受光方向に交差した方向に移動する移動手段を、 備えたことを特徴とする 請求項 1に記載の撮像装置。  2. The imaging apparatus according to claim 1, further comprising a moving unit that supports the two or more filter units and moves the filter units in a direction intersecting a light receiving direction of the lens unit.
3 . 前記 2以上のフィルタ手段は、 それぞれ異なる厚さ又は屈折率の異なる材質 から構成されたことを特徴とする請求項 1に記載の撮像装置。  3. The imaging device according to claim 1, wherein the two or more filter units are made of materials having different thicknesses or different refractive indexes.
4 . 前記 2以上のフィルタ手段の少なくとも 1つに備えられ、 前記ステージと前 記光電変換手段間の光路長を調整するための光路長調整手段を、 備えたことを特 徴とする請求項 1に記載の撮像装置。  4. An optical path length adjusting means provided on at least one of the two or more filter means and adjusting an optical path length between the stage and the photoelectric conversion means. An imaging device according to claim 1.
5 . 前記光電変換手段の露光時間を制御する露光制御手段を、 備えたことを特徴 とする請求項 1に記載の撮像装置。  5. The imaging device according to claim 1, further comprising an exposure control unit that controls an exposure time of the photoelectric conversion unit.
6 . 撮像対象の個体を含む採取キットが装填されるステージと、  6. A stage on which a collection kit containing the individual to be imaged is loaded;
前記ステージに開閉自在に備えられており、 前記採取キットを固定すると共に 撮像用開口部を設けた固定手段と、 発光手段と当該発光手段からの光を収斂して前記ステージ上へ光線として投光 する光収斂手段と、 を備える前記ステージに対して光を照射する光源手段と、 前記ステージの略垂直方向に位置し、 前記個体からの光を集光するレンズ手段 と、 Fixing means, which is provided on the stage so as to be openable and closable, and which fixes the collection kit and has an imaging opening; A light converging means for converging light from the light emitting means and projecting the light as a light beam on the stage; and a light source means for irradiating the stage with light. Lens means for condensing light from the individual;
前記レンズ手段によつて集光された光を電気信号に変換する光電変換手段と、 を有する撮像装置であって、  Photoelectric conversion means for converting the light condensed by the lens means into an electric signal; and
前記撮像用開口部は、 前記光収斂手段から照射された光線が前記ステージ上に おける読取対象領域の全域に照射されるように開口されていることを特徴とする  The imaging opening is so opened that the light beam emitted from the light converging means is applied to the entire region to be read on the stage.
7 . 前記発光手段は、 複数個の発光装置によって構成され、 個々の前記発光装置 からの光束が前記ステージ上略同一の位置に投光されように前記レンズ手段のレ ンズ中央に対向して等距離となる対称位置に配置され、 7. The light emitting means is constituted by a plurality of light emitting devices, and is opposed to the center of the lens of the lens means so that light beams from the individual light emitting devices are projected to substantially the same position on the stage. It is located at a symmetrical position that is the distance,
前記撮像用開口部は、 前記複数の発光手段の投光方向に光通過を許容する開口 として頂角を有する多角形である、  The imaging opening is a polygon having an apex angle as an opening that allows light to pass in the light projection direction of the plurality of light emitting units.
ことを特徴とする請求項 6に記載の撮像装置。 , 7. The imaging device according to claim 6, wherein: ,
8 . 前記ステージは、 透明又は半透明のシート状の第 1の採取キット又は不透明 な背景を有する第 2の採取キットが選択的に装填されるように形成され、 前記固定手段には、  8. The stage is formed so that a transparent or translucent sheet-shaped first collection kit or a second collection kit having an opaque background is selectively loaded, and the fixing means includes:
前記第 1の採取キットを載置すると共に前記光源手段から照射された光を前記 個体へ反射する背景が不透明な載置部材を支持する支持部と、  A supporter for supporting the mounting member on which the first collection kit is mounted and which reflects the light emitted from the light source means to the individual and has an opaque background;
前記載置部材と協働して前記第 1の採取キットを固定する弾性手段と、 を備えられたことを特徴とする請求項 6に記載の撮像装置。  7. The imaging device according to claim 6, further comprising: an elastic means for fixing the first collection kit in cooperation with the placing member.
9 . 前記レンズ手段に対する前記ステージのステージ面の高さを維持して水平に 移動する移動手段を、 備え、 9. Moving means for moving horizontally while maintaining the height of the stage surface of the stage with respect to the lens means,
前記第 1の採取キットを载置した際の前記レンズ手段との第 1の最短距離が、 前記第 2の採取キットを前記ステージ上に載置した際の前記レンズ手段との第 2 の最短距離と等距離になるように前記载置部材の厚さが設定されている、 ことを特徴とする請求項 8に記載の撮像装置。  A first shortest distance from the lens unit when the first collection kit is placed is a second shortest distance from the lens unit when the second collection kit is placed on the stage. 9. The imaging device according to claim 8, wherein the thickness of the placement member is set so as to be equidistant from the imaging member.
1 0 . 撮像対象の個体を含む被写体を装填するステージと、 前記ステージのステージ面に対して光線を照射する光源手段と、 前記光源手段により照射された前記被写体からの光を集光するレンズ手段と、 前記レンズ手段により集光された 2次元画像光を電気信号に変換する光電変換 手段と、 を備え、 10. A stage for loading a subject including an individual to be imaged, Light source means for irradiating a light beam onto the stage surface of the stage; lens means for condensing light from the subject irradiated by the light source means; and two-dimensional image light condensed by the lens means And photoelectric conversion means for converting into a signal.
前記光源手段は、  The light source means,
前記ステージ面に対して斜め上方向から光を照射する複数個の光線手段と、 前記複数個の光線手段から照射された光が前記ステージ面における略同一の位 置に照射するように前記複数個の光線手段を支持するホルダー手段と、  A plurality of light means for irradiating the stage surface with light from an obliquely upward direction; and the plurality of light means so that the light emitted from the plurality of light means irradiates substantially the same position on the stage surface. Holder means for supporting the light beam means,
前記ホルダー手段と前記レンズ手段とを一体に固定するための固定手段と、 を有することを特徴とする撮像装置。  An image pickup apparatus comprising: fixing means for integrally fixing the holder means and the lens means.
1 1 . 前記光線手段は、 1 1. The light beam means
第 1の波長領域の光線を発する光線手段を備えた第 1の光線手段と、 第 2の波長領域の光線を発する光線手段を備えた第 2の光線手段と、 からなることを特徴とする請求項 1 0に記載の撮像装置。  A first light means comprising light means for emitting light in a first wavelength region, and a second light means comprising light means for emitting light in a second wavelength region. Item 10. The imaging device according to Item 10.
1 2 . 前記第 1の光線手段及び前記第 2の光線手段の各々は、 さらに、 前記レン ズ手段に対して対称な複数方向から前記ステージ面に対して光線を照射する複数 個の光線手段から構成されていることを特徴とする請求項 1 1に記載の撮像装置。 12. Each of the first beam means and the second beam means further comprises a plurality of beam means for irradiating the stage surface with light beams from a plurality of directions symmetrical to the lens means. The imaging device according to claim 11, wherein the imaging device is configured.
1 3 . 前記光線手段は、 1 3. The light beam means
口ッド状の中空ケースの一の端部に設けられた発光素子と、  A light-emitting element provided at one end of a hollow case having a mouth shape,
前記中空ケースの内部及び/又は中空ケースの他の端部に設けられ、 前記発光 素子からの光線を収斂するためのレンズ手段と、  A lens unit provided inside the hollow case and / or at another end of the hollow case, for converging a light beam from the light emitting element;
前記レンズを透過する波長領域を制御するためのフィルタ手段と、  Filter means for controlling a wavelength region transmitted through the lens,
により構成されていることを特徴とする請求項 1 0に記載の撮像装置。 The imaging device according to claim 10, wherein the imaging device is configured by:
1 4 . 前記ホルダー手段は、 前記光線手段を前記ホルダー手段の所定の取付位置 に位置決めするための位置決め部を有することを特徴とする請求項 1 0に記載の 14. The holder according to claim 10, wherein the holder has a positioning portion for positioning the light beam at a predetermined mounting position of the holder.
1 5 . 前記固定手段は、 前記複数個の光線手段によって照射される前記ステージ 面における前記略同一の位置に対応して、 前記レンズ手段を移動可能に支持する ように構成されたことを特徴とする請求項 1 0に記載の撮像装置。 15. The fixing means is configured to movably support the lens means corresponding to the substantially same position on the stage surface irradiated by the plurality of light beam means. The imaging device according to claim 10, wherein:
PCT/JP2003/000474 2002-01-21 2003-01-21 Imaging device WO2003063078A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2002-011782 2002-01-21
JP2002-011787 2002-01-21
JP2002011782A JP2005215711A (en) 2002-01-21 2002-01-21 Individual number count system, imaging device for the system, imaging method, control method for imaging device, control program, storage medium and control circuit for photoelectric converting means
JP2002-011791 2002-01-21
JP2002011791A JP3948962B2 (en) 2002-01-21 2002-01-21 Imaging apparatus having a light source for irradiating a subject
JP2002011787A JP2005215712A (en) 2002-01-21 2002-01-21 Imaging device for counting individual number and control means
JP2002011798A JP4005373B2 (en) 2002-01-21 2002-01-21 Solid-state imaging device
JP2002-011798 2002-01-21
JP2002-011795 2002-01-21
JP2002011795A JP4222759B2 (en) 2002-01-21 2002-01-21 Magnification imaging device

Publications (1)

Publication Number Publication Date
WO2003063078A1 true WO2003063078A1 (en) 2003-07-31

Family

ID=27617868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000474 WO2003063078A1 (en) 2002-01-21 2003-01-21 Imaging device

Country Status (1)

Country Link
WO (1) WO2003063078A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106873142A (en) * 2017-03-15 2017-06-20 北方工业大学 High-quality image acquisition device and method of tubercle bacillus detector
CN112578108A (en) * 2020-12-11 2021-03-30 欧波丝迪生物科技(广州)有限公司 Immune chip laser scanning system for biological health research

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036447A (en) * 1989-06-02 1991-01-11 Matsushita Electric Ind Co Ltd Inspecting apparatus of packaged board
JPH0694622A (en) * 1992-09-10 1994-04-08 Terumo Corp Analyzer
JPH06160293A (en) * 1992-11-18 1994-06-07 Nikon Corp Transmittance measuring equipment of membrane for preventing adhesion of foreign matter
JPH08122265A (en) * 1994-10-28 1996-05-17 Hitachi Ltd Pattern inspection device
JP2735901B2 (en) * 1989-10-18 1998-04-02 三菱重工業株式会社 Method for measuring the number of living cells, dead cells, and particles other than microorganism cells of microorganisms
JP2000273757A (en) * 1999-03-25 2000-10-03 Nippon Mitsubishi Oil Corp Method and device for inspecting contaminant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036447A (en) * 1989-06-02 1991-01-11 Matsushita Electric Ind Co Ltd Inspecting apparatus of packaged board
JP2735901B2 (en) * 1989-10-18 1998-04-02 三菱重工業株式会社 Method for measuring the number of living cells, dead cells, and particles other than microorganism cells of microorganisms
JPH0694622A (en) * 1992-09-10 1994-04-08 Terumo Corp Analyzer
JPH06160293A (en) * 1992-11-18 1994-06-07 Nikon Corp Transmittance measuring equipment of membrane for preventing adhesion of foreign matter
JPH08122265A (en) * 1994-10-28 1996-05-17 Hitachi Ltd Pattern inspection device
JP2000273757A (en) * 1999-03-25 2000-10-03 Nippon Mitsubishi Oil Corp Method and device for inspecting contaminant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106873142A (en) * 2017-03-15 2017-06-20 北方工业大学 High-quality image acquisition device and method of tubercle bacillus detector
CN106873142B (en) * 2017-03-15 2019-04-12 北方工业大学 High-quality image acquisition device and method of tubercle bacillus detector
CN112578108A (en) * 2020-12-11 2021-03-30 欧波丝迪生物科技(广州)有限公司 Immune chip laser scanning system for biological health research

Similar Documents

Publication Publication Date Title
JP3576523B2 (en) Fluorescence luminance measurement method and apparatus
US5774214A (en) Multi-mode imaging apparatus for radiation-emitting or absorbing samples
CN105103190B (en) Full visual field glass slide multi-optical spectrum imaging system and method
JP2012507009A (en) Whole slide fluorescent scanner
US7224396B2 (en) Still image pickup device and pickup method
KR20090077036A (en) Dynamic scanning automatic microscope and method
JP2009538431A (en) Method and system for digitizing specimens with fluorescent target points
IL296784B2 (en) Imaging assisted scanning spectroscopy for gem identification
JP2005215712A (en) Imaging device for counting individual number and control means
US20060028641A1 (en) Light beam apparatus and method for orthogonal alignment of specimen
WO2003063078A1 (en) Imaging device
CN110579460B (en) Addressing scanning rapid fluorescence lifetime microscopic imaging system and method
CN210834671U (en) Addressing scanning rapid fluorescence lifetime microscopic imaging system
JP2005221368A (en) Observation device and observation method
JPH08304284A (en) System for deciding antinuclear antibody reaction
JP2008032401A (en) Method and device for inspecting infrared cut-off filter
JP2004177732A (en) Optical measuring device
JP4222759B2 (en) Magnification imaging device
JP2005215711A (en) Individual number count system, imaging device for the system, imaging method, control method for imaging device, control program, storage medium and control circuit for photoelectric converting means
EP3620839A1 (en) Systems and methods for an interchangeable illumination filter set for use in a structured illumination imaging system
JP3948962B2 (en) Imaging apparatus having a light source for irradiating a subject
JP2005345130A (en) Spectrum image acquisition device and spectrum image acquisition method
JP3102954U (en) Fluorescence observation system with fiber pipette as excitation light source and built-in light intensity detector
US10634892B2 (en) Systems and methods for generating a structured illumination image
JP4005373B2 (en) Solid-state imaging device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP