WO2003058140A2 - Procede et dispositif de refroidissement d'une veine de fluide gazeux, et procede de refroidissement d'articles - Google Patents

Procede et dispositif de refroidissement d'une veine de fluide gazeux, et procede de refroidissement d'articles Download PDF

Info

Publication number
WO2003058140A2
WO2003058140A2 PCT/FR2003/000021 FR0300021W WO03058140A2 WO 2003058140 A2 WO2003058140 A2 WO 2003058140A2 FR 0300021 W FR0300021 W FR 0300021W WO 03058140 A2 WO03058140 A2 WO 03058140A2
Authority
WO
WIPO (PCT)
Prior art keywords
gaseous fluid
vein
mixing
cooling
duct
Prior art date
Application number
PCT/FR2003/000021
Other languages
English (en)
Other versions
WO2003058140A3 (fr
Inventor
Jean-Pierre Germain
Original Assignee
L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to CA002472034A priority Critical patent/CA2472034A1/fr
Priority to AU2003214291A priority patent/AU2003214291A1/en
Priority to US10/501,270 priority patent/US7444823B2/en
Priority to EP03709856A priority patent/EP1463913A2/fr
Publication of WO2003058140A2 publication Critical patent/WO2003058140A2/fr
Publication of WO2003058140A3 publication Critical patent/WO2003058140A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G7/00Other apparatus or process specially adapted for the chocolate or confectionery industry
    • A23G7/0043Other processes specially adapted for the chocolate or confectionery industry
    • A23G7/0093Cooling or drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/001Arrangement or mounting of control or safety devices for cryogenic fluid systems

Definitions

  • the present invention relates to a method and a device for cooling a stream of gaseous fluid such as air. It also relates to a method of cooling articles using the aforementioned method of cooling a stream of gaseous fluid.
  • This cooling surface is defined by an element which must itself be cooled.
  • a cooling fluid other than the gaseous fluid to be cooled is used for this purpose, in the case of cooling by means of a heat exchanger. Consequently, this cooling method has the disadvantage of having a certain inertia. In particular, during a start-up, it does not make it possible to pass in a short time from a situation where the flow of gaseous fluid is not cooled to a stabilized and operational operating regime, in which the stream of fluid gas is cooled to the desired temperature.
  • the subject of the invention is a method for cooling a vein of gaseous fluid, comprising steps in which: a) said vein is confined; b) during step a), liquid nitrogen is sprayed into the vein to cool the gaseous fluid, then c) the cooled gaseous fluid is recovered, and is characterized in that before step b), it includes a step in which: d) the gaseous fluid is slowed down by increasing the cross section of the vein.
  • step c) is carried out only after the liquid nitrogen has completely vaporized in the vein;
  • step d) the vein is directed on an impact surface
  • step e) the vein is stirred by sucking the gaseous fluid using a turbomachine; in step e), the vein is stirred while deflecting it; - By acting on the flow of liquid nitrogen sprayed in step b), the temperature of the gaseous fluid recovered in step c) is regulated, around a predetermined temperature.
  • the invention also relates to a method for cooling articles, characterized in that it includes the cooling method defined above, as well as at least one step in which the gaseous fluid recovered in step is sent. c) on articles.
  • the gaseous fluid is air.
  • the subject of the invention is a device for cooling a vein of gaseous fluid, comprising a mixing conduit intended to be traversed by the vein, as well as means for spraying liquid nitrogen into this mixing conduit, characterized in that it comprises a pipe for injecting the gaseous fluid into the mixing pipe, this injection pipe being directed towards at least one impact surface located inside the mixing pipe, and in that that at least on a section containing the impact surface and said spraying means, the mixing pipe has a section greater than the section of the injection pipe.
  • the injection pipe is engaged in the mixing pipe by an upstream end of this mixing pipe, said impact surface being turned substantially towards this upstream end;
  • the device comprises means for stirring the gaseous fluid, these stirring means being placed downstream of the spraying means;
  • the device comprises an enclosure into which opens a downstream end of the mixing conduit, the enclosure and the mixing conduit defining between them a tranquilization passage for the gaseous fluid, the enclosure having an outlet for the gaseous fluid, located at level of said stilling pass;
  • the stirring means are placed upstream of said tranquilization passage;
  • the upstream end of the mixing duct is open and located in the enclosure;
  • the device comprises suction means placed downstream of the spraying means and upstream of the discharge, and provided for driving the gaseous fluid in the direction of flow;
  • a turbomachine is common to the stirring means and to the suction means;
  • the turbomachine is a centrifugal fan which is arranged at the downstream end of the mixing duct, for sucking the gaseous fluid flowing in this mixing duct;
  • the device comprises a regulation loop, around a predetermined temperature, the outlet temperature of the gaseous fluid leaving the cooling device, this regulation loop comprising: means for measuring said outlet temperature;
  • a regulator capable of controlling said adjustment means, on the basis of a signal emitted by the measurement means.
  • the cooling device shown is, for the most part, generally symmetrical with respect to a vertical axis XX '. It comprises a substantially sealed enclosure 1, which comprises two curved end walls, one upper 2 and the other lower 3, opposite and connected to each other by a side wall or cylindrical shell 4.
  • a vertical pipe 5 for injecting the air to be cooled into the cooling device crosses the lower wall 3 and opens into a mixing pipe 6, mounted vertically inside the enclosure 1.
  • This mixing pipe 6 is substantially rectilinear, of circular section, and it has an upstream end 7, open and directed towards the lower wall 3, and a downstream end 8, open and directed towards the upper wall 2.
  • the injection pipe 5, the mixing pipe 6 and the enclosure 1 are substantially coaxial.
  • This impact surface 10, concave downward and situated inside the mixing duct 6, is carried by a jet-breaking screen 11, fixed to the center of the mixing duct 6 by means of several radial arms 11A.
  • the downstream end 8 of the mixing duct 6 opens directly into the axial suction 12 of a centrifugal fan 13 mounted in the upper wall 2 and provided with a drive motor 14.
  • the circumferential discharge 15 of the centrifugal fan 13 s 'extends opposite the side wall 4, in the enclosure 1, and it is located upstream of an annular and lateral passage of tranquilization 16, which the mixing duct 6 and the side wall 4 delimit between them.
  • the enclosure 1 is provided with an outlet formed by a tube 17, the mouth of which gives into the tranquilization passage 16.
  • a nozzle 18 for spraying liquid nitrogen is mounted inside the mixing duct 6, downstream of the jet-breaking screen 11, at the end of a tube 19 for supplying liquid nitrogen. It faces the downstream end 8 of the mixing duct 6, that is to say in the direction of flow of the air to be cooled.
  • the supply tube 19 is provided with a pump 20.
  • a loop 21 for regulating the temperature of the air leaving the cooling device comprises a sensor 22 for measuring the temperature in the discharge pipe 17, as well as a regulator 23 connected to this sensor 22 and to the pump. 20.
  • the flow of air inside the cooling device in operation is symbolized by arrows not referenced.
  • the air to be cooled is compressed to a distribution pressure, before being admitted into enclosure 1 through the injection duct 5. It enters directly into the mixing duct 6, in the form of a jet which breaks on the impact surface 10. It is then attracted by the vacuum created at the inlet of the centrifugal fan 13 and goes towards the downstream end 8 of the mixing duct 6. In so doing, it flows around the nozzle 18, which sprays liquid nitrogen in the form of droplets. These droplets of liquid nitrogen penetrate all the better into the air stream as past the jet breaker screen 11, this stream having a larger section, the air flows more slowly. Nitrogen droplets sprayed vaporize in the air which is therefore cooled.
  • the air sucked axially by the centrifugal fan 13 is discharged radially against the side wall 4, at the upper entrance of the annular passage 16. Also, apart from sucking the air present in the mixing duct 6, this centrifugal fan 13 performs vigorous air mixing. This mixing, all the more effective as the air is deflected in the fan 13 and against the side wall 4, homogenizes the vein and promotes the vaporization of the last nitrogen droplets.
  • the centrifugal fan 13 Once the centrifugal fan 13 has passed, the cooled air enters the passage 16, where the flow settles down. After having traversed part of the length of this tranquilization passage 16, most of the air sucked in by the centrifugal fan 13 escapes through the discharge pipe 17, while a small part of this air is directed towards the upstream end 7 of the mixing duct 6, before recirculating in the latter.
  • the vaporization of nitrogen droplets in the air to be cooled does not qualitatively modify the composition of this air. Also, the latter can be rejected in the atmosphere without concern of any pollution, for example by being blown on the articles 24, in order to cool these articles 24 in scrolling according to the arrow F.
  • Water, present in the form of vapor in the air allowed, may form condensate on cooling.
  • the vertical orientation of the enclosure 1 and of the mixing conduit 6, as well as the absence of obturation of the upstream end 7 of this conduit facilitate the evacuation of these condensates by a not shown drain, equipping the wall lower 3.
  • the outlet temperature of the cooled air is regulated using the regulation loop 21, around a predetermined temperature, fixed between -196 ° C., which is the boiling point of nitrogen under pressure. atmospheric, and the ambient temperature to which the air to be cooled is admitted through the injection pipe 5.
  • the regulator 23 acts on the flow of liquid nitrogen sprayed by controlling the speed of rotation of the pump 20, from the temperature measurement made by the sensor 22.
  • liquid nitrogen can be sprayed by means other than by means of the nozzle 18, for example by means of spraying booms.
  • the centrifugal fan 13 can be replaced by d other means of mixing, such as a set of deflectors arranged in staggered rows.
  • a set of deflectors arranged in staggered rows.
  • another turbomachine such as an axial fan mounted inside the mixing duct 6.
  • the invention can be implemented using a cooling device having an overall configuration substantially different from that which has just been described, even if the latter has undeniable qualities in terms of compactness and efficiency.
  • the invention can be implemented to cool a gaseous fluid other than air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Confectionery (AREA)

Abstract

Dans le procédé de refroidissement d'une veine de fluide gazeux : a on confine ladite veine b durant l'étape a, on pulvérise de l'azote liquide dans la veine pour refroidir le fluide gazeux, puis c on récupíre le fluide gazeux refroidi et avant l'étape b, on effectue une étape d dans laquelle on ralentit le fluide gazeux en augmentant la section de la veine. Dans le procédé de refroidissement d'articles, on envoie le fluide gazeux récupéré à l'étape c, sur les articles.

Description

Procédé et dispositif de refroidissement d'une veine de fluide gazeux, et procédé de refroidissement d'articles. La présente invention concerne un procédé et un dispositif de refroidissement d'une veine de fluide gazeux tel que de l'air. Elle concerne également un procédé de refroidissement d'articles à l'aide du procédé précité de refroidissement d'une veine de fluide gazeux.
Pour refroidir une veine de fluide gazeux, il est classique de mettre cette veine en contact avec une surface de refroidissement plus froide qu'elle. Cette surface de refroidissement est définie par un élément qui doit être lui-même refroidi. Par exemple, on utilise à cet effet un fluide de refroidissement autre que le fluide gazeux à refroidir, dans le cas d'un refroidissement au moyen d'un échangeur de chaleur. Par conséquent, ce mode de refroidissement a comme inconvénient de présenter une certaine inertie. En particulier, lors d'un démarrage, il ne permet pas de passer en peu de temps d'une situation où l'écoulement de fluide gazeux n'est pas refroidi à un régime de fonctionnement stabilisé et opérationnel, dans lequel la veine de fluide gazeux est refroidie à la température voulue .
Il a également été évoqué de réaliser le refroidissement d'une veine de fluide gazeux par injection d'un fluide de refroidissement dans la veine (on pourra se reporter aux documents FR-1 349 403, US-3 385 073 ou encore US-5 261 243) .
L'invention, qui entend améliorer les performances de refroidissement obtenues selon les techniques de l'art antérieur, a donc au moins pour but d'augmenter la vitesse à laquelle on peut modifier la température d'une veine de fluide gazeux refroidi . A cet effet, l'invention a pour objet un procédé de refroidissement d'une veine de fluide gazeux, comportant des étapes dans lesquelles : a) on confine ladite veine ; b) durant l'étape a), on pulvérise de l'azote liquide dans la veine pour refroidir le fluide gazeux, puis c) on récupère le fluide gazeux refroidi, et se caractérise en ce qu'avant l'étape b) , il comporte une étape dans laquelle : d) on ralentit le fluide gazeux en augmentant la section de la veine.
Selon d'autres caractéristiques avantageuses de ce procédé de refroidissement :
- on effectue l'étape c) seulement après que l'azote liquide se soit complètement vaporisé dans la veine ;
- dans 1 ' étape d) , on dirige la veine sur une surface d'impact ;
- après l'étape b) et avant l'étape c) , il comporte une étape dans laquelle : e) on brasse la veine.
- dans l'étape e) , on brasse la veine en aspirant le fluide gazeux à l'aide d'une turbomachine ; dans l'étape e) , on brasse la veine en la déflectant ; - en agissant sur le débit d'azote liquide pulvérisé à l'étape b) , on régule la température du fluide gazeux récupéré à l'étape c) , autour d'une température prédéterminée .
L'invention a également pour objet un procédé de refroidissement d'articles, caractérisé en ce qu'il inclut le procédé de refroidissement défini ci-dessus, ainsi qu'au moins une étape dans laquelle on envoie le fluide gazeux récupéré à l'étape c) sur les articles. Selon d'autres caractéristiques avantageuses de ce procédé de refroidissement d'articles, le fluide gazeux est de l'air.
De plus, l'invention a pour objet un dispositif de refroidissement d'une veine de fluide gazeux, comportant un conduit de melangeage destiné à être parcouru par la veine, ainsi que des moyens de pulvérisation d'azote liquide dans ce conduit de melangeage, se caractérisant en ce qu'il comporte un conduit d'injection du fluide gazeux dans le conduit de melangeage, ce conduit d'injection étant dirigé vers au moins une surface d'impact située à l'intérieur du conduit de melangeage, et en ce qu'au moins sur un tronçon contenant la surface d'impact et lesdits moyens de pulvérisation, le conduit de melangeage a une section supérieure à la section du conduit d'injection.
Selon d'autres caractéristiques avantageuses de ce dispositif de refroidissement :
- le conduit d'injection est engagé dans le conduit de melangeage par une extrémité amont de ce conduit de melangeage, ladite surface d'impact étant tournée sensiblement vers cette extrémité amont ;
- la surface d'impact est concave ;
- le dispositif comporte des moyens de brassage du fluide gazeux, ces moyens de brassage étant placés en aval des moyens de pulvérisation ;
- le dispositif comprend une enceinte dans laquelle débouche une extrémité aval du conduit de melangeage, l'enceinte et le conduit de melangeage délimitant entre eux un passage de tranquillisation pour le fluide gazeux, l'enceinte possédant une évacuation pour le fluide gazeux, située au niveau dudit passage de tranquillisation ;
- les moyens de brassage sont placés en amont dudit passage de tranquillisation ; l'extrémité amont du conduit de melangeage est ouverte et située dans l'enceinte ; le dispositif comporte des moyens d'aspiration placés en aval des moyens de pulvérisation et en amont de l'évacuation, et prévus pour entraîner le fluide gazeux dans le sens d'écoulement ;
- une turbomachine est commune aux moyens de brassage et aux moyens d'aspiration ;
- la turbomachine est un ventilateur centrifuge qui est disposé à l'extrémité aval du conduit de melangeage, pour aspirer le fluide gazeux s 'écoulant dans ce conduit de melangeage ;
- le dispositif comporte une boucle de régulation, autour d'une température prédéterminée, de la température de sortie du fluide gazeux sortant du dispositif de refroidissement, cette boucle de régulation comprenant : des moyens de mesure de ladite température de sortie ;
. des moyens de réglage du débit d'azote alimentant les moyens de pulvérisation, et
. un régulateur apte à commander lesdits moyens de réglage, à partir d'un signal émis par les moyens de mesure .
L'invention sera bien comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant à la figure unique annexée qui est une vue schématique, en coupe axiale, d'un dispositif, conforme à l'invention, de refroidissement d'une veine d'air de refroidissement d'articles en chocolat.
Dans un souci de clarté, les proportions du dispositif de refroidissement ne sont pas respectées sur cette figure unique. Le dispositif de refroidissement représenté est, pour l'essentiel, globalement symétrique par rapport à un axe vertical X-X' . Il comprend une enceinte sensiblement étanche 1, laquelle comporte deux parois d'extrémité bombées, l'une supérieure 2 et l'autre inférieure 3, opposées et reliées entre elles par une paroi latérale ou virole cylindrique 4.
Un conduit vertical 5 d'injection de l'air à refroidir dans le dispositif de refroidissement traverse la paroi inférieure 3 et débouche dans un conduit de melangeage 6, monté verticalement à l'intérieur de l'enceinte 1. Ce conduit de melangeage 6 est sensiblement rectiligne, de section circulaire, et il possède une extrémité amont 7, ouverte et dirigée vers la paroi inférieure 3, et une extrémité aval 8, ouverte et dirigée vers la paroi supérieure 2.
Le conduit d'injection 5, le conduit de melangeage 6 et l'enceinte 1 sont sensiblement coaxiaux.
Une portion d'extrémité aval 9 du conduit d'injection 5, lequel a une section de passage nettement inférieure à celle du conduit de melangeage 6, est introduite dans l'extrémité amont 7 de ce conduit 6 et est dirigée vers une surface d'impact 10.
Cette surface d'impact 10, concave vers le bas et située à l'intérieur du conduit de melangeage 6, est portée par un écran brise-jet 11, fixé au centre du conduit de melangeage 6 au moyen de plusieurs bras radiaux 11A.
L'extrémité aval 8 du conduit de melangeage 6 débouche directement dans l'aspiration axiale 12 d'un ventilateur centrifuge 13 monté dans la paroi supérieure 2 et pourvu d'un moteur d'entraînement 14. Le refoulement circonférentiel 15 du ventilateur centrifuge 13 s'étend en regard de la paroi latérale 4, dans l'enceinte 1, et il est situé en amont d'un passage annulaire et latéral de tranquillisation 16, que le conduit de melangeage 6 et la paroi latérale 4 délimitent entre eux.
L'enceinte 1 est pourvue d'une évacuation formée par une tubulure 17, dont l'embouchure donne dans le passage de tranquillisation 16.
Une buse 18 de pulvérisation d'azote liquide est montée à l'intérieur du conduit de melangeage 6, en aval de l'écran brise-jet 11, au bout d'un tube 19 d'amenée de l'azote liquide. Elle est tournée vers l'extrémité aval 8 du conduit de melangeage 6, c'est-à-dire dans le sens prévu de l'écoulement de l'air à refroidir. Le tube d'amenée 19 est pourvu d'une pompe 20.
Une boucle 21 de régulation de la température de l'air en sortie du dispositif de refroidissement comporte un capteur 22 de mesure de la température dans la tubulure d'évacuation 17, ainsi qu'un régulateur 23 relié à ce capteur 22 et à la pompe 20.
Sur la figure unique, l'écoulement de l'air à l'intérieur du dispositif de refroidissement en fonctionnement est symbolisé par des flèches non référencées. L'air à refroidir est comprimé à une pression de distribution, avant d'être admis dans l'enceinte 1 par le conduit d'injection 5. Il pénètre directement dans le conduit de melangeage 6, sous la forme d'un jet qui se brise sur la surface d'impact 10. Il est alors attiré par la dépression créée à l'entrée du ventilateur centrifuge 13 et se dirige vers l'extrémité aval 8 du conduit de melangeage 6. Ce faisant, il s'écoule autour de la buse 18, qui pulvérise de l'azote liquide sous forme de gouttelettes. Ces gouttelettes d'azote liquide pénètrent d'autant mieux dans la veine d'air que passé l'écran brise- jet 11, cette veine ayant une plus grande section, l'air s'écoule plus lentement. Les gouttelettes d'azote pulvérisées se vaporisent dans l'air qui, de ce fait, est refroidi .
L'air aspiré axialement par le ventilateur centrifuge 13 est refoulé radialement contre la paroi latérale 4, à l'entrée supérieure du passage annulaire 16. Aussi, outre qu'il aspire l'air présent dans le conduit de melangeage 6, ce ventilateur centrifuge 13 effectue un brassage énergique de l'air. Ce brassage, d'autant plus efficace que l'air est déflecté dans le ventilateur 13 et contre la paroi latérale 4, homogénéise la veine et favorise la vaporisation des dernières gouttelettes d'azote.
Une fois passé le ventilateur centrifuge 13, l'air refroidi s'engage dans le passage 16, où l'écoulement se tranquillise. Après avoir parcouru une partie de la longueur de ce passage de tranquillisation 16, l'essentiel de l'air aspiré par le ventilateur centrifuge 13 s'échappe par la tubulure d'évacuation 17, tandis qu'une faible partie de cet air se dirige vers l'extrémité amont 7 du conduit de melangeage 6, avant de recirculer dans ce dernier.
Toutes les gouttelettes d'azote sont complètement vaporisées et l'air n'en contient plus lorsqu'il s'engage dans la tubulure d'évacuation 17. Dans nombre d'applications, cela constitue un avantage. En particulier, dans l'exemple illustré, cela permet de refroidir des articles 24 en chocolat à solidifier, en envoyant directement dessus l'air récupéré dans la tubulure d'évacuation 17, étant rappelé qu'une altération rédhibitoire de l'aspect final du chocolat résulterait d'une mise en contact de ce chocolat en cours de solidification avec de l'azote liquide.
La vaporisation de gouttelettes d'azote dans l'air à refroidir ne modifie pas qualitativement la composition de cet air. Aussi, ce dernier peut être rejeté dans l'atmosphère sans souci d'une quelconque pollution, par exemple en étant soufflé sur les articles 24, pour à son tour refroidir ces articles 24 en défilement selon la flèche F. De l'eau, présente sous forme de vapeur dans l'air admis, peut former des condensats lors du refroidissement. L'orientation verticale de l'enceinte 1 et du conduit de melangeage 6, ainsi que l'absence d'obturation de l'extrémité amont 7 de ce conduit, facilitent l'évacuation de ces condensats par une purge non représentée, équipant la paroi inférieure 3.
La température de sortie de l'air refroidi est régulée à l'aide de la boucle de régulation 21, autour d'une température prédéterminée, fixée entre -196°C, qui est le point d'ébullition de l'azote sous la pression atmosphérique, et la température ambiante à laquelle l'air à refroidir est admis par le conduit d'injection 5. A cet effet, le régulateur 23 agit sur le débit d'azote liquide pulvérisé en commandant la vitesse de rotation de la pompe 20, à partir de la mesure de température effectuée par le capteur 22.
L'invention ne se limite pas au mode de réalisation décrit précédemment. En particulier, l'azote liquide peut être pulvérisé autrement qu'au moyen de la buse 18, par exemple à l'aide de rampes de pulvérisation.
De plus, quoiqu'il brasse de manière particulièrement efficace l'air, et bien qu'il assure simultanément une autre fonction, à savoir l'aspiration du mélange présent dans le conduit de melangeage 6, le ventilateur centrifuge 13 peut être remplacé par d'autres moyens de brassage, tel qu'un jeu de déflecteurs disposés en quinconce. Bien que son utilisation se traduise par un ensemble compact, simple et robuste, il peut également être remplacé par une autre turbomachine, comme un ventilateur axial monté à l'intérieur du conduit de melangeage 6.
En outre, l'invention peut être mise en œuvre à l'aide d'un dispositif de refroidissement ayant une configuration d'ensemble sensiblement différente de celle qui vient d'être décrite, même si cette dernière possède d'indéniables qualités en termes de compacité et d' efficacité.
Par ailleurs, l'invention peut être mise en œuvre pour refroidir un fluide gazeux autre que de l'air.
Parmi les avantages de l'invention, on notera qu'elle permet d'atteindre des températures particulièrement basses, inférieures à -150°C et pouvant même avoisiner
-196°C.

Claims

REVENDICATIONS
1. Procédé de refroidissement d'une veine de fluide gazeux, comportant des étapes dans lesquelles : a) on confine ladite veine ; b) durant l'étape a), on pulvérise de l'azote liquide dans la veine pour refroidir le fluide gazeux, puis c) on récupère le fluide gazeux refroidi, caractérisé en ce qu'avant l'étape b) , il comporte une étape dans laquelle : d) on ralentit le fluide gazeux en augmentant la section de la veine.
2. Procédé selon la revendication 1, caractérisé en ce qu'on effectue l'étape c) seulement après que l'azote liquide se soit complètement vaporisé dans la veine.
3. Procédé selon la revendication 1 ou 2 , caractérisé ce que dans l'étape d) , on dirige la veine sur une surface d'impact (10) .
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'après l'étape b) et avant l'étape c) , il comporte une étape dans laquelle : e) on brasse la veine.
5. Procédé selon la revendication 4, caractérisé en ce que dans l'étape e) , on brasse la veine en aspirant le fluide gazeux à l'aide d'une turbomachine (13) .
6. Procédé selon la revendication 4 ou 5, caractérisé en ce que dans l'étape e) , on brasse la veine en la déflectant .
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'en agissant sur le débit d'azote liquide pulvérisé à l'étape b) , on régule la température du fluide gazeux récupéré à l'étape c) , autour d'une température prédéterminée.
8. Procédé de refroidissement d'articles (24), caractérisé en ce qu'il inclut le procédé de refroidissement selon l'une quelconque des revendications précédentes, ainsi qu'au moins une étape dans laquelle on envoie le fluide gazeux récupéré à l'étape c) sur les articles (24) .
9. Procédé selon la revendication 8, caractérisé en ce que le fluide gazeux est de l'air.
10. Dispositif de refroidissement d'une veine de fluide gazeux, comportant un conduit de melangeage (6) destiné à être parcouru par la veine, ainsi que des moyens (18) de pulvérisation d'azote liquide dans ce conduit de melangeage (6), caractérisé en ce qu'il comporte un conduit
(5) d'injection du fluide gazeux dans le conduit de melangeage (6), ce conduit d'injection (5) étant dirigé vers au moins une surface d'impact (10) située à l'intérieur du conduit de melangeage (6), et en ce qu'au moins sur un tronçon contenant la surface d'impact (10) et lesdits moyens de pulvérisation (18) , le conduit de melangeage (6) a une section supérieure à la section du conduit d'injection (5).
11. Dispositif selon la revendication 10, caractérisé en ce que lesdits moyens de pulvérisation comprennent une buse de pulvérisation (18) débouchant dans ledit conduit de melangeage (6) et tournée sensiblement dans le sens prévu d' écoulement .
12. Dispositif selon la revendication 10 ou 11, caractérisé en ce que le conduit d'injection (5) est engagé dans le conduit de melangeage (6) par une extrémité amont
(7) de ce conduit de melangeage (6), ladite surface d'impact (10) étant tournée sensiblement vers cette extrémité amont (7) .
13. Dispositif selon l'une des revendications 10 à 12, caractérisé en ce que ladite surface d'impact (10) est concave .
14. Dispositif selon l'une quelconque des revendications 10 à 13, caractérisé en ce qu'il comporte des moyens (13) de brassage du fluide gazeux, ces moyens de brassage (13) étant placés en aval des moyens de pulvérisation (18) .
15. Dispositif selon l'une quelconque des revendications 10 à 14, caractérisé en ce qu'il comprend une enceinte (1) dans laquelle débouche une extrémité aval
(8) du conduit de melangeage (6), l'enceinte (1) et le conduit de melangeage (6) délimitant entre eux un passage
(16) de tranquillisation pour le fluide gazeux, l'enceinte (1) possédant une évacuation (17) pour le fluide gazeux, située au niveau dudit passage de tranquillisation (16) .
16. Dispositif selon la revendication 15 dans sa dépendance à la revendication 14, caractérisé en ce que les moyens de brassage (13) sont placés en amont dudit passage de tranquillisation (16) .
17. Dispositif selon la revendication 15 dans sa dépendance à la revendication 12, caractérisé en ce que l'extrémité amont (7) du conduit de melangeage (6) est ouverte et située dans l'enceinte (1) .
18. Dispositif selon l'une quelconque des revendications 15 à 17, caractérisé en ce qu'il comporte des moyens d'aspiration (13) placés en aval des moyens de pulvérisation (18) et en amont de l'évacuation (17), et prévus pour entraîner le fluide gazeux dans le sens d' écoulement .
19. Dispositif selon la revendication 18 dans sa dépendance à la revendication 14, caractérisé en ce qu'une turbomachine (13) est commune aux moyens de brassage et aux moyens d'aspiration.
20. Dispositif selon la revendication 19 caractérisé en ce que la turbomachine est un ventilateur centrifuge (13) qui est disposé à l'extrémité aval (8) du conduit de melangeage (6), pour aspirer le fluide gazeux s ' écoulant dans ce conduit de melangeage (6).
21. Dispositif selon l'une quelconque des revendications 10 à 20, caractérisé en ce qu'il comporte une boucle (21) de régulation, autour d'une température prédéterminée, de la température de sortie du fluide gazeux sortant du dispositif de refroidissement, cette boucle de régulation (21) comprenant :
- des moyens (22) de mesure de ladite température de sortie ; des moyens (20) de réglage du débit d'azote alimentant les moyens de pulvérisation (13), et - un régulateur (23) apte à commander lesdits moyens de réglage (20) , à partir d'un signal émis par les moyens de mesure (22) .
PCT/FR2003/000021 2002-01-09 2003-01-07 Procede et dispositif de refroidissement d'une veine de fluide gazeux, et procede de refroidissement d'articles WO2003058140A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002472034A CA2472034A1 (fr) 2002-01-09 2003-01-07 Procede et dispositif de refroidissement d'une veine de fluide gazeux, et procede de refroidissement d'articles
AU2003214291A AU2003214291A1 (en) 2002-01-09 2003-01-07 Method and device for cooling a stream of gaseous liquid and a method of cooling articles
US10/501,270 US7444823B2 (en) 2002-01-09 2003-01-07 Method and device for cooling a stream of gaseous liquid and a method of cooling articles
EP03709856A EP1463913A2 (fr) 2002-01-09 2003-01-07 Procede et dispositif de refroidissement d'une veine de fluide gazeux, et procede de refroidissement d'articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/00196 2002-01-09
FR0200196A FR2834554B1 (fr) 2002-01-09 2002-01-09 Procede et dispositif de refroidissement d'une veine de fluide gazeux, et procede de refroidissement d'articles

Publications (2)

Publication Number Publication Date
WO2003058140A2 true WO2003058140A2 (fr) 2003-07-17
WO2003058140A3 WO2003058140A3 (fr) 2004-03-11

Family

ID=8871206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000021 WO2003058140A2 (fr) 2002-01-09 2003-01-07 Procede et dispositif de refroidissement d'une veine de fluide gazeux, et procede de refroidissement d'articles

Country Status (6)

Country Link
US (1) US7444823B2 (fr)
EP (1) EP1463913A2 (fr)
AU (1) AU2003214291A1 (fr)
CA (1) CA2472034A1 (fr)
FR (1) FR2834554B1 (fr)
WO (1) WO2003058140A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933197B2 (en) * 2013-12-31 2018-04-03 Air Liquide Canada, Inc. Vertical counter-flow immersion freezer
CN114992505B (zh) * 2022-05-05 2024-07-09 上海纳萨实业发展有限公司 一种智能液氮罐

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1349403A (fr) * 1962-12-06 1964-01-17 Carbonique Perfectionnement au procédé et dispositifs de refroidissement d'enceintes par pulvérisation de gaz liquéfié
US3385073A (en) * 1966-10-06 1968-05-28 Cryo Therm Inc Refrigeration system for shipping perishable commodities
US5261243A (en) * 1992-09-28 1993-11-16 Lockheed Corporation Supplemental cooling system for avionic equipment
US6070416A (en) * 1997-08-01 2000-06-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for sequentially spraying a cryogenic liquid, cooling method and installation making application thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU531696B2 (en) * 1979-02-20 1983-09-01 Commonwealth Industrial Gases Limited, The Refigeration apparatus
US4777733A (en) * 1987-01-09 1988-10-18 Iwatani & Co. Ltd. Method of manufacturing shoes
DE3884653T2 (de) * 1987-04-03 1994-02-03 Fujitsu Ltd Verfahren und Vorrichtung zur Gasphasenabscheidung von Diamant.
FR2616774B1 (fr) * 1987-06-19 1989-10-20 Air Liquide Procede de fabrication d'objets en verre comportant une etape de refroidissement
US4918928A (en) * 1987-12-17 1990-04-24 Kabushiki Kaisha Kobe Seikosho Apparatus for testing IC devices at low temperature and cooling bag for use in testing IC devices at low temperature
GB8802142D0 (en) * 1988-02-01 1988-03-02 Air Prod & Chem Method of freezing liquid & pasty products & freezer for carrying out said method
TW400342B (en) * 1994-09-06 2000-08-01 Chisso Corp A process for producing a solid catalyst component for olefin polymerization and a process for producing an olefin polymer
JP3716003B2 (ja) * 1995-02-13 2005-11-16 大陽日酸株式会社 白煙発生装置
JPH09273864A (ja) * 1996-04-02 1997-10-21 Shimazu Mekutemu Kk 熱処理炉
GB2314147B (en) * 1996-06-10 1999-08-11 Boc Group Plc Cooling apparatus
TW350761B (en) * 1996-08-30 1999-01-21 Air Prod & Chem Method and apparatus for moulding a food product
DE19728622A1 (de) * 1997-07-04 1999-01-07 Stephan Dipl Ing Rieth Verfahren und Vorrichtung für die Erzeugung eines Aerosols
US6044648A (en) * 1997-09-19 2000-04-04 Forma Scientific, Inc. Cooling device having liquid refrigerant injection ring
US6389828B1 (en) * 2000-03-15 2002-05-21 Michael R. Thomas Cryogenic cooling chamber apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1349403A (fr) * 1962-12-06 1964-01-17 Carbonique Perfectionnement au procédé et dispositifs de refroidissement d'enceintes par pulvérisation de gaz liquéfié
US3385073A (en) * 1966-10-06 1968-05-28 Cryo Therm Inc Refrigeration system for shipping perishable commodities
US5261243A (en) * 1992-09-28 1993-11-16 Lockheed Corporation Supplemental cooling system for avionic equipment
US6070416A (en) * 1997-08-01 2000-06-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for sequentially spraying a cryogenic liquid, cooling method and installation making application thereof

Also Published As

Publication number Publication date
CA2472034A1 (fr) 2003-07-17
EP1463913A2 (fr) 2004-10-06
FR2834554A1 (fr) 2003-07-11
FR2834554B1 (fr) 2006-06-30
AU2003214291A1 (en) 2003-07-24
US20050120724A1 (en) 2005-06-09
WO2003058140A3 (fr) 2004-03-11
US7444823B2 (en) 2008-11-04

Similar Documents

Publication Publication Date Title
EP1882815B1 (fr) Turbomachine comprenant un système de refroidissement de la face aval d'un rouet de compresseur centrifuge
EP0755720B1 (fr) Dispositif de pulvérisation d'un produit liquide
CA2594139C (fr) Ventilation d'une cavite aval de rouet de compresseur centrifuge
EP1881179A2 (fr) Système de ventilation de paroi de chambre de combustion dans une turbomachine
FR2682716A1 (fr) Dispositif de transfert de flux d'air de refroidissement dans un moteur a turbine a gaz.
CA2917766C (fr) Dispositif de refroidissement d'huile pour une turbomachine
CA1037443A (fr) Dispositif d'aspiration et de depoussierage humide
FR2969692A1 (fr) Turbine comportant une bache d'echappement
CA2715209A1 (fr) Ventilation d'une roue de turbine dans une turbomachine
CA2925565C (fr) Chambre de combustion de turbomachine pourvue de moyens de deflection d'air pour reduire le sillage cree par une bougie d'allumage
WO2008152280A2 (fr) Compresseur frigorifique à spirales à vitesse variable
EP2553340B1 (fr) Chambre de combustion pour une turbomachine à compresseur centrifuge sans déflecteur
FR2481747A1 (fr) Moteur a turbine a gaz comportant un dispositif perfectionne de refroidissement par air
FR2728937A1 (fr) Structure de robinet-vanne pour turbocompresseur
EP1463913A2 (fr) Procede et dispositif de refroidissement d'une veine de fluide gazeux, et procede de refroidissement d'articles
FR2519383A1 (fr) Compresseur centrifuge avec injection de liquide
FR3081027A1 (fr) Turbomachine comportant un circuit de prelevement d'air
FR3127521A1 (fr) Carter d’injection d’air de refroidissement pour turbine de turbomachine
FR2637251A1 (en) Anti-icing device for the intake cowl of an aircraft engine
WO2009056719A2 (fr) Dispositif d'injection d'air dans une ligne d'echappement
EP2064421A1 (fr) Agencement pour la depollution d'un moteur thermique comportant un conduit muni d'un element en saillie
FR3054618A1 (fr) Ejecteur gaz-gaz
EP0124390A1 (fr) Installation de traitement thermique de produits divisés
FR3109186A1 (fr) Injecteur de carburant pour une turbomachine d’aeronef
BE517537A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003709856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2472034

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003214291

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10501270

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003709856

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP