WO2003062623A1 - Gas fuel engine - Google Patents

Gas fuel engine Download PDF

Info

Publication number
WO2003062623A1
WO2003062623A1 PCT/JP2003/000391 JP0300391W WO03062623A1 WO 2003062623 A1 WO2003062623 A1 WO 2003062623A1 JP 0300391 W JP0300391 W JP 0300391W WO 03062623 A1 WO03062623 A1 WO 03062623A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
fuel
gas
cylinder
valve
Prior art date
Application number
PCT/JP2003/000391
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromitsu Matsumoto
Noboru Sakamoto
Naoki Onda
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Publication of WO2003062623A1 publication Critical patent/WO2003062623A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0281Adapters, sockets or the like to mount injection valves onto engines; Fuel guiding passages between injectors and the air intake system or the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0278Port fuel injectors for single or multipoint injection into the air intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/044Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit downstream of an air throttle valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a gas fuel engine that supplies gas fuel to an intake passage.
  • engines using gas fuel adopt a structure in which fuel gas is mixed with air by a mixer and supplied to the intake passage, or, similarly to engines using liquid fuel, fuel gas is injected into the intake passage by an injector. .
  • gas fuel does not adhere to the wall of the intake passage and stay there.
  • a mixture formed so as to be significantly leaner than the stoichiometric air-fuel ratio is supplied to the entire area inside the cylinder, and the mixture is relatively densely mixed in a narrow area near the periphery of the spark plug.
  • air is supplied in a stratified manner to stabilize combustion and improve fuel efficiency.
  • the present invention has been made in order to solve such a problem, and an object of the present invention is to provide a gas fuel engine capable of realizing lean combustion by supplying a fuel gas into a cylinder in a layered manner. Disclosure of the invention
  • a gas fuel engine is a gas fuel engine that supplies gas fuel to an intake passage, wherein the first fuel stores fuel gas in the intake passage with the intake valve closed. It has a supply step and a second fuel supply step of supplying fuel gas into the intake passage from a gas injection port near the intake valve in the intake step.
  • the fuel gas and the air are mixed in the intake passage to form an air-fuel mixture, and the air-fuel mixture is dispersed in the cylinder in the intake stroke.
  • the fuel gas newly supplied from the gas injection port to the vicinity of the intake valve in the second fuel supply process does not spread widely by riding on the intake air flowing near the intake valve in the intake process. It is sucked into the cylinder in layers.
  • a gas fuel engine according to a second aspect of the present invention is the gas fuel engine according to the first aspect of the invention, wherein a swirling flow of intake air is generated in a cylinder, and the fuel gas injected from a gas injection port is provided. Flows near the spark plug by the swirling flow.
  • the fuel gas can be supplied in a layered manner to the vicinity of the ignition plug by the tumble flow, the total supply amount of the fuel gas is made extremely leaner than the stoichiometric air-fuel ratio. With this setting, the concentration of the fuel gas near the periphery of the spark plug can be relatively increased.
  • a gas fuel engine according to a third aspect of the present invention is the gas fuel engine according to the first aspect, wherein an injector for injecting gas fuel is disposed in an intake passage, and the injector is provided near an upstream of an intake valve.
  • a pipe member having an open end is connected to the pipe member, and the opening of the pipe member is used as a gas injection port.
  • the degree of freedom of the position where the gas injection port is provided is increased, and the gas injection port can be provided close to the intake port.
  • a gas fuel engine according to a fourth aspect of the present invention is the gas fuel engine according to the first aspect, wherein a fuel passage through which gas fuel is injected by an injector is formed in an intake passage wall; A pipe member having a tip opening near the upstream of the intake valve is connected to the downstream end of the pipe member, and the opening of the pipe member is used as a gas injection port.
  • the degree of freedom of the position where the gas injection port is provided is increased, and the gas injection port can be provided close to the intake port.
  • the gas fuel engine according to the invention described in claim 5 is the gas fuel engine according to the invention described in claim 3 or 4, wherein the injector has a plurality of fuel injection ports, and each injector has a fuel injection port. It has a corresponding tube member. According to the present invention, fuel gas can be supplied to a plurality of intake passages by one injector.
  • the gas fuel engine according to the invention described in claim 6 is the gas fuel engine according to any one of claims 1 to 5, wherein the gas injection port is connected to the exhaust valve based on the center of the combustion chamber. Are pointing in opposite directions.
  • the fuel gas is supplied to a relatively low temperature portion in the cylinder.
  • the gas fuel engine according to the invention described in claim 7 is the same as that of claims 1 to 5.
  • a plurality of intake valves are provided in the cylinder ⁇ , and a gas injection port is provided for each of the intake valves.
  • the degree of freedom of the position for supplying the fuel gas is improved.
  • FIG. 1 is a sectional view of an engine according to the present invention.
  • FIG. 2 is an enlarged sectional view showing a part of the engine.
  • FIG. 3 is a plan view of the piston.
  • FIG. 4 is a plan view showing a configuration in a state where a portion near the combustion chamber of the engine is viewed from the cylinder head side.
  • FIG. 5 is a bottom view showing the combustion chamber wall of the cylinder head.
  • FIG. 6 is a longitudinal sectional view of the cylinder and biston.
  • FIG. 7 is a sectional view taken along the line VII-VII in FIG.
  • FIG. 8 is a time chart showing the opening / closing timing of the intake / exhaust valve and the fuel injection timing.
  • FIG. 9 is a sectional view showing another example of the piston.
  • FIG. 10 is a cross-sectional view of an engine provided with a guide member.
  • FIG. 11 is a cross-sectional view showing a main part in FIG. 10 in an enlarged manner.
  • FIG. 12 is a sectional view taken along line XI I-XI I in FIG.
  • FIG. 13 is a view showing a guide member.
  • FIG. 14 is an exploded perspective view of the guide member shown in FIG.
  • FIG. 15 is a diagram showing another example of the guide member.
  • FIG. 16 is a cross-sectional view of a part of the engine showing another example of the guide member.
  • FIG. 17 is an enlarged sectional view showing the guide member.
  • Figure 18 shows the structure of the engine near the combustion chamber when viewed from the cylinder head side. It is a top view showing composition.
  • FIG. 19 is a schematic diagram for explaining the tumble flow.
  • FIG. 20 is a bottom view of the fuel gas supply nozzle.
  • FIG. 21 is a sectional view taken along line AA in FIG.
  • FIG. 22 is a sectional view taken along line BB in FIG.
  • FIG. 23 is a cross-sectional view taken along line CC in FIG.
  • FIG. 24 is an enlarged perspective view showing a guide member and a valve body of an intake valve.
  • FIG. 25 is a cross-sectional view showing another example of the fuel gas supply nozzle.
  • FIG. 26 is a plan view showing a configuration in a state where a portion near the combustion chamber of the engine is viewed from the cylinder head side.
  • FIG. 27 is a sectional view taken along line AA in FIG.
  • FIG. 28 is a cross-sectional view of the gas fuel engine.
  • FIG. 29 is a cross-sectional view of the gas fuel engine.
  • FIG. 30 is a plan view showing a configuration in a state where a portion near the combustion chamber of the engine is viewed from the cylinder head side.
  • FIG. 31 is a sectional view taken along line AA in FIG.
  • FIG. 32 is a view on arrow B of the intake valve and the intake outlet in FIG.
  • FIG. 33 is a cross-sectional view of a gas fuel engine that generates a forward tumble flow using a guide member attached to an intake port.
  • FIG. 34 is a sectional view taken along line AA in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a sectional view of an engine according to the present invention
  • FIG. 2 is an enlarged view of a part of the engine.
  • Fig. 3 is a plan view of the piston
  • Fig. 4 is a plan view showing the structure near the combustion chamber of the engine viewed from the cylinder head side
  • Fig. 5 is a bottom view showing the combustion chamber wall of the cylinder head.
  • Fig. 6 is a vertical sectional view of the cylinder and biston
  • Fig. 7 is a sectional view taken along the line VII-VII in Fig. 1
  • Fig. 8 is a time chart showing the opening and closing timing of the intake and exhaust valves and the fuel injection timing
  • Fig. 9 FIG. 4 is a sectional view showing another example of the piston.
  • FIG. 1 what is indicated by reference numeral 1 is an engine according to this embodiment.
  • the engine 1 is operated using a gas fuel such as LPG or CNG (compressed natural gas).
  • the gas fuel is supplied from a fuel gas supply injector 3 of a cylinder head 2 to a nozzle 4 described later. Injection into the intake passage 5 is carried out.
  • FIG. 1 the number of cylinders of the engine 1 is shown in FIG. 1 for only one cylinder for convenience of explanation, it can be used for an engine having a plurality of cylinders.
  • reference numeral 6 denotes a cylinder body
  • 7 denotes a piston
  • 8 denotes a conrode.
  • the cylinder head 2 is provided with a DOHC type valve gear 11 and an ignition plug 12, and has an intake boat 13 and an exhaust which form the intake passage 5. Port 14 is provided.
  • the valve gear 11 has two intake valves 15 and two exhaust valves 16 for each cylinder, and the intake and exhaust valves 15 and 16 are supplied through valve lifters 17 respectively. It is driven by a camshaft 18 and an exhaust camshaft 19.
  • the ignition plug 12 is disposed at the center of the cylinder surrounded by the four intake / exhaust valves 15 and 16.
  • the screw holes into which the ignition plugs 12 are screwed are indicated by reference numeral 20 in FIGS.
  • reference numeral 21 denotes an intake outlet of an intake port 13 opened and closed by an intake valve
  • 12 denotes an exhaust inlet of an exhaust port 14 opened and closed by an exhaust valve 16.
  • the intake port 13 is provided for each intake valve 15 (see FIG. 4).
  • the cylinder head 2 is formed to penetrate the cylinder head 2 in the vertical direction (the direction along the cylinder axis C).
  • a throttle valve is connected to the upstream side of the intake port 13 through an intake passage of a head cover and an intake pipe attached to the head cover.
  • the intake boat 13 is inclined so as to gradually approach the intake valve 15 from the opening at the upper end of the cylinder head 2 toward the downstream,
  • an inclined portion 13 is provided which gradually extends to the opposite side to the exhaust valve 16 toward the downstream side.
  • the intake port 13 By forming the intake port 13 in this manner, the intake air that has passed through the intake port 13 flows into the cylinder from the intake outlet 21 in the direction opposite to the exhaust valve 16 due to the inertia of the intake flow. Be guided.
  • the exhaust port 14 is formed so that the exhaust passage for each exhaust valve 16 merges in the cylinder head 2 and extends to the exhaust outlet 24 on one side of the cylinder head 2.
  • the biston 7 has a slope 15 and a recess 26 formed on the top 7a.
  • the slope 25 is formed so as to extend in the direction in which the intake valves 15 are arranged side by side at the top 7 a of the piston 7 opposite to the intake valves 15.
  • the intake valve 15 is inclined so as to be parallel to an end surface 15 c (a surface forming a part of the combustion chamber wall) of the valve body 15 of the intake valve 15.
  • the concave portion 26 is formed so that a D-shaped portion in a plan view adjacent to the slope 25 at the top portion 7a of the biston 7 is hemispherically recessed downward. It is formed.
  • the piston 7 should be formed so that a portion adjacent to the slope 25 of the top portion 7a is flat and the flat portion 7b is substantially a concave portion 26. Can also.
  • the compression ratio can be increased as compared to the case where the biston 7 shown in FIG. 1 is used.
  • the fuel gas supply injector 3 is provided for each cylinder, and is attached to a portion of one side of the cylinder head 2 corresponding to a portion between the intake ports 13.
  • the injector 3 is supplied with fuel gas from a fuel tank (not shown) under pressure, and feeds fuel from a fuel injection port 27 at the tip (see FIG. 7) into a cylinder head 2 at a predetermined fuel injection timing. Fuel gas is injected into passage 28.
  • the fuel injection by the injector 3 is performed when the intake valve 15 is closed during the exhaust stroke (first fuel supply stroke) and when the intake valve 15 is opened during the intake stroke ( In the second fuel supply stroke), the injection time and injection period are set for each of the operating conditions.
  • the period during which the fuel is injected by the engine 3 is set to be longer during the first fuel supply stroke than during the second fuel supply stroke.
  • the fuel injection amount for example, approximately 50 to 70% of the fuel gas supplied in one cycle is injected in the first fuel supply stroke, and the remainder is injected in the second fuel supply stroke.
  • the fuel passages 28 from which the injectors 3 inject fuel extend from the injector mounting holes 29 to the respective intake ports 13 and extend to the downstream end of the intake ports 13. It is constituted by a through-hole 30 of the intake port 13 which opens, and a nozzle 4 made of a pipe fitted and fixed to each of the through-holes 30 from the intake outlet 21 of the intake port 13. ing.
  • each nozzle 4 is disposed in the vicinity of an adjacent intake port 13 in the intake port 13 and, as shown in FIG. 1, the opening at the tip is based on the center of the combustion chamber. It is bent in the opposite direction to the exhaust valve 16 so as to point downstream in the direction in which the intake air flows.
  • the nozzle 4 constitutes a pipe member according to the present invention, and the opening at the tip constitutes a fuel injection port according to the present invention.
  • the fuel injection holes 17 of the injectors 3 are provided at portions facing the through holes 30, respectively, and fuel gas is directly injected from the fuel injection holes 27 into the through holes 30. You.
  • downstream side of the intake air flow flows through the inclined portion 23 of the intake port 13 This means the downstream side of the intake air whose direction is regulated, and the direction from the intake outlet 21 of the intake port 13 opposite to the exhaust valve 16 and obliquely downward.
  • the fuel gas injected into the intake port 3 from the nozzle 4 during the intake stroke is supplied to the intake valve 15 as shown by the solid black arrow G in FIG.
  • the air flows obliquely downward in a direction away from the exhaust valve 16 in the cylinder through a gap between the exhaust valve 16 and the intake outlet 21.
  • the fuel gas flows into the cylinder from almost the entire gap between the intake valve 15 and the intake outlet 21, but is pressed by the intake air drawn obliquely downward into the cylinder from the intake boat 13. Most of the air flows in the same direction as the intake air.
  • the fuel gas and fresh air flow to the lower part of the cylinder along the inner peripheral surface of the cylinder.
  • the direction of the intake air sucked into the cylinder hits the concave portion 26 of the piston top P7a, and the flow direction is changed, so that a tumble flow is generated in the cylinder as indicated by an arrow T in FIG.
  • this tumble flow is separated from the cylinder head 2 on the intake valve 15 side and the cylinder head on the exhaust valve 16 side from the axis C of the cylinder as viewed from the axis of the camshaft. It is a swirling flow approaching to C2 and is a so-called reverse tumble flow in which the swirling direction is opposite to the generally called tumble flow.
  • the fuel gas is mixed with the fresh air and diffuses in the cylinder to form a lean air-fuel mixture.
  • the second fuel injection by the injector 3 is performed during the intake stroke. (See Figure 8).
  • the fuel gas is injected into the cylinder from the two nozzles 4 through the gap between the intake valve 15 and the intake outlet 21. Since the tumble flow T is formed in the cylinder as described above, the fuel gas turns inside the cylinder so as to ride on the tumble flow T as shown in FIG. Since the nozzles 4 are provided near portions of the two intake ports 13 adjacent to each other, the fuel injected from the nozzles 4 flows in a laminar manner near the spark plugs 12. That is, at the end of the compression stroke, a relatively rich air-fuel mixture is supplied in a stratified manner near the periphery of the spark plug 12.
  • the squish flow S proceeds in the combustion chamber 32 toward the exhaust valve 16 along the combustion chamber wall on the cylinder head 2 side in FIG. Collide with each other near the spark plug 12.
  • the ignition timing is set so that the ignition by the spark plug 12 is performed during the period when the air-fuel mixture is ejected from the squish area.
  • the air-fuel mixture is dispersed as a small vortex (Mike mouth Yuichiurensu), and the tumble stream T and the squish stream S are synthesized.
  • the gas flows down to the top 7a side of the biston. For this reason, the growth of the flame nucleus after ignition is promoted by the microturbulence, and the flame spreads to the biston top 7a side, so that the combustion range is rapidly expanded.
  • fuel gas and air are mixed in the intake passage in the first fuel supply stroke, and this air-fuel mixture is dispersed in the cylinder in the intake stroke.
  • the fuel gas newly supplied to the vicinity of the intake valve 15 from the gas nozzle of the nozzle 4 in the fuel supply process 2 does not spread widely by riding on the intake air flowing near the intake valve in the intake process.
  • the fuel gas can be widely dispersed in the cylinder and supplied in a layered manner so as to be relatively dense.
  • the engine 1 can supply the fuel gas in a stratified manner near the spark plug 12 by a tumble flow stack, the total supply amount of the fuel gas is set to be extremely leaner than the stoichiometric air-fuel ratio.
  • the concentration of the fuel gas in the vicinity of the spark plug 12 can be relatively increased.
  • the kinetic energy of the air-fuel mixture is attenuated by the collision of the tumble flow T and the squish flow S, so that the air-fuel mixture flows in the gap between the electrodes 12 a and 12 b of the spark plug 12 (see FIG. 2). Since it does not flow at high speed, ignition is stable and the ignition voltage does not need to be high, so that existing ignition devices can be used.
  • a space in which intake air flows from intake port 13 to the opposite side of exhaust valve 16 in the cylinder to generate a so-called reverse tumble flow in the cylinder to generate squish flow S ) Is formed on the intake valve 15 side where the temperature is relatively low, so that knocking is less likely to occur than when the squish area is formed on the exhaust valve 16 side.
  • the opening at the tip of the nozzle 4 gas injection port
  • fuel gas is also supplied to the low-temperature part, and knocking occurs even more. It becomes difficult to do.
  • a fuel passage 28 through which gas fuel is injected by the injector 3 is formed in an intake passage wall of the cylinder head 2, and a downstream end of the fuel passage 28 is provided upstream of the intake valve 15.
  • a nozzle 4 having an opening at the tip is connected in the vicinity, and the opening of the nozzle 4 is used as a gas injection port. Therefore, the degree of freedom of the position where the gas injection port is provided is increased, and the nozzle 4 can be provided close to the intake outlet 21. .
  • the injector 3 has a plurality of fuel injection ports 27 and the nozzles 4 corresponding to the respective fuel injection ports 27 are provided, the fuel gas is supplied to the plurality of intake passages 5 by one injector 3. can do.
  • the opening at the tip of the nozzle 4 (gas injection port) is oriented in the opposite direction to the exhaust valve 16 with respect to the center of the combustion chamber, so that the temperature in the cylinder becomes relatively low.
  • the fuel gas is supplied to the part, and the occurrence of knocking can be suppressed.
  • the engine 1 is provided with a plurality of intake valves 15 for each cylinder and an opening (gas injection port) at the end of the nozzle 4 for each of the intake valves 15, a plurality of intake valves are provided in the cylinder.
  • the fuel gas can be supplied from the intake outlet 21 of the fuel cell, respectively, and the degree of freedom of the position for supplying the fuel gas is improved.
  • the downstream end of the intake port 13 is provided with a sloping portion 23 that gradually extends toward the opposite side from the exhaust valve 16 toward the downstream side, so that a reverse tumble flow is formed. Since the flow direction is regulated, the intake resistance is reduced and the number of parts can be reduced as compared with the case where a member for changing the flow direction of the intake air is provided in the intake port 13.
  • the guide member shown in FIGS. 10 to 15 can be attached to the intake port.
  • FIG. 10 is a cross-sectional view of an engine provided with a guide member
  • FIG. 11 is a cross-sectional view showing an enlarged part of FIG. 10
  • FIG. 12 is a cross-sectional view taken along line XI I-XI I in FIG. 13 is a view showing the in-vehicle member
  • FIG. (A) is a cross-sectional view in a state of being assembled to the intake port
  • FIG. (B) is a side view
  • (b) is (a) The fracture position in the figure is indicated by the line A-A.
  • Fig. (A) is a sectional view taken along the line C-C in Fig. (A)
  • Fig. 13 (d) shows a free state before mounting
  • FIG. 14 is an exploded perspective view of the guide member shown in FIG. 13, FIG. 15 is a view showing another example of the guide member, FIG. 14 (a) is a plan view, FIG. 14 (b) is a side view, (C) and (a) are cross-sectional views taken along the line C-C in FIG. (A), and FIG. (D) is a plan view showing a state where the diameter is reduced at the time of mounting.
  • FIGS. 1 to 9 are denoted by the same reference numerals, and detailed description will be appropriately omitted.
  • the engine 1 according to this embodiment is different from the engine 1 shown in the first embodiment except that an intake port 13 is provided with a guide member 41 described later. It has an equivalent configuration.
  • the guide member 41 is constituted by a C-shaped fixing ring 42 and a shroud 43 welded to the ring 42.
  • the ring 42 is made of a spring material, and can be engaged with a concave groove 44 (see FIG. 11) formed at the downstream end of the intake port 13 by its own elastic force. It is formed in. Hooks 45 for attaching a tool (not shown) are integrally formed at both ends of the ring 42.
  • the shroud 43 includes a support plate 46 curved in an arc shape in plan view along the inner peripheral surface of the ring 42, and a fan-shaped shroud body 4 integrally formed on the support plate 46. It is composed of 7 and.
  • the support plate 46 is formed with an opening 48 through which the hook 45 of the ring 42 is inserted. When the hook 45 is passed through the opening 48, the inside of the ring 42 is formed. One end is welded to the ring 42 over the periphery. The welding area between the support plate 46 and the ring 42 is indicated by the symbol W in Fig. 13 (a).
  • the shroud 43 is inclined so as to gradually extend downward (downstream of the intake air flow) from the support plate 46 toward the center of the ring 42, and is curved so as to form part of a conical surface. are doing.
  • the guide member 41 is disposed such that the lower end of the shroud 43 faces the intake valve 15 in a closed state with a clearance.
  • the guide member 41 thus formed is attached to the intake port 13 before the intake valve 15 is attached to the cylinder head 2. More specifically, first, as shown in FIG. 13 (d), the hooks 45 of the ring 42 of the guide member 41 in the free state are sandwiched between tools such as pliers (not shown) to spring the ring 42. The guide member 41 is inserted into the intake port 13 from the combustion chamber side by reducing the diameter by staking the force ⁇ see FIG. 13 (e) ⁇ . Then, the hook 45 is released while the ring 42 is engaged with the concave groove 44 of the intake port 13. At this time, the guide member 41 is positioned so that the shroud 43 is located on the exhaust valve 16 side.
  • the guide member 41 shown in FIGS. 10 to 14 is formed so that the hook 45 of the ring 42 is positioned on the shroud 43, but the guide member 41 is shown in FIG. It can also be formed as follows.
  • a guide member 41 shown in FIG. 15 has a support plate 46 of a shroud 43 welded to an inner peripheral portion 42 a of the ring 42 facing the hook 45.
  • the ring 42 of the guide member 41 is attached to the intake port 13 with a reduced diameter as shown in FIG. 15 (d) from the free state shown by the solid line in FIG. 15 (a). After mounting, the ring 42 is reduced in diameter from the free state as shown by the two-dot chain line in FIG. 7A, and is fixed to the intake port 13 by its own elastic force.
  • the hook 45 can be visually recognized from below, so that the position of the hook 45 can be easily confirmed when the hook 45 is sandwiched by pliers or the like.
  • the assembly work becomes easy.
  • the mounting position of the guide member 41 is the same as that of the guide member 41 shown in FIGS.
  • the inclined portion 23 of the intake port 13 is substantially extended by the shroud 43,
  • the intake air flowing into the exhaust valve 16 from the gap between the intake valve 21 and the intake outlet 21 can be reduced.
  • the tumble flow T can be generated more strongly.
  • the tumble flow T since the strength of the tumble flow T can be changed by the guide member 41, the tumble flow T is generated by the guide member 41 so that the strength becomes optimum with respect to the generated squish flow S. Therefore, it is possible to surely generate a microturbulence. Therefore, the combustion can be further improved.
  • the guide member can be formed as shown in FIGS.
  • FIG. 16 is a cross-sectional view of a part of an engine showing another example of the guide member
  • FIG. 17 is a guide member.
  • FIG. 18 is a plan view showing a configuration of a portion near the combustion chamber of the engine viewed from the cylinder head side
  • FIG. 19 is a schematic diagram for explaining a tumble flow
  • FIG. 20 is a bottom view of the fuel gas supply nozzle
  • FIG. 21 is a sectional view taken along the line A—A in FIG. 16
  • FIG. 22 is a sectional view taken along the line B—B in FIG. 16
  • FIG. FIG. 3 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 24 is an enlarged perspective view showing a guide member and a valve body of an intake valve.
  • the engine 1 shown in FIGS. 16 to 24 has a guide member 51 provided on an intake valve 15.
  • the guide member 51 is formed of a metal plate that forms a part of a cone, and is welded to the upper surface of the valve body 15 b of the intake valve 15.
  • the guide member 51 is formed in a fan shape in plan view that becomes wider as it goes upward, and as shown in FIG.
  • the intake valve 15 is inclined so as to be unevenly distributed radially outward of the intake valve 15 as it goes upward in a side view.
  • the guide member 51 is attached to the intake valve 15 on one side of the intake valve 15 adjacent to the exhaust valve 16.
  • the center of the arc of the inner surface 51 a of the guide member 51 is positioned so as to substantially coincide with the axis of the intake valve 15.
  • the height of the guide member 51 is such that when the intake valve 15 is opened, the upper end faces upstream from the intake outlet 21 of the intake port 13, As shown by the two-dot chain line in FIG. 17, even when the intake valve 15 is closed, the upper end is set so as not to contact the inner wall surface of the intake port 13.
  • valve stem 15a is formed in a square cross section At the same time, this rectangular section is slidably engaged with the valve stem guide 5 on the cylinder head 2 side.
  • the intake port 13 of the cylinder head 2 has one side 2 a of the cylinder head 2 as often used in a general engine 1. , And extend obliquely toward the combustion chamber 32.
  • the intake port 13 is formed so that the intake passage 5 is branched into branch passages 5a and 5b for each intake valve 15 in the middle.
  • the intake port 13 When the intake port 13 is formed in this manner, a large amount of intake air flows into the central portion of the combustion chamber 23 due to inertia when the intake valve 15 is opened, but according to this embodiment, Most of the intake air hits the guide member 51, and the flow direction is changed. That is, since the intake air flows in the direction opposite to the exhaust valve 16 by hitting the guide member 51, the engine 1 also has the same internal cylinder as in the first and second embodiments. A reverse evening tumbling occurs.
  • the nozzle 4 for supplying the fuel gas is supplied from one side 1a of the cylinder head 2 through the intake port. It is formed so as to extend to the vicinity of the valve 15. That is, the injector 3 is disposed in the intake passage 5, and the injector 3 is connected to the nozzle 4 having an open end near the upstream of the intake valve 15.
  • the nozzle 4 includes pipes 4 a, 4 a for each intake valve 15, and pipes connecting the upstream ends of the pipes 4 a, respectively. And a holder 4b.
  • the pipe 4a has a downstream end disposed near the adjacent intake port 13 in the intake port 13 and flows the intake air. The downstream end in the direction is bent so that the opening at the tip is directed, and the upstream end extends in the intake port 13 to the upstream side along the intake port upper wall 13a (see Fig. 16). Let me.
  • the nozzle holder 4b is provided with a fuel passage communicating with the pipe 4a.
  • a charge passage 4c is bored for each pipe, and is fixed to the intake port upper wall 13a by fixing bolts 53 as shown in FIG.
  • the cylinder head 2 according to this embodiment has a through hole 5 4 for tool passage in the lower wall 13 b of the intake port so that the fixing bolt 53 can be easily attached and detached by a tool (not shown). Are drilled.
  • the reference numeral 55 provided at the open end of the through hole 54 is a plug member for closing the through hole 54.
  • the fuel passage 4c of the pipe holder 4b is opened at the upstream end of the pipe holder 4b, and injects fuel gas from the fuel gas injector 3 mounted on the cylinder head 2.
  • the injector 3 is disposed in the intake passage 5, and the injector 3 is connected to a nozzle 4 having an open end near the upstream of the intake valve 15, and the opening of the nozzle 4 is connected to the gas. Since the gas injection port is used, the degree of freedom in the position where the gas injection port is provided is increased, and the gas injection port can be provided close to the intake port 12.
  • FIGS. 25 to 27 When the intake port is formed to extend obliquely to the cylinder head, a fuel gas supply nozzle can be formed as shown in FIGS. 25 to 27.
  • FIG. 25 is a cross-sectional view showing another example of a fuel gas supply nozzle
  • FIG. 26 is a plan view showing a configuration near the combustion chamber of the engine viewed from the cylinder head side.
  • FIG. 26 is a sectional view taken along line AA in FIG. 25.
  • the same or equivalent members as those described with reference to FIGS. 1 to 24 are denoted by the same reference numerals, and detailed description will be appropriately omitted.
  • the fuel gas supply nozzle 4 shown in FIGS. 25 to 27 is composed of a pipe provided for each intake valve 15, and is inserted into the fuel gas supply through-hole 61 of the cylinder head 2 from the intake port 13 side. And is located near the adjacent intake port 13 in the intake port 13. Has been established. Further, as shown in FIG. 25, these nozzles 4 are bent so that the opening at the tip thereof is directed to the downstream side in the direction in which the intake air flows.
  • the fuel gas supply through hole 61 is a first gas hole extending obliquely and linearly along the intake port 13 from above the inlet of the intake port 13 on one side 2 a of the cylinder head 2. 62, and second gas holes 63 extending from the downstream end of the first gas holes 62 to the intake ports 13 of the respective intake valves 15 (see FIG. 27). I have.
  • the nozzle 4 is mounted on the second gas hole 63. Further, as shown in FIG. 16, the upstream end of the first gas hole 6 is opened inside a hole 29 for mounting a fuel gas supply injector 3 (not shown).
  • the fuel gas injected from the nozzle 4 into the intake port 13 during the intake stroke is supplied to the intake valve 1 as shown by the black arrow G in FIG.
  • the gas flows obliquely downward in the opposite direction to the exhaust valve 16 in the cylinder through the gap between 5 and the intake outlet 21.
  • the tumble flow generated in the cylinder may be a normal tumble flow as shown in FIGS. 28 to 34.
  • Figures 28 and 29 are cross-sectional views of a gas fuel engine that generates a forward tumble flow by providing a guide member on the intake valve.
  • Figure 28 shows the state during the intake stroke
  • Figure 29 shows the piston. The state where it is located at the compression top dead center is shown.
  • FIG. 30 is a plan view showing the configuration of a portion near the combustion chamber of the engine viewed from the cylinder head side
  • FIG. 31 is a cross-sectional view taken along line AA in FIG. 28, and
  • FIG. FIG. 8 is a view of the intake valve and the intake outlet in FIG.
  • FIG. 33 is a cross-sectional view of a gas fuel engine that generates a forward tumble flow using a guide member attached to an intake port
  • FIG. 34 is a cross-sectional view taken along line AA in FIG.
  • the same reference numerals are given to the same or similar members as those described in the above-mentioned drawings to the drawings, and the detailed description is omitted as appropriate.
  • the intake port 13 of engine 1 shown in Fig. 28 to Fig. 32 is connected to the cylinder head 2 It is formed so as to extend obliquely from one side 2 a toward the combustion chamber 32. Further, the intake port 13 is formed so that the intake passage 5 is branched into branch passages 5a and 5b of the intake valve 15 # on the way. Therefore, most of the intake air flowing through the intake port 13 in the intake stroke flows obliquely from the intake outlet 21 to the exhaust valve 16 side in the cylinder due to the inertia of the intake flow.
  • the intake valve 15 has a guide having a structure similar to that of the guide member 51 shown in the third embodiment in order to prevent the intake air from flowing from the intake outlet 11 in the opposite direction to the exhaust valve 16.
  • a member 71 is provided.
  • the guide member 71 is formed of a metal plate that forms a part of a cone, and is welded to the upper surface of the valve body 15 b of the intake valve 15.
  • the guide member 71 is formed in a fan shape in plan view (see FIG. 31) whose width increases as it goes upward, and as shown in FIGS. ,
  • the intake valve 15 is inclined so as to be unevenly distributed radially outward of the intake valve 15.
  • the position where the guide member 71 is attached to the intake valve 15 is located on one side of the intake valve 15 opposite to the exhaust valve 16, and as shown in FIG.
  • the center of the arc of the inner surface 71 a is positioned so as to substantially coincide with the axis of the intake valve 15.
  • the height of the guide member 71 is such that when the intake valve 15 opens, the upper end faces upstream from the intake outlet 21 of the intake port 13, Even if the intake valve 15 is closed, the upper end is set so as not to contact the inner wall surface of the intake port 13.
  • the intake valve 15 in order to prevent the intake valve 15 provided with the guide member 71 from rotating, as in the case of the third and fourth embodiments, the intake valve 15
  • the valve stem 15a is slidably engaged with the valve stem guide 52.
  • the intake air flows obliquely into the cylinder from the intake port 13 to generate a tumble flow composed of the swirling flow of the intake air in the cylinder. .
  • this tumble flow is a so-called forward tumble flow in which the swirling direction is opposite to that shown in the above-described first to fourth embodiments.
  • the squish flow S and the tumble flow stack are swirled in the same direction in the combustion chamber 32 at the end of the compression stroke.
  • the pipe 4a of the fuel gas supply nozzle 4 is formed linearly so as to extend in the same direction as the direction in which the intake air flows.
  • the nozzle 4 is disposed at a position adjacent to the adjacent intake port 13 in the intake port 13, and as shown in FIG. 32, with the intake valve 15 open, the intake valve 15 and the intake
  • the fuel gas is positioned so as to be injected into the cylinder through the gap between the fuel gas and the fuel gas.
  • the fuel gas is supplied to the first fuel supply stroke when the intake valve 15 is closed, and to the fuel gas when the intake valve 15 is open.
  • the fuel is injected from the nozzle 4 during the second fuel supply stroke.
  • the gas fuel engine 1 shown in FIG. 33 has a guide member 81 equivalent to the guide member 41 shown in the second embodiment at the intake port 13.
  • Reference numeral 82 denotes a ring of the guide member 81
  • reference numeral 83 denotes a shroud
  • reference numeral 84 denotes hooks at both ends of the ring 82
  • reference numeral 85 denotes an opening through which the hook 84 passes.
  • the guide member 81 is fixed to the intake port 13 so that the shroud 83 is located on the opposite side of the exhaust valve 16 across the intake valve 15.
  • the fuel gas and the air are mixed in the intake passage to form an air-fuel mixture, and the air-fuel mixture is dispersed in the cylinder in the intake stroke.
  • the gas injection port The newly supplied fuel gas is sucked into the cylinder in a stratified state without spreading widely so as to ride on the intake air flowing near the intake valve during the intake stroke.
  • the fuel gas can be widely dispersed in the cylinder so as to be relatively lean, and can be supplied in a layered manner so as to be relatively dense near the ignition plug. And reduce fuel consumption in gas fueled engines.
  • the fuel gas can be supplied in a stratified manner to the vicinity of the ignition plug by the tumble flow, so that the total supply amount of the fuel gas is significantly reduced from the stoichiometric air-fuel ratio. Even if it is set, the concentration of the fuel gas near the periphery of the ignition plug can be relatively increased. For this reason, gas fuel engines can improve fuel efficiency while stabilizing combustion.
  • the degree of freedom of the position where the gas injection port is provided is increased, and the gas injection port can be provided close to the intake outlet, so that the fuel gas can be supplied to the combustion chamber without diffusing. Can promote the stratification of fuel gas
  • the degree of freedom of the position where the gas injection port is provided is increased, and the gas injection port can be provided close to the suction outlet, so that the fuel gas can be supplied to the combustion chamber without diffusing. Can promote the stratification of fuel gas
  • fuel gas can be supplied to a plurality of intake passages with one injector, and cost can be reduced as compared with a case where injectors are provided for each intake passage.
  • the fuel gas can be respectively supplied from the plurality of intake outlets into the cylinder, the degree of freedom of the position for supplying the fuel gas is improved, and the fuel gas can be easily supplied. It can be supplied in layers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

It comprises a first fuel feed stroke for allowing fuel gas to stay in an intake passageway (5) with an intake valve (15) closed, and a second fuel feed stroke for feeding fuel gas from a gas spout (nozzle 4) in the vicinity of the intake valve (15) into the intake passageway (5) during intake stroke.

Description

明 細 書 ガス燃料エンジン  Description Gas-fueled engine
技術分野 Technical field
本発明は、 ガス燃料を吸気通路に供給するガス燃料ェンジンに関するものであ る。 背景技術  The present invention relates to a gas fuel engine that supplies gas fuel to an intake passage. Background art
従来、 ガス燃料を用いるエンジンは、 燃料ガスをミキサーによって空気と混合 させ吸気通路に供給したり、 液体燃料を用いるエンジンと同様にィンジヱクタに よって燃料ガスを吸気通路中に噴射する構造を採っている。 ガス燃料は、 液体燃 料とは異なり、 吸気通路の壁面に付着してそこに滞留するようなことがないから Conventionally, engines using gas fuel adopt a structure in which fuel gas is mixed with air by a mixer and supplied to the intake passage, or, similarly to engines using liquid fuel, fuel gas is injected into the intake passage by an injector. . Unlike gas fuel, gas fuel does not adhere to the wall of the intake passage and stay there.
、 吸気通路内に広く分散した状態でシリンダ内に吸い込まれる Is sucked into the cylinder in a state of being widely dispersed in the intake passage
—方、 液体燃料を用いるエンジンとしては、 理論空燃比より著しく希薄になる ように形成した混合気をシリンダ内の全域に供給するとともに、 点火プラグの周 辺近傍の狭い範囲に相対的に濃い混合気を層状に供給し、 燃焼の安定を図りなが ら、 燃費の向上を図るものがある。  On the other hand, for an engine using liquid fuel, a mixture formed so as to be significantly leaner than the stoichiometric air-fuel ratio is supplied to the entire area inside the cylinder, and the mixture is relatively densely mixed in a narrow area near the periphery of the spark plug. In some cases, air is supplied in a stratified manner to stabilize combustion and improve fuel efficiency.
この種のエンジンにおいて、 相対的に濃い混合気を点火プラグの近傍に集める ためには、 例えば、 特開平 6— 2 5 7 4 3 2号公報に開示されているように、 シ リンダ内に吸気の縦方向の旋回流からなる夕ンブル流を発生させるとともに、 燃 料をインジヱクタにより二股状の吸気ポートの分枝部分に向けて噴射することに よって行っていた。 すなわち、 燃料がシリンダの中央部分を指向するように噴射 され、 シリンダ内に吸い込まれた燃料がタンブル流に乗つてシリンダを流れるか ら、 結果としてシリンダ中央部の点火プラグの周辺近傍に燃料が集められるよう になる 発明者らは、 ガス燃料エンジンにおいても、 燃料ガスを点火プラグの周辺近傍 に層状に供給し、 希薄燃焼を実現させて燃費の向上を図ることを考えた。 しかし 、 燃料ガスは、 液体燃料と比較して早く空気と混合されるため、 燃焼室に吸入さ れる以前に空気と混合されて吸気通路中に広く分散してしまうから、 これを層状 に燃焼室に供給することはできなかった。 In order to collect a relatively rich air-fuel mixture in the vicinity of the spark plug in this type of engine, for example, as disclosed in Japanese Patent Application Laid-Open No. Hei 6-2573432, intake air is introduced into a cylinder. In addition to generating an evening flow consisting of a vertical swirling flow, the fuel was injected by an injector toward the branch of the bifurcated intake port. In other words, fuel is injected so as to be directed toward the center of the cylinder, and the fuel sucked into the cylinder rides on the tumble flow and flows through the cylinder.As a result, fuel is collected near the periphery of the spark plug at the center of the cylinder. Be able to The inventors have considered that even in a gas-fueled engine, fuel gas is supplied in a layered manner near the periphery of the ignition plug to achieve lean combustion to improve fuel efficiency. However, since the fuel gas is mixed with air earlier than liquid fuel, it is mixed with air before being sucked into the combustion chamber and is widely dispersed in the intake passage. Could not be supplied.
本発明はこのような問題点を解消するためになされたもので、 燃料ガスをシリ ンダ内に層状に供給して希薄燃焼を実現できるガス燃料ェンジンを提供すること を目的とする。 発明の開示  The present invention has been made in order to solve such a problem, and an object of the present invention is to provide a gas fuel engine capable of realizing lean combustion by supplying a fuel gas into a cylinder in a layered manner. Disclosure of the invention
この目的を達成するため、 本発明に係るガス燃料ェンジンは、 ガス燃料を吸気 通路に供給するガス燃料ェンジンにおいて、 吸気弁が閉じている状態で吸気通路 中に燃料ガスを貯留させる第 1の燃料供給行程と、 吸入行程で吸気弁近傍のガス 噴口から燃料ガスを吸気通路中に供給する第 2の燃料供給行程とを有するもので ある。  In order to achieve this object, a gas fuel engine according to the present invention is a gas fuel engine that supplies gas fuel to an intake passage, wherein the first fuel stores fuel gas in the intake passage with the intake valve closed. It has a supply step and a second fuel supply step of supplying fuel gas into the intake passage from a gas injection port near the intake valve in the intake step.
本発明によれば、 第 1の燃料供給行程において吸気通路中で燃料ガスと空気と が混合されて混合気が形成され、 この混合気が吸気行程でシリンダ内に分散する 。 また、 第 2の燃料供給行程でガス噴口から吸気弁の近傍に新たに供給された燃 料ガスは、 吸気行程で吸気弁近傍を流れる吸気に乗るようにして広く分散するこ とがない状態でシリンダ内に層状に吸い込まれる。  According to the present invention, in the first fuel supply stroke, the fuel gas and the air are mixed in the intake passage to form an air-fuel mixture, and the air-fuel mixture is dispersed in the cylinder in the intake stroke. In addition, the fuel gas newly supplied from the gas injection port to the vicinity of the intake valve in the second fuel supply process does not spread widely by riding on the intake air flowing near the intake valve in the intake process. It is sucked into the cylinder in layers.
請求項 2に記載した発明に係るガス燃料エンジンは、 請求項 1に記載した発明 に係るガス燃料ェンジンにおいて、 シリンダ内に吸気の旋回流が生成される構造 とし、 ガス噴口から噴射された燃料ガスが前記旋回流によって点火プラグの近傍 に流れる構成としたものである。  A gas fuel engine according to a second aspect of the present invention is the gas fuel engine according to the first aspect of the invention, wherein a swirling flow of intake air is generated in a cylinder, and the fuel gas injected from a gas injection port is provided. Flows near the spark plug by the swirling flow.
この発明によれば、 燃料ガスを点火ブラグの近傍にタンブル流によつて層状に 供給することができるから、 燃料ガスの総供給量を理論空燃比より著しく希薄に なるように設定しても、 点火プラグの周辺近傍の燃料ガスの濃度を相対的に濃く することができる。 According to the present invention, since the fuel gas can be supplied in a layered manner to the vicinity of the ignition plug by the tumble flow, the total supply amount of the fuel gas is made extremely leaner than the stoichiometric air-fuel ratio. With this setting, the concentration of the fuel gas near the periphery of the spark plug can be relatively increased.
請求項 3に記載した発明に係るガス燃料エンジンは、 請求項 1に記載した発明 に係るガス燃料ェンジンにおいて、 ガス燃料を噴射するインジヱクタを吸気通路 に配置し、 前記インジェクタに、 吸気弁の上流近傍に先端が開口する管部材を接 続し、 この管部材の前記開口をガス噴口としたものである。  A gas fuel engine according to a third aspect of the present invention is the gas fuel engine according to the first aspect, wherein an injector for injecting gas fuel is disposed in an intake passage, and the injector is provided near an upstream of an intake valve. A pipe member having an open end is connected to the pipe member, and the opening of the pipe member is used as a gas injection port.
この発明によれば、 ガス噴口を設ける位置の自由度が高くなり、 吸気出口に接 近させて設けることができる。  According to the present invention, the degree of freedom of the position where the gas injection port is provided is increased, and the gas injection port can be provided close to the intake port.
請求項 4に記載した発明に係るガス燃料エンジンは、 請求項 1に記載した発明 に係るガス燃料エンジンにおいて、 ィンジェクタによってガス燃料が噴射される 燃料通路を吸気通路壁内に形成し、 前記燃料通路の下流端に、 吸気弁の上流近傍 に先端が開口する管部材を接続し、 この管部材の前記開口をガス噴口としたもの である。  A gas fuel engine according to a fourth aspect of the present invention is the gas fuel engine according to the first aspect, wherein a fuel passage through which gas fuel is injected by an injector is formed in an intake passage wall; A pipe member having a tip opening near the upstream of the intake valve is connected to the downstream end of the pipe member, and the opening of the pipe member is used as a gas injection port.
この発明によれば、 ガス噴口を設ける位置の自由度が高くなり、 吸気出口に接 近させて設けることができる。  According to the present invention, the degree of freedom of the position where the gas injection port is provided is increased, and the gas injection port can be provided close to the intake port.
請求項 5に記載した発明に係るガス燃料エンジンは、 請求項 3または請求項 4 に記載した発明に係るガス燃料エンジンにおいて、 ィンジェクタは複数の燃料噴 射口を有し、 それぞれの燃料噴射口に対応する管部材を備えたものである。 この発明によれば、 一つのインジヱクタで複数の吸気通路に燃料ガスを供給す ることができる。  The gas fuel engine according to the invention described in claim 5 is the gas fuel engine according to the invention described in claim 3 or 4, wherein the injector has a plurality of fuel injection ports, and each injector has a fuel injection port. It has a corresponding tube member. According to the present invention, fuel gas can be supplied to a plurality of intake passages by one injector.
請求項 6に記載した発明に係るガス燃料エンジンは、 請求項 1ないし請求項 5 のうち何れか一つに記載した発明に係るガス燃料エンジンにおいて、 ガス噴口が 燃焼室中心を基準として排気弁とは反対方向を指向しているものである。  The gas fuel engine according to the invention described in claim 6 is the gas fuel engine according to any one of claims 1 to 5, wherein the gas injection port is connected to the exhaust valve based on the center of the combustion chamber. Are pointing in opposite directions.
この発明によれば、 シリンダ内の相対的に低温になる部位に燃料ガスが供給さ れる。  According to the present invention, the fuel gas is supplied to a relatively low temperature portion in the cylinder.
請求項 7に記載した発明に係るガス燃料ェンジンは、 請求項 1ないし請求項 5 のうち何れか一つに記載した発明に係るガス燃料エンジンにおいて、 気筒每に複 数の吸気弁を設け、 ガス噴口を前記吸気弁毎に設けたものである。 The gas fuel engine according to the invention described in claim 7 is the same as that of claims 1 to 5. In the gas fuel engine according to any one of the above aspects, a plurality of intake valves are provided in the cylinder 每, and a gas injection port is provided for each of the intake valves.
この発明によれば、 シリンダ内に複数の吸気出口から燃料ガスをそれぞれ供給 することができるから、 燃料ガスを供給する位置の自由度が向上する。 図面の簡単な説明  According to the present invention, since the fuel gas can be supplied from the plurality of intake outlets into the cylinder, the degree of freedom of the position for supplying the fuel gas is improved. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係るエンジンの断面図である。  FIG. 1 is a sectional view of an engine according to the present invention.
図 2は、 エンジンの一部を拡大して示す断面図である。  FIG. 2 is an enlarged sectional view showing a part of the engine.
図 3は、 ピストンの平面図である。  FIG. 3 is a plan view of the piston.
図 4は、 エンジンの燃焼室近傍の部位をシリンダへッド側から見た状態の構成 を示す平面図である。  FIG. 4 is a plan view showing a configuration in a state where a portion near the combustion chamber of the engine is viewed from the cylinder head side.
図 5は、 シリンダへッ ドの燃焼室壁を示す底面図である。  FIG. 5 is a bottom view showing the combustion chamber wall of the cylinder head.
図 6は、 シリンダぉよびビストンの縦断面図である。  FIG. 6 is a longitudinal sectional view of the cylinder and biston.
図 7は、 図 1における VI I -VI I 線断面図である。  FIG. 7 is a sectional view taken along the line VII-VII in FIG.
図 8は、 吸 ·排気弁の開閉時期と燃料噴射時期とを示すタイムチャートである 図 9は、 ビストンの他の例を示す断面図である。  FIG. 8 is a time chart showing the opening / closing timing of the intake / exhaust valve and the fuel injection timing. FIG. 9 is a sectional view showing another example of the piston.
図 1 0は、 案内部材を設けたエンジンの断面図である。  FIG. 10 is a cross-sectional view of an engine provided with a guide member.
図 1 1は、 図 1 0における要部を拡大して示す断面図である。  FIG. 11 is a cross-sectional view showing a main part in FIG. 10 in an enlarged manner.
図 1 2は、 図 1 1における XI I -XI I 線断面図である。  FIG. 12 is a sectional view taken along line XI I-XI I in FIG.
図 1 3は、 案内部材を示す図である。  FIG. 13 is a view showing a guide member.
図 1 4は、 図 1 3に示した案内部材の分解斜視図である。  FIG. 14 is an exploded perspective view of the guide member shown in FIG.
図 1 5は、 案内部材の他の例を示す図である。  FIG. 15 is a diagram showing another example of the guide member.
図 1 6は、 案内部材の他の例を示すエンジンの一部の断面図である。  FIG. 16 is a cross-sectional view of a part of the engine showing another example of the guide member.
図 1 7は、 案内部材を拡大して示す断面図である。  FIG. 17 is an enlarged sectional view showing the guide member.
図 1 8は、 エンジンの燃焼室近傍の部位をシリンダへッ ド側から見た状態の構 成を示す平面図である。 Figure 18 shows the structure of the engine near the combustion chamber when viewed from the cylinder head side. It is a top view showing composition.
図 1 9は、 タンブル流を説明するための模式図である。  FIG. 19 is a schematic diagram for explaining the tumble flow.
図 2 0は、 燃料ガス供給用ノズルの底面図である。  FIG. 20 is a bottom view of the fuel gas supply nozzle.
図 2 1は、 図 1 6における A— A線断面図である。  FIG. 21 is a sectional view taken along line AA in FIG.
図 2 2は、 図 1 6における B— B線断面図である。  FIG. 22 is a sectional view taken along line BB in FIG.
図 2 3は、 図 1 6における C— C線断面図である。  FIG. 23 is a cross-sectional view taken along line CC in FIG.
図 2 4は、 案内部材と吸気弁の弁体を拡大して示す斜視図である。  FIG. 24 is an enlarged perspective view showing a guide member and a valve body of an intake valve.
図 2 5は、 燃料ガス供給用ノズルの他の例を示す断面図である。  FIG. 25 is a cross-sectional view showing another example of the fuel gas supply nozzle.
図 2 6は、 エンジンの燃焼室近傍の部位をシリンダへッ ド側から見た状態の構 成を示す平面図である。  FIG. 26 is a plan view showing a configuration in a state where a portion near the combustion chamber of the engine is viewed from the cylinder head side.
図 2 7は、 図 2 5における A— A線断面図である。  FIG. 27 is a sectional view taken along line AA in FIG.
図 2 8は、 ガス燃料ェンジンの断面図である。  FIG. 28 is a cross-sectional view of the gas fuel engine.
図 2 9は、 ガス燃料ェンジンの断面図である。  FIG. 29 is a cross-sectional view of the gas fuel engine.
図 3 0は、 エンジンの燃焼室近傍の部位をシリンダへッ ド側から見た状態の構 成を示す平面図である。  FIG. 30 is a plan view showing a configuration in a state where a portion near the combustion chamber of the engine is viewed from the cylinder head side.
図 3 1は、 図 2 8における A— A線断面図である。  FIG. 31 is a sectional view taken along line AA in FIG.
図 3 2は、 図 2 8における吸気弁と吸気出口の B矢視図である。  FIG. 32 is a view on arrow B of the intake valve and the intake outlet in FIG.
図 3 3は、 吸気ポー卜に取付ける案内部材を用いて順タンブル流を発生させる ガス燃料ェンジンの断面図である。  FIG. 33 is a cross-sectional view of a gas fuel engine that generates a forward tumble flow using a guide member attached to an intake port.
図 3 4は、 図 3 3における A— A線断面図である。 発明を実施するための最良の形態  FIG. 34 is a sectional view taken along line AA in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
(第 1の実施の形態)  (First Embodiment)
以下、 本発明に係るェンジンの一実施の形態を図 1ないし図 9によつて詳細に 説明する。  Hereinafter, an embodiment of an engine according to the present invention will be described in detail with reference to FIGS.
図 1は本発明に係るエンジンの断面図、 図 2はエンジンの一部を拡大して示す 断面図で、 同図は、 ピストンが圧縮行程で上死点に位置付けられた状態で描いて ある。 図 3はピストンの平面図、 図 4はエンジンの燃焼室近傍の部位をシリンダ へッ ド側から見た状態の構成を示す平面図、 図 5はシリンダへッ ドの燃焼室壁を 示す底面図である。 図 6はシリンダおよびビストンの縦断面図、 図 7は図 1にお ける VI I -VI I 線断面図、 図 8は吸 ·排気弁の開閉時期と燃料噴射時期とを示す タイムチャート、 図 9はピストンの他の例を示す断面図である。 1 is a sectional view of an engine according to the present invention, and FIG. 2 is an enlarged view of a part of the engine. In cross section, the figure is drawn with the piston positioned at top dead center during the compression stroke. Fig. 3 is a plan view of the piston, Fig. 4 is a plan view showing the structure near the combustion chamber of the engine viewed from the cylinder head side, and Fig. 5 is a bottom view showing the combustion chamber wall of the cylinder head. It is. Fig. 6 is a vertical sectional view of the cylinder and biston, Fig. 7 is a sectional view taken along the line VII-VII in Fig. 1, Fig. 8 is a time chart showing the opening and closing timing of the intake and exhaust valves and the fuel injection timing, and Fig. 9 FIG. 4 is a sectional view showing another example of the piston.
これらの図において、 符号 1で示すものは、 この実施の形態によるエンジンで ある。 このエンジン 1は、 L P Gや C N G (圧縮天然ガス) などのガス燃料を使 用して運転されるもので、 このガス燃料をシリンダへッ ド 2の燃料ガス供給用ィ ンジェクタ 3から後述するノズル 4を通して吸気通路 5内に噴射する構造を採つ ている。 なお、 このエンジン 1の気筒数は、 図 1には説明の便宜上 1気筒分しか 描かれていないが、 複数の気筒をもつエンジンに用いることができる。 図 1 にお いて、 符号 6はシリンダボディを示し、 7はビストン、 8はコンロッ ドを示す。 前記シリンダへッド 2は、 従来からよく知られているように、 D O H C型の動 弁装置 1 1 と点火ブラグ 1 2が設けられるとともに、 前記吸気通路 5を形成する 吸気ボー卜 1 3と排気ポート 1 4とが設けられている。  In these figures, what is indicated by reference numeral 1 is an engine according to this embodiment. The engine 1 is operated using a gas fuel such as LPG or CNG (compressed natural gas). The gas fuel is supplied from a fuel gas supply injector 3 of a cylinder head 2 to a nozzle 4 described later. Injection into the intake passage 5 is carried out. Although the number of cylinders of the engine 1 is shown in FIG. 1 for only one cylinder for convenience of explanation, it can be used for an engine having a plurality of cylinders. In FIG. 1, reference numeral 6 denotes a cylinder body, 7 denotes a piston, and 8 denotes a conrode. As is well known, the cylinder head 2 is provided with a DOHC type valve gear 11 and an ignition plug 12, and has an intake boat 13 and an exhaust which form the intake passage 5. Port 14 is provided.
前記動弁装置 1 1は、 一気筒当たり 2本ずつの吸気弁 1 5と排気弁 1 6とを有 し、 これらの吸 ·排気弁 1 5 , 1 6をそれぞれバルブリフタ一 1 7を介して吸気 カム軸 1 8と排気カム軸 1 9とによって駆動する。  The valve gear 11 has two intake valves 15 and two exhaust valves 16 for each cylinder, and the intake and exhaust valves 15 and 16 are supplied through valve lifters 17 respectively. It is driven by a camshaft 18 and an exhaust camshaft 19.
前記点火プラグ 1 2は、 前記 4本の吸 ·排気弁 1 5, 1 6に囲まれたシリンダ 中央部に配設されている。 この点火プラグ 1 2を螺着させるねじ孔を図 4および 図 5中に符号 2 0で示す。 図 5において、 符号 2 1は吸気弁 1 5によって開閉さ れる吸気ポート 1 3の吸気出口を示し、 1 2は排気弁 1 6によって開閉される排 気ポート 1 4の排気入口を示す。  The ignition plug 12 is disposed at the center of the cylinder surrounded by the four intake / exhaust valves 15 and 16. The screw holes into which the ignition plugs 12 are screwed are indicated by reference numeral 20 in FIGS. In FIG. 5, reference numeral 21 denotes an intake outlet of an intake port 13 opened and closed by an intake valve 15, and 12 denotes an exhaust inlet of an exhaust port 14 opened and closed by an exhaust valve 16.
前記吸気ポート 1 3は、 この実施の形態では吸気弁 1 5毎に設けられ (図 4参 照) 、 図 1に示すように、 シリンダへッ ド 2を上下方向 (シリンダ軸線 Cに沿う 方向) に貫通するように形成されている。 この吸気ポート 1 3の上流側には、 図 示していないが、 へッ ドカバーの吸気通路と、 へッ ドカバーに取付けた吸気管な どを介してスロッ トル弁を接続している。 In this embodiment, the intake port 13 is provided for each intake valve 15 (see FIG. 4). As shown in FIG. 1, the cylinder head 2 is formed to penetrate the cylinder head 2 in the vertical direction (the direction along the cylinder axis C). Although not shown, a throttle valve is connected to the upstream side of the intake port 13 through an intake passage of a head cover and an intake pipe attached to the head cover.
この実施の形態による吸気ボート 1 3は、 図 1に示すように、 シリンダヘッ ド 2の上端部の開口から下流側に向かうにしたがって次第に吸気弁 1 5に接近する ように傾斜し、 下流側端部に、 下流側へ向かうにしたがって次第に排気弁 1 6と は反対側へ延びる傾斜部 1 3が設けられている。  As shown in FIG. 1, the intake boat 13 according to this embodiment is inclined so as to gradually approach the intake valve 15 from the opening at the upper end of the cylinder head 2 toward the downstream, In addition, an inclined portion 13 is provided which gradually extends to the opposite side to the exhaust valve 16 toward the downstream side.
このように吸気ポート 1 3を形成することにより、 この吸気ポート 1 3を通過 した吸気は、 吸気流の慣性により吸気出口 2 1から排気弁 1 6とは反対方向を 向する状態でシリンダ内に導かれる。  By forming the intake port 13 in this manner, the intake air that has passed through the intake port 13 flows into the cylinder from the intake outlet 21 in the direction opposite to the exhaust valve 16 due to the inertia of the intake flow. Be guided.
一方、 排気ポート 1 4は、 シリンダへッド 2内で排気弁 1 6毎の排気通路が合 流し、 シリンダへッド 2の一側部の排気出口 2 4まで延びるように形成されてい る。  On the other hand, the exhaust port 14 is formed so that the exhaust passage for each exhaust valve 16 merges in the cylinder head 2 and extends to the exhaust outlet 24 on one side of the cylinder head 2.
前記ビストン 7は、 図 1〜図 3および図 6に示すように、 頂部 7 aに斜面 1 5 および凹部 2 6を形成している。 前記斜面 2 5は、 図 2および図 4に示すように 、 ビストン 7の頂部 7 aにおける前記吸気弁 1 5と対向する部位に吸気弁 1 5の 並設方向へ延びるように形成されており、 吸気弁 1 5の弁体 1 5 の端面1 5 c (燃焼室壁の一部を形成する面) と平行になるように傾斜されている。  As shown in FIGS. 1 to 3 and FIG. 6, the biston 7 has a slope 15 and a recess 26 formed on the top 7a. As shown in FIGS. 2 and 4, the slope 25 is formed so as to extend in the direction in which the intake valves 15 are arranged side by side at the top 7 a of the piston 7 opposite to the intake valves 15. The intake valve 15 is inclined so as to be parallel to an end surface 15 c (a surface forming a part of the combustion chamber wall) of the valve body 15 of the intake valve 15.
前記凹部 2 6は、 図 2および図 6に示すように、 ビストン 7の頂部 7 aにおけ る前記斜面 2 5に隣接する平面視 D字状の部位を下方へ半球状に凹ませるように して形成されている。 なお、 ピストン 7としては、 図 9に示すように、 頂部 7 a の斜面 2 5に隣接する部分を平坦に形成し、 この平坦部分 7 bが実質的に凹部 2 6になるように形成することもできる。 このビストン 7を使用することによって 、 図 1に示すビストン 7を使用する場合に較べて圧縮比を高くすることができる 前記燃料ガス供給用ィンジヱクタ 3は、 気筒毎に設けられ、 シリンダへッ ド 2 の一側部であって、 吸気ポート 1 3どうしの間と対応する部位に取付けられてい る。 このインジヱクタ 3は、 図示していない燃料タンクから燃料ガスが圧送され 、 予め定めた燃料噴射時期に先端の燃料噴射口 2 7 (図 7参照) からシリンダへ ッ ド 2の吸気通路壁内の燃料通路 2 8に燃料ガスを噴射する。 As shown in FIG. 2 and FIG. 6, the concave portion 26 is formed so that a D-shaped portion in a plan view adjacent to the slope 25 at the top portion 7a of the biston 7 is hemispherically recessed downward. It is formed. As shown in FIG. 9, the piston 7 should be formed so that a portion adjacent to the slope 25 of the top portion 7a is flat and the flat portion 7b is substantially a concave portion 26. Can also. By using this biston 7, the compression ratio can be increased as compared to the case where the biston 7 shown in FIG. 1 is used. The fuel gas supply injector 3 is provided for each cylinder, and is attached to a portion of one side of the cylinder head 2 corresponding to a portion between the intake ports 13. The injector 3 is supplied with fuel gas from a fuel tank (not shown) under pressure, and feeds fuel from a fuel injection port 27 at the tip (see FIG. 7) into a cylinder head 2 at a predetermined fuel injection timing. Fuel gas is injected into passage 28.
このインジュクタ 3による燃料噴射は、 図 8に示すように、 排気行程で吸気弁 1 5が閉じているとき (第 1の燃料供給行程) と、 吸気行程で吸気弁 1 5が開い ているとき (第 2の燃料供給行程) に、 運転条件に対応させてそれぞれに噴射時 期と噴射期間を設定している。  As shown in FIG. 8, the fuel injection by the injector 3 is performed when the intake valve 15 is closed during the exhaust stroke (first fuel supply stroke) and when the intake valve 15 is opened during the intake stroke ( In the second fuel supply stroke), the injection time and injection period are set for each of the operating conditions.
このィンジ ク夕 3が燃料を噴射する期間は、 前記第 1の燃料供給行程のとき に第 2の燃料供給行程のときより長くなるように設定している。 燃料噴射量とし ては、 例えば 1サイクルに供給する燃料の略 5 0〜 7 0 %の燃料ガスを第 1の燃 料供給行程で噴射させ、 残りを第 2の燃料供給行程で噴射させる。  The period during which the fuel is injected by the engine 3 is set to be longer during the first fuel supply stroke than during the second fuel supply stroke. As the fuel injection amount, for example, approximately 50 to 70% of the fuel gas supplied in one cycle is injected in the first fuel supply stroke, and the remainder is injected in the second fuel supply stroke.
インジェクタ 3が燃料を噴射する前記燃料通路 2 8は、 図 7に示すように、 ィ ンジェクタ装着用の穴 2 9から各吸気ポート 1 3側へ延びて吸気ポート 1 3の下 流側端部に開口する吸気ポート 1 3每の貫通孔 3 0と、 これらの貫通孔 3 0にそ れぞれ吸気ポート 1 3の吸気出口 2 1側から嵌入させて固着したパイプからなる ノズル 4とによって構成されている。 各ノズル 4は、 図 4に示すように、 吸気ポ ート 1 3内における隣り合う吸気ポート 1 3の近傍に配設され、 図 1に示すよう に、 先端の開口が燃焼室中心を基準として排気弁 1 6とは反対方向であって、 吸 気の流れる方向の下流側を指向するように屈曲されている。 前記ノズル 4が本発 明に係る管部材を構成し、 前記先端の開口が本発明に係る燃料噴口を構成してい る。 なお、 インジヱクタ 3の燃料噴射口 1 7は、 貫通孔 3 0と対向する部位にそ れぞれ設けられており、 これらの燃料噴射孔 2 7から貫通孔 3 0内に燃料ガスが 直接噴射される。  As shown in FIG. 7, the fuel passages 28 from which the injectors 3 inject fuel extend from the injector mounting holes 29 to the respective intake ports 13 and extend to the downstream end of the intake ports 13. It is constituted by a through-hole 30 of the intake port 13 which opens, and a nozzle 4 made of a pipe fitted and fixed to each of the through-holes 30 from the intake outlet 21 of the intake port 13. ing. As shown in FIG. 4, each nozzle 4 is disposed in the vicinity of an adjacent intake port 13 in the intake port 13 and, as shown in FIG. 1, the opening at the tip is based on the center of the combustion chamber. It is bent in the opposite direction to the exhaust valve 16 so as to point downstream in the direction in which the intake air flows. The nozzle 4 constitutes a pipe member according to the present invention, and the opening at the tip constitutes a fuel injection port according to the present invention. The fuel injection holes 17 of the injectors 3 are provided at portions facing the through holes 30, respectively, and fuel gas is directly injected from the fuel injection holes 27 into the through holes 30. You.
ここでいう吸気流の下流側とは、 吸気ポート 1 3の傾斜部 2 3によって流れる 方向が規制された吸気の下流側のことをいい、 吸気ポート 1 3の吸気出口 2 1か ら排気弁 1 6とは反対側であって斜め下方を指向する方向のことである。 Here, the downstream side of the intake air flow flows through the inclined portion 23 of the intake port 13 This means the downstream side of the intake air whose direction is regulated, and the direction from the intake outlet 21 of the intake port 13 opposite to the exhaust valve 16 and obliquely downward.
このようにノズル 4を形成することによって、 吸気行程でノズル 4から吸気ポ ート 3内に噴射された燃料ガスは、 図 1中に黒色に塗り潰した矢印 Gで示すよ うに、 吸気弁 1 5と吸気出口 2 1 との間の隙間を通ってシリンダ内の排気弁 1 6 から離間する方向であつて斜め下方へ流入する。  By forming the nozzle 4 in this manner, the fuel gas injected into the intake port 3 from the nozzle 4 during the intake stroke is supplied to the intake valve 15 as shown by the solid black arrow G in FIG. The air flows obliquely downward in a direction away from the exhaust valve 16 in the cylinder through a gap between the exhaust valve 16 and the intake outlet 21.
このように構成されたエンジン 1においては、 図 8に示すように、 排気行程で ビストン 7が上昇しているとき (吸気弁 1 5が閉じているとき) にィンジェク夕 3で 1回目の燃料噴射が行われる。 このときには、 吸気弁 1 5が閉じているため に、 燃料ガスは吸気ポート 1 3内に滞留する。 そして、 排気行程の終期であって ピストン 7が上死点に達する直前に吸気弁 1 5が開き、 ピストン 7が上死点を越 えた後の下降行程で、 上述したように吸気ポート 1 3内に滞留している燃料ガス と、 新気とがシリンダ内に吸い込まれる。  In the engine 1 configured as described above, as shown in FIG. 8, when the piston 7 rises in the exhaust stroke (when the intake valve 15 is closed), the first fuel injection in the injector 3 is performed. Is performed. At this time, the fuel gas stays in the intake port 13 because the intake valve 15 is closed. Then, at the end of the exhaust stroke, just before the piston 7 reaches the top dead center, the intake valve 15 opens, and during the descending stroke after the piston 7 has passed the top dead center, the intake port 13 Fuel gas and fresh air staying in the cylinder are sucked into the cylinder.
前記燃料ガスは、 吸気弁 1 5と吸気出口 2 1 との間の隙間の略全域からシリン ダ内に流入するが、 吸気ボート 1 3からシリンダ内に斜め下方へ向けて吸入され る吸気に押されるようにして大部分が吸気と略同じ方向へ流される。 この燃料ガ スと新気は、 シリンダの内周面に沿うようにシリンダ内の下部へ流れる。  The fuel gas flows into the cylinder from almost the entire gap between the intake valve 15 and the intake outlet 21, but is pressed by the intake air drawn obliquely downward into the cylinder from the intake boat 13. Most of the air flows in the same direction as the intake air. The fuel gas and fresh air flow to the lower part of the cylinder along the inner peripheral surface of the cylinder.
上述したようにシリンダ内に吸い込まれた吸気は、 ビストン頂咅 P 7 aの凹部 2 6に当たって流れる方向が変えられ、 シリンダ内に、 図 1中に矢印 Tで示すよう にタンブル流が発生する。 このタンブル流は、 図 1に示すように、 カム軸の軸方 向から見てシリンダの軸線 Cより吸気弁 1 5側でシリンダへッ ド 2から離間し、 排気弁 1 6側でシリンダへッ ド 2に接近するような旋回流で、 一般的に呼称され るタンブル流とは旋回する方向が逆方向のいわゆる逆タンブル流である。 このよ うにタンブル流が形成されることによって、 燃料ガスが新気と混合されてシリン ダ内で拡散し、 希薄な混合気が形成される。  As described above, the direction of the intake air sucked into the cylinder hits the concave portion 26 of the piston top P7a, and the flow direction is changed, so that a tumble flow is generated in the cylinder as indicated by an arrow T in FIG. As shown in Fig. 1, this tumble flow is separated from the cylinder head 2 on the intake valve 15 side and the cylinder head on the exhaust valve 16 side from the axis C of the cylinder as viewed from the axis of the camshaft. It is a swirling flow approaching to C2 and is a so-called reverse tumble flow in which the swirling direction is opposite to the generally called tumble flow. By forming the tumble flow in this way, the fuel gas is mixed with the fresh air and diffuses in the cylinder to form a lean air-fuel mixture.
その後、 吸気行程の途中でィンジヱクタ 3による 2回目の燃料噴射が行われる (図 8参照) 。 このとき、 燃料ガスは、 2本のノズル 4から吸気弁 1 5と吸気出 口 2 1 との間の隙間を通してシリンダ内にそれぞれ噴射される。 シリンダ内には 上述したようにタンブル流 Tが形成されているから、 前記燃料ガスは、 図 6に示 すように、 タンブル流 Tに乗るようにしてシリンダ内で旋回する。 ノズル 4は、 二つの吸気ポート 1 3の互いに隣り合う部分の近傍に設けられているから、 この ノズル 4から噴射された燃料は、 点火プラグ 1 2の近傍で層状に流れる。 すなわ ち、 圧縮行程の終期には、 点火プラグ 1 2の周辺近傍に相対的に濃い混合気が層 状に供給される。 After that, the second fuel injection by the injector 3 is performed during the intake stroke. (See Figure 8). At this time, the fuel gas is injected into the cylinder from the two nozzles 4 through the gap between the intake valve 15 and the intake outlet 21. Since the tumble flow T is formed in the cylinder as described above, the fuel gas turns inside the cylinder so as to ride on the tumble flow T as shown in FIG. Since the nozzles 4 are provided near portions of the two intake ports 13 adjacent to each other, the fuel injected from the nozzles 4 flows in a laminar manner near the spark plugs 12. That is, at the end of the compression stroke, a relatively rich air-fuel mixture is supplied in a stratified manner near the periphery of the spark plug 12.
このように 2回目の燃料噴射が行われて吸気弁 1 5が閉じた後に、 ビストン 7 が圧縮上死点に移行することによって、 シリンダ内の夕ンブル流 Tは、 図 2に示 すように、 ビストン頂部 7 aの凹部 2 6とシリンダへッ ド 1側の燃焼室壁 3 1 と の間に形成される空間 (燃焼室 3 2 ) で旋回しながら縮径される。 一方、 このと きには、 ビストン頂部 7 aの前記斜面 2 5とシリンダへッ ド 2側の燃焼室壁 3 1 との間の隙間 (スキッシュエリア) から混合気が押し出され、 スキッシュ流が生 じる。 このスキッシュ流を図 2中に矢印 Sで示す。  After the second fuel injection is performed and the intake valve 15 is closed, the piston moves to the compression top dead center, as shown in Fig. 2. The diameter is reduced while turning in the space (combustion chamber 32) formed between the recess 26 of the piston top 7 a and the combustion chamber wall 31 on the cylinder head 1 side. On the other hand, at this time, the air-fuel mixture is pushed out from the gap (squish area) between the slope 25 on the top of the piston 7a and the combustion chamber wall 31 on the side of the cylinder head 2, and a squish flow is generated. I will. This squish flow is indicated by arrow S in FIG.
このスキッシュ流 Sは、 図 2において燃焼室 3 2内をシリンダへッ ド 2側の燃 焼室壁面に沿って排気弁 1 6側へ進行するから、 このスキッシュ流 Sと前記タン ブル流 Tとが点火プラグ 1 2の近傍で互いに衝突する。 このエンジン 1において は、 スキッシュエリアから混合気が噴出している期間内に点火プラグ 1 2による 点火が行われるように点火時期を設定している。  In FIG. 2, the squish flow S proceeds in the combustion chamber 32 toward the exhaust valve 16 along the combustion chamber wall on the cylinder head 2 side in FIG. Collide with each other near the spark plug 12. In the engine 1, the ignition timing is set so that the ignition by the spark plug 12 is performed during the period when the air-fuel mixture is ejected from the squish area.
夕ンブル流 Tとスキッシュ流 Sとが互いに衝突することによって、 混合気は、 微小な渦 (マイク口夕一ビュレンス) となって分散され、 タンブル流 Tとスキッ シュ流 Sとが合成されてなるガス流によってビストン頂部 7 a側へ下降する。 こ のため、 前記マイクロタービュレンスによつて着火後の火炎核の成長が助長され るとともに、 火炎がビストン頂部 7 a側へ拡がるようになり、 燃焼範囲が急速に 拡大される。 このエンジン 1 においては、 第 1の燃料供給行程において吸気通路中で燃料ガ スと空気とが混合されてこの混合気が吸気行程でシリンダ内に分散し、 また、 第When the evening tumbling stream T and the squish stream S collide with each other, the air-fuel mixture is dispersed as a small vortex (Mike mouth Yuichiurensu), and the tumble stream T and the squish stream S are synthesized. The gas flows down to the top 7a side of the biston. For this reason, the growth of the flame nucleus after ignition is promoted by the microturbulence, and the flame spreads to the biston top 7a side, so that the combustion range is rapidly expanded. In the engine 1, fuel gas and air are mixed in the intake passage in the first fuel supply stroke, and this air-fuel mixture is dispersed in the cylinder in the intake stroke.
2の燃料供給行程でノズル 4のガス噴口から吸気弁 1 5の近傍に新たに供給され た燃料ガスは、 吸気行程で吸気弁近傍を流れる吸気に乗るようにして広く分散す ることがない状態でシリンダ内に層状に吸い込まれるから、 燃料ガスをシリンダ 内に広く分散させるとともに、 相対的に濃くなるように層状に供給することがで きる。 The fuel gas newly supplied to the vicinity of the intake valve 15 from the gas nozzle of the nozzle 4 in the fuel supply process 2 does not spread widely by riding on the intake air flowing near the intake valve in the intake process. As a result, the fuel gas can be widely dispersed in the cylinder and supplied in a layered manner so as to be relatively dense.
特に、 このエンジン 1は、 燃料ガスを点火プラグ 1 2の近傍にタンブル流丁に よつて層状に供給することができるから、 燃料ガスの総供給量を理論空燃比より 著しく希薄になるように設定しながら、 点火プラグ 1 2の周辺近傍の燃料ガスの 濃度を相対的に濃くすることができる。  In particular, since the engine 1 can supply the fuel gas in a stratified manner near the spark plug 12 by a tumble flow stack, the total supply amount of the fuel gas is set to be extremely leaner than the stoichiometric air-fuel ratio. However, the concentration of the fuel gas in the vicinity of the spark plug 12 can be relatively increased.
したがって、 シリンダ内に供給される燃料ガスの総供給量を理論空燃比での供 給量に較べて著しく低減させた希薄燃焼を行つているにもかかわらず、 急速燃焼 が可能になつて燃焼改善を図ることができ、 燃費を向上させることができる。 また、 タンブル流 Tとスキッシュ流 Sの衝突により混合気流の運動エネルギー が減衰するから、 衝突後の混合気の状態は、 エンジン 1の回転速度や負荷が変化 しても大きく変化することはない。 このため、 上述したような燃焼が急速に行わ れる現象が広い運転域にわたって同様に起こり、 エンジン運転域の略全域にわた つて燃焼改善を図ることができるようになる。  Therefore, despite the lean combustion in which the total supply of fuel gas supplied to the cylinder is significantly reduced compared to the supply at the stoichiometric air-fuel ratio, rapid combustion becomes possible and combustion is improved. And fuel efficiency can be improved. Further, the kinetic energy of the air-fuel mixture is attenuated by the collision of the tumble flow T and the squish flow S, so that the state of the air-fuel mixture after the collision does not change significantly even if the rotation speed or load of the engine 1 changes. For this reason, the above-described phenomenon in which combustion is rapidly performed similarly occurs over a wide operating range, and combustion can be improved over substantially the entire engine operating range.
さらに、 シリンダ内の混合気の流動 (ビストン頂部 7 aの凹部 2 6内で下方へ 向けて流れる流動) は点火後も継続するから、 ピストン 7の頂部 7 aの近傍で成 長した初期燃焼ガス部分に未燃ガスが継続的に供給されるようになる。 このため 、 初期燃焼ガスは、 未燃ガスで攪拌されながら拡散し、 高温で保持されることは ないから、 N 0 Xが生成されるのを抑制することができる。 なお、 E G R量を增 大させる場合にも上記と同等に作用し、 燃費向上と N 0 Xの低減とを図ることが できる。 さらにまた、 タンブル流 Tとスキッシュ流 Sとの衝突によって混合気流の運動 エネルギーが減衰することにより、 点火プラグ 1 2の電極 1 2 a , 1 2 b (図 2 参照) の隙間内を混合気が高速で流れることがないから、 着火が安定するととも に、 点火電圧を高く しなくてよいから既存の点火装置を使用することができる。 この実施の形態では、 吸気を吸気ポート 1 3からシリンダ内における排気弁 1 6とは反対側へ流入させてシリンダ内にいわゆる逆タンブル流を発生させ、 スキ ッシュ流 Sを発生させる空間 (スキッシュエリア) を相対的に低温な吸気弁 1 5 側に形成しているから、 スキッシュエリアを排気弁 1 6側に形成する場合に較べ てノッキングが生じ難くなる。 また、 ノズル 4の先端の開口 (ガス噴口) が燃焼 室中心を基準として排気弁 1 6とは反対方向を指向しているから、 燃料ガスも低 温な部位へ供給され、 より一層ノッキングが発生し難くなる。 Furthermore, the flow of the air-fuel mixture in the cylinder (flowing downward in the recess 26 at the top 7a of the piston) continues after ignition, so the initial combustion gas that has grown near the top 7a of the piston 7 The unburned gas is continuously supplied to the portion. For this reason, the initial combustion gas is diffused while being stirred by the unburned gas, and is not kept at a high temperature, so that generation of NOx can be suppressed. It should be noted that even when the EGR amount is increased, the same operation as described above can be achieved, so that fuel efficiency can be improved and N0X can be reduced. Furthermore, the kinetic energy of the air-fuel mixture is attenuated by the collision of the tumble flow T and the squish flow S, so that the air-fuel mixture flows in the gap between the electrodes 12 a and 12 b of the spark plug 12 (see FIG. 2). Since it does not flow at high speed, ignition is stable and the ignition voltage does not need to be high, so that existing ignition devices can be used. In this embodiment, a space (a squish area) in which intake air flows from intake port 13 to the opposite side of exhaust valve 16 in the cylinder to generate a so-called reverse tumble flow in the cylinder to generate squish flow S ) Is formed on the intake valve 15 side where the temperature is relatively low, so that knocking is less likely to occur than when the squish area is formed on the exhaust valve 16 side. In addition, since the opening at the tip of the nozzle 4 (gas injection port) is oriented in the direction opposite to the exhaust valve 16 with respect to the center of the combustion chamber, fuel gas is also supplied to the low-temperature part, and knocking occurs even more. It becomes difficult to do.
また、 このエンジン 1は、 インジェクタ 3によってガス燃料が噴射される燃料 通路 2 8をシリンダへッ ド 2の吸気通路壁内に形成し、 燃料通路 2 8の下流端に 、 吸気弁 1 5の上流近傍に先端が開口するノズル 4を接続し、 このノズル 4の前 記開口をガス噴口としているから、 ガス噴口を設ける位置の自由度が高くなり、 吸気出口 2 1に接近させて設けることができる。  In the engine 1, a fuel passage 28 through which gas fuel is injected by the injector 3 is formed in an intake passage wall of the cylinder head 2, and a downstream end of the fuel passage 28 is provided upstream of the intake valve 15. A nozzle 4 having an opening at the tip is connected in the vicinity, and the opening of the nozzle 4 is used as a gas injection port. Therefore, the degree of freedom of the position where the gas injection port is provided is increased, and the nozzle 4 can be provided close to the intake outlet 21. .
さらに、 前記インジヱクタ 3は複数の燃料噴射口 2 7を有し、 それぞれの燃料 噴射口 2 7に対応するノズル 4を設けているから、 一つのィンジヱクタ 3で複数 の吸気通路 5に燃料ガスを供給することができる。  Further, since the injector 3 has a plurality of fuel injection ports 27 and the nozzles 4 corresponding to the respective fuel injection ports 27 are provided, the fuel gas is supplied to the plurality of intake passages 5 by one injector 3. can do.
さらにまた、 このエンジン 1は、 ノズル 4の先端の開口 (ガス噴口) が燃焼室 中心を基準として排気弁 1 6とは反対方向を指向しているから、 シリンダ内の相 対的に低温になる部位に燃料ガスが供給され、 ノッキングが発生するのを抑制す ることができる。  Furthermore, in the engine 1, the opening at the tip of the nozzle 4 (gas injection port) is oriented in the opposite direction to the exhaust valve 16 with respect to the center of the combustion chamber, so that the temperature in the cylinder becomes relatively low. The fuel gas is supplied to the part, and the occurrence of knocking can be suppressed.
加えて、 このエンジン 1は、 気筒毎に複数の吸気弁 1 5を設け、 ノズル 4の先 端の開口 (ガス噴口) を前記吸気弁 1 5毎に設けているから、 シリンダ内に複数 の吸気出口 2 1から燃料ガスをそれぞれ供給することができ、 燃料ガスを供給す る位置の自由度が向上する。 In addition, since the engine 1 is provided with a plurality of intake valves 15 for each cylinder and an opening (gas injection port) at the end of the nozzle 4 for each of the intake valves 15, a plurality of intake valves are provided in the cylinder. The fuel gas can be supplied from the intake outlet 21 of the fuel cell, respectively, and the degree of freedom of the position for supplying the fuel gas is improved.
また、 吸気ポート 1 3の下流側端部に下流側へ向かうにしたがって次第に排気 弁 1 6とは反対側へ延びる傾斜部 2 3を設けることによって、 逆タンブル流が形 成されるように吸気の流れる方向を規制しているから、 吸気の流れる方向を変え るための部材を吸気ポート 1 3内に設ける場合に較べて、 吸気抵抗が小さくなる とともに、 部品数を低減することができる。  The downstream end of the intake port 13 is provided with a sloping portion 23 that gradually extends toward the opposite side from the exhaust valve 16 toward the downstream side, so that a reverse tumble flow is formed. Since the flow direction is regulated, the intake resistance is reduced and the number of parts can be reduced as compared with the case where a member for changing the flow direction of the intake air is provided in the intake port 13.
(第 2の実施の形態)  (Second embodiment)
タンブル流を発生させるためには、 図 1 0ないし図 1 5に示す案内部材を吸気 ポートに取付けることができる。  In order to generate a tumble flow, the guide member shown in FIGS. 10 to 15 can be attached to the intake port.
図 1 0は案内部材を設けたエンジンの断面図、 図 1 1は図 1 0における要部を 拡大して示す断面図、 図 1 2は図 1 1における XI I -XI I 線断面図、 図 1 3は案 内部材を示す図で、 同図 (a ) は吸気ポートに組付けた状態での横断面図、 同図 ( b ) は側面図で、 (b ) 図においては、 (a ) 図の破断位置を A— A線によつ て示している。 図 1 3 ( c ) 【ま (a ) 図における C— C線断面図、 同図 (d ) は 装着前の自由状態を示し、 同図 (b ) は装着時に縮径させた状態を示す。 図 1 4 は図 1 3に示した案内部材の分解斜視図、 図 1 5は案内部材の他の例を示す図で 、 同図 (a ) は平面図、 同図 (b ) は側面図、 同図 (c ) 【ま (a ) 図における C 一 C線断面図、 同図 (d ) は装着時に縮径させた状態を示す平面図である。 これらの図において、 前記図 1〜図 9によって説明したものと同一または同等 の部材については、 同一符号を付し詳細な説明を適宜省略する。  FIG. 10 is a cross-sectional view of an engine provided with a guide member, FIG. 11 is a cross-sectional view showing an enlarged part of FIG. 10, FIG. 12 is a cross-sectional view taken along line XI I-XI I in FIG. 13 is a view showing the in-vehicle member, FIG. (A) is a cross-sectional view in a state of being assembled to the intake port, FIG. (B) is a side view, and (b) is (a) The fracture position in the figure is indicated by the line A-A. Fig. 13 (c) Fig. (A) is a sectional view taken along the line C-C in Fig. (A), Fig. 13 (d) shows a free state before mounting, and Fig. 13 (b) shows a state in which the diameter is reduced during mounting. FIG. 14 is an exploded perspective view of the guide member shown in FIG. 13, FIG. 15 is a view showing another example of the guide member, FIG. 14 (a) is a plan view, FIG. 14 (b) is a side view, (C) and (a) are cross-sectional views taken along the line C-C in FIG. (A), and FIG. (D) is a plan view showing a state where the diameter is reduced at the time of mounting. In these drawings, the same or equivalent members as those described with reference to FIGS. 1 to 9 are denoted by the same reference numerals, and detailed description will be appropriately omitted.
この実施の形態によるエンジン 1は、 図 1 0に示すように、 吸気ポート 1 3に 後述する案内部材 4 1が設けられている他は前記第 1の実施の形態で示したェン ジン 1 と同等の構成を採っている。  As shown in FIG. 10, the engine 1 according to this embodiment is different from the engine 1 shown in the first embodiment except that an intake port 13 is provided with a guide member 41 described later. It has an equivalent configuration.
前記案内部材 4 1は、 図 1 3および図 1 4に示すように、 C字状の固定用リン グ 4 2と、 このリング 4 2に溶接したシュラウド 4 3 とによって構成されている 前記リング 4 2は、 ばね材からなり、 吸気ポ一ト 1 3の下流側端部に形成した 凹溝 4 4 (図 1 1参照) に自らの弾発力によって拡径して係合できるように形成 されている。 また、 このリング 4 2の両端部には、 図示していない工具を掛ける ためのフック 4 5を一体に形成している。 As shown in FIGS. 13 and 14, the guide member 41 is constituted by a C-shaped fixing ring 42 and a shroud 43 welded to the ring 42. The ring 42 is made of a spring material, and can be engaged with a concave groove 44 (see FIG. 11) formed at the downstream end of the intake port 13 by its own elastic force. It is formed in. Hooks 45 for attaching a tool (not shown) are integrally formed at both ends of the ring 42.
前記シユラウド 4 3は、 前記リング 4 2の内周面に沿うように平面視において 円弧状に湾曲させた支持板 4 6と、 この支持板 4 6に一体に形成した平面視扇状 のシュラウド本体 4 7とによって構成されている。 前記支持板 4 6は、 リング 4 2の前記フック 4 5を揷通させるための開口 4 8が形成されており、 この開口 4 8にフック 4 5を揷通させた状態でリング 4 2の内周部に重ねて一端部をリング 4 2に溶接している。 支持板 4 6とリング 4 2の溶接範囲を図 1 3 ( a ) 中に符 号 Wで示す。  The shroud 43 includes a support plate 46 curved in an arc shape in plan view along the inner peripheral surface of the ring 42, and a fan-shaped shroud body 4 integrally formed on the support plate 46. It is composed of 7 and. The support plate 46 is formed with an opening 48 through which the hook 45 of the ring 42 is inserted. When the hook 45 is passed through the opening 48, the inside of the ring 42 is formed. One end is welded to the ring 42 over the periphery. The welding area between the support plate 46 and the ring 42 is indicated by the symbol W in Fig. 13 (a).
前記シユラウド 4 3は、 支持板 4 6からリング 4 2の中心へ向かうにしたがつ て次第に下方 (吸気流の下流側) へ延びるように傾斜するとともに、 円錐面の一 部をなすように湾曲している。  The shroud 43 is inclined so as to gradually extend downward (downstream of the intake air flow) from the support plate 46 toward the center of the ring 42, and is curved so as to form part of a conical surface. are doing.
また、 この案内部材 4 1は、 前記シュラウド 4 3の下端が閉状態の吸気弁 1 5 とクリアランスをおいて対向するように配置されている。  The guide member 41 is disposed such that the lower end of the shroud 43 faces the intake valve 15 in a closed state with a clearance.
このように形成された案内部材 4 1は、 シリンダヘッド 2に吸気弁 1 5を組付 ける以前に吸気ポート 1 3に組付ける。 詳述すると、 先ず、 図 1 3 ( d ) に示す ように自由状態にある案内部材 4 1のリング 4 2のフック 4 5を図示していない ペンチ等の工具で挾んでリング 4 2を弾発力に杭して縮径させ {図 1 3 ( e ) 参 照 } 、 この案内部材 4 1を吸気ポート 1 3内に燃焼室側から揷入する。 そして、 リング 4 2が吸気ポート 1 3の凹溝 4 4に係合する状態で前記フック 4 5を解放 させる。 このときに、 シュラウド 4 3が排気弁 1 6側に位置するように案内部材 4 1を位置決めする。 工具を放すことによって、 リング 4 2が自らの弾発力で拡 径し、 吸気ポート 1 3 (シリンダへッ ド 2 ) に固定される。 図 1 0〜図 1 4に示す案内部材 4 1は、 リング 4 2のフック 4 5がシュラウド 4 3の上に位置付けられるように形成しているが、 案内部材 4 1は、 図 1 5に示 すように形成することもできる。 The guide member 41 thus formed is attached to the intake port 13 before the intake valve 15 is attached to the cylinder head 2. More specifically, first, as shown in FIG. 13 (d), the hooks 45 of the ring 42 of the guide member 41 in the free state are sandwiched between tools such as pliers (not shown) to spring the ring 42. The guide member 41 is inserted into the intake port 13 from the combustion chamber side by reducing the diameter by staking the force {see FIG. 13 (e)}. Then, the hook 45 is released while the ring 42 is engaged with the concave groove 44 of the intake port 13. At this time, the guide member 41 is positioned so that the shroud 43 is located on the exhaust valve 16 side. By releasing the tool, the ring 42 expands with its own elastic force and is fixed to the intake port 13 (cylinder head 2). The guide member 41 shown in FIGS. 10 to 14 is formed so that the hook 45 of the ring 42 is positioned on the shroud 43, but the guide member 41 is shown in FIG. It can also be formed as follows.
図 1 5に示す案内部材 4 1は、 リング 4 2におけるフック 4 5と対向する内周 部 4 2 aにシュラウド 4 3の支持板 4 6を溶接している。  A guide member 41 shown in FIG. 15 has a support plate 46 of a shroud 43 welded to an inner peripheral portion 42 a of the ring 42 facing the hook 45.
この案内部材 4 1のリング 4 2は、 図 1 5 ( a ) 中に実線で示す自由状態から 同図 (d ) に示すように縮径させて吸気ポート 1 3に装着される。 装着後には、 このリング 4 2は、 同図 (a ) 中に二点鎖線で示すように自由状態から縮径され た状態になり、 自らの弾発力によって吸気ポート 1 3に固定される。  The ring 42 of the guide member 41 is attached to the intake port 13 with a reduced diameter as shown in FIG. 15 (d) from the free state shown by the solid line in FIG. 15 (a). After mounting, the ring 42 is reduced in diameter from the free state as shown by the two-dot chain line in FIG. 7A, and is fixed to the intake port 13 by its own elastic force.
このように案内部材 4 1 を形成することによって、 フック 4 5を下方から視認 することができるから、 フック 4 5をペンチ等によって挾むときにフック 4 5の 位置を簡単に確認することができ、 組付作業が容易になる。 この案内部材 4 1を 取付ける位置は、 図 1 0〜図 1 4に示す案内部材 4 1 と同一である。  By forming the guide member 41 in this manner, the hook 45 can be visually recognized from below, so that the position of the hook 45 can be easily confirmed when the hook 45 is sandwiched by pliers or the like. The assembly work becomes easy. The mounting position of the guide member 41 is the same as that of the guide member 41 shown in FIGS.
図 1 0〜図 1 5に示す案内部材 4 1を吸気ポート 1 3に設けることにより、 シ ユラウド 4 3によつて実質的に吸気ポート 1 3の傾斜部 2 3が延長されることに なり、 吸気弁 1 5に当たって吸気出口 2 1 との間の隙間から排気弁 1 6側へ流入 する吸気を低減することができる。 この結果、 タンブル流 Tをより一層強く発生 させることができる。  By providing the guide member 41 shown in FIGS. 10 to 15 at the intake port 13, the inclined portion 23 of the intake port 13 is substantially extended by the shroud 43, The intake air flowing into the exhaust valve 16 from the gap between the intake valve 21 and the intake outlet 21 can be reduced. As a result, the tumble flow T can be generated more strongly.
したがって、 案内部材 4 1によってタンブル流 Tの強さを変えることができる から、 発生するスキッシュ流 Sに対して最適な強さになるように、 案内部材 4 1 でタンブル流 Tを発生させることによって、 マイクロタ一ビュレンスを確実に生 成することができるようになる。 このため、 より一層燃焼改善を図ることができ る。  Therefore, since the strength of the tumble flow T can be changed by the guide member 41, the tumble flow T is generated by the guide member 41 so that the strength becomes optimum with respect to the generated squish flow S. Therefore, it is possible to surely generate a microturbulence. Therefore, the combustion can be further improved.
(第 3の実施の形態)  (Third embodiment)
案内部材は図' 1 6ないし図 2 4に示すように形成することができる。  The guide member can be formed as shown in FIGS.
図 1 6は案内部材の他の例を示すエンジンの一部の断面図、 図 1 7は案内部材 を拡大して示す断面図、 図 1 8はエンジンの燃焼室近傍の部位をシリンダへッ ド 側から見た状態の構成を示す平面図、 図 1 9はタンブル流を説明するための模式 図、 図 2 0は燃料ガス供給用ノズルの底面図、 図 2 1は図 1 6における A— A線 断面図、 図 2 2は図 1 6における B— B線断面図、 図 2 3は図 1 6における C— C線断面図である。 図 2 4は案内部材と吸気弁の弁体を拡大して示す斜視図であ る。 FIG. 16 is a cross-sectional view of a part of an engine showing another example of the guide member, and FIG. 17 is a guide member. FIG. 18 is a plan view showing a configuration of a portion near the combustion chamber of the engine viewed from the cylinder head side, FIG. 19 is a schematic diagram for explaining a tumble flow, FIG. 20 is a bottom view of the fuel gas supply nozzle, FIG. 21 is a sectional view taken along the line A—A in FIG. 16, FIG. 22 is a sectional view taken along the line B—B in FIG. 16, and FIG. FIG. 3 is a cross-sectional view taken along the line CC of FIG. FIG. 24 is an enlarged perspective view showing a guide member and a valve body of an intake valve.
これらの図において、 前記図 1〜図 1 5によって説明したものと同一または同 等の部材については、'同一符号を付し詳細な説明を適宜省略する。  In these drawings, members that are the same as or similar to those described with reference to FIGS. 1 to 15 are denoted by the same reference numerals, and detailed description is omitted as appropriate.
図 1 6ないし図 2 4に示すエンジン 1は、 吸気弁 1 5に案内部材 5 1を設けて いる。 この案内部材 5 1は、 図 2 4に示すように、 円錐の一部をなす形状の金属 板によって構成され、 吸気弁 1 5の弁体 1 5 bの上面に溶接されている。  The engine 1 shown in FIGS. 16 to 24 has a guide member 51 provided on an intake valve 15. As shown in FIG. 24, the guide member 51 is formed of a metal plate that forms a part of a cone, and is welded to the upper surface of the valve body 15 b of the intake valve 15.
案内部材 5 1の形状をさらに詳しく説明すると、 この案内部材 5 1は、 図2 2 に示すように、 上方に向かうにしたがって幅が広くなる平面視扇状に形成すると ともに、 図 1 7に示すように、 側面視において上方に向かうにしたがって次第に 吸気弁 1 5の径方向の外側に偏在するように傾斜している。 案内部材 5 1を吸気 弁 1 5に取付ける位置は、 図 1 7および図 1 8に示すように、 吸気弁 1 5におけ る排気弁 1 6に近接する一側部であって、 図 2 2に示すように、 案内部材 5 1の 内面 5 1 aの円弧の中心が吸気弁 1 5の軸心と略一致するように位置付けられて いる。  The shape of the guide member 51 will be described in more detail. As shown in FIG. 22, the guide member 51 is formed in a fan shape in plan view that becomes wider as it goes upward, and as shown in FIG. In addition, the intake valve 15 is inclined so as to be unevenly distributed radially outward of the intake valve 15 as it goes upward in a side view. As shown in FIGS. 17 and 18, the guide member 51 is attached to the intake valve 15 on one side of the intake valve 15 adjacent to the exhaust valve 16. As shown in the figure, the center of the arc of the inner surface 51 a of the guide member 51 is positioned so as to substantially coincide with the axis of the intake valve 15.
また、 この案内部材 5 1の高さは、 図 1 6, 1 7に示すように、 吸気弁 1 5が 開いたときに上端部が吸気ポート 1 3の吸気出口 2 1より上流側に臨み、 図 1 7 中に二点鎖線で示したように、 吸気弁 1 5が閉じたとしても上端部が吸気ポート 1 3の内壁面に接触することがないように設定されている。  As shown in FIGS. 16 and 17, the height of the guide member 51 is such that when the intake valve 15 is opened, the upper end faces upstream from the intake outlet 21 of the intake port 13, As shown by the two-dot chain line in FIG. 17, even when the intake valve 15 is closed, the upper end is set so as not to contact the inner wall surface of the intake port 13.
この実施の形態においては、 吸気弁 1 5がバルブステム 1 5 aを中心にして回 動し、 案内部材 5 1の吸気ボート 1 3に対する位置が変化してしまうのを阻止す るために、 図 2 3に示すように、 バルブステム 1 5 aを断面四角形状に形成する とともに、 この断面四角形状の部位をシリンダへッド 2側のバルブステムガイ ド 5 に摺動自在に係合させている。 In this embodiment, in order to prevent the intake valve 15 from rotating around the valve stem 15 a and changing the position of the guide member 51 with respect to the intake boat 13, FIG. As shown in 23, the valve stem 15a is formed in a square cross section At the same time, this rectangular section is slidably engaged with the valve stem guide 5 on the cylinder head 2 side.
この実施の形態によるシリンダへッド 2の吸気ポート 1 3は、 図 1 6に示すよ うに、 一般的なェンジン 1で多く採用されているように、 シリンダへッ ド 2の一 側部 2 aから燃焼室 3 2へ向って斜めに延びるように形成されている。 また、 こ の吸気ポート 1 3は、 吸気通路 5が途中で吸気弁 1 5毎の分岐通路 5 a, 5 bに 分岐されるように形成されている。  As shown in FIG. 16, the intake port 13 of the cylinder head 2 according to this embodiment has one side 2 a of the cylinder head 2 as often used in a general engine 1. , And extend obliquely toward the combustion chamber 32. The intake port 13 is formed so that the intake passage 5 is branched into branch passages 5a and 5b for each intake valve 15 in the middle.
このように吸気ポート 1 3を形成すると、 吸気弁 1 5が開いたときに吸気が慣 性によつて燃焼室 2 3の中央部分へ多く流入するようになるが、 この実施の形態 によれば、 吸気の大部分が前記案内部材 5 1に当たり、 流れる方向が変えられる 。 すなわち、 吸気は、 案内部材 5 1に当たることによって排気弁 1 6とは反対方 向へ向けて流れるようになるから、 このエンジン 1においても第 1および第 2の 実施の形態と同様に、 シリンダ内に逆夕ンブル流が発生する。  When the intake port 13 is formed in this manner, a large amount of intake air flows into the central portion of the combustion chamber 23 due to inertia when the intake valve 15 is opened, but according to this embodiment, Most of the intake air hits the guide member 51, and the flow direction is changed. That is, since the intake air flows in the direction opposite to the exhaust valve 16 by hitting the guide member 51, the engine 1 also has the same internal cylinder as in the first and second embodiments. A reverse evening tumbling occurs.
吸気ポート 1 3を上述したようにシリンダへッ ド 2の側部から斜めに延設して いることにより、 燃料ガスを供給するノズル 4は、 シリンダへッ ド 2の一側部 1 aから吸気弁 1 5の近傍まで延びるように形成されている。 すなわち、 インジヱ クタ 3を吸気通路 5に配置し、 前記ィンジヱクタ 3に、 吸気弁 1 5の上流近傍に 先端が開口するノズル 4を接続している。  As described above, since the intake port 13 extends obliquely from the side of the cylinder head 2 as described above, the nozzle 4 for supplying the fuel gas is supplied from one side 1a of the cylinder head 2 through the intake port. It is formed so as to extend to the vicinity of the valve 15. That is, the injector 3 is disposed in the intake passage 5, and the injector 3 is connected to the nozzle 4 having an open end near the upstream of the intake valve 15.
この実施の形態によるノズル 4は、 図 2 0および図 2 1に示すように、 吸気弁 1 5毎のパイプ 4 a , 4 aと、 これらパイプ 4 aの上流側端部をそれぞれ接続し たパイプホルダ 4 bとによって構成されている。 前記パイプ 4 aは、 第 1および 第 2の実施の形態を採るときと同様に、 下流側端部が吸気ポート 1 3内における 隣り合う吸気ポート 1 3の近傍に配設すとともに、 吸気の流れる方向の下流側を 先端の開口が指向するように屈曲させており、 上流側端部が吸気ポート 1 3内を 吸気ポート上壁 1 3 a (図 1 6参照) に沿って上流側へ延設させている。  As shown in FIGS. 20 and 21, the nozzle 4 according to this embodiment includes pipes 4 a, 4 a for each intake valve 15, and pipes connecting the upstream ends of the pipes 4 a, respectively. And a holder 4b. As in the case of the first and second embodiments, the pipe 4a has a downstream end disposed near the adjacent intake port 13 in the intake port 13 and flows the intake air. The downstream end in the direction is bent so that the opening at the tip is directed, and the upstream end extends in the intake port 13 to the upstream side along the intake port upper wall 13a (see Fig. 16). Let me.
前記ノズルホルダ 4 bは、 図 2 0に示すように、 前記パイプ 4 aに連通する燃 料通路 4 cがパイプ毎に穿設されており、 図 1 6に示すように、 吸気ポート上壁 1 3 aに固定用ボルト 5 3によって固定されている。 この実施の形態によるシリ ンダへッ ド 2は、 前記固定用ボルト 5 3を工具 (図示せず) によって簡単に着脱 できるように、 吸気ポート下壁 1 3 bに工具揷通用の貫通穴 5 4が穿設されてい る。 図 1 6において前記貫通穴 5 4の開口端に設けた符号 5 5で示すものは、 貫 通穴 5 4を閉塞するための栓部材である。 As shown in FIG. 20, the nozzle holder 4b is provided with a fuel passage communicating with the pipe 4a. A charge passage 4c is bored for each pipe, and is fixed to the intake port upper wall 13a by fixing bolts 53 as shown in FIG. The cylinder head 2 according to this embodiment has a through hole 5 4 for tool passage in the lower wall 13 b of the intake port so that the fixing bolt 53 can be easily attached and detached by a tool (not shown). Are drilled. In FIG. 16, the reference numeral 55 provided at the open end of the through hole 54 is a plug member for closing the through hole 54.
パイプホルダ 4 bの前記燃料通路 4 cは、 パイプホルダ 4 bの上流側端部に開 口しており、 シリンダへッ ド 2に装着した燃料ガス用ィンジヱクタ 3から燃料ガ スを噴射する。  The fuel passage 4c of the pipe holder 4b is opened at the upstream end of the pipe holder 4b, and injects fuel gas from the fuel gas injector 3 mounted on the cylinder head 2.
この実施の形態で示したように案内部材 5 1およびシリンダへッ ド 2を構成し ても第 1および第 2の実施の形態を採るときと同等の効果を奏する。  Even when the guide member 51 and the cylinder head 2 are configured as shown in this embodiment, the same effects as those in the first and second embodiments can be obtained.
また、 このエンジン 1においては、 インジェクタ 3を吸気通路 5に配置し、 ィ ンジヱクタ 3に、 吸気弁 1 5の上流近傍に先端が開口するノズル 4を接続し、 こ のノズル 4の前記開口をガス噴口としているから、 ガス噴口を設ける位置の自由 度が高くなり、 吸気出口 1 2に接近させて設けることができる。  In the engine 1, the injector 3 is disposed in the intake passage 5, and the injector 3 is connected to a nozzle 4 having an open end near the upstream of the intake valve 15, and the opening of the nozzle 4 is connected to the gas. Since the gas injection port is used, the degree of freedom in the position where the gas injection port is provided is increased, and the gas injection port can be provided close to the intake port 12.
(第 4の実施の形態)  (Fourth embodiment)
吸気ポートをシリンダへッドに斜めに延びるように形成する場合には、 燃料ガ ス供給用のノズルを図 2 5ないし図 2 7に示すように形成することができる。 図 2 5は燃料ガス供給用ノズルの他の例を示す断面図、 図 2 6はエンジンの燃 焼室近傍の部位をシリンダへッ ド側から見た状態の構成を示す平面図、 図 2 7は 図 2 5における A— A線断面図である。 これらの図において、 前記図 1〜図 2 4 によって説明したものと同一もしくは同等の部材については、 同一符号を付し詳 細な説明を適宜省略する。  When the intake port is formed to extend obliquely to the cylinder head, a fuel gas supply nozzle can be formed as shown in FIGS. 25 to 27. FIG. 25 is a cross-sectional view showing another example of a fuel gas supply nozzle, and FIG. 26 is a plan view showing a configuration near the combustion chamber of the engine viewed from the cylinder head side. FIG. 26 is a sectional view taken along line AA in FIG. 25. In these figures, the same or equivalent members as those described with reference to FIGS. 1 to 24 are denoted by the same reference numerals, and detailed description will be appropriately omitted.
図 2 5ないし図 2 7に示す燃料ガス供給用ノズル 4は、 吸気弁 1 5毎に設けた パイプからなり、 シリンダへッ ド 2の燃料ガス供給用透孔 6 1に吸気ポート 1 3 側から嵌入され、 吸気ポート 1 3内における隣り合う吸気ポート 1 3の近傍に配 設されている。 また、 これらのノズル 4は、 図 2 5に示すように、 吸気の流れる 方向の下流側を先端の開口が指向するように屈曲されている。 The fuel gas supply nozzle 4 shown in FIGS. 25 to 27 is composed of a pipe provided for each intake valve 15, and is inserted into the fuel gas supply through-hole 61 of the cylinder head 2 from the intake port 13 side. And is located near the adjacent intake port 13 in the intake port 13. Has been established. Further, as shown in FIG. 25, these nozzles 4 are bent so that the opening at the tip thereof is directed to the downstream side in the direction in which the intake air flows.
前記燃料ガス供給用透孔 6 1は、 シリンダへッ ド 2の一側部 2 aにおける吸気 ポート 1 3の入口の上方から吸気ポート 1 3に沿って斜めに直線状に延びる第 1 のガス孔 6 2と、 この第 1のガス孔 6 2 下流側端部から吸気弁 1 5毎の吸気ポ —ト 1 3へそれぞれ延びる第 2のガス孔 6 3 (図 2 7参照) とによって構成され ている。 前記ノズル 4は、 前記第 2のガス孔 6 3に装着されている。 また、 前記 第 1のガス孔 6 の上流側端部は、 図 1 6に示すように、 燃料ガス供給用ィンジ ヱクタ 3 (図示せず) を装着する穴 2 9の内部に開口されている。  The fuel gas supply through hole 61 is a first gas hole extending obliquely and linearly along the intake port 13 from above the inlet of the intake port 13 on one side 2 a of the cylinder head 2. 62, and second gas holes 63 extending from the downstream end of the first gas holes 62 to the intake ports 13 of the respective intake valves 15 (see FIG. 27). I have. The nozzle 4 is mounted on the second gas hole 63. Further, as shown in FIG. 16, the upstream end of the first gas hole 6 is opened inside a hole 29 for mounting a fuel gas supply injector 3 (not shown).
このようにノズル 4を形成することによって、 吸気行程でノズル 4から吸気ポ ート 1 3内に噴射された燃料ガスは、 図 2 5中に黒色の矢印 Gで示すように、 吸 気弁 1 5と吸気出口 2 1 との間の隙間を通ってシリンダ内の排気弁 1 6とは反対 方向であつて斜め下方へ流入する。  By forming the nozzle 4 in this manner, the fuel gas injected from the nozzle 4 into the intake port 13 during the intake stroke is supplied to the intake valve 1 as shown by the black arrow G in FIG. The gas flows obliquely downward in the opposite direction to the exhaust valve 16 in the cylinder through the gap between 5 and the intake outlet 21.
(第 5の実施の形態)  (Fifth embodiment)
シリンダ内に発生させるタンブル流は、 図 2 8ないし図 3 4に示すように順夕 ンブル流でもよい。  The tumble flow generated in the cylinder may be a normal tumble flow as shown in FIGS. 28 to 34.
図 2 8および図 2 9は吸気弁に案内部材を設けて順タンブル流を発生させるガ ス燃料エンジンの断面図で、 図 2 8は吸気行程での状態を示し、 図 2 9はピスト ンが圧縮上死点に位置付けられている状態を示している。 図 3 0はエンジンの燃 焼室近傍の部位をシリンダへッ ド側から見た状態の構成を示す平面図、 図 3 1は 図 2 8における A— A線断面図、 図 3 2は図 2 8における吸気弁と吸気出口の B 矢視図である。 図 3 3は吸気ポートに取付ける案内部材を用いて順タンブル流を 発生させるガス燃料エンジンの断面図、 図 3 4は図 3 3における A— A線断面図 である。 これらの図において、 前記図〜図によって説明したものと同一または同 等の部材については、 同一符号を付し詳細な説明を適宜省略する。  Figures 28 and 29 are cross-sectional views of a gas fuel engine that generates a forward tumble flow by providing a guide member on the intake valve.Figure 28 shows the state during the intake stroke, and Figure 29 shows the piston. The state where it is located at the compression top dead center is shown. FIG. 30 is a plan view showing the configuration of a portion near the combustion chamber of the engine viewed from the cylinder head side, FIG. 31 is a cross-sectional view taken along line AA in FIG. 28, and FIG. FIG. 8 is a view of the intake valve and the intake outlet in FIG. FIG. 33 is a cross-sectional view of a gas fuel engine that generates a forward tumble flow using a guide member attached to an intake port, and FIG. 34 is a cross-sectional view taken along line AA in FIG. In these drawings, the same reference numerals are given to the same or similar members as those described in the above-mentioned drawings to the drawings, and the detailed description is omitted as appropriate.
図 2 8ないし図 3 2に示すェンジン 1の吸気ポ一ト 1 3は、 シリンダへッ ド 2 の一側部 2 aから燃焼室 3 2へ向って斜めに延びるように形成されている。 また 、 この吸気ポート 1 3は、 吸気通路 5が途中で吸気弁 1 5每の分岐通路 5 a , 5 bに分岐されるように形成されている。 このため、 吸気行程で吸気ポート 1 3を 流れる吸気は、 大部分が吸気流の慣性により吸気出口 2 1からシリンダ内の排気 弁 1 6側へ斜めに流入する。 The intake port 13 of engine 1 shown in Fig. 28 to Fig. 32 is connected to the cylinder head 2 It is formed so as to extend obliquely from one side 2 a toward the combustion chamber 32. Further, the intake port 13 is formed so that the intake passage 5 is branched into branch passages 5a and 5b of the intake valve 15 # on the way. Therefore, most of the intake air flowing through the intake port 13 in the intake stroke flows obliquely from the intake outlet 21 to the exhaust valve 16 side in the cylinder due to the inertia of the intake flow.
吸気弁 1 5には、 吸気出口 1 1から排気弁 1 6とは反対方向へ吸気が流れるの を阻止するために、 第 3の実施の形態で示した案内部材 5 1 と同等の構造の案内 部材 7 1を設けている。 この案内部材 7 1は、 円錐の一部をなす形状の金属板に よって構成され、 吸気弁 1 5の弁体 1 5 bの上面に溶接されている。  The intake valve 15 has a guide having a structure similar to that of the guide member 51 shown in the third embodiment in order to prevent the intake air from flowing from the intake outlet 11 in the opposite direction to the exhaust valve 16. A member 71 is provided. The guide member 71 is formed of a metal plate that forms a part of a cone, and is welded to the upper surface of the valve body 15 b of the intake valve 15.
また、 この案内部材 7 1は、 上方に向かうにしたがって幅が広くなる平面視扇 状 (図 3 1参照) に形成するとともに、 図 2 8, 2 9に示すように、 側面視にお いて上方に向かうにしたがって次第に吸気弁 1 5の径方向の外側に偏在するよう に傾斜している。 案内部材 7 1を吸気弁 1 5に取付ける位置は、 吸気弁 1 5にお ける排気弁 1 6とは反対側の一側部であって、 図 3 1に示すように、 案内部材 7 1の内面 7 1 aの円弧の中心が吸気弁 1 5の軸心と略一致するように位置付けら れている。  The guide member 71 is formed in a fan shape in plan view (see FIG. 31) whose width increases as it goes upward, and as shown in FIGS. , The intake valve 15 is inclined so as to be unevenly distributed radially outward of the intake valve 15. The position where the guide member 71 is attached to the intake valve 15 is located on one side of the intake valve 15 opposite to the exhaust valve 16, and as shown in FIG. The center of the arc of the inner surface 71 a is positioned so as to substantially coincide with the axis of the intake valve 15.
また、 この案内部材 7 1の高さは、 図 2 8 , 2 9に示すように、 吸気弁 1 5が 開いたときに上端部が吸気ポート 1 3の吸気出口 2 1より上流側に臨み、 吸気弁 1 5が閉じたとしても上端部が吸気ポート 1 3の内壁面に接触することがないよ うに設定されている。  As shown in FIGS. 28 and 29, the height of the guide member 71 is such that when the intake valve 15 opens, the upper end faces upstream from the intake outlet 21 of the intake port 13, Even if the intake valve 15 is closed, the upper end is set so as not to contact the inner wall surface of the intake port 13.
この実施の形態においても、 案内部材 7 1を設けた吸気弁 1 5が回転するのを 阻止するために、 前記第 3および第 4の実施の形態を採るときと同様に、 吸気弁 1 5のバルブステム 1 5 aをバルブステムガイド 5 2に摺動自在に係合させてい る。  Also in this embodiment, in order to prevent the intake valve 15 provided with the guide member 71 from rotating, as in the case of the third and fourth embodiments, the intake valve 15 The valve stem 15a is slidably engaged with the valve stem guide 52.
このエンジン 1においては、 吸気が吸気ポート 1 3からシリンダ内に斜めに流 '入することによって、 シリンダ内に吸気の旋回流からなるタンブル流が発生する 。 このタンブル流は、 図 2 8に矢印 Tで示すように、 上述した第 1〜第 4の実施 の形態で示したものとは旋回方向が逆方向のいわゆる順タンブル流である。 この ため、 このエンジン 1は、 圧縮行程終期にスキッシュ流 Sと前記タンブル流丁と が燃焼室 3 2内で同方向に旋回するように生じる。 In the engine 1, the intake air flows obliquely into the cylinder from the intake port 13 to generate a tumble flow composed of the swirling flow of the intake air in the cylinder. . As shown by an arrow T in FIG. 28, this tumble flow is a so-called forward tumble flow in which the swirling direction is opposite to that shown in the above-described first to fourth embodiments. For this reason, in the engine 1, the squish flow S and the tumble flow stack are swirled in the same direction in the combustion chamber 32 at the end of the compression stroke.
このように順タンブル流が発生するようにエンジン 1を構成するに当たっては 、 燃料ガス供給用のノズル 4のパイプ 4 aを吸気の流れる方向と同方向に延びる ように直線状に形成している。  When the engine 1 is configured to generate the forward tumble flow, the pipe 4a of the fuel gas supply nozzle 4 is formed linearly so as to extend in the same direction as the direction in which the intake air flows.
前記ノズル 4は、 吸気ポート 1 3内における隣り合う吸気ポート 1 3に近接す る部位に配置され、 図 3 2に示すように、 吸気弁 1 5が開いた状態で吸気弁 1 5 と吸気出口 2 1 との間の隙間を通して燃料ガスがシリンダ内に噴射するように位 置付けられている。 燃料ガスは、 第 1〜第 4の実施の形態を採るときと同様に、 吸気弁 1 5が閉じている状態での第 1の燃料供給行程と、 吸気弁 1 5が開いてい る状態での第 2の燃料供給行程とでノズル 4から噴射される。  The nozzle 4 is disposed at a position adjacent to the adjacent intake port 13 in the intake port 13, and as shown in FIG. 32, with the intake valve 15 open, the intake valve 15 and the intake The fuel gas is positioned so as to be injected into the cylinder through the gap between the fuel gas and the fuel gas. As in the case of the first to fourth embodiments, the fuel gas is supplied to the first fuel supply stroke when the intake valve 15 is closed, and to the fuel gas when the intake valve 15 is open. The fuel is injected from the nozzle 4 during the second fuel supply stroke.
図 3 3に示すガス燃料エンジン 1は、 第 2の実施の形態で示した案内部材 4 1 と同等の案内部材 8 1を吸気ポート 1 3に設けている。 8 2は前記案内部材 8 1 のリングを示し、 8 3はシユラウド、 8 4はリング 8 2の両端のフック、 8 5は 前記フック 8 4を揷通させるための開口を示す。 この案内部材 8 1は、 シュラウ ド 8 3が吸気弁 1 5を挾んで排気弁 1 6とは反対側に位置するように吸気ポート 1 3に固定されている。  The gas fuel engine 1 shown in FIG. 33 has a guide member 81 equivalent to the guide member 41 shown in the second embodiment at the intake port 13. Reference numeral 82 denotes a ring of the guide member 81, reference numeral 83 denotes a shroud, reference numeral 84 denotes hooks at both ends of the ring 82, and reference numeral 85 denotes an opening through which the hook 84 passes. The guide member 81 is fixed to the intake port 13 so that the shroud 83 is located on the opposite side of the exhaust valve 16 across the intake valve 15.
このように案内部材 8 1を吸気ポート 1 3に設けても図 2 8〜図 3 2に示す実 施の形態を採るときと同等の効果を奏する。 産業上の利用可能性  Thus, even if the guide member 81 is provided in the intake port 13, the same effect as when the embodiment shown in FIGS. 28 to 32 is adopted can be obtained. Industrial applicability
以上説明したように本発明によれば、 第 1の燃料供給行程において吸気通路中 で燃料ガスと空気とが混合されて混合気が形成され、 この混合気が吸気行程でシ リンダ内に分散する。 また、 第 2の燃料供給行程でガス噴口から吸気弁の近傍に 新たに供給された燃料ガスは、 吸気行程で吸気弁近傍を流れる吸気に乗るように して広く分散することがない状態でシリンダ内に層状に吸い込まれる As described above, according to the present invention, in the first fuel supply stroke, the fuel gas and the air are mixed in the intake passage to form an air-fuel mixture, and the air-fuel mixture is dispersed in the cylinder in the intake stroke. . Also, in the second fuel supply stroke, the gas injection port The newly supplied fuel gas is sucked into the cylinder in a stratified state without spreading widely so as to ride on the intake air flowing near the intake valve during the intake stroke.
したがって、 燃料ガスをシリンダ内に相対的に希薄になるように広く分散させ るとともに、 点火ブラグの近傍に相対的に濃くなるように層状に供給することが できるから、 希薄燃焼をガス燃料エンジンで実現することができ、 ガス燃料ェン ジンにおいて燃費を低減することができる  Therefore, the fuel gas can be widely dispersed in the cylinder so as to be relatively lean, and can be supplied in a layered manner so as to be relatively dense near the ignition plug. And reduce fuel consumption in gas fueled engines.
請求項 2記載の発明によれば、 燃料ガスを点火ブラグの近傍にタンブル流によ つて層状に供給することができるから、 燃料ガスの総供給量を理論空燃比より著 しく希薄になるように設定しても、 点火ブラグの周辺近傍の燃料ガスの濃度を相 対的に濃くすることができる。 このため、 ガス燃料エンジンにおいて、 燃焼の安 定を図りながら、 燃費の向上を図ることができる  According to the second aspect of the present invention, the fuel gas can be supplied in a stratified manner to the vicinity of the ignition plug by the tumble flow, so that the total supply amount of the fuel gas is significantly reduced from the stoichiometric air-fuel ratio. Even if it is set, the concentration of the fuel gas near the periphery of the ignition plug can be relatively increased. For this reason, gas fuel engines can improve fuel efficiency while stabilizing combustion.
請求項 3記載の発明によれば、 ガス噴口を設ける位置の自由度が高くなり、 吸 気出口に接近させて設けることができるから、 燃料ガスを拡散しない状態で燃焼 室に供給することができ、 燃料ガスの層状化を促進することができる  According to the third aspect of the present invention, the degree of freedom of the position where the gas injection port is provided is increased, and the gas injection port can be provided close to the intake outlet, so that the fuel gas can be supplied to the combustion chamber without diffusing. Can promote the stratification of fuel gas
請求項 4記載の発明によれば、 ガス噴口を設ける位置の自由度が高くなり、 吸 気出口に接近させて設けることができるから、 燃料ガスを拡散しない状態で燃焼 室に供給することができ、 燃料ガスの層状化を促進することができる  According to the invention described in claim 4, the degree of freedom of the position where the gas injection port is provided is increased, and the gas injection port can be provided close to the suction outlet, so that the fuel gas can be supplied to the combustion chamber without diffusing. Can promote the stratification of fuel gas
請求項 5記載の発明によれば、 一つのィンジュクタで複数の吸気通路に燃料ガ スを供給することができ、 吸気通路毎にィンジェクタを設ける場合に較べてコス トダウンを図ることができる  According to the invention described in claim 5, fuel gas can be supplied to a plurality of intake passages with one injector, and cost can be reduced as compared with a case where injectors are provided for each intake passage.
請求項 6記載の発明によれば、 シリンダ内の相対的に低温になる部位に燃料ガ スが供給されるから、 ノッキングが発生するのを抑制することができる  According to the invention as set forth in claim 6, since the fuel gas is supplied to a portion in the cylinder where the temperature is relatively low, occurrence of knocking can be suppressed.
請求項 7記載の発明によれば、 シリンダ内に複数の吸気出口から燃料ガスをそ れぞれ供給することができるから、 燃料ガスを供給する位置の自由度が向上し、 簡単に燃料ガスを層状に供給することができるようになる。  According to the invention as set forth in claim 7, since the fuel gas can be respectively supplied from the plurality of intake outlets into the cylinder, the degree of freedom of the position for supplying the fuel gas is improved, and the fuel gas can be easily supplied. It can be supplied in layers.

Claims

請 求 の 範 囲 The scope of the claims
1 . ガス燃料を吸気通路に供給するガス燃料エンジンにおいて、 吸気弁が閉じて いる状態で吸気通路中に燃料ガスを貯留させる第 1の燃料供給行程と、 吸入行程 で吸気弁近傍のガス噴口から燃料ガスを吸気通路中に供給する第 2の燃料供給行 程とを有するガス燃料ェンジン。  1. In a gas fuel engine that supplies gas fuel to the intake passage, a first fuel supply stroke in which fuel gas is stored in the intake passage with the intake valve closed, and a gas injection port near the intake valve in the intake stroke. A gas fuel engine having a second fuel supply step of supplying fuel gas into the intake passage.
2 . 請求項 1記載のガス燃料エンジンにおいて、 シリンダ内に吸気の旋回流が生 成される構造とし、 ガス噴口から噴射された燃料ガスが前記旋回流によって点火 プラグの近傍に流れる構成としてなるガス燃料ェンジン。  2. The gas fuel engine according to claim 1, wherein a swirling flow of the intake air is generated in the cylinder, and the fuel gas injected from the gas injection port flows near the ignition plug by the swirling flow. Fuel engine.
3 . 請求項 1記載のガス燃料エンジンにおいて、 ガス燃料を噴射するインジヱク 夕を吸気通路に配置し、 前記インジュクタに、 吸気弁の上流近傍に先端が開口す る管部材を接続し、 この管部材の前記開口をガス噴口としてなるガス燃料ェンジ ン。  3. The gas fuel engine according to claim 1, wherein an injector for injecting gaseous fuel is arranged in an intake passage, and a pipe member having a tip opening near the upstream of an intake valve is connected to the injector. A gas fuel engine having the opening as a gas injection port.
4 . 請求項 1記載のガス燃料エンジンにおいて、 インジヱクタによってガス燃料 が噴射される燃料通路を吸気通路壁内に形成し、 前記燃料通路の下流端に、 吸気 弁の上流近傍に先端が開口する管部材を接続し、 この管部材の前記開口をガス噴 口としてなるガス燃料ェンジン。  4. The gas fuel engine according to claim 1, wherein a fuel passage through which gas fuel is injected by an injector is formed in an intake passage wall, and a pipe having a distal end opening near the upstream of an intake valve at a downstream end of the fuel passage. A gas fuel engine which connects members and uses the opening of the pipe member as a gas injection port.
5 . 請求項 3または請求項 4記載のガス燃料エンジンにおいて、 インジヱクタは 複数の燃料噴射口を有し、 それぞれの燃料噴射口に対応する管部材を備えてなる ガス燃料エンジン。  5. The gas fuel engine according to claim 3, wherein the injector has a plurality of fuel injection ports, and includes a pipe member corresponding to each of the fuel injection ports.
6 . 請求項 1ないし請求項 5のうち何れか一つに記載のガス燃料エンジンにおい て、 ガス噴口が燃焼室中心を基準として排気弁とは反対方向を指向しているガス 燃料エンジン。  6. The gas fuel engine according to any one of claims 1 to 5, wherein the gas injection port points in a direction opposite to the exhaust valve with respect to a center of the combustion chamber.
7 . 請求項 1ないし請求項 5のうち何れか一つに記載のガス燃料エンジンにおい て、 気筒毎に複数の吸気弁を設け、 ガス噴口を前記吸気弁毎に設けてなるガス燃 料ェンジン。  7. The gas fuel engine according to claim 1, wherein a plurality of intake valves are provided for each cylinder, and a gas injection port is provided for each of the intake valves.
PCT/JP2003/000391 2002-01-23 2003-01-17 Gas fuel engine WO2003062623A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-14249 2002-01-23
JP2002014249A JP2003214258A (en) 2002-01-23 2002-01-23 Gas fuel engine

Publications (1)

Publication Number Publication Date
WO2003062623A1 true WO2003062623A1 (en) 2003-07-31

Family

ID=27606089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000391 WO2003062623A1 (en) 2002-01-23 2003-01-17 Gas fuel engine

Country Status (2)

Country Link
JP (1) JP2003214258A (en)
WO (1) WO2003062623A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140836B2 (en) * 2007-05-18 2013-02-13 一般社団法人日本ガス協会 Sub-chamber gas engine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0161462U (en) * 1987-10-14 1989-04-19
JPH0610803A (en) * 1992-06-30 1994-01-21 Nissan Motor Co Ltd Fuel supply device of internal combustion engine
JPH06213037A (en) * 1993-01-13 1994-08-02 Toyota Motor Corp Fuel injection control method of internal combustion engine
JPH0663852U (en) * 1993-02-12 1994-09-09 日産ディーゼル工業株式会社 Fuel supply device for internal combustion engine using gas fuel
EP0761951A1 (en) * 1995-09-04 1997-03-12 Honda Giken Kogyo Kabushiki Kaisha Fuel injection method for gas fuel engine
JPH1047165A (en) * 1996-07-30 1998-02-17 Yanmar Diesel Engine Co Ltd Combustion gas feeding method of gas engine, and its structure
JPH11148382A (en) * 1997-11-14 1999-06-02 Hiraoka Toshihiko Duplex fuel diesel engine
JPH11182255A (en) * 1997-12-24 1999-07-06 Tokyo Gas Co Ltd Internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0161462U (en) * 1987-10-14 1989-04-19
JPH0610803A (en) * 1992-06-30 1994-01-21 Nissan Motor Co Ltd Fuel supply device of internal combustion engine
JPH06213037A (en) * 1993-01-13 1994-08-02 Toyota Motor Corp Fuel injection control method of internal combustion engine
JPH0663852U (en) * 1993-02-12 1994-09-09 日産ディーゼル工業株式会社 Fuel supply device for internal combustion engine using gas fuel
EP0761951A1 (en) * 1995-09-04 1997-03-12 Honda Giken Kogyo Kabushiki Kaisha Fuel injection method for gas fuel engine
JPH1047165A (en) * 1996-07-30 1998-02-17 Yanmar Diesel Engine Co Ltd Combustion gas feeding method of gas engine, and its structure
JPH11148382A (en) * 1997-11-14 1999-06-02 Hiraoka Toshihiko Duplex fuel diesel engine
JPH11182255A (en) * 1997-12-24 1999-07-06 Tokyo Gas Co Ltd Internal combustion engine

Also Published As

Publication number Publication date
JP2003214258A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
RU2411386C2 (en) Internal combustion engine operating on gaseous fuel and control method of internal combustion engine operating on gaseous fuel
KR101373805B1 (en) Gasoline direct injection engine
KR20110062146A (en) Gasoline direct injection engine
JPH0323314A (en) Stratified combustion type internal combustion engine
JP2003534495A (en) Fuel injection system
JP2007092693A (en) Spark ignition type direct injection engine
JP2006523795A (en) Gaseous fuel injection internal combustion engine
KR20130037888A (en) Diesel - gasoline complex engine
US7367329B2 (en) Intake device for engine
JP6591994B2 (en) Gaseous fuel combustion system for internal combustion engines
US20150308391A1 (en) Intake apparatus of engine
JP2022017967A (en) Internal combustion chamber with auxiliary combustion chamber
WO2003062624A1 (en) Fuel supply device for gas fuel engines
WO2003062614A1 (en) Engine
EP1749997A2 (en) Fuel injection type internal combustion engine
WO2007066565A1 (en) Engine
WO2003062623A1 (en) Gas fuel engine
JP5006905B2 (en) In-cylinder injection spark ignition internal combustion engine
JP2007321619A (en) Cylinder injection type spark ignition internal combustion engine
CN115750071B (en) Gasoline engine combustion system, engine and vehicle
CN2816391Y (en) Oil jetting device
JPH09250351A (en) Cylinder direct injection type spark-ignition engine
JP4120799B2 (en) Fuel injection device for internal combustion engine
WO2023110127A1 (en) A nozzle cap, a fuel gas injection and a hydrogen internal combustion engine
JPH10274133A (en) Intercylinder injection type internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase