EP2553340B1 - Chambre de combustion pour une turbomachine à compresseur centrifuge sans déflecteur - Google Patents

Chambre de combustion pour une turbomachine à compresseur centrifuge sans déflecteur Download PDF

Info

Publication number
EP2553340B1
EP2553340B1 EP11715982.2A EP11715982A EP2553340B1 EP 2553340 B1 EP2553340 B1 EP 2553340B1 EP 11715982 A EP11715982 A EP 11715982A EP 2553340 B1 EP2553340 B1 EP 2553340B1
Authority
EP
European Patent Office
Prior art keywords
chamber
perforations
combustion chamber
diffuser
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11715982.2A
Other languages
German (de)
English (en)
Other versions
EP2553340A1 (fr
Inventor
Thierry Cortes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP2553340A1 publication Critical patent/EP2553340A1/fr
Application granted granted Critical
Publication of EP2553340B1 publication Critical patent/EP2553340B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03042Film cooled combustion chamber walls or domes

Definitions

  • the field of the present invention is that of turbomachines and more particularly that of the combustion chambers for these turbomachines.
  • the combustion chamber of a gas turbine engine receives compressed air that comes from a high pressure compressor arranged upstream, and provides, downstream, a gas heated by the combustion of a fuel mixed with this compressed air.
  • the chamber is generally of annular type and is housed inside an engine casing, downstream of a diffuser whose function, by slowing down the flow of air, to transform the energy of the compression into a compatible shape for the operation of the combustion chamber and to guide the flow of compressed air at the outlet of the compressor. It also comprises an inner wall and an outer wall delimiting between them a combustion zone.
  • the chamber In its upstream part the chamber comprises a transverse bottom wall chamber on which are provided openings each equipped with a carburized air supply system.
  • Such a system is fueled from a liquid fuel injector and generally includes concentric annular grids that create swirling airflows, promoting the mixing of the air with the sprayed fuel web.
  • the combustion chamber is terminated downstream by an opening which opens onto a turbine distributor and, more generally, on the turbomachine turbine module.
  • the air from the diffuser enters an area surrounding the combustion chamber and flows, for a part, along the outer and inner walls thereof while the other part enters the interior of the chamber. combustion and participates in the combustion of the air-fuel mixture in a combustion zone.
  • the combustion zone is schematically cut in two: a primary zone which is located immediately downstream of the wall of the chamber bottom and in which the mixture is burned, in almost stoichiometric proportions thanks to a so-called air inlet primary, and a secondary or dilution zone further downstream, in which the gases are mixed with complementary cooling air which enters through so-called dilution holes.
  • a protection in the form of sectorized deflectors, lines the inside of the wall of the chamber bottom and serves to protect it from the intense radiation produced in the primary combustion zone. Air is then introduced through orifices made in the wall of the chamber bottom behind the deflectors to ensure their cooling. This air flows along the rear face of the baffles and is then guided to form a film along the inner face of the outer and inner walls of the chamber.
  • deflectors are subjected to very high temperatures and they require, in order not to present burns in use, a significant amount of cooling air, which affects the efficiency of the chamber. It would thus be desirable to remove the deflector, which would furthermore have significant induced advantages; because of the mass of metal that it represents, the consumption of cooling air is greater than that which would be necessary for the cooling of the bottom of the chamber. There is thus the key to a saving of flow saved.
  • this solution has the disadvantage of a greater difficulty in defining the cooling circuit during the engine definition phase. It is indeed necessary to wait for the detailed design phase of the engine, with an already stabilized engine cycle, to obtain a robust characterization of the aerodynamics of the air flow leaving the diffuser and to be able to finalize the final drilling pattern. Compelling calculation methods must then be used to obtain the final solution.
  • the object of the present invention is to remedy these drawbacks by proposing a device for cooling the chamber bottom of a combustion chamber of a centrifugal compressor turbine engine, which does not have at least some of the drawbacks of the prior art and in particular, which does not require a deflector and which ensures a relatively homogeneous temperature for the walls of both internal and external of this chamber, without increasing the need for cooling air.
  • the subject of the invention is an assembly consisting of an annular combustion chamber for a turbomachine and a diffuser for supplying the compressed air chamber according to claim 1.
  • all the perforations are oriented radially in the opposite direction to that where the outlet of said diffuser.
  • This configuration corresponds to the optimum cooling of the part of the chamber bottom located on the opposite side to the outlet of the diffuser.
  • the perforations are inclined at an angle greater than 60 ° with respect to the normal direction at the chamber bottom in at least a portion of said chamber bottom.
  • the very large inclination given to the perforations makes it possible to prevent this air from interfering with the air intended for combustion in the primary zone and disturbs the adjustment of the richness at the level of the combustion of the fuel.
  • said part of the chamber bottom is radially located on the side where the diffuser outlet is located.
  • the cooling air that comes from the side where the diffuser is located must travel a path greater than the air from the other perforations and it is desirable that it sticks, as it leaves, as much as possible to the bottom wall. of room.
  • the perforations have the same section and the density of said perforations decreases radially from the side where the outlet of the diffuser is located to their middle row.
  • the perforations have the same section and the density of said perforations increases radially from their middle row to the opposite side to the one where the diffuser outlet is located.
  • the chamber bottom is exposed directly to the thermal radiation of the primary combustion zone. There is therefore no need for a deflector, because of the effective cooling provided by the appropriate orientation of the perforations.
  • the perforations are mainly located on the inner part of its chamber bottom.
  • This configuration corresponds to the implementation of the invention in the case of turbomachines with centrifugal compressor and diffuser located on the outer side of said combustion chamber.
  • the invention also claims a turbomachine equipped with a combustion chamber as described above.
  • FIG. 1 we see the central part of a turbomachine, between the last compressor and the turbine module. It mainly comprises a combustion chamber 1 which is contained in an external casing 2 of the engine and which is supplied with air by a diffuser 3 positioned at the outlet of the compressor, and fuel by injectors 4 regularly distributed around the circumference of the engine. It also comprises, conventionally, ignition devices 5 of the air-fuel mixture, in one or more examples, also distributed around the circumference of the combustion chamber 1.
  • the diffuser 3 shown has an L shape, generally adopted in the case of centrifugal compressors, which receives the radially oriented air at the outlet of the last compressor wheel and which raises it to eject it in the zone surrounding the chamber 1, in a substantially axial direction.
  • the output of the diffuser 3 is effected at the wall of the outer casing 2, tangentially to this casing.
  • the air coming from the compressor is then distributed in the zone surrounding the combustion chamber 1 and then enters it to mix with the fuel supplied by the injectors 4. Due to the L-shaped configuration described, the air leaving the combustion chamber 1 3 diffuser is injected in a direction eccentric to the axis 10 of the combustion chamber 1.
  • the supply thereof is not homogeneous around its periphery and differences in air flow exist between the wall outer and inner wall of the chamber.
  • the invention is here described with a centrifugal compressor and an L-shaped rectifier, but it can, just as well, be implemented on any turbomachine for which the outlet direction of the diffuser 3 is not in the axis 10 of the combustion chamber.
  • the combustion chamber 1 has an annular shape which has in section an outer wall 11 and an inner wall 12, these two walls being arranged coaxially along the longitudinal axis 10 of the chamber. They are connected upstream by a wall transverse to this longitudinal axis 10, commonly called chamber bottom 13.
  • the chamber bottom 13 is pierced at the longitudinal axis 10, an orifice on which is installed a system of carbureted air supply.
  • a system which is supplied with liquid fuel by the injector 4 comprises concentric annular grids to create swirling air flows favoring their mixing with the pulverized fuel ply.
  • the gases typically pass through a turbine distributor 6 before passing through the vanes of the turbine, where they return part of the energy they have acquired.
  • the air coming from the centrifugal compressor passes into the deflector 3 where it is redirected towards the axial direction of the engine, and then divides into several streams which serve either to feed the combustion of the fuel into the primary zone of the chamber 1, by primary injection and hole systems 15, or to cool the walls 11 and 12 thereof and to be in the dilution zone, through dilution holes 16 and wall perforations 17 or finally to cool other parts of the engine which are located downstream of the combustion chamber.
  • the wall of the chamber bottom 13 is thus perforated with a multitude of small diameter holes 18 which are arranged along rows 19 arranged circularly and concentrically with the axis 10 of the combustion chamber 1.
  • These holes are typically cylindrical holes whose diameter is of the order of 0.5 or 0.6 mm and are oriented so that the cooling flow coming out of these perforations 18 remains as long as possible in contact with the chamber bottom wall 13 and, thus, do not modify the richness of the mixture between the fuel and the air that arrives in the primary zone of combustion.
  • the perforations 18 of the chamber bottom are oriented with an axis making, at the point considered, 60 ° relative to the normal chamber bottom.
  • the orientation of these perforations does not necessarily evolve between the rows 19 which are located at the injection system and those located on the spokes extremes, external and internal, of the chamber bottom 13.
  • the invention claims a variability in the density of the perforations 18 (calculated as the number of holes in a given area) between the radii on the outer side and those on the inner side of this chamber bottom. warmer, that is to say those which are least exposed to the air from the diffuser 3, are provided with holes with a higher density than those which are relatively well placed in this airflow.
  • the outer parts of the chamber bottom have a lower density of perforations than that of its internal parts.
  • the evolution of the density of the perforations 18 on the chamber bottom is seen as a function of the radial distance of the considered point. It can be seen that the density in the external part is lower than that in the internal part, which corresponds to the fact that the air coming from the diffuser 3 is unequally distributed between the upper part and the lower part and that it is necessary to compensate this flow difference by a higher density of perforations 18 at the bottom.
  • the middle row 20 there is a lower density than on the outer and inner parts, which is explained by the better cooling efficiency of the central rows, which are not disturbed by the effect of mowing that produces the film being formed on the jets impacting the wall of the chamber bottom.
  • the invention also claims a homogeneous direction for the inclinations of the perforations 18, the outgoing air of these being directed for all, whether they are situated in part external or in part internal, of the external part towards the internal part, in order to better cool this lower part of the chamber which is less well supplied by the air coming from the diffuser 3.
  • the perforations have a very large inclination, greater if possible to 60 ° described in the previous application. Work in progress shows indeed the experimental possibility to exceed this limit of 60 °.
  • the maximum possible inclination, compatible with technical and economic constraints, will be then considered.
  • a large inclination is intended to cool as much as possible the metal of the chamber bottom 13 but also to ensure that this air does not interfere with the air for combustion and does not disturb the richness of the mixture in the area primary combustion.
  • the gains brought by this new cooling technique of the bottom chamber are estimated at a halving of the cooling air flow. These gains are mainly explained by the reduction in the mass to be cooled which is provided by the removal of the deflector. Additional flow gains are also made by increasing the permeability of the injection system, due to the removal of the wall formed by the baffle, and by improving the cooling efficiency of the bottom wall. 13.
  • the invention has been described with a diffuser 3 whose output axis is located near the outer casing 2 of the engine. It is obvious that the invention can also be implemented with a diffuser that ejects the air on the side of the inner wall 12 of the combustion chamber 1. In this case the perforations 18 will be inclined towards the outer wall 11 of the chamber 1 to compensate for the poor supply of this wall by the air from the diffuser.

Description

  • Le domaine de la présente invention est celui des turbomachines et plus particulièrement celui des chambres de combustion pour ces turbomachines.
  • La chambre de combustion d'un moteur à turbine à gaz reçoit de l'air comprimé qui est issu d'un compresseur à haute pression disposé en amont, et fournit, en aval, un gaz réchauffé par la combustion d'un carburant mélangé à cet air comprimé. La chambre est généralement de type annulaire et est logée à l'intérieur d'un carter du moteur, en aval d'un diffuseur qui a pour fonction, en ralentissant le flux d'air, de transformer l'énergie de la compression en une forme compatible pour le fonctionnement de la chambre de combustion ainsi que d'orienter le flux d'air comprimé en sortie du compresseur. Elle comprend également une paroi interne et une paroi externe délimitant entre elles une zone de combustion. Dans sa partie amont la chambre comprend une paroi transversale de fond de chambre sur laquelle sont ménagées des ouvertures équipées chacune d'un système d'alimentation en air carburé. Un tel système est alimenté en carburant depuis un injecteur de carburant liquide et comprend en général des grilles annulaires concentriques qui créent des flux d'air tourbillonnant, favorisant le mélange de l'air avec la nappe de carburant pulvérisé. La chambre de combustion se termine en aval par une ouverture qui débouche sur un distributeur de turbine et, plus généralement sur le module de turbine de la turbomachine.
  • L'air issu du diffuseur entre dans une zone entourant la chambre de combustion et s'écoule, pour une partie, le long des parois externe et interne de celle-ci tandis que l'autre partie pénètre à l'intérieur de la chambre de combustion et participe à la combustion du mélange air-carburant dans une zone de combustion. La zone de combustion est schématiquement découpée en deux : une zone primaire qui se situe immédiatement en aval de la paroi du fond de chambre et dans laquelle s'effectue la combustion du mélange, dans des proportions quasi stoechiométriques grâce à un entrée d'air dite primaire, et une partie secondaire ou zone de dilution, située plus en aval, dans laquelle les gaz sont mélangés à de l'air de refroidissement complémentaire qui pénètre par des trous dit de dilution.
  • Dans l'art antérieur, une protection, sous la forme de déflecteurs sectorisés, tapisse l'intérieur de la paroi du fond de chambre et a pour fonction de la protéger du rayonnement intense produit dans la zone de combustion primaire. De l'air est alors introduit par des orifices pratiqués dans la paroi du fond de chambre en arrière des déflecteurs pour assurer leur refroidissement. Cet air s'écoule le long de la face arrière des déflecteurs et est ensuite guidé pour former un film le long de la face intérieure des parois externe et interne de la chambre.
  • Ces déflecteurs sont soumis à des températures très importantes et ils nécessitent, pour ne pas présenter de brûlures en utilisation, une quantité importante d'air de refroidissement, ce qui nuit au rendement de la chambre. Il serait ainsi souhaitable de supprimer le déflecteur, ce qui présenterait en outre des avantages induits importants ; du fait de la masse de métal qu'il représente, la consommation d'air de refroidissement est supérieure à celle qui serait nécessaire au refroidissement du seul fond de chambre. Il y aurait donc à la clé un gain de débit économisé.
  • Dans ce but des solutions ont été imaginées pour assurer le refroidissement du fond de chambre sans mettre en place de déflecteur. Une solution envisagée consiste à refroidir le fond de chambre par des multiperforations et à orienter le flux d'air passant par ces perforations pour qu'il vienne lécher la paroi interne du fond de chambre. Cette solution est notamment décrite dans la demande de brevet FR2856467 déposée au nom de la demanderesse. Elle propose de pratiquer des perforations cylindriques dans le fond de chambre et d'incliner ceux-ci en les orientant de façon que les flux d'air soient de plus en plus inclinés en se rapprochant de l'axe de la chambre. Les inclinaisons décrites sont comprises entre 5 et 60°.
  • Si cette solution est bien adaptée à un moteur dont le compresseur est du type axial, c'est-à-dire dont le diffuseur est placé dans l'axe des injecteurs de la chambre de combustion, elle n'est pas optimale pour une turbomachine à compresseur centrifuge. En effet, dans ces moteurs, habituellement de petite taille, le diffuseur est situé en périphérie de la zone entourant la chambre de combustion et l'air en sortie est orienté axialement, du côté externe de la chambre de combustion. Il y a un risque que la paroi externe soit alors bien refroidie, avec à l'inverse une paroi interne insuffisamment refroidie qui pourrait présenter des brûlures. Une augmentation du débit de refroidissement pour contrer ce phénomène, aurait pour conséquence une dégradation du rendement de la chambre, associée à la production d'imbrûlés du type monoxyde de carbone CO.
  • Par ailleurs cette solution présente l'inconvénient d'une plus grande difficulté à définir le circuit de refroidissement lors de la phase de définition du moteur. Il faut en effet attendre la phase de conception détaillée du moteur, avec un cycle moteur déjà stabilisé, pour obtenir une caractérisation robuste de l'aérodynamique du flux d'air sortant du diffuseur et pouvoir mettre au point le schéma de perçage définitif. Des méthodes de calculs exigeantes doivent alors être mises en oeuvre pour obtenir la solution définitive.
  • Le document US2006042263 A1 divulgue toutes les caractéristiques du préambule de la revendication 1.
  • La présente invention a pour but de remédier à ces inconvénients en proposant un dispositif de refroidissement du fond de chambre d'une chambre de combustion d'une turbomachine à compresseur centrifuge, qui ne présente pas au moins certains des inconvénients de l'art antérieur et, en particulier, qui ne nécessite pas de déflecteur et qui assure une température relativement homogène pour les parois tant interne qu'externe de cette chambre, sans accroître le besoin en air de refroidissement.
  • A cet effet, l'invention a pour objet un ensemble constitué d'une chambre de combustion annulaire pour une turbomachine et d'un diffuseur d'alimentation de ladite chambre en air comprimé selon la revendication 1.
  • La meilleure alimentation en air de la partie opposée à celle de la sortie du diffuseur, du fait d'un plus grand nombre de trous orientés dans sa direction, permet de compenser le moindre débit d'air qu'elle reçoit du fait du positionnement du diffuseur. Il est ainsi possible de refroidir suffisamment le fond de chambre pour se dispenser de mettre un déflecteur pour le protéger du rayonnement thermique.
  • De façon préférentielle toutes les perforations sont orientées radialement dans la direction opposée à celle où se trouve la sortie dudit diffuseur. Cette configuration correspond au refroidissement optimal de la partie du fond de chambre située du côté opposée à la sortie du diffuseur.
  • Avantageusement les perforations sont inclinées d'un angle supérieur à 60° par rapport à la direction normale au fond de chambre dans au moins une partie dudit fond de chambre. La très grande inclinaison donnée aux perforations permet d'éviter que cet air n'aille interférer avec l'air destiné à la combustion en zone primaire et ne perturbe le réglage de la richesse au niveau de la combustion du carburant.
  • Dans un mode de réalisation ladite partie du fond de chambre est radialement située du côté où se trouve la sortie du diffuseur. L'air de refroidissement qui est issu du côté où se situe le diffuseur doit parcourir un chemin plus grand que l'air issu des autres perforations et il est souhaitable qu'il colle, à sa sortie, le plus possible à la paroi du fond de chambre.
  • Dans un mode particulier de réalisation les perforations ont la même section et la densité desdites perforations décroit radialement depuis le côté où se trouve la sortie du diffuseur jusqu'à leur rangée médiane.
  • Dans un autre mode de réalisation les perforations ont la même section et la densité desdites perforations croit radialement depuis leur rangée médiane jusqu'au côté opposé à celui où se trouve la sortie du diffuseur.
  • Ces modes de réalisation permettent de prendre en compte le fait que l'air qui sort des systèmes d'injection participe au refroidissement de la zone médiane du fond de chambre et qu'il est possible de diminuer en conséquence le débit de refroidissement issu des perforations.
  • Avantageusement le fond de chambre est exposé directement au rayonnement thermique de la zone primaire de combustion. Il n'y a donc plus besoin d'un déflecteur, du fait du refroidissement efficace apporté par l'orientation adaptée des perforations.
  • Dans un mode particulier de réalisation les perforations sont majoritairement situées sur la partie interne de son fond de chambre. Cette configuration correspond à la mise en oeuvre de l'invention dans le cas des turbomachines à compresseur centrifuge et à diffuseur situé du côté externe de ladite chambre de combustion.
  • L'invention revendique également une turbomachine équipée d'une chambre de combustion telle que décrite ci-dessus.
  • L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre, d'un mode de réalisation de l'invention donné à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés.
  • Sur ces dessins :
    • la figure 1 est une vue en coupe de la chambre de combustion d'une turbomachine, située en aval d'un compresseur centrifuge ;
    • la figure 2 est une vue d'un déflecteur représentatif d'un secteur de fond de chambre perforé selon un mode de réalisation de l'invention ;
    • la figure 3 est un schéma donnant la densité des perforations d'un fond de chambre selon l'invention, en fonction du rayon sur lequel on se situe.
  • En se référant à la figure 1, on voit la partie centrale d'une turbomachine, comprise entre le dernier compresseur et le module de turbine. Elle comporte principalement une chambre de combustion 1 qui est contenue dans un carter externe 2 du moteur et qui est alimentée, en air par un diffuseur 3 positionné en sortie du compresseur, et en carburant par des injecteurs 4 répartis régulièrement sur la circonférence du moteur. Elle comporte aussi, classiquement, des dispositifs d'allumage 5 du mélange air-carburant, en un ou plusieurs exemplaires, répartis eux aussi sur la circonférence de la chambre de combustion 1.
  • Le diffuseur 3 représenté a une forme en L, généralement adoptée dans le cas des compresseurs centrifuges, qui reçoit l'air orienté radialement en sortie de la dernière roue du compresseur et qui le redresse pour l'éjecter dans la zone entourant la chambre 1, dans une direction sensiblement axiale. La sortie du diffuseur 3 s'effectue au niveau de la paroi du carter externe 2, tangentiellement à ce carter. L'air issu du compresseur se répartit ensuite dans la zone entourant la chambre de combustion 1 puis pénètre dans celle-ci pour se mélanger au carburant apporté par les injecteurs 4. Du fait de la configuration en L décrite, l'air en sortie du diffuseur 3 est injecté selon une direction excentrée par rapport à l'axe 10 de la chambre de combustion 1. L'alimentation de celle-ci n'est donc pas homogène sur son pourtour et des différences de débit d'air existent entre la paroi externe et la paroi interne de la chambre. L'invention est ici décrite avec un compresseur centrifuge et un redresseur en L, mais elle peut, tout aussi bien, être mise en oeuvre sur toute turbomachine pour laquelle la direction de sortie du diffuseur 3 n'est pas dans l'axe 10 de la chambre de combustion.
  • La chambre de combustion 1 a une forme annulaire qui présente en coupe une paroi externe 11 et une paroi interne 12, ces deux parois étant disposées coaxialement selon l'axe longitudinal 10 de la chambre. Elles sont reliées en amont par une paroi transversale à cet axe longitudinal 10, appelée communément fond de chambre 13. Le fond de chambre 13 est percé, au niveau de l'axe longitudinal 10, d'un orifice sur lequel est installé un système d'alimentation en air carburé. Un tel système, qui est alimenté en carburant liquide par l'injecteur 4, comprend des grilles annulaires concentriques pour créer des flux d'air tourbillonnant favorisant leur mélange avec la nappe de carburant pulvérisé.
  • Enfin, en sortie de la chambre de combustion 1 les gaz passent classiquement dans un distributeur de turbine 6 avant de traverser les aubes de la turbine où ils restituent une partie de l'énergie qu'ils ont acquise.
  • Sur la figure 1 apparaît également un déflecteur 14, la chambre 1 étant, sur ce point, représentée selon une configuration de l'art antérieur.
  • L'air issu du compresseur centrifuge passe dans le déflecteur 3 où il est redirigé vers la direction axiale 10 du moteur, puis se divise en plusieurs flux qui servent soit à alimenter la combustion du carburant dans la zone primaire de la chambre 1, par l'intennédiaire des systèmes d'injection et de trous primaires 15, soit à refroidir les parois 11 et 12 de celle-ci et à se retrouver dans la zone de dilution, par l'intermédiaire de trous de dilution 16 et des perforations de paroi 17, soit enfin à refroidir d'autres parties du moteur qui sont situées en aval de la chambre de combustion.
  • En se référant maintenant à la figure 2 on voit un mode de refroidissement pour un fond de chambre 13 selon l'invention. La paroi du fond de chambre 13 est ainsi perforée d'une multitude de trous de faible diamètre 18 qui sont disposés le long de rangées 19 disposées circulairement et de façon concentrique avec l'axe 10 de la chambre de combustion 1. Ces trous sont typiquement des trous cylindriques dont le diamètre est de l'ordre de 0.5 ou 0.6 mm et ils sont orientés de façon que le flux de refroidissement qui sort de ces perforations 18 reste le plus longtemps possible au contact de la paroi de fond de chambre 13 et, ainsi, ne vienne pas modifier la richesse du mélange entre le carburant et l'air qui arrive dans la zone primaire de combustion. Pour cela les perforations 18 du fond chambre sont orientées avec un axe faisant, au point considéré, 60° par rapport à la normale au fond de chambre. A la différence de l'art antérieur décrit dans la demande précédente de la demanderesse, l'orientation de ces perforations n'évolue pas nécessairement entre les rangées 19 qui sont situées au niveau du système d'injection et celles qui sont situées sur les rayons extrêmes, externe et interne, du fond de chambre 13.
  • En revanche l'invention revendique une variabilité de la densité des perforations 18 (calculée comme étant le nombre de trous sur une superficie donnée) entre les rayons situés du côté externe et ceux situés du côté interne de ce fond de chambre 13. Les parties les plus chaudes, c'est-à-dire celles qui sont le moins bien exposées à l'air issu du diffuseur 3, sont pourvues de trous avec une plus grande densité que celles qui sont relativement bien placées dans ce flux d'air. Dans le cas représenté où le diffuseur 3 est situé sur la périphérie externe de la zone entourant la chambre, les parties externes du fond de chambre ont une densité de perforations plus faible que celle de ses parties internes.
  • Sur la figure 3 on voit l'évolution de la densité des perforations 18 sur le fond de chambre en fonction de la distance radiale du point considéré. On constate que la densité en partie externe est plus faible que celle en partie interne, ce qui correspond au fait que l'air issu du diffuseur 3 se répartit de façon inéquitable entre la partie haute et la partie basse et qu'il convient de compenser cette différence de débit par une densité des perforations 18 plus importante en partie basse. On constate en revanche, au niveau de la rangée médiane 20, une densité plus faible que sur les parties externe et interne, ce qui s'explique par la meilleure efficacité de refroidissement des rangées centrales, lesquelles ne sont pas perturbées par l'effet de fauchage que produit le film en cours de constitution sur les jets impactant la paroi du fond de chambre. Il n'est donc pas nécessaire d'injecter le même débit sur cette rangée 20 que sur les rangées extrêmes qui, elles, ne profitent pas de cet effet bénéfique particulier. Une bonne gestion de l'air issu du diffuseur, et donc du rendement de la chambre de combustion, impose de n'injecter à travers les perforations 18 que le débit qui est strictement nécessaire pour obtenir une température homogène avec les autres points du fond 13 de la chambre 1.
  • L'invention revendique également une direction homogène pour les inclinaisons des perforations 18, l'air sortant de celles-ci se dirigeant pour toutes, qu'elles soient situées en partie externe ou en partie interne, de la partie externe vers la partie interne, de façon à mieux refroidir cette partie basse de la chambre qui est moins bien alimentée par l'air issu du diffuseur 3. Compte tenu de la longueur que doit parcourir le flux d'air de refroidissement le long de la paroi du fond de chambre 13, et tout spécialement pour les perforations 18 situées du côté externe, il est impératif que les perforations aient une très grande inclinaison, supérieure si possible aux 60° décrits dans la demande antérieure. Des travaux en cours montrent en effet la possibilité expérimentale de dépasser cette limite de 60°. L'inclinaison maximale possible, compatible des contraintes techniques et économiques, sera alors envisagée. Une grande inclinaison a pour objet de refroidir le mieux possible le métal du fond de chambre 13 mais aussi de faire en sorte que cet air n'interfère pas avec l'air destiné à la combustion et ne perturbe pas la richesse du mélange dans la zone de combustion primaire.
  • Les gains apportés par cette nouvelle technique de refroidissement du fond de chambre sont estimés à une division par deux du débit d'air de refroidissement. Ces gains s'expliquent essentiellement par la réduction de la masse à refroidir qui est apportée par la suppression du déflecteur. Des gains de débit complémentaires sont également apportés par l'augmentation de la perméabilité du système d'injection, du fait de la suppression de la paroi formée par le déflecteur, et par l'amélioration de l'efficacité du refroidissement de la paroi de fond de chambre 13.
  • L'invention a été décrite avec un diffuseur 3 dont l'axe de sortie est situé à proximité du carter externe 2 du moteur. Il est bien évident que l'invention peut également être mise en oeuvre avec un diffuseur qui éjecte l'air du côté de la paroi interne 12 de la chambre de combustion 1. Dans ce cas les perforations 18 seront inclinées en direction de la paroi externe 11 de la chambre 1 pour compenser la moins bonne alimentation de cette paroi par l'air issu du diffuseur.

Claims (9)

  1. Ensemble constitué d'une chambre de combustion annulaire (1) pour une turbomachine et d'un diffuseur (3) d'alimentation de ladite chambre en air comprimé, ladite chambre comprenant une paroi externe (11) et une paroi interne (12) orientées sensiblement axialement par rapport à l'axe de rotation de la turbomachine et fermée en amont par une paroi de fond de chambre (13) orientée sensiblement radialement, la direction de sortie du diffuseur étant décalée radialement par rapport à l'axe médian (10) de la chambre de combustion (1), ladite paroi de fond de chambre comportant des perforations (18) d'alimentation en air de refroidissement inclinées par rapport à la direction normale audit fond de chambre (13),
    caractérisé en ce que le nombre de perforations (18) dont l'orientation radiale est dirigée dans la direction opposée à la direction radiale dans laquelle se trouve la sortie dudit diffuseur (3) est supérieur au nombre de perforations (18) dont l'orientation radiale est dirigée en direction radiale de la sortie dudit diffuseur (3).
  2. Ensemble selon la revendication 1 dans lequel toutes les perforations (18) sont orientées radialement dans la direction opposée à celle où se trouve la sortie dudit diffuseur (3).
  3. Ensemble selon l'une des revendications 1 ou 2 dans lequel les perforations (18) sont inclinées d'un angle supérieur ou égal à 60° par rapport à la direction normale au fond de chambre (13) dans au moins une partie dudit fond de chambre.
  4. Ensemble selon la revendication 3 dans lequel ladite partie du fond de chambre est radialement située du côté où se trouve la sortie du diffuseur (3).
  5. Ensemble selon l'une des revendications 1 à 4 dans lequel les perforations (18) ont la même section et dans laquelle la density desdites perforations décroit radialement depuis le côté où se trouve la sortie du diffuseur (3) jusqu'à leur rangée médiane (20).
  6. Ensemble selon l'une des revendications 1 à 5 dans lequel les perforations (18) ont la même section et dans laquelle la densité desdites perforations croit radialement depuis leur rangée médiane (20) jusqu'au côté opposé à celui où se trouve la sortie du diffuseur (3).
  7. Ensemble selon l'une des revendications 1 à 6 dans lequel le fond de chambre (13) est exposé directement au rayonnement thermique de la zone primaire de combustion.
  8. Ensemble selon l'une des revendications 1 à 7 destiné à être installée sur une turbomachine à compresseur centrifuge et à diffuseur (3) situé du côté externe de ladite chambre de combustion (1) dans lequel les perforations sont majoritairement situées sur la partie interne de son fond de chambre (13).
  9. Turbomachine équipée d'un ensemble selon l'une des revendications précédentes.
EP11715982.2A 2010-03-26 2011-03-23 Chambre de combustion pour une turbomachine à compresseur centrifuge sans déflecteur Active EP2553340B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1052244A FR2958013B1 (fr) 2010-03-26 2010-03-26 Chambre de combustion de turbomachine a compresseur centrifuge sans deflecteur
PCT/FR2011/050622 WO2011117543A1 (fr) 2010-03-26 2011-03-23 Chambre de combustion de turbomachine a compresseur centrifuge sans deflecteur

Publications (2)

Publication Number Publication Date
EP2553340A1 EP2553340A1 (fr) 2013-02-06
EP2553340B1 true EP2553340B1 (fr) 2014-12-17

Family

ID=43244828

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11715982.2A Active EP2553340B1 (fr) 2010-03-26 2011-03-23 Chambre de combustion pour une turbomachine à compresseur centrifuge sans déflecteur

Country Status (8)

Country Link
US (1) US9383106B2 (fr)
EP (1) EP2553340B1 (fr)
CN (1) CN102812297B (fr)
BR (1) BR112012024179B1 (fr)
CA (1) CA2794243C (fr)
FR (1) FR2958013B1 (fr)
RU (1) RU2563424C2 (fr)
WO (1) WO2011117543A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2996284B1 (fr) 2012-10-02 2019-03-15 Safran Aircraft Engines Fond de chambre annulaire pour chambre de combustion de turbomachine d'aeronef, muni de perforations permettant un refroidissement par flux giratoire
KR101471612B1 (ko) 2013-07-01 2014-12-12 남부대학교산학협력단 광학렌즈 기반 태양위치 추적정밀도 측정시스템
CN103541877B (zh) * 2013-11-13 2016-03-02 深圳智慧能源技术有限公司 太阳能燃气轮机
CN103557076B (zh) * 2013-11-13 2016-03-02 深圳智慧能源技术有限公司 蓄热式燃气轮机
US10330884B2 (en) * 2017-02-20 2019-06-25 Rosemount Aerospace Inc. Mounting of optical elements for imaging in air vehicles
CN109668173B (zh) * 2019-01-14 2019-11-26 西安增材制造国家研究院有限公司 一种蒸发管式紧凑型燃烧室
CN113739208B (zh) * 2021-09-09 2022-08-26 成都中科翼能科技有限公司 一种用于低污染燃气轮机的混合冷却火焰筒

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2444477A1 (de) 1974-09-18 1976-04-01 Blau Kg Kraftfahrzeugtech Verschlussdeckel mit zur sicherung nach aussen zu abgedichtet eingesetztem riegelschloss
RU2027111C1 (ru) * 1991-10-23 1995-01-20 Акционерное общество закрытого типа "Минитокс" Камера сгорания
US5307637A (en) * 1992-07-09 1994-05-03 General Electric Company Angled multi-hole film cooled single wall combustor dome plate
FR2714154B1 (fr) 1993-12-22 1996-01-19 Snecma Chambre de combustion comportant une paroi munie d'une multiperforation.
FR2770283B1 (fr) * 1997-10-29 1999-11-19 Snecma Chambre de combustion pour turbomachine
FR2856467B1 (fr) * 2003-06-18 2005-09-02 Snecma Moteurs Chambre de combustion annulaire de turbomachine
US7308794B2 (en) * 2004-08-27 2007-12-18 Pratt & Whitney Canada Corp. Combustor and method of improving manufacturing accuracy thereof
US7260936B2 (en) * 2004-08-27 2007-08-28 Pratt & Whitney Canada Corp. Combustor having means for directing air into the combustion chamber in a spiral pattern
US7451600B2 (en) * 2005-07-06 2008-11-18 Pratt & Whitney Canada Corp. Gas turbine engine combustor with improved cooling
FR2897107B1 (fr) * 2006-02-09 2013-01-18 Snecma Paroi transversale de chambre de combustion munie de trous de multiperforation
US7628020B2 (en) * 2006-05-26 2009-12-08 Pratt & Whitney Canada Cororation Combustor with improved swirl
US8171736B2 (en) * 2007-01-30 2012-05-08 Pratt & Whitney Canada Corp. Combustor with chamfered dome
US8006497B2 (en) * 2008-05-30 2011-08-30 Honeywell International Inc. Diffusers, diffusion systems, and methods for controlling airflow through diffusion systems
FR2941287B1 (fr) 2009-01-19 2011-03-25 Snecma Paroi de chambre de combustion de turbomachine a une seule rangee annulaire d'orifices d'entree d'air primaire et de dilution

Also Published As

Publication number Publication date
FR2958013A1 (fr) 2011-09-30
CA2794243C (fr) 2017-05-16
FR2958013B1 (fr) 2014-06-20
CN102812297A (zh) 2012-12-05
US9383106B2 (en) 2016-07-05
CA2794243A1 (fr) 2011-09-29
EP2553340A1 (fr) 2013-02-06
US20130008166A1 (en) 2013-01-10
WO2011117543A1 (fr) 2011-09-29
CN102812297B (zh) 2015-05-13
BR112012024179B1 (pt) 2020-08-25
RU2012144323A (ru) 2014-05-10
RU2563424C2 (ru) 2015-09-20
BR112012024179A2 (pt) 2016-07-05

Similar Documents

Publication Publication Date Title
EP2553340B1 (fr) Chambre de combustion pour une turbomachine à compresseur centrifuge sans déflecteur
CA2639980C (fr) Chambre de combustion d'une turbomachine
EP1793168B1 (fr) Dispositif d'injection d'un mélange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
EP2525062B1 (fr) Turbomachine à chambre de détonation et engin volant pourvu d'une telle turbomachine
CA2594005C (fr) Turbomachine comprenant un systeme de refroidissement de la face aval d'un rouet de compresseur centrifuge
EP2678610B1 (fr) Chambre annulaire de combustion de turbomachine comprenant des orifices de dilution ameliores
FR2903169A1 (fr) Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
EP1770333A1 (fr) Bras d'injecteur anti-cokéfaction
FR2981733A1 (fr) Module de chambre de combustion de turbomachine d'aeronef et procede de conception de celui-ci
EP3286500B1 (fr) Chambre de combustion de turbomachine comportant un dispositif de guidage de flux d'air de forme spécifique
EP0049190B1 (fr) Dispositif de refroidissement par film d'air pour tube à flamme de moteur à turbine à gaz
CA2647159C (fr) Chambre de combustion de turbomachine
FR3033030A1 (fr) Systeme d'injection d'un melange air-carburant dans une chambre de combustion de turbomachine d'aeronef, comprenant un venturi perfore de trous d'injection d'air
FR3061948A1 (fr) Chambre de combustion de turbomachine a haute permeabilite
WO2022008820A1 (fr) Chambre annulaire de combustion pour une turbomachine d'aeronef
FR2957659A1 (fr) Systeme d'injection pour chambre de combustion de turbomachine, comprenant des moyens d'injection de carburant en sortie d'une double vrille d'admission d'air
FR2952699A1 (fr) Systeme d'injection pour chambre de combustion de turbomachine, comprenant des moyens d'injection et de melange de deux carburants distincts
FR3038363A1 (fr) Chambre annulaire de combustion a diaphragme fixe, pour une turbine a gaz
FR2996598A1 (fr) Chambre de combustion pour une turbomachine
FR2979005A1 (fr) Systemes d'injection de carburant pour turbomachine d'aeronef a permeabilites differenciees
FR3094777A1 (fr) Chambre de combustion principale de turboréacteur équipée d’une grille en aval de ses bruleurs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131011

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140708

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 702206

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011012296

Country of ref document: DE

Effective date: 20150219

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150317

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 702206

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150417

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011012296

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150323

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20150918

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150323

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110323

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150417

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230222

Year of fee payment: 13

Ref country code: IT

Payment date: 20230221

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 14

Ref country code: GB

Payment date: 20240220

Year of fee payment: 14