WO2003062614A1 - Engine - Google Patents

Engine Download PDF

Info

Publication number
WO2003062614A1
WO2003062614A1 PCT/JP2003/000390 JP0300390W WO03062614A1 WO 2003062614 A1 WO2003062614 A1 WO 2003062614A1 JP 0300390 W JP0300390 W JP 0300390W WO 03062614 A1 WO03062614 A1 WO 03062614A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
flow
cylinder
air
engine
Prior art date
Application number
PCT/JP2003/000390
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromitsu Matsumoto
Noboru Sakamoto
Naoki Onda
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Publication of WO2003062614A1 publication Critical patent/WO2003062614A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0278Port fuel injectors for single or multipoint injection into the air intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0281Adapters, sockets or the like to mount injection valves onto engines; Fuel guiding passages between injectors and the air intake system or the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an engine that improves combustion by generating a tumble flow and a squish flow in a cylinder.
  • the flow direction of the air-fuel mixture is almost one-way, and the flow velocity of the air-fuel mixture in the cylinder corresponds to the rotational speed and load of the engine. Therefore, there is a problem that the combustion can be improved only in a narrow rotation range. This is because, for example, if the engine is designed so that the flow rate of the air-fuel mixture in the cylinder is optimal when the engine operating range is in the low rotational speed / low load range, the This is because the flow speed becomes excessive.
  • the flow rate of the air-fuel mixture becomes excessive, Many problems occur, such as the flame nucleus that spreads as the air mixture is hindered by the air-fuel mixture, and the air-fuel mixture is strongly blown to the electrodes of the ignition plug, making ignition prone to instability and raising the voltage.
  • the air-fuel mixture flow rate is set to be optimal when the engine operating range is at high rotational speed and high load, combustion becomes unstable at low rotational speed and low load. It becomes easy to become.
  • an engine according to the present invention comprises: a tumble flow generating means for generating a tumble flow composed of an air-fuel mixture in a cylinder; and a squish flowing in a cylinder in a direction opposite to the evening flow.
  • the air-fuel mixture when the tumble flow and the squish flow collide with each other, the air-fuel mixture is dispersed as minute vortices (microturbulence), and the gas flow formed by combining the tumble flow and the squish flow
  • the piston moves to the top of the piston. Therefore, when the growth of the flame nucleus is promoted by the microturbulence, In both cases, the flame spreads to the top side of the biston, and combustion occurs rapidly.
  • the kinetic energy of the air-fuel mixture is reduced by the collision of the tumble flow and the squish flow, the state of the air-fuel mixture after the collision does not change significantly even if the engine speed or load changes. Therefore, the above-mentioned phenomenon in which combustion is performed rapidly occurs similarly over a wide operating range.
  • the engine according to the second aspect of the invention is the engine according to the first aspect of the invention, wherein the evening gas generation means directs the air-fuel mixture from the intake boat in a direction opposite to the exhaust valve.
  • the squish flow generating means is constituted by a slope facing the intake valve at the top of the biston, a concave portion adjacent to the slope, and a combustion chamber wall on the cylinder head side.
  • the cylinder head is inserted into the cylinder on the intake valve side from the cylinder axis when viewed from the axial direction of the force axis.
  • a so-called reverse tumble flow is generated, which consists of a swirling flow that moves away from the cylinder and approaches the cylinder head on the exhaust valve side.
  • a space (squish area) for generating a squish flow is formed on the intake valve side where the temperature is relatively low.
  • the engine according to the third aspect of the invention is the engine according to the second aspect of the invention, wherein the tumble flow generating means gradually exhausts the air from the downstream end of the intake port toward the downstream side. It is formed by a slope extending to the opposite side of the valve.
  • the direction in which the intake air flows is regulated by the shape of the intake boat, compared with a case where a member for changing the direction in which the intake air flows is provided in the intake port. Furthermore, the intake resistance is reduced and the number of parts can be reduced.
  • the engine according to the invention described in claim 4 is the engine according to the invention described in claim 2, wherein the tumble flow generating means is formed by providing a guide member for changing a flow direction of intake air in an intake passage. It is.
  • the strength of the tumble flow can be changed by the guide member.
  • FIG. 1 is a sectional view of an engine according to the present invention.
  • FIG. 2 is an enlarged sectional view showing a part of the engine.
  • FIG. 3 is a plan view of the piston.
  • FIG. 4 is a plan view showing a configuration in a state where a portion near the combustion chamber of the engine is viewed from the cylinder head side.
  • FIG. 5 is a bottom view showing the combustion chamber wall of the cylinder head.
  • FIG. 6 is a longitudinal sectional view of the cylinder and the piston.
  • FIG. 7 is a sectional view taken along the line VII-VII in FIG.
  • FIG. 8 is a time chart showing the opening / closing timing of the intake / exhaust valve and the fuel injection timing.
  • FIG. 9 is a sectional view showing another example of the piston.
  • FIG. 10 is a cross-sectional view of an engine provided with a guide member.
  • FIG. 11 is a cross-sectional view showing a main part in FIG. 10 in an enlarged manner.
  • FIG. 12 is a sectional view taken along the line XI I -XI] in FIG.
  • FIG. 13 is a view showing a guide member.
  • FIG. 14 is an exploded perspective view of the guide member shown in FIG.
  • FIG. 15 is a diagram showing another example of the guide member.
  • FIG. 16 is a cross-sectional view of a part of the engine showing another example of the guide member.
  • FIG. 17 is an enlarged sectional view showing the guide member.
  • FIG. 18 is a plan view showing the configuration of a portion near the combustion chamber of the engine viewed from the cylinder head side.
  • FIG. 19 is a schematic diagram for explaining the tumble flow.
  • FIG. 20 is a bottom view of the fuel gas supply nozzle.
  • FIG. 21 is a sectional view taken along line AA in FIG.
  • FIG. 22 is a sectional view taken along line BB in FIG.
  • FIG. 23 is a cross-sectional view taken along line CC in FIG.
  • FIG. 24 is an enlarged perspective view showing a guide member and a valve body of an intake valve.
  • FIG. 25 is a cross-sectional view showing another example of the fuel gas supply nozzle.
  • FIG. 26 is a plan view showing a configuration in a state where a portion near the combustion chamber of the engine is viewed from the cylinder head side.
  • FIG. 27 is a sectional view taken along line AA in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a cross-sectional view of the engine according to the present invention
  • FIG. 2 is a cross-sectional view showing a part of the engine in an enlarged manner.
  • the piston is positioned at the top dead center in the compression stroke.
  • Fig. 3 is a plan view of the piston
  • Fig. 4 is a plan view showing the configuration near the combustion chamber of the engine viewed from the cylinder head side
  • Fig. 5 is a bottom view showing the combustion chamber wall of the cylinder head.
  • Fig. 6 is a vertical sectional view of the cylinder and biston
  • Fig. 7 is a sectional view taken along the line VII-VII in Fig. 1
  • Fig. 8 is a time chart showing the opening and closing timing of the intake and exhaust valves and the fuel injection timing
  • Fig. 9 FIG. 4 is a sectional view showing another example of the piston.
  • reference numeral 1 denotes an engine according to this embodiment. is there.
  • the engine 1 is operated using a gas fuel such as LPG or CNG (compressed natural gas).
  • the gas fuel is supplied from a fuel gas supply injector 3 of a cylinder head 2 to a nozzle 4 described later. Injection into the intake passage 5 is carried out.
  • FIG. 1 the number of cylinders of the engine 1 is shown in FIG. 1 for only one cylinder for convenience of explanation, it can be used for an engine having a plurality of cylinders.
  • reference numeral 6 denotes a cylinder body
  • 7 denotes a piston
  • 8 denotes a conrode.
  • the cylinder head 2 is provided with a DOHC type valve gear 11 and a spark plug 12, and has an intake port 13 and an exhaust port forming the intake passage 5. 14 are provided.
  • the valve gear 11 has two intake valves 15 and two exhaust valves 16 for each cylinder, and the intake and exhaust valves 15 and 16 are supplied via a valve lifter 17 respectively. It is driven by a camshaft 18 and an exhaust camshaft 19.
  • the ignition plug 12 is disposed at the center of the cylinder surrounded by the four intake / exhaust valves 15 and 16.
  • the screw holes into which the ignition plugs 12 are screwed are indicated by reference numeral 20 in FIGS.
  • reference numeral 21 denotes an intake outlet of an intake port 13 opened and closed by an intake valve 15, and 2 denotes an exhaust inlet of an exhaust port 14 opened and closed by an exhaust valve 16.
  • the intake port 13 is provided for each intake valve 15 (see FIG. 4), and as shown in FIG. 1, the cylinder head 2 is moved vertically (in the direction along the cylinder axis C). It is formed so as to penetrate through.
  • a throttle valve is connected to the upstream side of the intake port 13 via an intake passage of a head cover and an intake pipe attached to the head cover.
  • the intake port 13 is inclined so as to gradually approach the intake valve 15 from the opening at the upper end of the cylinder head 2 toward the downstream side.
  • the exhaust valve 16 gradually increases toward the downstream side. Is provided with an inclined portion 23 extending to the opposite side.
  • the intake port 13 By forming the intake port 13 in this way, the intake air that has passed through the intake boat 13 flows in the cylinder from the intake outlet 21 in the direction opposite to the exhaust valve 16 due to the inertia of the intake flow. It is led to.
  • the exhaust port 14 is formed so that the exhaust passage for each exhaust valve 16 merges in the cylinder head 2 and extends to the exhaust outlet 24 on one side of the cylinder head 2.
  • the biston 7 has an inclined surface 25 and a concave portion 26 at the top 7a.
  • the slope 25 is formed so as to extend in a direction in which the intake valves 15 are arranged side by side at a portion of the top 7a of the piston 7 which faces the intake valves 15;
  • the valve body 15 of the intake valve 15 is inclined so as to be parallel to the end surface 15c (the surface forming a part of the combustion chamber wall) of the valve element 15 1).
  • the concave portion 26 is formed so that a D-shaped portion in plan view adjacent to the slope 25 at the top 7a of the biston 7 is hemispherically recessed downward.
  • the piston 7 should be formed so that a portion adjacent to the slope 25 of the top portion 7a is flat and the flat portion 7b is substantially a concave portion 26. Can also.
  • the use of the piston 7 makes it possible to increase the compression ratio as compared with the case of using the piston 7 shown in FIG. 1.
  • the fuel gas supply injector 3 is provided for each cylinder, and the cylinder head 2 And is attached to a portion corresponding to a space between the intake ports 13.
  • the injector 3 is supplied with fuel gas from a fuel tank (not shown) under pressure. At a predetermined fuel injection timing, fuel flows from a fuel injection port 27 at the tip (see FIG. 7) to a fuel passage 28 of the cylinder head 2. Inject gas.
  • the fuel injection by the injector 3 is performed when the intake valve 15 is closed during the exhaust stroke (primary fuel injection) and when the intake valve 15 is opened during the intake stroke.
  • the injection timing and injection period are set in accordance with the operating conditions.
  • the period during which the injector 3 injects the fuel is set so as to be longer at the time of the primary fuel injection and at the time of the secondary fuel injection.
  • the fuel injection amount for example, approximately 50 to 70% of the fuel gas supplied in one cycle is injected at the time of the primary fuel injection, and the remainder is injected at the time of the secondary fuel injection.
  • the fuel passage 28 through which the injector 3 injects fuel extends from the hole 29 for mounting the injector to each intake port 13 side, and is a downstream end of the intake port 13.
  • a nozzle 4 made of a pipe fitted and fixed in each of the through holes 30 from the intake outlet 21 side of the intake port 13. It is configured.
  • each nozzle 4 is disposed in the vicinity of an adjacent intake port 13 in the intake port 13 and, as shown in FIG. The opening is bent so as to be directed.
  • the downstream side of the intake air here means the downstream side of the intake air whose flow direction is regulated by the inclined portion 23 of the intake port 13, and the exhaust air is exhausted from the intake outlet 21 of the intake port 13. The direction opposite to the valve 16 and pointing obliquely downward.
  • the fuel gas injected into the intake port 13 from the nozzle 4 during the intake stroke is supplied to the intake valve 1 as shown by a black solid arrow G in FIG.
  • the air flows obliquely downward in a direction away from the exhaust valve 16 in the cylinder through a gap between the air outlet 5 and the air outlet 21.
  • the fuel gas flows into the cylinder from substantially the entire gap between the intake valve 15 and the intake outlet 21, but is sucked obliquely downward from the intake boat 13 into the cylinder. Most of it is pushed in the same direction as the intake air as it is pushed. The fuel gas and fresh air flow to the lower part of the cylinder along the inner peripheral surface of the cylinder.
  • the fuel gas is injected into the cylinder from the two nozzles 4 through the gap between the intake valve 15 and the intake outlet 21. Since the tumble flow T is formed in the cylinder as described above, the fuel gas turns inside the cylinder so as to ride on the tumble flow T as shown in FIG. Since the nozzles 4 are provided near portions of the two intake ports 13 adjacent to each other, the fuel injected from the nozzles 4 flows in a laminar manner near the spark plugs 12. That is, at the end of the compression stroke, a relatively rich air-fuel mixture is supplied in a stratified manner near the periphery of the spark plug 12.
  • the squish flow S proceeds in the combustion chamber 32 toward the exhaust valve 16 along the combustion chamber wall on the cylinder head 2 side in FIG. Collide with each other near the ignition plug 12.
  • the ignition timing is set so that the ignition by the ignition plug 12 is performed during the period when the air-fuel mixture is ejected from the squish area. .
  • the flow of the air-fuel mixture in the cylinder (downward in the recess 26 at the top 7a of the piston)
  • the flow flowing toward the piston continues after the ignition, so that the unburned gas is continuously supplied to the portion of the initial combustion gas that has grown near the top 7a of the piston 7.
  • the initial combustion gas diffuses while being stirred by the unburned gas, and is not kept at a high temperature, so that generation of Nox can be suppressed.
  • the EGR amount is increased, the same operation as described above is performed, and the fuel efficiency can be improved and the NOx can be reduced.
  • the kinetic energy of the mixture flow is attenuated by the collision of the tumble flow T and the squish flow S, so that the gap between the electrodes 12a and 12b of the ignition plug 12 (see Fig. 2) is reduced. Since the air-fuel mixture does not flow at high speed, ignition is stable, and the ignition voltage does not need to be high, so that the existing ignition device can be used.
  • an example using gas fuel has been described, but the present invention can be applied to an engine 1 using gasoline as fuel. In this case, the same configuration as that of the conventional engine 1 can be adopted except that the tumble flow stub and the squish flow S collide with each other.
  • the fuel can be supplied in a layered manner using the nozzle 4 and the fuel gas supplied by the primary fuel injection can be efficiently dispersed in the cylinder, so that the liquid fuel It is more advantageous to use gaseous fuel to improve combustion.
  • a space in which intake air flows from the intake boat 13 to the opposite side of the exhaust valve 16 in the cylinder to generate a so-called reverse tumble flow in the cylinder to generate a squish flow S ) Is formed on the relatively low temperature intake valve 15 side, so that knocking is less likely to occur than when the squish area is formed on the exhaust valve 16 side.
  • the downstream end of the intake port 13 is provided with a sloping portion 23 that gradually extends toward the opposite side from the exhaust valve 16 toward the downstream side, so that a reverse tumble flow is formed. Because it regulates the direction of air flow, In comparison with a case where members for providing the air pressure are provided in the air intake port 13, the air intake resistance is reduced and the number of parts can be reduced.
  • the guide member shown in FIGS. 10 to 15 can be attached to the intake port.
  • FIG. 10 is a cross-sectional view of an engine provided with a guide member
  • FIG. 11 is a cross-sectional view showing an enlarged part of FIG. 10
  • FIG. 12 is a cross-sectional view taken along line XI I-XI I in FIG. 13 is a view showing the in-vehicle member
  • FIG. (A) is a cross-sectional view in a state of being assembled to the intake port
  • FIG. (B) is a side view
  • (b) is (a) The fracture position in the figure is indicated by the line A-A.
  • Fig. 13 (c) is a cross-sectional view taken along the line CC in Fig. (A)
  • Fig. 13 (d) shows a free state before mounting
  • FIG. 14 is an exploded perspective view of the guide member shown in FIG. 13, FIG. 15 is a view showing another example of the guide member, FIG. 14 (a) is a plan view, FIG. 14 (b) is a side view, FIG. 3C is a cross-sectional view taken along the line C-C in FIG. 3A, and FIG.
  • the same or equivalent members as those described with reference to FIGS. 1 to 9 are denoted by the same reference numerals, and detailed description will be appropriately omitted.
  • the engine 1 according to this embodiment is the same as the engine 1 shown in the first embodiment except that a guide member 41 described later is provided in an intake port 13 as shown in FIG. The configuration is adopted.
  • the guide member 41 includes a C-shaped fixing ring 42 and a shroud 43 welded to the ring 42.
  • 2 is made of a spring material, and is formed so that it can be engaged with a concave groove 44 (see FIG. 11) formed at a downstream end of the intake port 13 by its own elastic force.
  • a hook 45 for attaching a tool is formed integrally with the rain end of the ring 42.
  • the shroud 43 includes a support plate 46 curved in an arc shape in plan view along the inner peripheral surface of the ring 42, and a fan-shaped shroud body 4 formed integrally with the support plate 46 in plan view. It is composed of 7 and.
  • the support plate 46 is formed with an opening 48 through which the hook 45 of the ring 42 is inserted. When the hook 45 is passed through the opening 48, the inside of the ring 42 is formed. One end is welded to the ring 42 over the periphery. The welding area between the support plate 46 and the ring 42 is indicated by the symbol W in Fig. 13 (a).
  • the shroud 43 is inclined so as to gradually extend downward (downstream of the intake air flow) from the support plate 46 toward the center of the ring 42, and is curved so as to form part of a conical surface. are doing.
  • the guide member 41 is disposed such that the lower end of the shroud 43 faces the intake valve 15 in a closed state with a clearance.
  • the guide member 41 thus formed is attached to the intake port 13 before the intake valve 15 is attached to the cylinder head 2. More specifically, first, as shown in FIG. 13 (d), the hooks 45 of the ring 42 of the guide member 41 in the free state are sandwiched between tools such as pliers (not shown) to spring the ring 42. The guide member 41 is inserted into the intake port 13 from the combustion chamber side by reducing the diameter by staking the force ⁇ see FIG. 13 (e) ⁇ . Then, the hook 45 is released while the ring 42 is engaged with the concave groove 44 of the intake port 13. At this time, the guide member 41 is positioned so that the shroud 43 is located on the exhaust valve 16 side. When the tool is released, the ring 42 expands with its own elasticity and is fixed to the intake port 13 (cylinder head 1).
  • the guide member 41 shown in FIGS. 10 to 14 is formed so that the hook 45 of the ring 42 is positioned on the shroud 43, but the guide member 41 is shown in FIG. It can also be formed as follows.
  • a guide member 41 shown in FIG. 15 has a support plate 46 of a shroud 43 welded to an inner peripheral portion 42 a of the ring 42 facing the hook 45.
  • the ring 42 of the guide member 41 is attached to the intake port 13 with a reduced diameter as shown in FIG. 15 (d) from the free state shown by the solid line in FIG. 15 (a). After mounting, the ring 42 is reduced in diameter from the free state as shown by the two-dot chain line in FIG. 7A, and is fixed to the intake port 13 by its own elastic force.
  • the hook 45 can be visually recognized from below, so that the position of the hook 45 can be easily confirmed when the hook 45 is sandwiched by pliers or the like.
  • the assembly work becomes easy.
  • the mounting position of the guide member 41 is the same as the guide member 41 shown in FIGS.
  • the inclined portion 23 of the intake port 13 is substantially extended by the shroud 43,
  • the intake air flowing into the exhaust valve 16 from the gap between the intake valve 21 and the intake outlet 21 can be reduced.
  • the tumble flow T can be generated more strongly.
  • the tumble flow T since the strength of the tumble flow T can be changed by the guide member 41, the tumble flow T is generated by the guide member 41 so that the strength becomes optimum with respect to the generated squish flow S. Therefore, it is possible to surely generate a microturbulence. Therefore, the combustion can be further improved.
  • the guide member can be formed as shown in FIGS.
  • FIG. 16 is a cross-sectional view of a part of the engine showing another example of the guide member.
  • Fig. 17 is a cross-sectional view showing the guide member on an enlarged scale.
  • Fig. 18 is a cylinder head showing a portion near the combustion chamber of the engine.
  • FIG. 19 is a schematic view for explaining a tumble flow
  • FIG. 19 is a bottom view of a fuel gas supply nozzle
  • FIG. 21 is A—A in FIG. 16.
  • 22 is a sectional view taken along the line BB in FIG. 16
  • FIG. 23 is a sectional view taken along the line CC in FIG.
  • FIG. 24 is an enlarged perspective view showing the guide member and the valve body of the intake valve. You.
  • the engine 1 shown in FIGS. 16 to 24 has a guide member 51 provided on an intake valve 15.
  • the guide member 51 is formed of a metal plate (formed of a part of a cone) and is welded to the upper surface of the valve element 15 b of the intake valve 15.
  • the guide member 51 is formed in a fan shape in a plan view in which the width increases upward and as shown in FIG. 17.
  • the intake valve 15 is inclined so as to be unevenly distributed radially outward of the intake valve 15 as it goes upward in a side view.
  • the position where the guide member 51 is attached to the intake valve 15 is located on one side of the intake valve 15 near the exhaust valve 16 as shown in FIG. 17 and FIG.
  • the center of the arc of the inner surface 51 a of the guide member 51 is positioned so as to substantially coincide with the axis of the intake valve 15.
  • the height of the guide member 51 is such that when the intake valve 15 is opened, the upper end faces upstream from the intake outlet 21 of the intake port 13, As shown by the two-dot chain line in FIG. 17, even when the intake valve 15 is closed, the upper end is set so as not to contact the inner wall surface of the intake port 13.
  • valve stem 15a is formed in a rectangular cross section, and the rectangular cross section is slidably engaged with the valve stem guide 52 on the cylinder head 2 side. .
  • the intake port 13 of the cylinder head 2 is, as shown in FIG. 16, one side of the cylinder head 2 as often used in a general engine 1. It is formed so as to extend obliquely from 2 a toward the combustion chamber 32. Also, this The intake port 13 is formed so that the intake passage 5 is branched into branch passages 5a and 5b of the intake valve 15 1 on the way.
  • the nozzle 4 for supplying the fuel gas is supplied from one side 1a of the cylinder head 2 through the intake port. It is formed so as to extend to the vicinity of the valve 15.
  • the nozzle 4 has pipes 4 a, 4 a for each intake valve 15, and a pipe holder 4 b connected to the upstream end of each pipe 4 a. It is composed of As in the case of the first and second embodiments, the pipe 4a has a downstream end disposed in the vicinity of the adjacent intake port 13 in the intake port 13 and flows the intake air. The downstream end in the direction is bent so that the opening at the tip is directed, and the upstream end extends in the intake port 13 to the upstream side along the intake port upper wall 13a (see Fig. 16). Let me.
  • a fuel passage 4c communicating with the pipe 4a is formed in each pipe, and as shown in FIG. It is fixed to 3a by fixing bolts 53.
  • the cylinder head 2 according to this embodiment has a through hole 5 4 for tool passage in the lower wall 13 b of the intake port so that the fixing bolt 53 can be easily attached and detached by a tool (not shown). Are drilled.
  • the reference numeral 55 provided at the open end of the through hole 54 is a plug member for closing the through hole 54.
  • the fuel passage 4c of the pipe holder 4b opens at the upstream end of the pipe holder 4b.
  • the fuel gas is injected from the fuel gas injector 3 mounted on the cylinder head 2.
  • FIGS. 25 to 27 When the intake port is formed to extend obliquely to the cylinder head, a fuel gas supply nozzle can be formed as shown in FIGS. 25 to 27.
  • FIG. 25 is a cross-sectional view showing another example of a fuel gas supply nozzle
  • FIG. 26 is a plan view showing a configuration near the combustion chamber of the engine viewed from the cylinder head side.
  • FIG. 26 is a sectional view taken along line AA in FIG. 25.
  • the same or equivalent members as those described with reference to FIGS. 1 to 24 are denoted by the same reference numerals, and detailed description will be appropriately omitted.
  • the fuel gas supply nozzle 4 shown in FIG. 25 to FIG. 27 consists of a pipe provided in the intake valve 15 ⁇ , and the fuel gas supply through hole 61 of the cylinder head 1 and the intake port 1 3
  • the suction port 13 is inserted from the side, and is disposed near the adjacent intake port 13 in the intake port 13. Further, as shown in FIG. 25, these nozzles 4 are bent so that the opening at the tip thereof is directed to the downstream side in the direction in which the intake air flows.
  • the fuel gas supply through hole 61 is a first gas hole extending obliquely and linearly along the intake port 13 from above the inlet of the intake port 13 on one side 2 a of the cylinder head 2. 62 and second gas holes 63 extending from the downstream end of the first gas hole 62 to the intake port 13 of each intake valve 15 (see FIG. 27). ing.
  • the nozzle 4 is mounted on the second gas hole 63. As shown in FIG. 16, an upstream end of the first gas hole 62 is opened inside a hole 29 for mounting a fuel gas supply injector 3 (not shown). .
  • the fuel gas injected into the intake port 13 from the nozzle 4 during the intake stroke is sucked as shown by a black arrow G in FIG.
  • the gas flows obliquely downward through the gap between the air valve 15 and the intake outlet 21 in the direction opposite to the exhaust valve 16 in the cylinder.
  • the tumble flow and the squish flow collide with each other, so that the air-fuel mixture is dispersed as a microturbulence, and the gas flow formed by combining the tumble flow and the squish flow. It moves to the top side of Biston. Therefore, the growth of the flame nucleus is promoted by the micro evening bulence, and the flame spreads to the top side of the biston, and the combustion is rapidly performed.
  • the combustion can be similarly performed over a wide operating range to improve the combustion, so that the fuel efficiency can be further improved.
  • the shape of the intake port regulates the direction in which the intake air flows, so that the intake resistance is lower than when a member for changing the direction in which the intake air flows is provided in the intake port.
  • the size becomes smaller, the number of parts is reduced and the number of assembly parts can be reduced. Therefore, both output improvement and cost reduction by reducing the number of assembly steps can be realized.
  • the guide member since the strength of the tumble flow can be changed by the guide member, the guide member generates the tumbling flow so that the strength becomes optimum with respect to the generated squish flow. By doing so, the microturbulence can be reliably formed, and the combustion can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

An engine has a tumble flow producing means (air inlet port (13)) for producing a tumble flow (T) consisting of mixed gas in a cylinder. It has a squish flow producing means (the slope surface (25) of a piston top (7a), a recess (26), and the combustion chamber wall (31) of a cylinder head (2)) for producing a squish flow (S) moving opposite to the direction of the tumble flow (T) in the cylinder. It is arranged that in the terminal period of compression stroke, the tumble flow (T) and squish flow (S) are produced in opposed relationship to each other.

Description

明 細 書 ェンジン 技術分野  Technical description Technical field
本発明は、 シリンダ内にタンブル流とスキッシュ流とを発生させて燃焼改善を 図ったエンジンに関するものである。 背景技術  TECHNICAL FIELD The present invention relates to an engine that improves combustion by generating a tumble flow and a squish flow in a cylinder. Background art
近年のエンジンは、 空燃比を理論空燃比より希薄にして燃焼させたり (希薄燃 焼) 、 排ガスの一部をシリンダ内に再循環させる (E G R ) ことにより、 燃費の 向上ゃ排ガスの清浄化を図っている。 燃料を空気と混合させて混合気の状態でシ リンダ内に吸入させる、 いわゆる予混合式のエンジンにおいては、 混合気を流動 させながら圧縮することによつて燃焼の改善を図り、 上述したような希薄燃焼や E G Rの限界が高くなるようにしている。  In recent years, engines have been improved in fuel efficiency by reducing the air-fuel ratio to a value lower than the stoichiometric air-fuel ratio and burning them (lean combustion) or by recirculating part of the exhaust gas into the cylinder (EGR). I'm trying. In a so-called premixed engine, in which fuel is mixed with air and sucked into the cylinder in the form of a mixture, the combustion is improved by compressing the mixture while flowing it, as described above. The limits of lean burn and EGR are increased.
従来のエンジンで混合気を流動させながら圧縮するためには、 シリンダ内に混 合気からなるタンブル流や、 スワールや、 スキッシュ流などを発生させることに よって つていた。  In order to compress the air-fuel mixture while flowing it with a conventional engine, a tumble flow, a swirl, and a squish flow of the air-fuel mixture were generated in the cylinder.
しかしながら、 上述したように混合気を流動させて圧縮する従来のェンジンに おいては、 混合気の流動方向が略一方向で、 シリンダ内の混合気の流速がェンジ ンの回転速度や負荷に対応して変化するために、 燃焼改善を図ることができるの は狭い回転域に限られてしまうという問題があった。 これは、 例えばエンジン運 転域が低回転速度 ·低負荷域にあるときにシリンダ内の混合気の流速が最適にな るようにエンジンを設計すると、 高速回転速度 ·高負荷域にあるときには前記流 速が過大になってしまうからである。  However, in the conventional engine that flows and compresses the air-fuel mixture as described above, the flow direction of the air-fuel mixture is almost one-way, and the flow velocity of the air-fuel mixture in the cylinder corresponds to the rotational speed and load of the engine. Therefore, there is a problem that the combustion can be improved only in a narrow rotation range. This is because, for example, if the engine is designed so that the flow rate of the air-fuel mixture in the cylinder is optimal when the engine operating range is in the low rotational speed / low load range, the This is because the flow speed becomes excessive.
上述したように混合気の流速が過大になると、 失火したり、 点火プラグを中心 として拡がる火炎核が混合気によって妨げられたり、 点火ブラグの電極に混合気 が強く吹き付けられて着火が不安定になり易いから電圧を高く しなければならな いなど、 多くの不具合が生じる。 そうかといって、 エンジン運転域が高速回転速 度 ·高負荷域にあるときに混合気の流速が最適になるように設定すると、 低回転 速度 ·低負荷域にあるときに燃焼が不安定になり易くなる。 As described above, if the flow rate of the air-fuel mixture becomes excessive, Many problems occur, such as the flame nucleus that spreads as the air mixture is hindered by the air-fuel mixture, and the air-fuel mixture is strongly blown to the electrodes of the ignition plug, making ignition prone to instability and raising the voltage. However, if the air-fuel mixture flow rate is set to be optimal when the engine operating range is at high rotational speed and high load, combustion becomes unstable at low rotational speed and low load. It becomes easy to become.
また、 上述した従来のエンジンにおいては、 排ガス中の N o Xの濃度が高くな るという問題もあった。 これは、 混合気が略一方向に流動することが原因である と考えられる。 詳述すると、 点火プラグの近傍に生成された初期燃焼ガスが主に 混合気の流れる方向へ急速に拡がるようになり、 この初期燃焼ガスが高温で保持 されるために、 N 0 Xの濃度が高くなると考えられる。 この現象は、 希薄燃焼で 余剰酸素が充分に存在する場合に顕著にあらわれる。  Further, in the above-described conventional engine, there is also a problem that the concentration of NOx in exhaust gas becomes high. This is thought to be due to the mixture flowing in almost one direction. More specifically, the initial combustion gas generated in the vicinity of the spark plug rapidly spreads mainly in the direction in which the air-fuel mixture flows, and since the initial combustion gas is maintained at a high temperature, the concentration of N 0 X decreases. It is expected to be higher. This phenomenon becomes remarkable when there is sufficient surplus oxygen in lean burn.
本発明はこのような問題点を解消するためになされたもので、 混合気をシリン ダ内で流動させるエンジンにおいて、 ェンジン運転域の全域にわたつて燃焼改善 を図ることができるようにするとともに、 N 0 Xの濃度を低減することを目的と する。 発明の開示 - この目的を達成するため、 本発明に係るェンジンは、 シリンダ内に混合気から なるタンブル流を発生させるタンブル流生成手段と、 シリンダ内に前記夕ンブル 流とは逆方向に流れるスキッシュ流を発生させるスキッシュ流生成手段とを備え 、 圧縮行程の終期に前記タンブル流と前記スキッシュ流とが互いに対向するよう に発生する構成としたものである。  The present invention has been made in order to solve such problems, and in an engine that allows a mixture to flow in a cylinder, it is possible to improve combustion over the entire engine operating range. The purpose is to reduce the concentration of N 0 X. DISCLOSURE OF THE INVENTION-To attain this object, an engine according to the present invention comprises: a tumble flow generating means for generating a tumble flow composed of an air-fuel mixture in a cylinder; and a squish flowing in a cylinder in a direction opposite to the evening flow. A squish flow generating means for generating a flow, wherein the tumble flow and the squish flow are generated so as to face each other at the end of the compression stroke.
本発明によれば、 タンブル流とスキッシュ流とが互いに衝突することによって 、 混合気は、 微小な渦 (マイクロタービュレンス) となって分散され、 タンブル 流とスキッシュ流とが合成されてなるガス流によってピストン頂部側へ移行する 。 このため、 前記マイクロタービュレンスによって火炎核の成長が助長されると ともに、 火炎がビストン頂部側へ拡がるようになり、 燃焼が急速に行われる。 一方、 タンブル流とスキッシュ流の衝突により混合気流の運動エネルギーが減 衰するから、 前記衝突後の混合気の状態は、 エンジンの回転速度や負荷が変化し ても大きく変化することはない。 このため、 上述したような燃焼が急速に行われ る現象は、 広い運転域にわたって同様に起こる。 According to the present invention, when the tumble flow and the squish flow collide with each other, the air-fuel mixture is dispersed as minute vortices (microturbulence), and the gas flow formed by combining the tumble flow and the squish flow The piston moves to the top of the piston. Therefore, when the growth of the flame nucleus is promoted by the microturbulence, In both cases, the flame spreads to the top side of the biston, and combustion occurs rapidly. On the other hand, since the kinetic energy of the air-fuel mixture is reduced by the collision of the tumble flow and the squish flow, the state of the air-fuel mixture after the collision does not change significantly even if the engine speed or load changes. Therefore, the above-mentioned phenomenon in which combustion is performed rapidly occurs similarly over a wide operating range.
また、 シリンダ内の混合気の流動は点火後も継続するから、 ピストン頂部近傍 で成長した初期燃焼ガス部分に未燃ガスが継続的に供給されるようになる。 この ため、 初期燃焼ガスは、 未燃ガスで攪拌されながら拡散するから、 高温で保持さ れることはない。 '  In addition, since the flow of the air-fuel mixture in the cylinder continues even after ignition, the unburned gas is continuously supplied to the initial combustion gas portion grown near the top of the piston. For this reason, the initial combustion gas is diffused while being stirred by the unburned gas, and is not maintained at a high temperature. '
請求項 2に記載した発明に係るエンジンは、 請求項 1に記載した発明に係るェ ンジンにおいて、 夕ンブル流生成手段を、 混合気を吸気ボートから排気弁とは反 対方向へ指向させてシリンダ内へ導く構成とし、 スキッシュ流生成手段を、 ビス トン頂部における吸気弁と対向する斜面およびこの斜面に隣接する凹部と、 シリ ンダへッ ド側の燃焼室壁とによって構成したものである。  The engine according to the second aspect of the invention is the engine according to the first aspect of the invention, wherein the evening gas generation means directs the air-fuel mixture from the intake boat in a direction opposite to the exhaust valve. The squish flow generating means is constituted by a slope facing the intake valve at the top of the biston, a concave portion adjacent to the slope, and a combustion chamber wall on the cylinder head side.
この発明によれば、 吸気が吸気ポートからシリンダ内における排気弁とは反対 側へ流入するから、 シリンダ内に、 力ム軸の軸方向から見てシリンダ軸線より吸 気弁側でシリンダへッ ドから離間し、 排気弁側でシリンダへッ ドに接近するよう な旋回流からなるタンブル流、 いわゆる逆タンブル流が生成される。 また、 この エンジンにおいては、 スキッシュ流を発生させる空間 (スキッシュエリア) が相 対的に低温な吸気弁側に形成される。  According to the present invention, since the intake air flows from the intake port to the side opposite to the exhaust valve in the cylinder, the cylinder head is inserted into the cylinder on the intake valve side from the cylinder axis when viewed from the axial direction of the force axis. A so-called reverse tumble flow is generated, which consists of a swirling flow that moves away from the cylinder and approaches the cylinder head on the exhaust valve side. In this engine, a space (squish area) for generating a squish flow is formed on the intake valve side where the temperature is relatively low.
請求項 3に記載した発明に係るエンジンは、 請求項 2に記載した発明に係るェ ンジンにおいて、 タンブル流生成手段を、 吸気ポートの下流側端部に下流側へ向 かうにしたがつて次第に排気弁とは反対側へ延びる傾斜部によつて形成したもの である。  The engine according to the third aspect of the invention is the engine according to the second aspect of the invention, wherein the tumble flow generating means gradually exhausts the air from the downstream end of the intake port toward the downstream side. It is formed by a slope extending to the opposite side of the valve.
この発明によれば、 吸気ボートの形状によって吸気が流れる方向を規制してい るから、 吸気の流れる方向を変えるための部材を吸気ポート内に設ける場合に較 ベて、 吸気抵抗が小さくなるとともに、 部品数を低減することができる。 According to the present invention, since the direction in which the intake air flows is regulated by the shape of the intake boat, compared with a case where a member for changing the direction in which the intake air flows is provided in the intake port. Furthermore, the intake resistance is reduced and the number of parts can be reduced.
請求項 4に記載した発明に係るエンジンは、 請求項 2に記載した発明に係るェ ンジンにおいて、 タンブル流生成手段を、 吸気の流れる方向を変える案内部材を 吸気通路内に設けることによって形成したものである。  The engine according to the invention described in claim 4 is the engine according to the invention described in claim 2, wherein the tumble flow generating means is formed by providing a guide member for changing a flow direction of intake air in an intake passage. It is.
この発明によれば、 案内部材によってタンブル流の強さを変えることができる  According to the present invention, the strength of the tumble flow can be changed by the guide member.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係るエンジンの断面図である。  FIG. 1 is a sectional view of an engine according to the present invention.
図 2は、 エンジンの一部を拡大して示す断面図である。  FIG. 2 is an enlarged sectional view showing a part of the engine.
図 3は、 ピストンの平面図である。  FIG. 3 is a plan view of the piston.
図 4は、 エンジンの燃焼室近傍の部位をシリンダへッド側から見た状態の構成 を示す平面図である。  FIG. 4 is a plan view showing a configuration in a state where a portion near the combustion chamber of the engine is viewed from the cylinder head side.
図 5は、 シリンダへッ ドの燃焼室壁を示す底面図である。  FIG. 5 is a bottom view showing the combustion chamber wall of the cylinder head.
図 6は、 シリンダぉよびピストンの縦断面図である。  FIG. 6 is a longitudinal sectional view of the cylinder and the piston.
図 7は、 図 1における VI I -VI I 線断面図である。  FIG. 7 is a sectional view taken along the line VII-VII in FIG.
図 8は、 吸 ·排気弁の開閉時期と燃料噴射時期とを示すタイムチャートである 図 9は、 ピストンの他の例を示す断面図である。  FIG. 8 is a time chart showing the opening / closing timing of the intake / exhaust valve and the fuel injection timing. FIG. 9 is a sectional view showing another example of the piston.
図 1 0は、 案内部材を設けたエンジンの断面図である。  FIG. 10 is a cross-sectional view of an engine provided with a guide member.
図 1 1は、 図 1 0における要部を拡大して示す断面図である。  FIG. 11 is a cross-sectional view showing a main part in FIG. 10 in an enlarged manner.
図 1 2は、 図 1 1における XI I -XI ] 線断面図である。  FIG. 12 is a sectional view taken along the line XI I -XI] in FIG.
図 1 3は、 案内部材を示す図である。  FIG. 13 is a view showing a guide member.
図 1 4は、 図 1 3に示した案内部材の分解斜視図である。  FIG. 14 is an exploded perspective view of the guide member shown in FIG.
図 1 5は、 案内部材の他の例を示す図である。  FIG. 15 is a diagram showing another example of the guide member.
図 1 6は、 案内部材の他の例を示すエンジンの一部の断面図である。 図 1 7は、 案内部材を拡大して示す断面図である。 FIG. 16 is a cross-sectional view of a part of the engine showing another example of the guide member. FIG. 17 is an enlarged sectional view showing the guide member.
図 1 8は、 エンジンの燃焼室近傍の部位をシリンダへッ ド側から見た状態の構 成を示す平面図である。  FIG. 18 is a plan view showing the configuration of a portion near the combustion chamber of the engine viewed from the cylinder head side.
図 1 9は、 タンブル流を説明するための模式図である。  FIG. 19 is a schematic diagram for explaining the tumble flow.
図 2 0は、 燃料ガス供給用ノズルの底面図である。  FIG. 20 is a bottom view of the fuel gas supply nozzle.
図 2 1は、 図 1 6における A— A線断面図である。  FIG. 21 is a sectional view taken along line AA in FIG.
図 2 2は、 図 1 6における B— B線断面図である。  FIG. 22 is a sectional view taken along line BB in FIG.
図 2 3は、 図 1 6における C— C線断面図である。  FIG. 23 is a cross-sectional view taken along line CC in FIG.
図 2 4は、 案内部材と吸気弁の弁体を拡大して示す斜視図である。  FIG. 24 is an enlarged perspective view showing a guide member and a valve body of an intake valve.
図 2 5は、 燃料ガス供給用ノズルの他の例を示す断面図である。  FIG. 25 is a cross-sectional view showing another example of the fuel gas supply nozzle.
図 2 6は、 エンジンの燃焼室近傍の部位をシリンダへッ ド側から見た状態の構 成を示す平面図である。  FIG. 26 is a plan view showing a configuration in a state where a portion near the combustion chamber of the engine is viewed from the cylinder head side.
図 2 7は、 図 2 5における A— A線断面図である。 発明を実施するための最良の形態  FIG. 27 is a sectional view taken along line AA in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
(第 1の実施の形態)  (First Embodiment)
以下、 本発明に係るエンジンの一実施の形態を図 1ないし図 9によって詳細に 説明する。  Hereinafter, an embodiment of the engine according to the present invention will be described in detail with reference to FIGS.
図 1は本発明に係るエンジンの断面図、 図 2はエンジンの一部を拡大して示す 断面図で、 同図は、 ピストンが圧縮行程で上死点に位置付けられた状態で描いて ある。 図 3はピストンの平面図、 図 4はエンジンの燃焼室近傍の部位をシリンダ へッ ド側から見た状態の構成を示す平面図、 図 5はシリンダへッドの燃焼室壁を 示す底面図である。 図 6はシリンダおよびビストンの縦断面図、 図 7は図 1にお ける VI I -VI I 線断面図、 図 8は吸 '排気弁の開閉時期と燃料噴射時期とを示す タイムチャート、 図 9はピストンの他の例を示す断面図である。  FIG. 1 is a cross-sectional view of the engine according to the present invention, and FIG. 2 is a cross-sectional view showing a part of the engine in an enlarged manner. In FIG. 1, the piston is positioned at the top dead center in the compression stroke. Fig. 3 is a plan view of the piston, Fig. 4 is a plan view showing the configuration near the combustion chamber of the engine viewed from the cylinder head side, and Fig. 5 is a bottom view showing the combustion chamber wall of the cylinder head. It is. Fig. 6 is a vertical sectional view of the cylinder and biston, Fig. 7 is a sectional view taken along the line VII-VII in Fig. 1, Fig. 8 is a time chart showing the opening and closing timing of the intake and exhaust valves and the fuel injection timing, and Fig. 9 FIG. 4 is a sectional view showing another example of the piston.
これらの図において、 符号 1で示すものは、 この実施の形態によるエンジンで ある。 このエンジン 1は、 L P Gや C N G (圧縮天然ガス) などのガス燃料を使 用して運転されるもので、 このガス燃料をシリンダへッ ド 2の燃料ガス供給用ィ ンジヱクタ 3から後述するノズル 4を通して吸気通路 5内に噴射する構造を採つ ている。 なお、 このエンジン 1の気筒数は、 図 1には説明の便宜上 1気筒分しか 描かれていないが、 複数の気筒をもつエンジンに用いることができる。 図 1にお いて、 符号 6はシリンダボディを示し、 7はビストン、 8はコンロッ ドを示す。 前記シリンダへッ ド 2は、 従来からよく知られているように、 D O H C型の動 弁装置 1 1 と点火プラグ 1 2が設けられるとともに、 前記吸気通路 5を形成する 吸気ポート 1 3と排気ポート 1 4とが設けられている。 In these figures, reference numeral 1 denotes an engine according to this embodiment. is there. The engine 1 is operated using a gas fuel such as LPG or CNG (compressed natural gas). The gas fuel is supplied from a fuel gas supply injector 3 of a cylinder head 2 to a nozzle 4 described later. Injection into the intake passage 5 is carried out. Although the number of cylinders of the engine 1 is shown in FIG. 1 for only one cylinder for convenience of explanation, it can be used for an engine having a plurality of cylinders. In FIG. 1, reference numeral 6 denotes a cylinder body, 7 denotes a piston, and 8 denotes a conrode. As is well known, the cylinder head 2 is provided with a DOHC type valve gear 11 and a spark plug 12, and has an intake port 13 and an exhaust port forming the intake passage 5. 14 are provided.
前記動弁装置 1 1は、 一気筒当たり 2本ずつの吸気弁 1 5と排気弁 1 6とを有 し、 これらの吸 ·排気弁 1 5, 1 6をそれぞれバルブリフタ一 1 7を介して吸気 カム軸 1 8と排気カム軸 1 9とによって駆動する。  The valve gear 11 has two intake valves 15 and two exhaust valves 16 for each cylinder, and the intake and exhaust valves 15 and 16 are supplied via a valve lifter 17 respectively. It is driven by a camshaft 18 and an exhaust camshaft 19.
前記点火プラグ 1 2は、 前記 4本の吸 '排気弁 1 5, 1 6に囲まれたシリンダ 中央部に配設されている。 この点火プラグ 1 2を螺着させるねじ孔を図 4および 図 5中に符号 2 0で示す。 図 5において、 符号 2 1は吸気弁 1 5によって開閉さ れる吸気ポート 1 3の吸気出口を示し、 2は排気弁 1 6によって開閉される排 気ポート 1 4の排気入口を示す。  The ignition plug 12 is disposed at the center of the cylinder surrounded by the four intake / exhaust valves 15 and 16. The screw holes into which the ignition plugs 12 are screwed are indicated by reference numeral 20 in FIGS. In FIG. 5, reference numeral 21 denotes an intake outlet of an intake port 13 opened and closed by an intake valve 15, and 2 denotes an exhaust inlet of an exhaust port 14 opened and closed by an exhaust valve 16.
前記吸気ポート 1 3は、 この実施の形態では吸気弁 1 5毎に設けられ (図 4参 照) 、 図 1に示すように、 シリンダへッ ド 2を上下方向 (シリンダ軸線 Cに沿う 方向) に貫通するように形成されている。 この吸気ポート 1 3の上流側には、 図 示していないが、 へッ ドカバーの吸気通路と、 へッドカバ一に取付けた吸気管な どを介してスロッ トル弁を接続している。  In this embodiment, the intake port 13 is provided for each intake valve 15 (see FIG. 4), and as shown in FIG. 1, the cylinder head 2 is moved vertically (in the direction along the cylinder axis C). It is formed so as to penetrate through. Although not shown, a throttle valve is connected to the upstream side of the intake port 13 via an intake passage of a head cover and an intake pipe attached to the head cover.
この実施の形態による吸気ポ一ト 1 3は、 図 1に示すように、 シリンダへッド 2の上端部の開口から下流側に向かうにしたがって次第に吸気弁 1 5に接近する ように傾斜し、 下流側端部に、 下流側へ向かうにしたがって次第に排気弁 1 6と は反対側へ延びる傾斜部 2 3が設けられている。 As shown in FIG. 1, the intake port 13 according to this embodiment is inclined so as to gradually approach the intake valve 15 from the opening at the upper end of the cylinder head 2 toward the downstream side. At the downstream end, the exhaust valve 16 gradually increases toward the downstream side. Is provided with an inclined portion 23 extending to the opposite side.
このように吸気ポート 1 3を形成することにより、 この吸気ボート 1 3を通過 した吸気は、 吸気流の慣性により吸気出口 2 1から排気弁 1 6とは反対方向を指 向する状態でシリンダ内に導かれる。  By forming the intake port 13 in this way, the intake air that has passed through the intake boat 13 flows in the cylinder from the intake outlet 21 in the direction opposite to the exhaust valve 16 due to the inertia of the intake flow. It is led to.
一方、 排気ポート 1 4は、 シリンダへッド 2内で排気弁 1 6毎の排気通路が合 流し、 シリンダへッド 2の一側部の排気出口 2 4まで延びるように形成されてい る。  On the other hand, the exhaust port 14 is formed so that the exhaust passage for each exhaust valve 16 merges in the cylinder head 2 and extends to the exhaust outlet 24 on one side of the cylinder head 2.
前記ビストン 7は、 図 1〜図 3および図 6に示すように、 頂部 7 aに斜面 2 5 および凹部 2 6を形成している。 前記斜面 2 5は、 図 2および図 4に示すように 、 ピストン 7の頂部 7 aにおける前記吸気弁 1 5と対向する部位に吸気弁 1 5の 並設方向へ延びるように形成されており、 吸気弁 1 5の弁体 1 5 1)の端面1 5 c (燃焼室壁の一部を形成する面) と平行になるように傾斜されている。 - 前記凹部 2 6は、 図 2および図 6に示すように、 ビストン 7の頂部 7 aにおけ る前記斜面 2 5に隣接する平面視 D字状の部位を下方へ半球状に凹ませるように して形成されている。 なお、 ピストン 7としては、 図 9に示すように、 頂部 7 a の斜面 2 5に隣接する部分を平坦に形成し、 この平坦部分 7 bが実質的に凹部 2 6になるように形成することもできる。 このピストン 7を使用することによって 、 図 1に示すビストン 7を使用する場合に較べて圧縮比を高くすることができる 前記燃料ガス供給用ィンジヱクタ 3は、 気筒毎に設けられ、 シリンダへッ ド 2 の一側部であって、 吸気ポート 1 3どうしの間と対応する部位に取付けられてい る。 このインジヱクタ 3は、 図示していない燃料タンクから燃料ガスが圧送され 、 予め定めた燃料噴射時期に先端の燃料噴射口 2 7 (図 7参照) からシリンダへ ッ ド 2の燃料通路 2 8に燃料ガスを噴射する。  As shown in FIGS. 1 to 3 and FIG. 6, the biston 7 has an inclined surface 25 and a concave portion 26 at the top 7a. As shown in FIGS. 2 and 4, the slope 25 is formed so as to extend in a direction in which the intake valves 15 are arranged side by side at a portion of the top 7a of the piston 7 which faces the intake valves 15; The valve body 15 of the intake valve 15 is inclined so as to be parallel to the end surface 15c (the surface forming a part of the combustion chamber wall) of the valve element 15 1). As shown in FIGS. 2 and 6, the concave portion 26 is formed so that a D-shaped portion in plan view adjacent to the slope 25 at the top 7a of the biston 7 is hemispherically recessed downward. It is formed. As shown in FIG. 9, the piston 7 should be formed so that a portion adjacent to the slope 25 of the top portion 7a is flat and the flat portion 7b is substantially a concave portion 26. Can also. The use of the piston 7 makes it possible to increase the compression ratio as compared with the case of using the piston 7 shown in FIG. 1. The fuel gas supply injector 3 is provided for each cylinder, and the cylinder head 2 And is attached to a portion corresponding to a space between the intake ports 13. The injector 3 is supplied with fuel gas from a fuel tank (not shown) under pressure. At a predetermined fuel injection timing, fuel flows from a fuel injection port 27 at the tip (see FIG. 7) to a fuel passage 28 of the cylinder head 2. Inject gas.
このインジェクタ 3による燃料噴射は、 図 8に示すように、 排気行程で吸気弁 1 5が閉じているとき (第 1次燃料噴射) と、 吸気行程で吸気弁 1 5が開いてい るとき (第 2次燃料噴射) に、 運転条件に対応させてそれぞれに噴射時期と噴射 期間を設定している。 As shown in FIG. 8, the fuel injection by the injector 3 is performed when the intake valve 15 is closed during the exhaust stroke (primary fuel injection) and when the intake valve 15 is opened during the intake stroke. When the fuel injection (secondary fuel injection) is performed, the injection timing and injection period are set in accordance with the operating conditions.
このインジェクタ 3が燃料を噴射する期間は、 前記第 1次燃料噴射のときに第 2次燃料噴射のときょり長くなるように設定している。 '燃料噴射量としては、 例 えば 1サイクルに供給する燃料の略 5 0〜 7 0 %の燃料ガスを第 1次燃料噴射時 に噴射させ、 残りを第 2次燃料噴射時に噴射させる。  The period during which the injector 3 injects the fuel is set so as to be longer at the time of the primary fuel injection and at the time of the secondary fuel injection. 'As the fuel injection amount, for example, approximately 50 to 70% of the fuel gas supplied in one cycle is injected at the time of the primary fuel injection, and the remainder is injected at the time of the secondary fuel injection.
ィンジヱクタ 3が燃料を噴射する前記燃料通路 2 8は、 図 7に示すように、 ィ ンジヱクタ装着用の穴 2 9から各吸気ポ一ト 1 3側へ延びて吸気ポート 1 3の下 流側端部に開口する吸気ポート 1 3毎の貫通孔 3 0と、 これらの貫通孔 3 0にそ れぞれ吸気ポート 1 3の吸気出口 2 1側から嵌入させて固着したパイプからなる ノズル 4とによって構成されている。 各ノズル 4は、 図 4に示すように、 吸気ポ ート 1 3内における隣り合う吸気ポート 1 3の近傍に配設され、 図 1に示すよう に、 吸気の流れる方向の下流側を先端の開口が指向するように屈曲されている。 ここでいう吸気流の下流側とは、 吸気ポート 1 3の傾斜部 2 3によつて流れる 方向が規制された吸気の下流側のことをいい、 吸気ポート 1 3の吸気出口 2 1か ら排気弁 1 6とは反対側であって斜め下方を指向する方向のことである。  As shown in FIG. 7, the fuel passage 28 through which the injector 3 injects fuel extends from the hole 29 for mounting the injector to each intake port 13 side, and is a downstream end of the intake port 13. And a nozzle 4 made of a pipe fitted and fixed in each of the through holes 30 from the intake outlet 21 side of the intake port 13. It is configured. As shown in FIG. 4, each nozzle 4 is disposed in the vicinity of an adjacent intake port 13 in the intake port 13 and, as shown in FIG. The opening is bent so as to be directed. The downstream side of the intake air here means the downstream side of the intake air whose flow direction is regulated by the inclined portion 23 of the intake port 13, and the exhaust air is exhausted from the intake outlet 21 of the intake port 13. The direction opposite to the valve 16 and pointing obliquely downward.
このようにノズル 4を形成することによって、 吸気行程でノズル 4から吸気ポ —ト 1 3内に噴射された燃料ガスは、 図 1中に黒色に塗り潰した矢印 Gで示すよ うに、 吸気弁 1 5と吸気出口 2 1 との間の隙間を通ってシリンダ内の排気弁 1 6 から離間する方向であって斜め下方へ流入する。 '  By forming the nozzle 4 in this manner, the fuel gas injected into the intake port 13 from the nozzle 4 during the intake stroke is supplied to the intake valve 1 as shown by a black solid arrow G in FIG. The air flows obliquely downward in a direction away from the exhaust valve 16 in the cylinder through a gap between the air outlet 5 and the air outlet 21. '
このように構成されたエンジン 1においては、 図 8に示すように、 排気行程で ピストン 7が上昇しているとき (吸気弁 1 5が閉じているとき) にインジェク夕 3で 1回目の燃料噴射が行われる。 このときには、 吸気弁 1 5が閉じているため に、 燃料ガスは吸気ポート 1 3内に滞留する。 そして、 排気行程の終期であって ビストン Ίが上死点に達する直前に吸気弁 1 5が開き、 ビストン 7が上死点を越 えた後の下降行程で、 上述したように吸気ポート 1 3内に滞留している燃料ガス と、 新気とがシリンダ内に吸い込まれる。 In the engine 1 configured as described above, as shown in FIG. 8, when the piston 7 is rising in the exhaust stroke (when the intake valve 15 is closed), the first fuel injection in the injection 3 is performed. Is performed. At this time, the fuel gas stays in the intake port 13 because the intake valve 15 is closed. Then, at the end of the exhaust stroke, just before Viston に reaches the top dead center, the intake valve 15 opens, and Viston 7 crosses the top dead center. In the descending stroke after the intake, the fuel gas remaining in the intake port 13 and the fresh air are sucked into the cylinder as described above.
前記燃料ガスは、 吸気弁 1 5と吸気出口 2 1 との間の隙間の略全域からシリン ダ内に流入するが、 吸気ボート 1 3からシリンダ内に斜め下方へ向けて吸入され. る吸気に押されるようにして大部分が吸気と略同じ方向へ流される。 この燃料ガ スと新気は、 シリンダの内周面に沿うようにシリンダ内の下部へ流れる。  The fuel gas flows into the cylinder from substantially the entire gap between the intake valve 15 and the intake outlet 21, but is sucked obliquely downward from the intake boat 13 into the cylinder. Most of it is pushed in the same direction as the intake air as it is pushed. The fuel gas and fresh air flow to the lower part of the cylinder along the inner peripheral surface of the cylinder.
上述したようにシリンダ内に吸い込まれた吸気は、 ビストン頂部 7 aの凹部 2 6に当たって流れる方向が変えられ、 シリンダ内に、 図 1中に矢印 Tで示すよう にタンブル流が発生する。 このタンブル流は、 図 1に示すように、 カム軸の軸方 向から見てシリンダの軸線 Cより吸気弁 1 5側でシリンダへッ ド から離間し、 排気弁 1 6側でシリンダへッ ド 2に接近するような旋回流で、 一般的に呼称され るタンブル流とは旋回する方向が逆方向のいわゆる逆タンブル流である。 このよ うにタンブル流が形成されることによって、 燃料ガスが新気と混合されてシリン ダ内で拡散し、 希薄な混合気が形成される。  As described above, the direction of the intake air sucked into the cylinder hits the concave portion 26 of the piston top 7a, and the flow direction is changed, so that a tumble flow is generated in the cylinder as indicated by an arrow T in FIG. As shown in Fig. 1, this tumble flow is separated from the cylinder head on the intake valve 15 side and the cylinder head on the exhaust valve 16 side from the cylinder axis C as viewed from the camshaft axial direction. This is a swirling flow approaching 2, and is a so-called reverse tumble flow in which the swirling direction is opposite to the generally called tumble flow. By forming the tumble flow in this way, the fuel gas is mixed with the fresh air and diffuses in the cylinder to form a lean air-fuel mixture.
その後、 吸気行程の途中でィンジ クタ 3による 2回目の燃料噴射が行われる Then, during the intake stroke, the second fuel injection by the injector 3 is performed.
(図 8参照) 。 このとき、 燃料ガスは、 2本のノズル 4から吸気弁 1 5と吸気出 口 2 1 との間の隙間を通してシリンダ内にそれぞれ噴射される。 シリンダ内には 上述したようにタンブル流 Tが形成されているから、 前記燃料ガスは、 図 6に示 すように、 タンブル流 Tに乗るようにしてシリンダ内で旋回する。 ノズル 4は、 二つの吸気ポート 1 3の互いに隣り合う部分の近傍に設けられているから、 この ノズル 4から噴射された燃料は、 点火プラグ 1 2の近傍で層状に流れる。 すなわ ち、 圧縮行程の終期には、 点火プラグ 1 2の周辺近傍に相対的に濃い混合気が層 状に供給される。 (See Figure 8). At this time, the fuel gas is injected into the cylinder from the two nozzles 4 through the gap between the intake valve 15 and the intake outlet 21. Since the tumble flow T is formed in the cylinder as described above, the fuel gas turns inside the cylinder so as to ride on the tumble flow T as shown in FIG. Since the nozzles 4 are provided near portions of the two intake ports 13 adjacent to each other, the fuel injected from the nozzles 4 flows in a laminar manner near the spark plugs 12. That is, at the end of the compression stroke, a relatively rich air-fuel mixture is supplied in a stratified manner near the periphery of the spark plug 12.
このように 2回目の燃料噴射が行われて吸気弁 1 5が閉じた後に、 ピストン 7 が圧縮上死点に移行することによって、 シリンダ内のタンブル流 Tは、 図 2に示 すように、 ビストン頂部 7 aの凹部 2 6 とシリンダへッ ド 2側の燃焼室壁 3 1 と の間に形成される空間 (燃焼室 3 2 ) で旋回しながら縮径される。 一方、 このと きには、 ビストン頂部 7 aの前記斜面 2 5とシリンダへッ ド 2側の燃焼室壁 3 1 との間の隙間 (スキッシュエリア) から混合気が押し出され、 スキッシュ流が生 じる。 このスキッシュ流を図 2中に矢印 Sで示す。 After the second fuel injection is performed and the intake valve 15 is closed, the piston 7 shifts to the compression top dead center, so that the tumble flow T in the cylinder becomes as shown in FIG. The recess 26 at the top of the piston 7a and the combustion chamber wall 31 on the cylinder head 2 side The diameter is reduced while turning in the space (combustion chamber 3 2) formed between them. On the other hand, at this time, the air-fuel mixture is pushed out from the gap (squish area) between the slope 25 on the top of the piston 7a and the combustion chamber wall 31 on the side of the cylinder head 2, and a squish flow is generated. I will. This squish flow is indicated by arrow S in FIG.
このスキッシュ流 Sは、 図 2において燃焼室 3 2内をシリンダへッ ド 2側の燃 焼室壁面に沿って排気弁 1 6側へ進行するから、 このスキッシュ流 Sと前記タン ブル流 Tとが点火ブラグ 1 2の近傍で互いに衝突する。 このェンジン 1において は、 スキッシュエリアから混合気が噴出している期間内に点火プラグ 1 2による 点火が行われるように点火時期を設定している。 .  In FIG. 2, the squish flow S proceeds in the combustion chamber 32 toward the exhaust valve 16 along the combustion chamber wall on the cylinder head 2 side in FIG. Collide with each other near the ignition plug 12. In the engine 1, the ignition timing is set so that the ignition by the ignition plug 12 is performed during the period when the air-fuel mixture is ejected from the squish area. .
タンブル流 Tとスキッシュ流 Sとが互いに衝突することによって、 混合気は、 微小な渦 (マイクロタービュレンス) となって分散され、 夕ンブル流 Tとスキッ シュ流 Sとが合成されてなるガス流によってビストン頂咅 a側へ下降する。 こ のため、 前記マイクロタービュレンスによつて着火後の火炎核の成長が助長され るとともに、 火炎がピストン頂部 7 a側へ拡がるようになり、 燃焼範囲が急速に 拡大される。 この実施の形態では、 ノズル から燃料ガスを点火プラグ 1 2の近 傍に層状に供給しているから、 燃料ガスの総供給量が理論空燃比での供給量より 著しく少なくても確実に着火される。  When the tumble flow T and the squish flow S collide with each other, the air-fuel mixture is dispersed as minute vortices (microturbulence), and the gas flow formed by combining the evening flow T and the squish flow S Then, go down to the top of Biston ビ a side. For this reason, the growth of the flame nucleus after ignition is promoted by the microturbulence, and the flame spreads to the piston top 7a side, so that the combustion range is rapidly expanded. In this embodiment, since the fuel gas is supplied from the nozzle in the form of a layer in the vicinity of the spark plug 12, even if the total supply amount of the fuel gas is significantly smaller than the supply amount at the stoichiometric air-fuel ratio, the ignition is reliably performed. You.
したがって、 シリンダ内に供給される燃料ガスの総供給量を理謫空燃比での供 給量に較べて著しく低減させた希薄燃焼を行っているにもかかわらず、 急速燃焼 が可能になつて燃焼改善を図ることができ、 燃費を向上させることができる。 また、 タンブル流 Tとスキッシュ流 Sの衝突により混合気流の運動エネルギー が減衰するから、 衝突後の混合気の状態は、 エンジン 1の回転速度や負荷が変化 しても大きく変化することはない。 このため、 上述したような燃焼が急速に行わ れる現象が広い運転域にわたって同様に起こり、 エンジン運転域の略全域にわた つて燃焼改善を図ることができるようになる。  Therefore, despite the fact that lean combustion is performed in which the total supply amount of fuel gas supplied into the cylinder is significantly reduced as compared with the supply amount at the operating air-fuel ratio, rapid combustion is possible and combustion is possible. Improvements can be made and fuel efficiency can be improved. Further, the kinetic energy of the air-fuel mixture is attenuated by the collision of the tumble flow T and the squish flow S, so that the state of the air-fuel mixture after the collision does not change significantly even if the rotation speed or load of the engine 1 changes. For this reason, the above-described phenomenon in which combustion is rapidly performed similarly occurs over a wide operating range, and combustion can be improved over substantially the entire engine operating range.
さらに、 シリンダ内の混合気の流動 (ピストン頂部 7 aの凹部 2 6内で下方へ 向けて流れる流動) は点火後も継続するから、 ピストン 7の頂部 7 aの近傍で成 長した初期燃焼ガス部分に未燃ガスが継続的に供給されるようになる。 このため 、 初期燃焼ガスは、 未燃ガスで攪拌されながら拡散し、 高温で保持されることは ないから、 N o xが生成されるのを抑制することができる。 なお、 E G R量を増 大させる場合にも上記と同等に作用し、 燃費向上と N 0 Xの低減とを図ることが できる。 Furthermore, the flow of the air-fuel mixture in the cylinder (downward in the recess 26 at the top 7a of the piston) The flow flowing toward the piston continues after the ignition, so that the unburned gas is continuously supplied to the portion of the initial combustion gas that has grown near the top 7a of the piston 7. For this reason, the initial combustion gas diffuses while being stirred by the unburned gas, and is not kept at a high temperature, so that generation of Nox can be suppressed. In addition, when the EGR amount is increased, the same operation as described above is performed, and the fuel efficiency can be improved and the NOx can be reduced.
さらにまた、 タンブル流 Tとスキッシュ流 Sとの衝突によつて混合気流の運動 エネルギ一が減衰することにより、 点火ブラグ 1 2の電極 1 2 a, 1 2 b (図 2 参照) の隙間内を混合気が高速で流れることがないから、 着火が安定するととも に、 点火電圧を高く しなくてよいから既存の点火装置を使用することができる。 この実施の形態ではガス燃料を用いる例を示したが、 本発明は、 ガソリンを燃 料とするエンジン 1にも適用することができる。 この場合には、 タンブル流丁と スキッシュ流 Sとが互いに衝突するように構成する他は、 従来のエンジン 1 と同 等の構成を採ることができる。 燃料をガス燃料とすることにより、 ノズル 4を用 いて燃料を層状に供給できるし、 第 1次の燃料噴射により供給された燃料ガスを シリ ンダ内に効率よく分散させることができるから、 液体燃料よりガス燃料を使 用する方が燃焼改善を図るうえで有利である。  Furthermore, the kinetic energy of the mixture flow is attenuated by the collision of the tumble flow T and the squish flow S, so that the gap between the electrodes 12a and 12b of the ignition plug 12 (see Fig. 2) is reduced. Since the air-fuel mixture does not flow at high speed, ignition is stable, and the ignition voltage does not need to be high, so that the existing ignition device can be used. In this embodiment, an example using gas fuel has been described, but the present invention can be applied to an engine 1 using gasoline as fuel. In this case, the same configuration as that of the conventional engine 1 can be adopted except that the tumble flow stub and the squish flow S collide with each other. By using gas fuel as the fuel, the fuel can be supplied in a layered manner using the nozzle 4 and the fuel gas supplied by the primary fuel injection can be efficiently dispersed in the cylinder, so that the liquid fuel It is more advantageous to use gaseous fuel to improve combustion.
この実施の形態では、 吸気を吸気ボート 1 3からシリンダ内における排気弁 1 6とは反対側へ流入させてシリンダ内にいわゆる逆タンブル流を発生させ、 スキ ッシュ流 Sを発生させる空間 (スキッシュエリア) を相対的に低温な吸気弁 1 5 側に形成しているから、 スキッシュエリアを排気弁 1 6側に形成する場合に較べ てノッキングが生じ難くなる。  In this embodiment, a space (a squish area) in which intake air flows from the intake boat 13 to the opposite side of the exhaust valve 16 in the cylinder to generate a so-called reverse tumble flow in the cylinder to generate a squish flow S ) Is formed on the relatively low temperature intake valve 15 side, so that knocking is less likely to occur than when the squish area is formed on the exhaust valve 16 side.
また、 吸気ポート 1 3の下流側端部に下流側へ向かうにしたがって次第に排気 弁 1 6とは反対側へ延びる傾斜部 2 3を設けることによって、 逆タンブル流が形 成されるように吸気の流れる方向を規制しているから、 吸気の流れる方向を変え るための部材を吸気ポート 1 3内に設ける場合に較べて、 吸気抵抗が小さくなる とともに、 部品数を低減することができる。 The downstream end of the intake port 13 is provided with a sloping portion 23 that gradually extends toward the opposite side from the exhaust valve 16 toward the downstream side, so that a reverse tumble flow is formed. Because it regulates the direction of air flow, In comparison with a case where members for providing the air pressure are provided in the air intake port 13, the air intake resistance is reduced and the number of parts can be reduced.
(第 の実施の形態)  (Second embodiment)
タンブル流を発生させるためには、 図 1 0ないし図 1 5に示す案内部材を吸気 ポ一トに取付けることができる。  In order to generate a tumble flow, the guide member shown in FIGS. 10 to 15 can be attached to the intake port.
図 1 0は案内部材を設けたエンジンの断面図、 図 1 1は図 1 0における要部を 拡大して示す断面図、 図 1 2は図 1 1における XI I -XI I 線断面図、 図 1 3は案 内部材を示す図で、 同図 (a ) は吸気ポートに組付けた状態での横断面図、 同図 ( b ) は側面図で、 (b ) 図においては、 (a ) 図の破断位置を A— A線によつ て示している。 図 1 3 ( c ) は (a ) 図における C— C線断面図、 同図 (d ) は 装着前の自由状態を示し、 同図 (b ) は装着時に縮径させた状態を示す。 図 1 4 は図 1 3に示した案内部材の分解斜視図、 図 1 5は案内部材の他の例を示す図で 、 同図 (a ) は平面図、 同図 (b ) は側面図、 同図 (c ) は (a ) 図における C 一 C線断面図、 同図 (d ) は装着時に縮径させた状態を示す平面図である。 これらの図において、 前記図 1〜図 9によって説明したものと同一または同等 の部材については、 同一符号を付し詳細な説明を適宜省略する。  FIG. 10 is a cross-sectional view of an engine provided with a guide member, FIG. 11 is a cross-sectional view showing an enlarged part of FIG. 10, FIG. 12 is a cross-sectional view taken along line XI I-XI I in FIG. 13 is a view showing the in-vehicle member, FIG. (A) is a cross-sectional view in a state of being assembled to the intake port, FIG. (B) is a side view, and (b) is (a) The fracture position in the figure is indicated by the line A-A. Fig. 13 (c) is a cross-sectional view taken along the line CC in Fig. (A), Fig. 13 (d) shows a free state before mounting, and Fig. 13 (b) shows a state where the diameter is reduced at the time of mounting. FIG. 14 is an exploded perspective view of the guide member shown in FIG. 13, FIG. 15 is a view showing another example of the guide member, FIG. 14 (a) is a plan view, FIG. 14 (b) is a side view, FIG. 3C is a cross-sectional view taken along the line C-C in FIG. 3A, and FIG. In these drawings, the same or equivalent members as those described with reference to FIGS. 1 to 9 are denoted by the same reference numerals, and detailed description will be appropriately omitted.
この実施の形態によるエンジン 1は、 図 1 0に示すように、 吸気ポート 1 3に 後述する案内部材 4 1が設けられている他は前記第 1の実施の形態で示した ン ジン 1 と同等の構成を採っている。  The engine 1 according to this embodiment is the same as the engine 1 shown in the first embodiment except that a guide member 41 described later is provided in an intake port 13 as shown in FIG. The configuration is adopted.
前記案内部材 4 1は、 図 1 3および図 1 4に示すように、 C字状の固定用リン グ 4 2と、 このリング 4 2に溶接したシュラウド 4 3とによって構成されている 前記リング 4 2は、 ばね材からなり、 吸気ポート 1 3の下流側端部に形成した 凹溝 4 4 (図 1 1参照) に自らの弾発力によって拡径して係合できるように形成 されている。 また、 このリング 4 2の雨端部には、 図示していない工具を掛ける ためのフック 4 5を一体に形成している。 前記シュラウド 4 3は、 前記リング 4 2の内周面に沿うように平面視において 円弧状に湾曲させた支持板 4 6と、 この支持板 4 6に一体に形成した平面視扇状 のシユラウド本体 4 7とによって構成されている。 前記支持板 4 6は、 リング 4 2の前記フック 4 5を揷通させるための開口 4 8が形成されており、 この開口 4 8にフック 4 5を揷通させた状態でリング 4 2の内周部に重ねて一端部をリング 4 2に溶接している。 支持板 4 6とリング 4 2の溶接範囲を図 1 3 ( a ) 中に符 号 Wで示す。 As shown in FIGS. 13 and 14, the guide member 41 includes a C-shaped fixing ring 42 and a shroud 43 welded to the ring 42. 2 is made of a spring material, and is formed so that it can be engaged with a concave groove 44 (see FIG. 11) formed at a downstream end of the intake port 13 by its own elastic force. . A hook 45 for attaching a tool (not shown) is formed integrally with the rain end of the ring 42. The shroud 43 includes a support plate 46 curved in an arc shape in plan view along the inner peripheral surface of the ring 42, and a fan-shaped shroud body 4 formed integrally with the support plate 46 in plan view. It is composed of 7 and. The support plate 46 is formed with an opening 48 through which the hook 45 of the ring 42 is inserted. When the hook 45 is passed through the opening 48, the inside of the ring 42 is formed. One end is welded to the ring 42 over the periphery. The welding area between the support plate 46 and the ring 42 is indicated by the symbol W in Fig. 13 (a).
前記シユラウド 4 3は、 支持板 4 6からリング 4 2の中心へ向かうにしたがつ て次第に下方 (吸気流の下流側) へ延びるように傾斜するとともに、 円錐面の一 部をなすように湾曲している。  The shroud 43 is inclined so as to gradually extend downward (downstream of the intake air flow) from the support plate 46 toward the center of the ring 42, and is curved so as to form part of a conical surface. are doing.
また、 この案内部材 4 1は、 前記シュラウド 4 3の下端が閉状態の吸気弁 1 5 とクリアランスをおいて対向するように配置されている。  The guide member 41 is disposed such that the lower end of the shroud 43 faces the intake valve 15 in a closed state with a clearance.
このように形成された案内部材 4 1は、 シリンダヘッド 2に吸気弁 1 5を組付 ける以前に吸気ポート 1 3に組付ける。 詳述すると、 先ず、 図 1 3 ( d ) に示す ように自由状態にある案内部材 4 1のリング 4 2のフック 4 5を図示していない ペンチ等の工具で挾んでリング 4 2を弾発力に杭して縮径させ {図 1 3 ( e ) 参 照 } 、 この案内部材 4 1を吸気ポート 1 3内に燃焼室側から揷入する。 そして、 リング 4 2が吸気ポート 1 3の凹溝 4 4に係合する状態で前記フック 4 5を解放 させる。 このときに、 シュラウド 4 3が排気弁 1 6側に位置するように案内部材 4 1を位置決めする。 工具を放すことによって、 リング 4 2が自らの弾発力で拡 径し、 吸気ポート 1 3 (シリンダへッ ド 1 ) に固定される。  The guide member 41 thus formed is attached to the intake port 13 before the intake valve 15 is attached to the cylinder head 2. More specifically, first, as shown in FIG. 13 (d), the hooks 45 of the ring 42 of the guide member 41 in the free state are sandwiched between tools such as pliers (not shown) to spring the ring 42. The guide member 41 is inserted into the intake port 13 from the combustion chamber side by reducing the diameter by staking the force {see FIG. 13 (e)}. Then, the hook 45 is released while the ring 42 is engaged with the concave groove 44 of the intake port 13. At this time, the guide member 41 is positioned so that the shroud 43 is located on the exhaust valve 16 side. When the tool is released, the ring 42 expands with its own elasticity and is fixed to the intake port 13 (cylinder head 1).
図 1 0〜図 1 4に示す案内部材 4 1は、 リング 4 2のフック 4 5がシユラウド 4 3の上に位置付けられるように形成しているが、 案内部材 4 1は、 図 1 5に示 すように形成することもできる。  The guide member 41 shown in FIGS. 10 to 14 is formed so that the hook 45 of the ring 42 is positioned on the shroud 43, but the guide member 41 is shown in FIG. It can also be formed as follows.
図 1 5に示す案内部材 4 1は、 リング 4 2におけるフック 4 5と対向する内周 部 4 2 aにシュラウド 4 3の支持板 4 6を溶接している。 この案内部材 4 1のリング 4 2は、 図 1 5 ( a ) 中に実線で示す自由状態から 同図 (d ) に示すように縮径させて吸気ポート 1 3に装着される。 装着後には、 このリング 4 2は、 同図 (a ) 中に二点鎖線で示すように自由状態から縮径され た状態になり、 自らの弾発力によって吸気ポート 1 3に固定される。 A guide member 41 shown in FIG. 15 has a support plate 46 of a shroud 43 welded to an inner peripheral portion 42 a of the ring 42 facing the hook 45. The ring 42 of the guide member 41 is attached to the intake port 13 with a reduced diameter as shown in FIG. 15 (d) from the free state shown by the solid line in FIG. 15 (a). After mounting, the ring 42 is reduced in diameter from the free state as shown by the two-dot chain line in FIG. 7A, and is fixed to the intake port 13 by its own elastic force.
このように案内部材 4 1を形成することによって、 フック 4 5を下方から視認 することができるから、 フック 4 5をペンチ等によって挾むときにフック 4 5の 位置を簡単に確認することができ、 組付作業が容易になる。 この案内部材 4 1 を 取付ける位置は、 図 1 0〜図 1 4に示す案内部材 4 1 と同一である。  By forming the guide member 41 in this manner, the hook 45 can be visually recognized from below, so that the position of the hook 45 can be easily confirmed when the hook 45 is sandwiched by pliers or the like. The assembly work becomes easy. The mounting position of the guide member 41 is the same as the guide member 41 shown in FIGS.
図 1 0〜図 1 5に示す案内部材 4 1を吸気ポート 1 3に設けることにより、 シ ユラウド 4 3によつて実質的に吸気ポート 1 3の傾斜部 2 3が延長されることに なり、 吸気弁 1 5に当たって吸気出口 2 1 との間の隙間から排気弁 1 6側へ流入 する吸気を低減することができる。 この結果、 タンブル流 Tをより一層強く発生 させることができる。  By providing the guide member 41 shown in FIGS. 10 to 15 at the intake port 13, the inclined portion 23 of the intake port 13 is substantially extended by the shroud 43, The intake air flowing into the exhaust valve 16 from the gap between the intake valve 21 and the intake outlet 21 can be reduced. As a result, the tumble flow T can be generated more strongly.
したがって、 案内部材 4 1によってタンブル流 Tの強さを変えることができる から、 発生するスキッシュ流 Sに対して最適な強さになるように、 案内部材 4 1 でタンブル流 Tを発生させることによって、 マイクロタ一ビュレンスを確実に生 成することができるようになる。 このため、 より一層燃焼改善を図ることができ る。  Therefore, since the strength of the tumble flow T can be changed by the guide member 41, the tumble flow T is generated by the guide member 41 so that the strength becomes optimum with respect to the generated squish flow S. Therefore, it is possible to surely generate a microturbulence. Therefore, the combustion can be further improved.
(第 3の実施の形態)  (Third embodiment)
案内部材は図 1 6ないし図 2 4に示すように形成することができる。  The guide member can be formed as shown in FIGS.
図 1 6は案内部材の他の例を示すエンジンの一部の断面図、 図 1 7は案内部材 を拡大して示す断面図、 図 1 8はエンジンの燃焼室近傍の部位をシリンダへッ ド 側から見た状態の構成を示す平面図、 図 1 9はタンブル流を説明するための模式 図、 図 2 0は燃料ガス供給用ノズルの底面図、 図 2 1は図 1 6における A— A線 断面図、 図 2 2は図 1 6における B— B線断面図、 図 2 3は図 1 6における C— C線断面図である。 図 2 4は案内部材と吸気弁の弁体を拡大して示す斜視図であ る。 Fig. 16 is a cross-sectional view of a part of the engine showing another example of the guide member. Fig. 17 is a cross-sectional view showing the guide member on an enlarged scale. Fig. 18 is a cylinder head showing a portion near the combustion chamber of the engine. FIG. 19 is a schematic view for explaining a tumble flow, FIG. 19 is a bottom view of a fuel gas supply nozzle, and FIG. 21 is A—A in FIG. 16. 22 is a sectional view taken along the line BB in FIG. 16, and FIG. 23 is a sectional view taken along the line CC in FIG. FIG. 24 is an enlarged perspective view showing the guide member and the valve body of the intake valve. You.
これらの図において、 前記図 1〜図 1 5によって説明したものと同一または同 等の部材については、 同一符号を付し詳細な説明を適宜省略する。  In these drawings, members that are the same as or similar to those described with reference to FIGS. 1 to 15 are denoted by the same reference numerals, and detailed description is omitted as appropriate.
図 1 6ないし図 2 4に示すエンジン 1は、 吸気弁 1 5に案内部材 5 1を設けて いる。 この案内部材 5 1は、 図 2 4に示すように、 円錐の一部をなす形状の金属 板 (こよって構成され、 吸気弁 1 5の弁体 1 5 bの上面に溶接されている。  The engine 1 shown in FIGS. 16 to 24 has a guide member 51 provided on an intake valve 15. As shown in FIG. 24, the guide member 51 is formed of a metal plate (formed of a part of a cone) and is welded to the upper surface of the valve element 15 b of the intake valve 15.
案内部材 5 1の形状をさらに詳しく説明すると、 この案内部材 5 1は、 図 2 2 に示すように、 上方に向かうにしたがって幅が広くなる平面視扇状に形成すると ともに、 図 1 7に示すように、 側面視において上方に向かうにしたがって次第に 吸気弁 1 5の径方向の外側に偏在するように傾斜している。 案内部材 5 1を吸気 弁 1 5に取付ける位置は、 図 1 7および図 1 8に示すように、 吸気弁 1 5におけ る排気弁 1 6に近接する一側部であって、 図 1 2に示すように、 案内部材 5 1の 内面 5 1 aの円弧の中心が吸気弁 1 5の軸心と略一致するように位置付けられて いる。  The shape of the guide member 51 will be described in more detail. As shown in FIG. 22, the guide member 51 is formed in a fan shape in a plan view in which the width increases upward and as shown in FIG. 17. In addition, the intake valve 15 is inclined so as to be unevenly distributed radially outward of the intake valve 15 as it goes upward in a side view. The position where the guide member 51 is attached to the intake valve 15 is located on one side of the intake valve 15 near the exhaust valve 16 as shown in FIG. 17 and FIG. As shown in the figure, the center of the arc of the inner surface 51 a of the guide member 51 is positioned so as to substantially coincide with the axis of the intake valve 15.
また、 この案内部材 5 1の高さは、 図 1 6, 1 7に示すように、 吸気弁 1 5が 開いたときに上端部が吸気ポート 1 3の吸気出口 2 1より上流側に臨み、 図 1 7 中に二点鎖線で示したように、 吸気弁 1 5が閉じたとしても上端部が吸気ポート 1 3の内壁面に接触することがないように設定されている。  As shown in FIGS. 16 and 17, the height of the guide member 51 is such that when the intake valve 15 is opened, the upper end faces upstream from the intake outlet 21 of the intake port 13, As shown by the two-dot chain line in FIG. 17, even when the intake valve 15 is closed, the upper end is set so as not to contact the inner wall surface of the intake port 13.
この実施の形態においては、 吸気弁 1 5がバルブステム 1 5 aを中心にして回 動し、案内部材 5 1の吸気ポート 1 3に対する位置が変化してしまうのを阻止す るために、 図 2 3に示すように、 バルブステム 1 5 aを断面四角形状に形成する とともに、 この断面四角形状の部位をシリンダへッ ド 2側のバルブステムガイド 5 2に摺動自在に係合させている。  In this embodiment, in order to prevent the intake valve 15 from rotating around the valve stem 15a and changing the position of the guide member 51 with respect to the intake port 13, FIG. As shown in FIG. 23, the valve stem 15a is formed in a rectangular cross section, and the rectangular cross section is slidably engaged with the valve stem guide 52 on the cylinder head 2 side. .
この実施の形態によるシリンダへッド 2の吸気ポ一ト 1 3は、 図 1 6に示すよ うに、 一般的なェンジン 1で多く採用されているように、 シリンダへッ ド 2の一 側部 2 aから燃焼室 3 2へ向って斜めに延びるように形成されている。 また、 こ の吸気ポート 1 3は、 吸気通路 5が途中で吸気弁 1 5每の分岐通路 5 a, 5 bに 分岐されるように形成されている。 The intake port 13 of the cylinder head 2 according to this embodiment is, as shown in FIG. 16, one side of the cylinder head 2 as often used in a general engine 1. It is formed so as to extend obliquely from 2 a toward the combustion chamber 32. Also, this The intake port 13 is formed so that the intake passage 5 is branched into branch passages 5a and 5b of the intake valve 15 1 on the way.
このように吸気ポート 1 3を形成すると、 吸気弁 1 5が開いたときに吸気が慣 性によって燃焼室 2 3の中央部分へ多く流入するようになるが、 この実施の形態 によれば、 吸気の大部分が前記案内部材 5 1に当たり、 流れる方向が変えられる 。'すなわち、 吸気は、 案内部材 5 1に当たることによって排気弁 1 6とは反対方 向へ向けて流れるようになるから、 このエンジン 1においても第 1および第 2の 実施の-形態と同様に、 シリンダ内に逆夕ンブル流が発生する。  When the intake port 13 is formed in this manner, a large amount of intake air flows into the central portion of the combustion chamber 23 due to inertia when the intake valve 15 is opened. Most of the contact with the guide member 51 changes the flowing direction. That is, since the intake air flows in the opposite direction to the exhaust valve 16 by hitting the guide member 51, the engine 1 also has the same structure as the first and second embodiments, A reverse tumbling flow occurs in the cylinder.
吸気ポート 1 3を上述したようにシリンダへッ ド 2の側部から斜めに延設して いることにより、 燃料ガスを供給するノズル 4は、 シリンダへッ ド 2の一側部 1 aから吸気弁 1 5の近傍まで延びるように形成されている。 このノズル 4は、 図 2 0および図 2 1に示すように、 吸気弁 1 5毎のパイプ 4 a, 4 aと、 これらパ ィプ 4 aの上流側端部をそれぞれ接続したパイプホルダ 4 bとによって構成され ている。 前記パイプ 4 aは、 第 1および第 2の実施の形態を採るときと同様に、 下流側端部が吸気ポート 1 3内における隣り合う吸気ポート 1 3の近傍に配設す とともに、 吸気の流れる方向の下流側を先端の開口が指向するように屈曲させて おり、 上流側端部が吸気ポート 1 3内を吸気ポート上壁 1 3 a (図 1 6参照) に 沿つて上流側へ延設させている。  As described above, since the intake port 13 extends obliquely from the side of the cylinder head 2 as described above, the nozzle 4 for supplying the fuel gas is supplied from one side 1a of the cylinder head 2 through the intake port. It is formed so as to extend to the vicinity of the valve 15. As shown in FIGS. 20 and 21, the nozzle 4 has pipes 4 a, 4 a for each intake valve 15, and a pipe holder 4 b connected to the upstream end of each pipe 4 a. It is composed of As in the case of the first and second embodiments, the pipe 4a has a downstream end disposed in the vicinity of the adjacent intake port 13 in the intake port 13 and flows the intake air. The downstream end in the direction is bent so that the opening at the tip is directed, and the upstream end extends in the intake port 13 to the upstream side along the intake port upper wall 13a (see Fig. 16). Let me.
前記ノズルホルダ 4 bは、 図 2 0に示すように、 前記パイプ 4 aに連通する燃 料通路 4 cがパイプ毎に穿設されており、 図 1 6に示すように、 吸気ポート上壁 1 3 aに固定用ボルト 5 3によって固定されている。 この実施の形態によるシリ ンダへッ ド 2は、 前記固定用ボルト 5 3を工具 (図示せず) によって簡単に着脱 できるように、 吸気ポート下壁 1 3 bに工具揷通用の貫通穴 5 4が穿設されてい る。 図 1 6において前記貫通穴 5 4の開口端に設けた符号 5 5で示すものは、 貫 通穴 5 4を閉塞するための栓部材である。  In the nozzle holder 4b, as shown in FIG. 20, a fuel passage 4c communicating with the pipe 4a is formed in each pipe, and as shown in FIG. It is fixed to 3a by fixing bolts 53. The cylinder head 2 according to this embodiment has a through hole 5 4 for tool passage in the lower wall 13 b of the intake port so that the fixing bolt 53 can be easily attached and detached by a tool (not shown). Are drilled. In FIG. 16, the reference numeral 55 provided at the open end of the through hole 54 is a plug member for closing the through hole 54.
パイプホルダ 4 bの前記燃料通路 4 cは、 パイプホルダ 4 bの上流側端部に開 口しており、 シリンダへッ ド 2に装着した燃料ガス用ィンジヱクタ 3から燃料ガ スを噴射する。 The fuel passage 4c of the pipe holder 4b opens at the upstream end of the pipe holder 4b. The fuel gas is injected from the fuel gas injector 3 mounted on the cylinder head 2.
この実施の形態で示したように案内部材 5 1およびシリンダへッ ド 2を構成し ても第 1および第 2の実施の形態を採るときと同等の効果を奏する。  Even when the guide member 51 and the cylinder head 2 are configured as shown in this embodiment, the same effects as those in the first and second embodiments can be obtained.
(第 4の実施の形態)  (Fourth embodiment)
吸気ポートをシリンダへッドに斜めに延びるように形成する場合には、 燃料ガ ス供給用のノズルを図 2 5ないし図 2 7に示すように形成することができる。 図 2 5は燃料ガス供給用ノズルの他の例を示す断面図、 図 2 6はエンジンの燃 焼室近傍の部位をシリンダへッ ド側から見た状態の構成を示す平面図、 図 2 7は 図 2 5における A— A線断面図である。 これらの図において、 前記図 1〜図 2 4 によって説明したものと同一もしくは同等の部材については、 同一符号を付し詳 細な説明を適宜省略する。  When the intake port is formed to extend obliquely to the cylinder head, a fuel gas supply nozzle can be formed as shown in FIGS. 25 to 27. FIG. 25 is a cross-sectional view showing another example of a fuel gas supply nozzle, and FIG. 26 is a plan view showing a configuration near the combustion chamber of the engine viewed from the cylinder head side. FIG. 26 is a sectional view taken along line AA in FIG. 25. In these figures, the same or equivalent members as those described with reference to FIGS. 1 to 24 are denoted by the same reference numerals, and detailed description will be appropriately omitted.
図 2 5ないし図 2 7に示す燃料ガス供給用ノズル 4は、 吸気弁 1 5每に設けた パイプからなり、 シリンダへッ ド 1の燃料ガス供給用透孔 6 1に吸気ポ一ト 1 3 側から嵌入され、 吸気ポート 1 3内における隣り合う吸気ポート 1 3の近傍に配 設されている。 また、 これらのノズル 4は、 図 2 5に示すように、 吸気の流れる 方向の下流側を先端の開口が指向するように屈曲されている。  The fuel gas supply nozzle 4 shown in FIG. 25 to FIG. 27 consists of a pipe provided in the intake valve 15 每, and the fuel gas supply through hole 61 of the cylinder head 1 and the intake port 1 3 The suction port 13 is inserted from the side, and is disposed near the adjacent intake port 13 in the intake port 13. Further, as shown in FIG. 25, these nozzles 4 are bent so that the opening at the tip thereof is directed to the downstream side in the direction in which the intake air flows.
前記燃料ガス供給用透孔 6 1は、 シリンダへッ ド 2の一側部 2 aにおける吸気 ポート 1 3の入口の上方から吸気ポート 1 3に沿って斜めに直線状に延びる第 1 のガス孔 6 2と、 この第 1のガス孔 6 2の下流側端部から吸気弁 1 5毎の吸気ポ ート 1 3へそれぞれ延びる第 2のガス孔 6 3 (図 2 7参照) とによって構成され ている。 前記ノズル 4は、 前記第 2のガス孔 6 3に装着されている。 また、 前記 第 1のガス孔 6 2の上流側端部は、 図 1 6に示すように、 燃料ガス供給用ィンジ ヱクタ 3 (図示せず) を装着する穴 2 9の内部に開口されている。  The fuel gas supply through hole 61 is a first gas hole extending obliquely and linearly along the intake port 13 from above the inlet of the intake port 13 on one side 2 a of the cylinder head 2. 62 and second gas holes 63 extending from the downstream end of the first gas hole 62 to the intake port 13 of each intake valve 15 (see FIG. 27). ing. The nozzle 4 is mounted on the second gas hole 63. As shown in FIG. 16, an upstream end of the first gas hole 62 is opened inside a hole 29 for mounting a fuel gas supply injector 3 (not shown). .
このようにノズル 4を形成することによって、 吸気行程でノズル 4から吸気ポ —ト 1 3内に噴射された燃料ガスは、 図 2 5中に黒色の矢印 Gで示すように、 吸 気弁 1 5と吸気出口 2 1 との間の隙間を通ってシリンダ内の排気弁 1 6とは反対 方向であつて斜め下方へ流入する。 産業上の利用可能性 By forming the nozzle 4 in this manner, the fuel gas injected into the intake port 13 from the nozzle 4 during the intake stroke is sucked as shown by a black arrow G in FIG. The gas flows obliquely downward through the gap between the air valve 15 and the intake outlet 21 in the direction opposite to the exhaust valve 16 in the cylinder. Industrial applicability
以上説明したように本発明によれば、 タンブル流とスキッシュ流とが互いに衝 突することによって、 混合気は、 マイクロタ一ビュレンスとして分散され、 タン ブル流とスキッシュ流とが合成されてなるガス流によってビストン頂部側へ移行 する。 このため、 前記マイクロ夕一ビュレンスによって火炎核の成長が助長され るとともに、 火炎がビストン頂部側へ拡がるようになり、 燃焼が急速に行われる  As described above, according to the present invention, the tumble flow and the squish flow collide with each other, so that the air-fuel mixture is dispersed as a microturbulence, and the gas flow formed by combining the tumble flow and the squish flow. It moves to the top side of Biston. Therefore, the growth of the flame nucleus is promoted by the micro evening bulence, and the flame spreads to the top side of the biston, and the combustion is rapidly performed.
—方、 夕ンプル流とスキッシュ流の衝突により混合気流の運動エネルギーが減 衰すれるから、 前記衝突後の混合気の状態は、 エンジンの回転速度や負荷が変化 しても大きく変化することはない。 このため、 上述したような燃焼が急速に行わ れる現象は、 広い運転域にわたって同様に起こるようになる。 On the other hand, the kinetic energy of the air-fuel mixture is attenuated by the collision between the evening stream and the squish flow. Absent. Therefore, the above-mentioned phenomenon in which combustion is performed rapidly occurs similarly over a wide operating range.
したがって、 広い運転域にわたって、 燃焼が同様に行われて燃焼改善を図るこ とができるから、 燃費をより一層向上させることができる。  Therefore, the combustion can be similarly performed over a wide operating range to improve the combustion, so that the fuel efficiency can be further improved.
また、 シリンダ内の混合気の流動は点火後も継続するから、 ピストン頂部近傍 で成長した初期燃焼ガス部分に未燃ガスが継続的に供給されるようになる。 この ため、 初期燃焼ガスは、 未燃ガスで攪拌されながら拡散するようになり、 高温で 保持されることはない。 この結果、 混合気をシリンダ内で流動させて急速燃焼を 実現しているにもかかわらず、 排ガス中の N 0 Xの濃度を低減することができる 請求項 2記載の発明によれば、 いわゆる逆タンブル流が形成され、 スキッシュ 流を発生させる空間 (スキッシュエリア) が相対的に低温な吸気弁側に形成され る。 このため、 スキッシュエリアを排気弁側に形成する場合に較べてノッキング が生じ難くなるから、 希薄燃焼の限界をさらに向上させることができる。 請求項 3記載の発明によれば、 吸気ポートの形状によって吸気が流れる方向を 規制しているから、 吸気の流れる方向を変えるための部材を吸気ポート内に設け る場合に較べて、 吸気抵抗が小さくなるとともに、 部品数が少なくなって組立ェ 数を低減することができる。 したがって、 出力向上と、 組立工数の低減によるコ ストダウンの両方を実現することができる。 In addition, since the flow of the air-fuel mixture in the cylinder continues even after ignition, the unburned gas is continuously supplied to the initial combustion gas portion grown near the top of the piston. For this reason, the initial combustion gas is diffused while being stirred by the unburned gas, and is not kept at a high temperature. As a result, the concentration of N 0 X in the exhaust gas can be reduced, despite the fact that the mixture is caused to flow in the cylinder to achieve rapid combustion. A tumble flow is formed, and a space (squish area) for generating a squish flow is formed on the intake valve side where the temperature is relatively low. For this reason, knocking is less likely to occur than in the case where the squish area is formed on the exhaust valve side, so that the limit of lean burn can be further improved. According to the third aspect of the present invention, the shape of the intake port regulates the direction in which the intake air flows, so that the intake resistance is lower than when a member for changing the direction in which the intake air flows is provided in the intake port. As the size becomes smaller, the number of parts is reduced and the number of assembly parts can be reduced. Therefore, both output improvement and cost reduction by reducing the number of assembly steps can be realized.
請求項 4記載の発明によれば、 案内部材によってタンブル流の強さを変えるこ とができるから、 発生するスキッシュ流に対して最適な強さになるように、 案内 部材で夕ンブル流を発生させることによって、 マイクロタービュレンスを確実に 形成することができるようになり、 より一層燃焼改善を図ることができる。  According to the invention described in claim 4, since the strength of the tumble flow can be changed by the guide member, the guide member generates the tumbling flow so that the strength becomes optimum with respect to the generated squish flow. By doing so, the microturbulence can be reliably formed, and the combustion can be further improved.

Claims

請 求 の 範 囲 The scope of the claims
1 . シリンダ内に混合気からなるタンブル流を発生させるタンブル流生成手段と 、 シリンダ内に前記夕ンブル流とは逆方向に流れるスキッシュ流を発生させるス キッシュ流生成手段とを備え、 圧縮行程の終期に前記タンブル流と前記スキッシ ュ流とが互いに対向するように発生する構成としてなるェンジン。  1. A tumble flow generating means for generating a tumble flow composed of an air-fuel mixture in a cylinder; and a squish flow generating means for generating a squish flow in the cylinder in a direction opposite to the tumbling flow. An engine having a configuration in which the tumble flow and the squish flow are generated so as to face each other at the end.
2 . 請求項 1記載のエンジンにおいて、 タンブル流生成手段を、 混合気を吸気ポ ートから排気弁とは反対方向へ指向させてシリンダ内へ導く構成とし、 スキッシ ュ流生成手段を、 ビストン頂部における吸気弁と対向する斜面およびこの斜面に 隣接する凹部と、 シリンダへッ ド側の燃焼室壁とによつて構成したェンジン。 2. The engine according to claim 1, wherein the tumble flow generating means is configured to direct the air-fuel mixture from the intake port to the direction opposite to the exhaust valve and to guide the mixture into the cylinder. An engine comprising a slope facing the intake valve, a concave portion adjacent to the slope, and a combustion chamber wall on the cylinder head side.
3 . 請求項 2記載のエンジンにおいて、 タンブル流生成手段を、 吸気ポートの下 流側端部に下流側へ向かうにしたがって次第に排気弁とは反対側へ延びる傾斜部 によつて形成したェンジン。 3. The engine according to claim 2, wherein the tumble flow generating means is formed by an inclined portion that is formed at a downstream end of the intake port and gradually extends to the opposite side to the exhaust valve toward the downstream side.
4 . 請求項 2記載のエンジンにおいて、 タンブル流生成手段を、 吸気の流れる方 向を変える案内部材を吸気通路内に設けることによって形成したエンジン。  4. The engine according to claim 2, wherein the tumble flow generating means is formed by providing a guide member for changing a direction in which the intake air flows in the intake passage.
PCT/JP2003/000390 2002-01-23 2003-01-17 Engine WO2003062614A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-14238 2002-01-23
JP2002014238A JP2003214167A (en) 2002-01-23 2002-01-23 Engine

Publications (1)

Publication Number Publication Date
WO2003062614A1 true WO2003062614A1 (en) 2003-07-31

Family

ID=27606088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000390 WO2003062614A1 (en) 2002-01-23 2003-01-17 Engine

Country Status (2)

Country Link
JP (1) JP2003214167A (en)
WO (1) WO2003062614A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709593A (en) * 2017-06-02 2020-01-17 马自达汽车株式会社 Combustion chamber structure of engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH704511A1 (en) * 2011-02-18 2012-08-31 Liebherr Machines Bulle Sa Gas Otto engine.
JP2015148163A (en) * 2014-02-05 2015-08-20 トヨタ自動車株式会社 internal combustion engine
JP5971321B2 (en) * 2014-12-22 2016-08-17 マツダ株式会社 Combustion chamber structure of direct injection engine
JP6565999B2 (en) 2017-06-02 2019-08-28 マツダ株式会社 engine
JP6566000B2 (en) 2017-06-02 2019-08-28 マツダ株式会社 engine
US11041457B2 (en) 2017-06-02 2021-06-22 Mazda Motor Corporation Combustion chamber structure for engines
JP6627844B2 (en) * 2017-10-24 2020-01-08 マツダ株式会社 engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127736U (en) * 1989-03-30 1990-10-22
JPH10212965A (en) * 1997-01-29 1998-08-11 Nissan Motor Co Ltd In-cylinder direct injection type spark ignition engine
JPH10252477A (en) * 1997-03-13 1998-09-22 Nissan Motor Co Ltd Direct cylinder fuel injection type spark ignition engine
JPH10339219A (en) * 1997-06-10 1998-12-22 Nissan Motor Co Ltd Spark ignition engine of direct injection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127736U (en) * 1989-03-30 1990-10-22
JPH10212965A (en) * 1997-01-29 1998-08-11 Nissan Motor Co Ltd In-cylinder direct injection type spark ignition engine
JPH10252477A (en) * 1997-03-13 1998-09-22 Nissan Motor Co Ltd Direct cylinder fuel injection type spark ignition engine
JPH10339219A (en) * 1997-06-10 1998-12-22 Nissan Motor Co Ltd Spark ignition engine of direct injection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709593A (en) * 2017-06-02 2020-01-17 马自达汽车株式会社 Combustion chamber structure of engine
EP3617470A4 (en) * 2017-06-02 2020-03-04 Mazda Motor Corporation Combustion chamber structure for engines

Also Published As

Publication number Publication date
JP2003214167A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
JP5748156B2 (en) Piston arranged to reciprocate in the combustion engine cylinder
KR930018138A (en) An internal combustion engine
US6443122B1 (en) Internal combustion engine
JP7502102B2 (en) Internal combustion engine with pre-combustion chamber
WO2003062614A1 (en) Engine
JP5325019B2 (en) Sub-chamber engine
JP2000170537A (en) Cylinder injection type engine
WO2003062624A1 (en) Fuel supply device for gas fuel engines
JPH10288038A (en) Direct injection type diesel engine
WO2003062623A1 (en) Gas fuel engine
JP3635730B2 (en) Intake structure of internal combustion engine
CN115750071B (en) Gasoline engine combustion system, engine and vehicle
JP4007181B2 (en) Premixed compression self-ignition internal combustion engine
WO2024201934A1 (en) Internal combustion engine with auxiliary combustion chamber
JP2003502550A (en) Piston type internal combustion engine equipped with secondary air supply flow generating means
JP4513720B2 (en) Intake port structure of internal combustion engine
JPH07119473A (en) Fuel injection compression ignition engine combustion chamber and combustion method exhaust method
JP4394974B2 (en) Internal combustion engine for injecting gaseous fuel into cylinder and ignition method for internal combustion engine
JPH0979040A (en) Cylinder fuel injection type internal combustion engine
JP4341488B2 (en) Internal combustion engine
KR100203507B1 (en) Direct injection typed gasoline engine
KR100227905B1 (en) Structure of combustion chamber for direct injection typed internal combustion engines
JPH10274133A (en) Intercylinder injection type internal combustion engine
JPH0231546Y2 (en)
JPH0941976A (en) Cylinder fuel injection type internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase