WO2003060492A1 - Refraktometer - Google Patents

Refraktometer Download PDF

Info

Publication number
WO2003060492A1
WO2003060492A1 PCT/EP2002/014586 EP0214586W WO03060492A1 WO 2003060492 A1 WO2003060492 A1 WO 2003060492A1 EP 0214586 W EP0214586 W EP 0214586W WO 03060492 A1 WO03060492 A1 WO 03060492A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
measuring
refractometer according
refractometer
sample
Prior art date
Application number
PCT/EP2002/014586
Other languages
English (en)
French (fr)
Other versions
WO2003060492A8 (de
Inventor
Markus Langenbacher
Andreas Derr
Frank Eder
Original Assignee
Testo Gmbh & Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Testo Gmbh & Co. filed Critical Testo Gmbh & Co.
Priority to US10/476,749 priority Critical patent/US7064816B2/en
Priority to BR0209264-6A priority patent/BR0209264A/pt
Priority to EP02793090A priority patent/EP1468272B1/de
Priority to DE50207885T priority patent/DE50207885D1/de
Priority to JP2003560538A priority patent/JP2005515433A/ja
Publication of WO2003060492A1 publication Critical patent/WO2003060492A1/de
Publication of WO2003060492A8 publication Critical patent/WO2003060492A8/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/14Beverages
    • G01N33/143Beverages containing sugar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • G01N21/431Dip refractometers, e.g. using optical fibres

Definitions

  • the invention relates to a refractometer for determining the refractive index of a liquid and any variables derived therefrom, such as, for example, a sugar concentration, with a sensor arrangement which has a radiation source for generating a measuring beam, a radiation detector for detecting the measuring beam and one of them
  • Measuring beam to be traversed on which a measuring surface to be wetted by the liquid is arranged, with which the measuring beam interacts.
  • Refractometers of this type are used as digital or analog measuring devices, for example for determining the concentration of certain substances dissolved in a liquid and influencing the refractive index. For example, the determination of the sugar content of the grape juice is an important area of application for such measurements in the field of inbreeding.
  • measuring devices Two types of measuring devices are known in this field, the first of which requires the taking of a sample and the introduction of the sample into the measuring device, for example by instillation, while the other design requires the immersion of a sensor in the analyte, i.e. in the liquid to carry out the measurement.
  • the sampling is relatively cumbersome and time-consuming and it is necessary to clean the measuring device thoroughly before taking a new sample.
  • the second variant of measuring devices results in often as a problem that the refractometer has a different temperature than the analyte, so that the necessary temperature compensation when determining the temperature-dependent refractive index is very difficult to carry out. It can also be difficult to take into account the influence of extraneous light in the optical measurement when inserting a probe into the analyte.
  • the measuring device can simply be used in such a way that a measuring tip is immersed in the liquid and the corresponding signal is recognized on the hand-held device. The temperature of the liquid is not taken into account in the measurement.
  • the present invention is based on the object of a simply constructed refractometer at the beginning of the type mentioned in such a way that on the one hand simple and quick handling is made possible and on the other hand effective temperature compensation is ensured.
  • the object is achieved in that the measuring surface is arranged in a test well of a penetration probe that can be inserted into the liquid.
  • the construction according to the invention enables sampling and measurement by means of a penetration probe which, on the one hand, can be introduced into the liquid and, on the other hand, contains the sample trough in which the refractive index or refractive index is measured after the liquid to be measured has been removed. Since only a small volume of liquid remains in the sample well, a temperature compensation takes place quickly between the penetration probe and the liquid, so that the refractometer and the liquid have the same temperature during the measurement. In addition, temperature compensation is easily possible by measuring the temperature at the probe. For this purpose, a temperature sensor can be arranged inside the penetration probe.
  • the penetration probe simply has to be immersed in a liquid once more, and the test well can optionally be briefly cleaned beforehand if this appears necessary in the course of handling the liquids to be measured. Otherwise it is also conceivable to simply reinsert the probe into the liquid, the liquid measured during the first measurement being washed out of the sample well by the further liquid.
  • the refractometer according to the invention thus considerably simplifies sampling and, if appropriate, also repeated use in a measurement, and the possibilities for effective temperature compensation are also given.
  • the piercing probe can, for example, be pointed at its end in order to make it possible to pierce larger fruits directly in order to measure the fruit juice contained in them.
  • a groove can also be provided on the surface of the penetration probe, through which the liquid to be measured can flow after a slight immersion in the liquid level or a fruit can flow towards the test well.
  • An advantageous embodiment of the invention provides that the measuring surface is limited by a lens body.
  • the lens body is arranged such that it can be wetted by the liquid on one side and that the surface of the lens body is kept free of the liquid on the other side.
  • the radiation source and the radiation detector are then arranged on the side of the lens body which is kept free from the liquid, so that the measuring beam from the radiation source falls into the lens body, is at least partially reflected there on the measuring surface wetted by the liquid and is then directed to the radiation detector can be.
  • the intensity of the reflected measuring beam is then dependent on the ratio of the refractive indices of the lens body and the liquid wetting it.
  • the design of the geometry of the lens body is advantageously carried out in such a way that the measuring beam is bundled or remains bundled in the lens body and that a suitable arrangement of the radiation source and the radiation detector can be selected with respect to the lens body.
  • Another advantageous embodiment of the invention provides that the measuring surface is limited by a glass body.
  • Vitreous body is limited, the cleaning of the measuring surface after the measurement is carried out simplified without the measuring surface being scratched.
  • an effective temperature compensation between the sensor arrangement and the liquid is ensured by the relatively good thermal conductivity of the glass.
  • the invention is advantageously embodied in that the radiation source, the radiation detector and the lens body or, if appropriate, the glass body are held in a metallic receptacle, which consists in particular of steel or aluminum.
  • the design of the receptacle made of a stable material in the form of steel or aluminum means that the geometrical arrangement of the radiation source, the detector and the lens is so stable that there is no fear of a change in the measuring section even due to impacts. Due to the design made of a metal, a very quick and effective temperature adjustment takes place between the individual elements of the sensor arrangement and the liquid in the test well. The temperature adjustment can be improved by contact of liquid and metallic absorption.
  • thermosensor it is also advantageous to integrate a temperature sensor in the area of the sensor arrangement.
  • the temperature of the sensor arrangement and the flux can be measured simultaneously with the measurement of the temperature-dependent refractive index.
  • liquid can be measured after they are aligned, which is the case after a few seconds.
  • the measured refractive index of the liquid can then be converted to a standard temperature in an evaluation device, taking into account the measured temperature. Since only a single temperature has to be taken into account for compensation in the sensor arrangement according to the invention, the calibration of the sensor arrangement is also greatly simplified.
  • the metallic receptacle is coated with a material, in particular a plastic, whose thermal conductivity is lower than that of the material of the receptacle.
  • the temperature of the sample taken from a liquid is largely adjusted to the temperature of the sensor arrangement, regardless of the ambient temperature, by the thermal contact in the sample well, and the refractive index is measured at this temperature.
  • this temperature is advantageously measured in the interior of the refractometer in the area of the sensor arrangement by a temperature sensor in order to take temperature influences into account or to be able to relate the measurement result to a standard temperature.
  • the lens body or the glass body of a Mate is in particular greater than 2.
  • the refractive index of the lens is preferably 1.85.
  • a high refractive index of the vitreous is advantageous if liquids with likewise high electricity constants or refractive indices are to be measured.
  • the sample well advantageously has a volume of less than one milliliter.
  • the sensor arrangement can advantageously be designed in that the radiation source is formed by an infrared light-emitting diode and the radiation detector is formed by a semiconductor which is sensitive in the infrared region.
  • the refractometer advantageously has a lens body which has an area with a greater curvature which faces the radiation source and the radiation detector and an area with a smaller curvature which delimits the measuring surface.
  • an optimal guidance of the measuring beam is connected with a measurement-technically optimal design of the measuring surface, the measuring surface being additionally easy to clean.
  • the invention is shown on the basis of an exemplary embodiment in a drawing and described below.
  • FIG. 1 shows the internal structure of the sensor arrangement schematically
  • FIG. 2 schematically shows a puncture probe
  • FIG. 3 shows an evaluation device of the refractometer according to the invention.
  • the sensor arrangement with the radiation source 1 in the form of an infrared light-emitting diode, the radiation detector 2 in the form of a light-sensitive semiconductor diode and the measuring section in between are described schematically there.
  • a measuring beam is emitted towards the lens body 3 made of glass and enters through the spherical or approximately spherical surface perpendicularly into the glass body, through which it spreads up to the measuring surface 4, which through a flat boundary surface of the Lens body 3 is formed.
  • the measuring beam is reflected or partially broken into the liquid depending on the ratio of the refractive indices (refractive indices) of the material of the lens body and the substance of the liquid 5 with which the lens body is wetted.
  • At least a part of the beam is possibly reflected on the measuring surface 4 towards the radiation detector 2 and picked up by the latter.
  • the detected radiation intensity is measured with the aid of the radiation detector 2 and is a measure of the refractive index of the liquid 5.
  • the measurement is compared to a reference measurement which was carried out either without a wetting liquid on the lens body 3 or with a known liquid ,
  • the orientation of the lens on the one hand makes the introduction of the measuring beam into the lens body 3 and the exit to the radiation detector particularly low-loss, on the other hand, the entry of extraneous light into the lens body 3 is made more difficult by the flat measuring surface 4.
  • the cleaning of the measuring surface 4 on its outside, which is exposed to the liquids 5 to be measured, is also facilitated by the flat design.
  • the lens typically has a diameter of 3 mm and a refractive index greater than 1.5, in particular greater than 2.
  • the radiation source 1 and the radiation detector 2 are each arranged in bores within the receiving body 6, as a result of which they are reliably and immovably fixed in their position relative to one another and to the lens body 3.
  • the imitation body 6, which consists of a metal, for example steel or aluminum, ensures excellent heat conduction, so that the elements 1, 2, 3 of the Sensor arrangement are reliably kept at the same temperature as the receptacle 6, and the small sample size of the liquid 5 ensures that the sample by means of the glass lens body 3 is very quickly at the same temperature as the receptacle body 6 by heat transport.
  • the sample 1 shows a small sample in the form of a drop of a liquid 5 lying on the lens body 3, but it can also be provided that the sample trough 7 is regularly completely filled up to its edge. In any case, the temperature equalization between the sample and the receiving body 6 takes only a few seconds.
  • the sample well has a volume of less than 1 ml, in particular less than 0.5 ml.
  • a temperature sensor 8 is additionally provided in the receiving body 6, which allows temperature compensation when evaluating the measurements.
  • the receiving body 6 is provided with a plastic layer 19 which insulates it thermally and thus protects the sensor arrangement from changing external influences.
  • a plastic layer 19 which insulates it thermally and thus protects the sensor arrangement from changing external influences.
  • the edge area of the lens body 3 the latter is sealed off from the plastic layer 19 and the receiving body 6 by means of elastic seals 20.
  • FIG. 1 shows an external view of a handheld refractometer with a handle 9, in which a digital display 10 is integrated.
  • An evaluation device is located in the body of the handheld refractometer. device housed, which evaluates the data supplied by the radiation detector 2 and the temperature sensor 8.
  • the sensor arrangement is arranged in the vicinity of the piercing tip 11, specifically under the sample trough 7.
  • the lens body 3 can be seen as a circle.
  • the piercing tip 11 is designed such that it can be inserted into a fruit, so that the fruit juice contained in the fruit gets into the test well 7.
  • the piercing tip 11 is immersed in a liquid and that it has a groove-like notch on its upper side which leads to the test well 7 and allows a test liquid to run into the test well 7, even without the Piercing tip 11 is dipped deep into the liquid or is inserted into the fruit. Otherwise the puncture tip is inserted into the analyzer until the sample well fills up.
  • the mode of operation of the refractometer will now be briefly explained schematically on the basis of FIG.
  • the measuring beam 12 is generated by the radiation source 1 in the form of an infrared beam which, in the schematic illustration of FIG. 1, propagates along the central axis of the receiving bore 13 of the radiation source 1 to the measuring surface 4, is reflected there and from there along the The central axis of the receiving bore 14 of the radiation detector 2, also shown in dash-dotted lines, continues.
  • the intensity of the reflected measuring beam 12 is measured in the radiation detector 2.
  • the measured intensity is passed to the evaluation device 15, in which a first computing device 16 first takes into account a value for the current refractive index or without taking into account the temperature on the basis of reference values the refractive index is calculated.
  • This value calculated from the measurement is then related to a reference temperature in the second computing device 17, taking into account the temperature value measured by means of the temperature sensor 8 and likewise given to the evaluation device 15, and the temperature influence is thus compensated for.
  • the value thus calculated and corrected for the refractive index or the refractive index is then given to a display 18 and output to the user there by means of a digital display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Bei einem Handrefraktometer ist an einer Einstechspitze (11) eine Probemulde (7) angeordnet, so dass nach dem Eindringen der Einstechspitze (11) in eine Flüssigkeit beziehungsweise eine Frucht eine ausreichende Menge der Probeflüssigkeit in der Probemulde (7) verbleibt, um dort eine durch einen lichtdurchlässigen Körper begrenzte Messfläche (4) zu benetzen. Mittels einer Intensitätsmessung an einem an der Messfläche (4) reflektierten optischen Strahl kann die Brechzahl der benetzenden Flüssigkeit bestimmt werden.

Description

Beschreibung
Refraktometer
Die Erfindung bezieht sich auf ein Refraktometer zur Bestimmung des Brechungsindex einer Flüssigkeit und gegebenenfalls hiervon abgeleiteter Größen wie beispielsweise einer Zuckerkonzentration, mit einer Sensoranordnung, die eine Strahlungsquelle zur Erzeugung eines Meßstrahls, einen Strahlungs- detektor zur Detektion des Meßstrahls und eine von dem
Meßstrahl zu durchlaufende Meßstrecke aufweist, an der eine von der Flüssigkeit zu benetzende Meßfläche angeordnet ist, mit der der Meßstrahl wechselwirkt .
Derartige Refraktometer werden als digitale oder analoge Meßgeräte beispielsweise zur Bestimmung der Konzentration bestimmter in einer Flüssigkeit gelöster und die Brechzahl beeinflussender Stoffe verwendet. Beispielsweise ist auf dem Gebiet der inzerei die Bestimmung des Zuckergehaltes des Traubensaftes ein wichtiges Anwendungsgebiet solcher Messungen.
Es sind auf diesem Gebiet grundsätzlich zwei Arten von Meßgeräten bekannt, von denen die erste die Entnahme einer Probe und das Einbringen der Probe in das Meßgerät beispielsweise durch Einträufeln erfordert, während die andere Bauform das Eintauchen eines Sensors in den Analyten, das heißt in die Flüssigkeit zur Durchführung der Messung vorsieht.
Dabei ist bei der ersten genannten Variante die Probeentnahme relativ umständlich und zeitaufwendig und es ist vor einer neuen Probeentnahme notwendig, das Meßgerät gründlich zu reinigen. Bei der zweiten Variante von Meßgeräten ergibt sich oft als Problem, daß das Refraktometer eine andere Temperatur aufweist als der Analyt, so daß die notwendige Temperaturkompensation bei der Bestimmung des temperaturabhängigen Bre^ chungsindex sehr schwierig durchzuführen ist. Außerdem kann es sich als schwierig erweisen, beim Einbringen einer Sonde in den Analysanten den Einfluß von Fremdlicht bei der optischen Messung zu berücksichtigen.
Aus der US-Patentschrift 5859696 ist ein Refraktometer ähn- lieh der eingangs genannten Art zur Bestimmung des Zuckergehaltes in einer Flüssigkeit bekannt, bei dem ein optischer Strahl von einer Strahlungsquelle ausgesandt, im Innern eines transparenten Körpers an einer Meßfläche reflektiert und in einen Strahlungsdetektor zurückgeleitet wird. Wird die Meßfläche außen mit einer Flüssigkeit mit hohem Brechungsindex, beispielsweise einem Softdrink mit einer hohen Zuckerkonzentration benetzt, so führt dies zu einer Annäherung der Brechzahl der Flüssigkeit an der Meßfläche an die Brechzahl des transparenten Körpers und damit zu einer schwächeren Re- flexion des Strahls an der Meßfläche, oder anders ausgedrückt dazu, daß der Strahl größtenteils durch die Meßfläche hindurch und in die Flüssigkeit eintritt, so daß die Intensität des reflektierten Strahls stark abnimmt. Dies wird optisch detektiert und in Abhängigkeit von der gemessenen Intensität des reflektierten Strahls ergibt sich eine hohe beziehungsweise geringe Zuckerkonzentration. Das Meßgerät ist einfach derart verwendbar, daß eine Meßspitze in die Flüssigkeit eingetaucht und an dem Handgerät das entsprechende Signal erkannt wird. Die Temperatur der Flüssigkeit wird bei der Mes- sung nicht berücksichtigt.
Der vorliegenden Erfindung liegt demgegenüber die Aufgabe zugrunde, ein einfach aufgebautes Refraktometer der eingangs genannten Art derart auszubilden, daß einerseits eine einfache und schnelle Handhabung ermöglicht wird und andererseits eine effektive Temperaturkompensation gewährleistet ist.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Meßfläche in einer Probemulde einer in die Flüssigkeit einbringbaren Einstechsonde angeordnet ist .
Durch die erfindungsgemäße Konstruktion wird die Probeentnah- me und die Messung durch eine Einstechsonde möglich, die einerseits in die Flüssigkeit einbringbar ist und andererseits die Probemulde enthält, in der nach der Entnahme der zu vermessenden Flüssigkeit die Brechzahl beziehungsweise der Brechungsindex gemessen wird. Da in der Probemulde nur ein ge- ringes Flüssigkeitsvolumen verbleibt, findet schnell ein Temperaturausgleich zwischen der Einstechsonde und der Flüssigkeit statt, so daß das Refraktometer und die Flüssigkeit bei der Messung dieselbe Temperatur aufweisen. Außerdem wird eine Temperaturkompensation durch Messung der Temperatur an der Sonde einfach möglich. Zu diesem Zweck kann innerhalb der Einstechsonde ein Temperatursensor angeordnet sein.
Zur Entnahme einer neuen Probe einer anderen oder derselben Flüssigkeit muß die Einstechsonde lediglich ein weiteres Mal in eine Flüssigkeit eingetaucht werden, wobei wahlweise vorher die Probemulde kurz gesäubert werden kann, wenn dies im Rahmen des Umgangs mit den zu vermessenden Flüssigkeiten notwendig erscheint. Ansonsten ist auch denkbar, die Sonde einfach erneut in die Flüssigkeit einzuführen, wobei die bei der ersten Messung vermessene Flüssigkeit aus der Probemulde durch die weitere Flüssigkeit ausgewaschen wird. Durch das erfindungsgemäße Refraktometer ist somit die Probeentnahme und gegebenenfalls auch die wiederholte Anwendung bei einer Messung erheblich vereinfacht und auch die Möglichkeiten einer effektiven Temperaturkompensation sind gegeben. Die Einstechsonde kann beispielsweise an ihrem Ende spitz ausgebildet sein, um das Einstechen in größere Früchte zur Vermessung des in ihnen befindlichen Fruchtsaftes direkt zu ermöglichen. Es kann auch an der Oberfläche der Einstechsonde eine Rinne vorgesehen sein, durch die die zu vermessende Flüssigkeit nach einem geringen Eintauchen in den Flüssigkeitsspiegel oder eine Frucht zu der Probemulde hin fließen kann.
Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, daß die Meßfläche durch einen Linsenkörper begrenzt ist.
Der Linsenkδrper ist so angeordnet, daß er auf der einen Seite durch die Flüssigkeit benetzbar ist und daß auf der anderen Seite die Linsenkörperoberflache von der Flüssigkeit freigehalten ist. Auf der von der Flüssigkeit freigehaltenen Seite des Linsenkörpers sind dann die Strahlungsquelle und der Strahlungsdetektor angeordnet, so daß der Meßstrahl von der Strahlungsquelle in den Linsenkörper einfallen, dort an der mit der Flüssigkeit benetzten Meßfläche wenigstens teil- weise reflektiert werden und dann zu dem Strahlungsdetektor geleitet werden kann. Die Intensität des reflektierten Meßstrahls ist dann abhängig von dem Verhältnis der Brechzahlen des Linsenkörpers und der diesen benetzenden Flüssigkeit. Die Gestaltung der Geometrie des Linsenkörpers wird vorteil- haft so ausgeführt, daß der Meßstrahl in dem Linsenkörper gebündelt wird oder gebündelt bleibt und daß eine passende Anordnung der Strahlungsquelle und des Strahlungsdetektors in bezug auf den Linsenkörper gewählt werden kann. Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, daß die Meßfläche durch einen Glaskörper begrenzt ist.
Grundsätzlich wird dadurch, daß die Meßfläche durch einen
Glaskörper begrenzt ist, die Reinigung der Meßfläche nach der Durchführung der Messung vereinfacht, ohne daß die Meßfläche zerkratzt wird. Außerdem ist ein effektiver Temperaturausgleich zwischen der Sensoranordnung und der Flüssigkeit durch die relativ gute Wärmeleitfähigkeit des Glases gewährleistet.
In bezug auf die Stabiliät des mechanischen Aufbaus wird die Erfindung vorteilhaft dadurch ausgestaltet, daß die Strahlungsquelle, der Strahlungsdetektor und der Linsenkörper oder gegebenenfalls der Glaskörper in einer metallischen Aufnahme gehalten sind, die insbesondere aus Stahl oder Aluminium besteht.
Die Gestaltung der Aufnahme aus einem stabilen Material in Form von Stahl oder Aluminium führt dazu, daß die geometrische Anordnung der Strahlungsquelle, des Detektors und der Linse so stabil ist, daß auch durch Stöße keine Änderung der Meßstrecke zu befürchten ist. Auch findet durch die Ausgestaltung aus einem Metall eine sehr schnelle und effektive Temperaturangleichung zwischen den einzelnen Elementen der Sensoranordnung und der Flüssigkeit in der Probemulde statt. Dabei kann die Temperaturangleichung durch Kontakt von Flüssigkeit und metallischer Aufnahme verbessert werden.
Vorteilhaft ist außerdem, in den Bereich der Sensoranordnung einen Temperatursensor zu integrieren. Auf diese Weise kann gleichzeitig mit der Messung des temperaturabhängigen Brechungsindex die Temperatur der Sensoranordnung und der Flüs- sigkeit gemessen werden, nachdem diese aneinander angeglichen sind, was nach wenigen Sekunden der Fall ist. Danach kann in einer Auswerteeinrichtung unter Berücksichtigung der gemessenen Temperatur der gemessene Brechungsindex der Flüssigkeit auf eine Normtemperatur umgerechnet werden. Da bei der erfindungsgemäßen Sensoranordnung nur eine einzige Temperatur zur Kompensation zu berücksichtigen ist, wird auch die Kalibrierung der Sensoranordnung stark vereinfacht .
Um die Sensoranordnung außerdem gegen Meßwertverfälschungen bei kurzfristigen Temperaturänderungen zu schützen, kann vorgesehen sein, daß die metallische Aufnahme mit einem Stoff, insbesondere einem Kunststoff ummantelt ist, dessen Wärmeleitfähigkeit geringer ist als die des Materials der Aufnah- me.
Es wird sich dabei im Normalfall um eine Kunststoffumhüllung der Sensoranordnung mit einem Polymer oder einem Elastomer handeln, die die Probemulde mit der Meßfläche selbstverständ- lieh freiläßt. Die entnommene Probe einer Flüssigkeit wird unabhängig von der Umgebungstemperatur durch den thermischen Kontakt in der Probemulde in ihrer Temperatur an die Temperatur der Sensoranordnung weitgehend angeglichen und bei dieser Temperatur wird der Brechungsindex gemessen. Diese Temperatur wird gleichzeitig im Inneren des Refraktometers im Bereich der Sensoranordnung vorteilhaft durch einen Temperatursensor gemessen, um Temperatureinflüsse zu berücksichtigen beziehungsweise das Meßergebnis auf eine Normtemperatur beziehen zu können.
'Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, daß der Linsenkörper oder der Glaskörper aus einem Mate- insbesondere größer als 2 ist. Bevorzugt liegt der Brechungsindex der Linse bei 1,85.
Ein hoher Brechungsindex des Glaskörpers ist dann vorteil- haft, wenn Flüssigkeiten mit ebenfalls hohen Elektrizitätskonstanten beziehungsweise Brechungsindices zu vermessen sind.
Vorteilhaft weist zum Zwecke eines besonders schnellen Tempe- raturausgleichs die Probemulde ein Volumen von weniger als einem Milliliter auf.
Die Sensoranordnung kann vorteihaft dadurch ausgestaltet sein, daß die Strahlungsquelle durch eine Infrarotleuchtdiode und der Strahlungsdetektor durch einen im Infrarotgebiet sensitiven Halbleiter gebildet ist.
Im Infrarotbereich ist die Störung durch Fremdlicht im Normalfall besonders gering und die verwendeten Bauteile arbei- ten zuverlässig und wenig fehleranfällig.
Vorteilhaft weist das Refraktometer einen Linsenkörper auf, der einen Bereich mit größerer Krümmung aufweist, der der Strahlungsquelle und dem Strahlungsdetektor zugewandt ist und einen Bereich mit geringerer Krümmung, der die Meßfläche begrenzt .
Durch diese Gestaltung des Linsenkörpers ist eine optimale Führung des Meßstrahls mit einer meßtechnisch optimalen Ges- taltung der Meßfläche verbunden wobei die Meßfläche zusätzlich leicht zu reinigen ist. Im folgenden wird die Erfindung anhand eines Ausführungsbei- spiels in einer Zeichnung gezeigt und nachfolgend beschrieben.
Dabei zeigt
Figur 1 den inneren Aufbau der Sensoranordnung schematisch, Figur 2 schematisch eine Einstechsonde, und Figur 3 eine Auswerteeinrichtung des erfindungsgemäßen Refraktometers.
Zunächst sei anhand der Figur 1 das Funktionsprinzip des erfindungsgemäßen Refraktometers erläutert. Es ist dort schematisch die Sensoranordnung mit der Strahlungsquelle 1 in Form einer Infrarotleuchtdiode, dem Strahlungsdetektor 2 in Form einer lichtempfindlichen Halbleiterdiode und der dazwischen liegenden Meßstrecke beschrieben. Von der Strahlungsquelle 1 aus wird ein Meßstrahl zu dem aus Glas bestehenden Linsenkörper 3 hin ausgestrahlt und tritt durch dessen sphärische oder annähernd sphärische Oberfläche senkrecht in den Glaskörper ein, durch den er sich bis zu der Meßfläche 4 hin ausbreitet, die durch eine flache Begrenzungsfläche des Linsenkörpers 3 gebildet ist. Dort wird der Meßstrahl in Abhängigkeit vom Verhältnis der Brechzahlen (Brechungsindices) des Materials des Linsenkörpers und des Stoffes der Flüssigkeit 5, mit der der Linsenkörper benetzt ist, reflektiert oder teilweise in die Flüssigkeit hineingebrochen.
Wenigstens ein Teil des Strahls wird gegebenenfalls an der Meßfläche 4 zu dem Strahlungsdetektor 2 hin reflektiert und von diesem aufgenommen. Die detektierte Strahlungsintensität wird mit Hilfe des Strahlungsdetektors 2 gemessen und ist ein Maß für den Brechungsindex der Flüssigkeit 5. Die Messung wird zur Bestimmung der Brechzahl mit einer Referenzmessung verglichen, die entweder ohne eine benetzende Flüssigkeit auf dem Linsenkörper 3 oder mit einer bekannten Flüssigkeit durchgeführt wurde.
Durch den geringen Öffnungswinkel des Strahlungsdetektors 2 gelangt sehr wenig Licht von außen durch die benetzende Flüssigkeit 5 und die Meßfläche 4 zu dem Strahlungsdetektor 2, so daß der Einfluß von Fremdlicht auf die Messung besonders gering gehalten werden kann.
Durch die Orientierung der Linse wird einerseits das Einbringen des Meßstrahls in den Linsenkörper 3 und der Austritt zu dem Strahlungsdetektor besonders verlustarm, andererseits wird durch die flach gestaltete Meßfläche 4 der Eintritt von Fremdlicht in den Linsenkörper 3 erschwert. Die Reinigung der Meßfläche 4 an ihrer Außenseite, die jeweils den zu vermessenden Flüssigkeiten 5 ausgesetzt ist, wird ebenfalls durch die flache Gestaltung erleichtert. Die Linse hat typisch einen Durchmesser von 3 mm und einen Brechungsindex größer als 1.5, insbesondere größer als 2.
Die Strahlungsquelle 1 und der Strahlungsdetektor 2 sind jeweils in Bohrungen innerhalb des Aufnahmekörpers 6 angeordnet, wodurch sie zuverlässig und unverrückbar in ihrer Position zueinander und zu dem Linsenkörper 3 festgelegt sind.
Außerdem gewährleistet der Auf ahmekörper 6, der aus einem Metall besteht, beispielsweise Stahl oder Aluminium, eine hervorragende Wärmeleitung, so daß die Elemente 1, 2, 3 der Sensoranordnung zuverlässig auf der selben Temperatur gehalten werden wie die Aufnahme 6, und durch die geringe Probengröße der Flüssigkeit 5 ist gewährleistet, daß die Probe mittels des gläsernen Linsenkörpers 3 durch Wärmetransport sehr schnell auf der gleichen Temperatur liegt wie der Aufnahmekorper 6.
In der Figur 1 ist beispielhaft eine kleine Probe in Form eines auf dem Linsenkörper 3 liegenden Tropfens einer Flüssig- keit 5 dargestellt, es kann jedoch ebenso vorgesehen sein, daß regelmäßig die Probemulde 7 völlig bis an ihren Rand gefüllt wird. In jedem Fall dauert der Temperaturausgleich zwischen der Probe und dem Aufnahmekörper 6 nur wenige Sekunden. Die Probemulde hat ein Volumen kleiner als 1 ml, insbesondere kleiner als 0.5 ml.
Zur Temperaturmessung ist in dem Aufnahmekörper 6 zusätzlich ein Temperatursensor 8 vogesehen, der bei der Auswertung der Messungen die Temperaturkompensation erlaubt.
Der Aufnahmekorper 6 ist mit einer KunststoffSchicht 19 versehen, die ihn thermisch isoliert und somit die Sensoranordnung vor wechselnden Außeneinflüssen schützt. Im Randbereich des Linsenkörpers 3 ist dieser gegenüber der Kunststoff- schicht 19 und dem Aufnahmekörper 6 mittels elastischer Dichtungen 20 abgedichtet.
Die schematische Schnittdarstellung der Figur 1 entspricht einem Schnitt entlang der gestrichelten Linie A - A in der Figur 2, die im folgenden beschrieben werden soll. Die Figur 2 zeigt in einer Außenansicht ein Handrefraktometer mit einem Handgriff 9, in den eine Digitalanzeige 10 integriert ist. In dem Körper des Handrefraktometers ist eine Auswerteeinrich- tung untergebracht, die die von dem Strahlungsdetektor 2 und dem Temperatursensor 8 gelieferten Daten auswertet. Die Sensoranordnung ist in der Nähe der Einstechspitze 11 angeordnet und zwar unter der Probemulde 7. In der Figur 2 ist der Lin- senkörper 3 als Kreis zu erkennen.
Die Einstechspitze 11 ist so ausgebildet, daß sie in eine Frucht eingestochen werden kann, so daß der in der Frucht befindliche Fruchtsaft in die Probemulde 7 gelangt. Es ist je- doch auch denkbar, daß die Einstechspitze 11 in eine Flüssigkeit eingetaucht wird und daß sie an ihrer Oberseite eine rinnenartige Einkerbung aufweist, die bis zu der Probemulde 7 führt und das Einlaufen einer Probeflüssigkeit in die Probemulde 7 erlaubt, auch ohne daß die Einstechspitze 11 tief in die Flüssigkeit eingetaucht beziehungsweise in die Frucht eingestochen wird. Ansonsten wird die Einstechspitze soweit in den Analysanten eingeführt, daß die Probemulde sich füllt.
Anhand der Figur 3 soll nun die Funktionsweise des Refrakto- eters kurz schematisch erläutert werden. Der Meßstrahl 12 wird durch die Strahlungsquelle 1 in Form eines Infrarotstrahls erzeugt, der sich in der schematischen Darstellung der Figur 1 entlang der strichpunktiert dargestellten Mittelachse der Aufnahmebohrung 13 der Strahlungsquelle 1 bis zu der Meßfläche 4 hin ausbreitet, dort reflektiert wird und von dort entlang der ebenfalls strichpunktiert dargestellten Mittelachse der Aufnahmebohrung 14 des Strahlungsdetektors 2 weiter verläuft. In dem Strahlungsdetektor 2 findet die Messung der Intensität des reflektierten Meßstrahls 12 statt. Die gemessene Intensität wird an die Auswerteeinrichtung 15 geleitet, in der eine erste Recheneinrichtung 16 zunächst ohne Berücksichtigung der Temperatur anhand von Referenzwerten einen Wert für den aktuellen Brechungsindex beziehungsweise die Brechzahl berechnet. Dieser aus der Messung berechnete Wert wird dann in der zweiten Recheneinrichtung 17 unter Berücksichtigung der mittels des Temperatursensors 8 gemessenen und ebenfalls an die Auswerteeinrichtung 15 gegebenen Temperaturwertes auf eine Referenztemperatur bezogen und somit der Temperatureinfluß kompensiert. Der so berechnete und korrigierte Wert für den Brechungsindex beziehungsweise die Brechzahl wird dann an eine Anzeige 18 gegeben und dort mittels einer digitalen Anzeige dem Benutzer ausgegeben.

Claims

Patentansprüche
1. Refraktometer zur Bestimmung des Brechungsindex einer Flüssigkeit (5) und gegebenenfalls hiervon abgeleiteter Größen wie beispielsweise einer Zuckerkonzentration, mit einer Sensoranordnung, die eine Strahlungsquelle (1) zur Erzeugung eines Meßstrahls (12) , einen Strahlungsdetektor (2) zur Detektion des Meßstrahls (12) und eine von dem Meßstrahl zu durchlaufende Meßstrecke aufweist, an der eine von der Flüssigkeit (5) zu benetzende Meßfläche (4) angeordnet ist, mit der der Meßstrahl (12) wechselwirkt, d a d u r c h g e k e n n z e i c h n e t, d a ß die Meßfläche (4) in einer Probemulde (7) einer in die Flüssigkeit (5) einbringbaren Einstechsonde (11) angeord- net ist.
2. Refraktometer nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, d a ß die Meßfläche (4) durch einen Linsenkörper (3) begrenzt ist.
3. Refraktometer nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, d a ß die Meßfläche (4) durch einen Glaskörper begrenzt ist.
4. Refraktometer nach Anspruch 2 oder 3 , d a d u r c h g e k e n n z e i c h n e t, d a ß die Strahlungsquelle (1) , der Strahlungsdetektor (2) und der Linsenkörper (3) oder gegebenenfalls der Glaskörper in einer metallischen Aufnahme (6) gehalten sind, die insbesondere aus Stähl oder Aluminium besteht.
5. Refraktometer nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a ß die metallische Aufnahme (6) mit einem Stoff, insbesondere einem Kunststoff (19) ummantelt ist, dessen Wärmeleitfähigkeit geringer ist als die des Materials der Aufnahme (6) .
Refraktometer nach Anspruch 1 oder einem der folgenden d a d u r c h g e k e n n z e i c h n e t, d a ß ein Temperatursensor (8) im Bereich der Sensoranordnung (1, 2, 3) vorgesehen ist.
Refraktometer nach Anspruch 2 oder einem der folgenden, d a d u r c h g e k e n n z e i c h n e t, d a ß der Linsenkörper (3) oder der Glaskörper aus einem Mate- rial mit einem Brechungsindex besteht, der größer als 1.5, insbesondere größer als 2 ist.
Refraktometer nach Anspruch 1 oder einem der folgenden, d a d u r c h g e k e n n z e i c h n e t, d a ß das Volumen der Probenmulde (7) weniger als 1 Milliliter beträgt .
Refraktometer nach Anspruch 1 oder einem der folgenden, d a d u r c h g e k e n n z e i c h n e t, d a ß die Strahlungsquelle (1) durch eine Infrarotleuchtdiode und der Strahlungsdetektor (2) durch einen im Infrarotgebiet sensitiven Halbleiter gebildet ist. Refraktometer nach Anspruch 1 oder einem der folgenden, mit einem Linsenkörper (3) , der einen Bereich mit größerer Krümmung und einen Bereich mit geringerer Krümmung seiner Oberfläche aufweist, d a d u r c h g e k e n n z e i c h n e t, d a ß der Bereich mit größerer Krümmung der Strahlungsquelle (1) und dem Strahlungsdetektor (2) zugewandt ist und der Bereich mit geringerer Krümmung die Meßfläche (4) begrenzt .
Verfahren zum Betrieb eines Refraktometers nach Anspruch 1 oder einem der folgenden, d a d u r c h g e k e n n z e i c h n e t, d a ß die Einstechspitze zunächst in die Probeflüssigkeit ein- getaucht oder in eine Frucht eingestochen wird und daß dann die Eistechspitze entnommen wird, und daß an der in der Probemulde verbliebenen Probe der Probenflüssigkeit die Messung der Brechzahl durchgeführt wird.
PCT/EP2002/014586 2002-01-21 2002-12-19 Refraktometer WO2003060492A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/476,749 US7064816B2 (en) 2002-01-21 2002-12-19 Refractometer
BR0209264-6A BR0209264A (pt) 2002-01-21 2002-12-19 Procedimento para operação de um refratÈmetro
EP02793090A EP1468272B1 (de) 2002-01-21 2002-12-19 Refraktometer
DE50207885T DE50207885D1 (de) 2002-01-21 2002-12-19 Refraktometer
JP2003560538A JP2005515433A (ja) 2002-01-21 2002-12-19 屈折計

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10202117.1 2002-01-21
DE10202117A DE10202117C2 (de) 2002-01-21 2002-01-21 Refraktometer

Publications (2)

Publication Number Publication Date
WO2003060492A1 true WO2003060492A1 (de) 2003-07-24
WO2003060492A8 WO2003060492A8 (de) 2003-11-27

Family

ID=7712658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/014586 WO2003060492A1 (de) 2002-01-21 2002-12-19 Refraktometer

Country Status (5)

Country Link
US (1) US7064816B2 (de)
JP (1) JP2005515433A (de)
BR (1) BR0209264A (de)
DE (2) DE10202117C2 (de)
WO (1) WO2003060492A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021126633A1 (en) * 2019-12-20 2021-06-24 Entegris, Inc. Accurate temperature reading of fluid near interface

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2869392B1 (fr) * 2004-04-27 2006-07-14 Siemens Vdo Automotive Sas Tete d'une bougie de prechauffage equipee d'un capteur de pression
US7221440B2 (en) * 2004-07-22 2007-05-22 Eastman Kodak Company System and method for controlling ink concentration using a refractometer
US7317533B2 (en) * 2005-01-14 2008-01-08 Jetalon Solutions, Inc. Metal ion concentration analysis for liquids
US20060191571A1 (en) * 2005-02-11 2006-08-31 Kattler David R Fluid concentration sensing arrangement
FI118864B (fi) * 2005-08-12 2008-04-15 Janesko Oy Refraktometri
US7319523B2 (en) * 2005-09-26 2008-01-15 Jetalon Solutions, Inc. Apparatus for a liquid chemical concentration analysis system
US7445934B2 (en) * 2006-04-10 2008-11-04 Baker Hughes Incorporated System and method for estimating filtrate contamination in formation fluid samples using refractive index
US8602640B2 (en) * 2009-05-20 2013-12-10 Entegris—Jetalon Solutions, Inc. Sensing system and method
DE102015106805A1 (de) 2015-04-30 2016-11-03 Anton Paar Optotec Gmbh Temperaturkalibration für Messgerät

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3487069A (en) * 1965-05-11 1969-12-30 Mario Maselli Refractometer with compensating photocells
EP0305109A1 (de) * 1987-08-22 1989-03-01 AMERSHAM INTERNATIONAL plc Biologische Sensoren
DE9015539U1 (de) * 1990-11-09 1991-01-31 Franz Schmidt & Haensch Gmbh & Co, 1000 Berlin Refraktometer
US6149591A (en) * 1997-02-21 2000-11-21 Duke University Refractometric devices especially adapted for the in vivo detection of refractive indices of cervical mucus
US20010035950A1 (en) * 2000-04-17 2001-11-01 Nicholas Paul H. Electronic device for distinguishing sugar sweetened beverages from artificially sweetened ones

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859696A (en) * 1997-12-04 1999-01-12 Nicholas; Paul Refractometer for distinguishing sugar-sweetened beverages from artificially-sweetened ones
DE10007818A1 (de) * 2000-02-21 2001-08-23 Mahrt Karl Heinz Hochdruckfester kompakter Präzionsmeßkopf für hochgenaue optische Brechungsindexmessungen in ruhenden und strömenden Flüssigkeiten und Gasen, insbesondere geeignet für den massenhaften Einsatz in Einwegsonden für in situ-Untersuchungen in der Tiefsee

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3487069A (en) * 1965-05-11 1969-12-30 Mario Maselli Refractometer with compensating photocells
EP0305109A1 (de) * 1987-08-22 1989-03-01 AMERSHAM INTERNATIONAL plc Biologische Sensoren
DE9015539U1 (de) * 1990-11-09 1991-01-31 Franz Schmidt & Haensch Gmbh & Co, 1000 Berlin Refraktometer
US6149591A (en) * 1997-02-21 2000-11-21 Duke University Refractometric devices especially adapted for the in vivo detection of refractive indices of cervical mucus
US20010035950A1 (en) * 2000-04-17 2001-11-01 Nicholas Paul H. Electronic device for distinguishing sugar sweetened beverages from artificially sweetened ones

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021126633A1 (en) * 2019-12-20 2021-06-24 Entegris, Inc. Accurate temperature reading of fluid near interface
US11788902B2 (en) 2019-12-20 2023-10-17 Entegris, Inc. Accurate temperature reading of fluid near interface

Also Published As

Publication number Publication date
DE50207885D1 (de) 2006-09-28
US20040125363A1 (en) 2004-07-01
BR0209264A (pt) 2005-01-04
DE10202117A1 (de) 2003-08-07
US7064816B2 (en) 2006-06-20
DE10202117C2 (de) 2003-12-24
WO2003060492A8 (de) 2003-11-27
JP2005515433A (ja) 2005-05-26

Similar Documents

Publication Publication Date Title
EP1238274B1 (de) Testelement-analysesystem mit infrarotdetektor
EP1240503B1 (de) Teststreifen-analysesystem, medizinischer teststreifen, und verfahren zur analytischen untersuchung einer probe mit hilfe eines teststreifen-analysesystems
DE3876321T2 (de) Kopf zur messung des reflexionsvermoegens von entfernten proben.
EP0774658B1 (de) Verfahren und Vorrichtung zur Bestimmung von analytischen Daten über das Innere einer streuenden Matrix
DE69518834T2 (de) Verfahren und Vorrichtung zur Bestimmung der Erythrozytensedimentationsrate
EP2003441B1 (de) ATR-Sensor
DE69032968T2 (de) Optischer flüssigkeitssensor, sein herstellungsverfahren und kraftfahrzeugöl- und -batterieprüfer
DE69515858T2 (de) Probenröhrchen zur Bestimmung der Blutsenkung und ein Detergens zur Verwendung darin
DE2422260B2 (de) Einrichtung zur Herstellung einer optisch zu untersuchenden Meßflüssigkeit
DE19646505A1 (de) Vorrichtung zur Durchführung von Untersuchungen an Zellproben und dergleichen
DE19948195A1 (de) Verfahren und Vorrichtung zur optischen Messung sehr kleiner flüssiger Proben
EP1212598A2 (de) Verfahren und vorrichtung zur quantitativen gasanalyse
WO2003060492A1 (de) Refraktometer
DE2832806C2 (de) Vorrichtung zum Messen einer Eigenschaft einer Flüssigkeitsprobe
DE102005048807B3 (de) Vorrichtung für die qualitative und/oder quantitative Bestimmung von IR-aktiven Inhaltsstoffen in Flüssigkeiten sowie ein Verfahren zur qualitativen und/oder quantitativen Bestimmung von IR-aktiven Inhaltsstoffen in Flüssigkeiten
DE102006037506A1 (de) Refraktometer
EP1468272B1 (de) Refraktometer
AT503508A2 (de) Verfahren zur bestimmung des punktes des verschwindens der kristalle in erdölerzeugnissen und vorrichtung zum einsatz dieses verfahrens
AT507994B1 (de) Messanordnung zur bestimmung zumindest eines parameters einer probenflüssigkeit
DE102012108620A1 (de) Verfahren zum Bestimmen der Weglänge einer Probe und Validierung der damit erhaltenen Messung
DE3024061C2 (de) Refraktometer
DE102020104266B3 (de) Vorrichtung und Methode zur Analyse von Blut
DE3414866A1 (de) Verfahren und vorrichtung zum messen der osmolaritaet von fluessigkeitsproben
DE10007818A1 (de) Hochdruckfester kompakter Präzionsmeßkopf für hochgenaue optische Brechungsindexmessungen in ruhenden und strömenden Flüssigkeiten und Gasen, insbesondere geeignet für den massenhaften Einsatz in Einwegsonden für in situ-Untersuchungen in der Tiefsee
DE19934934C1 (de) Verfahren für die gleichzeitige Erfassung von diffuser und specularer Reflexion von Proben, vorzugsweise transparenter Proben, sowie Reflektanz - Meßsonde zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002793090

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003560538

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10476749

Country of ref document: US

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 30/2003 UNDER (30) REPLACE "EP" BY "DE"

WWE Wipo information: entry into national phase

Ref document number: 20028258614

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002793090

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002793090

Country of ref document: EP