WO2003057623A1 - Complexe de nanotubes de carbone-nanocornets de carbone et son procede de production - Google Patents

Complexe de nanotubes de carbone-nanocornets de carbone et son procede de production Download PDF

Info

Publication number
WO2003057623A1
WO2003057623A1 PCT/JP2002/009506 JP0209506W WO03057623A1 WO 2003057623 A1 WO2003057623 A1 WO 2003057623A1 JP 0209506 W JP0209506 W JP 0209506W WO 03057623 A1 WO03057623 A1 WO 03057623A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
liquid solvent
carbon nanotube
carbon nanotubes
nanohorn
Prior art date
Application number
PCT/JP2002/009506
Other languages
English (en)
French (fr)
Inventor
Sumio Iijima
Masako Yudasaka
Akira Koshio
Original Assignee
Japan Science And Technology Agency
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Nec Corporation filed Critical Japan Science And Technology Agency
Priority to KR1020047010680A priority Critical patent/KR100881317B1/ko
Priority to US10/499,010 priority patent/US7067096B2/en
Priority to EP02770203A priority patent/EP1473274A4/en
Publication of WO2003057623A1 publication Critical patent/WO2003057623A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/927Diagnostic contrast agent
    • Y10S977/929Ultrasound contrast agent

Definitions

  • the invention of this application relates to a carbon nanotube-carbon nanohorn composite and a method for producing the same. More specifically, the invention of this application provides a novel carbon nanotube and carbon nanohorn that can more effectively utilize the surface of carbon nanotubes and carbon nanohorn aggregates and expand its applicability.
  • the present invention relates to a composite and a method for producing the same. Background art
  • Carbon nanotubes and carbon nanohorn aggregates have attracted attention as new nanostructured materials with potential for use in a wide range of fields such as information and communications and the chemical industry. Research is being done.
  • Carbon nanotubes are nanometer-sized diameters of about 1 to 10 nm, are cylindrical carbon materials with a length of several meters, and have a highly regular continuous structure of six-membered rings.
  • Various applications, such as fuel cell materials, are expected by utilizing such small and unique shapes and electrical characteristics.
  • the carbon nanohorn aggregate has a shape in which the tip of the carbon nanotube is sharpened into a horn with a tip angle of about 20 °, and the carbon nanohorn is radiated with the conical tip outside. Assembled to form a spherical aggregate with a diameter of about 100 nm Things.
  • the carbon nanohorn aggregate is expected to be used as an adsorbent, etc. due to its unique structure and the characteristic of selectively adsorbing various gases.
  • carbon nanotubes manufactured in large quantities form bundles (bundles) of about tens of carbon nanotubes formed by van der Waalska generated between carbon nanotubes, and these must be dispersed alone.
  • carbon nanohorn aggregates are very light carbon ultrafine particles, and therefore can be easily dispersed in a solution even when manufactured in large quantities.
  • carbon nanohorn aggregates were densely aggregated, and the structure unique to the carbon nanohorn aggregate could not be used effectively.
  • the invention of this application has been made in view of the above circumstances, and solves the problems of the prior art, and can more effectively utilize the surfaces of the carbon nanotube and the carbon nanohorn assembly. It is an object of the present invention to provide a novel carbon nanotube / carbon nanohorn composite capable of expanding its applicability and a method for producing the same. Disclosure of the invention
  • the invention of this application provides the following inventions to solve the above-mentioned problems.
  • the invention of this application is characterized in that carbon nanotubes and carbon nanohorn aggregates are dispersed and aggregated.
  • a nanohorn composite is provided.
  • the invention of this application is a process 1 in which carbon nanotubes are put in a liquid solvent and irradiated with ultrasonic waves to disperse the carbon nanotubes in the liquid solvent.
  • a method for producing a carbon nanotube / carbon nanohorn composite comprising: a step 2 of adding a carbon nanohorn aggregate to a dispersed liquid solvent and removing the liquid solvent.
  • the invention of this application relates to the method for producing a carbon nanotube / carbon nanohorn composite according to the invention described above, and thirdly, the production method characterized in that the liquid solvent is an organic solvent,
  • the fifth method includes a step 1A in which the solvent for the carbon nanotube dispersion liquid obtained in the step 1 is filtered and re-added to the liquid solvent.
  • the fifth method is a carbon nanotube after filtration in the step 1A.
  • a process for heating a tube in an oxygen atmosphere and then placing the tube in a liquid solvent is provided.
  • FIG. 2 is a photograph exemplifying a TEM observation image of the carbon nanotube-carbon nanohorn composite of the invention of this application.
  • the carbon nanotube / carbon nanohorn composite provided by the invention of this application is composed of a carbon nanotube and a carbon nanohorn.
  • the feature is that bon nanohorn aggregates are dispersed and aggregated. This state of dispersion is such that the carbon nanotubes do not form any bundles or are entangled as a bundle consisting of a very small number of carbon nanotubes, and the carbon nanohorn aggregates are substantially uniform between each carbon nanotube. In this state, the carbon nanotubes and the carbon nanohorn aggregate are dispersed with each other, preventing the aggregation of each other.
  • the carbon nanohorn aggregate is formed between the carbon nanohorn tips, which is a surface structure unique to the carbon nanohorn aggregate.
  • the space can be used very effectively.
  • the effective specific surface area is increased.
  • the carbon nanotube / carbon nanohorn composite as described above is obtained by irradiating the ultrasonic waves with the carbon nanotubes in a liquid solvent and dispersing the carbon nanotubes in the liquid solvent.
  • the carbon nanotube / carbon nanohorn composite of the invention of the application which includes a step 2 of adding a carbon nanohorn aggregate to the liquid solvent and removing the liquid solvent.
  • the carbon nanotubes are not limited in diameter and length, and may be any of single-walled carbon nanotubes having a single cylinder or multi-walled carbon nanotubes having a plurality of cylinders. Any one can be used according to the internal capacity of the carbon nanotube and the purpose of use. The same applies to the carbon nanohorn aggregate, and there is no limitation on the diameter or the like.
  • the carbon nanohorn aggregates in the shape of a flower of a dahlia, and the carbon nanohorns are aggregated in a flower shape. Any one of the nanohorn aggregates may be used, and any one may be used according to the purpose of use.
  • liquid solvents can be used, for example, water, acids such as sulfuric acid and hydrochloric acid, inorganic solvents such as carbon disulfide, hydrocarbons such as benzene, toluene and xylene, alcohols, ethers and the like. And organic solvents such as polymethyl methacrylate (PMMA), polyethylene (PE), and polyvinyl chloride (PVC), and mixtures thereof, and the like.
  • PMMA polymethyl methacrylate
  • PE polyethylene
  • PVC polyvinyl chloride
  • step 1 of the invention of this application carbon nanotubes are put into the liquid solvent, and if necessary, stirred with a stirrer or the like to allow the carbon nanotubes to mix with the liquid solvent, and then irradiated with ultrasonic waves.
  • Carbon nanotubes are shown as a preferred example in which about 0.1 to 0.5 g is added per liter of liquid solvent.
  • the carbon nanotubes dispersed in the liquid solvent are loosened by irradiation with ultrasonic waves, a part of which is cut or forms defects and pores. React.
  • the ultrasonic wave applied to the liquid solvent preferably has relatively high energy.
  • the energy of this ultrasonic wave cannot be said unconditionally because it is related to the state of the carbon nanotube to be used, the type of the liquid solvent and the amount thereof, and the irradiation time of the ultrasonic wave. It will supply the energy needed to break the six-membered ring network of the sheet. Specifically, it can be used as a guideline to irradiate a supersonic wave of about 250 to 350 WZ cm 2 for about 3 to 6 hours. More specifically, for example, 15 to 30 Irradiation of ultrasonic waves of about 30 OWZ cm 2 to a liquid solvent of about m I for 5 hours is exemplified as a preferable example.
  • the optimal irradiation time of the ultrasonic wave varies in proportion to the amount of the liquid solvent, and for example, about 1 hour when the liquid solvent is several mI, and about 15 hours when it is 100 mI. More preferable ultrasonic irradiation conditions are to irradiate ultrasonic waves of about 30 OWZ cm 2 for about 5 hours when the liquid solvent is about 3 O ml. At this time, it is more effective to irradiate the ultrasonic wave by bringing the tip or the like of the ultrasonic supply unit into direct contact with the liquid solvent.
  • the carbon nanohorn aggregate is added to the liquid solvent in which the carbon nanotubes are dispersed as described above, and if necessary, the liquid nano-particles are removed by stirring and filtering to remove the liquid solvent.
  • the mixing ratio of the carbon nanotube and the carbon nanohorn aggregate is not particularly limited, and may be arbitrary according to the purpose.
  • the weight ratio be about 1: 1 so that both are dispersed without excess and deficiency. it is conceivable that. If either the carbon nanotubes or the carbon nanohorn aggregate is extremely large, it is not preferable because the yield of the composite is reduced.
  • the nanohorn aggregate put in the liquid solvent uniformly enters between the dispersed nanotubes, and becomes a solid state while maintaining this state even after the solvent is removed.
  • the carbon nanohorn aggregates are physically adsorbed on the surface of the carbon nanotubes and chemisorbed to active cleavage sites or defects and pores formed in the carbon nanotubes, and are entangled with aggregation. Will be taken. Thereby, the carbon nanotube / carbon nanohorn composite of the invention of this application as described above can be obtained.
  • the liquid solvent obtained in the above step 1 is filtered to remove the carbon. It can be considered that the nanotubes are dispersed and the impurities removed are removed. After putting the filtered carbon nanotubes into a new liquid solvent, the same procedure as above can be performed.
  • step 1B heating the carbon nanotubes filtered in step 1A in an oxygen atmosphere before putting them in the liquid solvent may be considered.
  • the heating conditions for example, it is preferable to perform the treatment at a temperature of about 400 ° C. in a 100% oxygen atmosphere with a pressure of 300 T 0 rr and an oxygen flow rate of 100 mlZ min. This Thus, liquid solvent molecules that have reacted with the carbon nanotubes and further residual impurities can be removed.
  • the carbon nanotube / carbon nanohorn composite thus obtained can maintain the structure in which the nanohorn aggregates enter between the nanotubes dispersed by the ultrasonic treatment, and each of them aggregates each other. I'm preventing. Therefore, the space between the tip of the horn, which is peculiar to the structure of the carbon nanohorn aggregate, can be used very effectively. In addition, it is possible to disperse the bundle of nanotubes and to effectively use the surface and inside of the nanotube.
  • the specific surface area can be increased as compared with the case of using the nanohorn aggregate alone, so that an increase in the adsorption amount can be expected.
  • the supporting amount per unit amount can be increased due to the increase in the specific surface area, and its performance can be expected to be improved.
  • the target is a graphite pellet to which C 0 and Ni are added as a metal catalyst, and the second harmonic of a N d: YAG laser is used at 1200 ° C. under an Ar gas flow.
  • the single-walled carbon nanotubes about 50 pieces of irregular length were aggregated to form a bundle.
  • MCB monochrome benzene
  • the MCB solution was irradiated with ultrasonic waves by bringing a 3 mm diameter tip (vibration rod for generating ultrasonic waves) into contact with the ultrasonic wave generator.
  • the ultrasonic treatment was performed under the conditions of energy of 300 WZ cm 2 and irradiation time of 5 hours.
  • the single-walled carbon nanotubes and the MCB solution and impurities were separated by filtering the MCB solution after ultrasonic irradiation with a filter having a pore size of 20 m and 5 ⁇ m.
  • the temperature was further increased to 400 ° C and 300 ° C.
  • a baking treatment was performed for 30 minutes in an oxygen atmosphere of 0 rr and 100 mI / min.
  • This single-walled carbon nanotube was put again in the MCB solution and stirred with a magnetic stirrer. At this time, it was confirmed that the single-walled carbon nanotubes were easily dispersed in the MCB solution and maintained in a dispersed state without aggregation even after stirring.
  • the carbon nanohorn aggregate was put into the MCB solution in which the single-walled carbon nanotubes were dispersed so that the weight ratio became 1: 1.
  • the car N'nanohon aggregate used was provided wavelength 1 0. 6 m, the C 0 2 laser Bee ⁇ 1 O mm, reaction Chiya members (room temperature, 7 6 0 T 0 rr, A r atmosphere) in It is generated by irradiating a ⁇ 30 X 5 O mm graph-shaped target and collected on a collection filter. Again, this solution was stirred with a magnetic stirrer and filtered to obtain a solid. The obtained substance is transferred to a scanning electron microscope (
  • FIG. 1 shows the results of observation under SEM
  • FIG. 2 shows the results of observation under transmission electron microscope (TEM).
  • Fig. 1 the large and small spherical ones show the carbon nanohorn aggregates, and the ones that appear as thin curves are the carbon nanotubes. About 10 carbon nanotubes are bundled, and are formed between carbon nanohorn aggregate particles. From Fig. 1, it was confirmed that the carbon nanotubes and the carbon nanohorn aggregates were uniformly and well mixed with each other, and a highly dispersed carbon nanotube / carbon nanohorn composite of the present invention was obtained. It was confirmed that the
  • the carbon nanohorn aggregates were entangled in bundles of carbon nanotubes in about 10 bundles, and that both Dalaphy layers were intricately intertwined.
  • the carbon nanohorn aggregate is physically adsorbed on the surface of the perforated carbon nanotube, and is chemically adsorbed on active pores or defect sites on the perforated carbon nanotube surface, and the perforated carbon nanotube is aggregated by Van der Waals force At the same time, several to several tens of carbon nanohorn aggregates were entangled.
  • carbon The present invention provides a novel carbon nanotube / carbon nanohorn composite and a method for producing the same, which can more effectively utilize the surface of the tube and the carbon nanohorn aggregate, and expand the applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

明 細 書 カーボンナノチューブ ' カーボンナノホーン複合体とその製 造方法 技 ¼1分野
この出願の発明は、 カーボンナノチューブ · 力一ボンナノ ホーン複合体とその製造方法に関するものである。 さ らに詳 しく は、 この出願の発明は、 カーボンナノチューブおよび力 一ボンナノ ホーン集合体の表面をよ り有効に活用でき、 利用 可能性を拡大することができる、 新規なカーボン ノチュー ブ · カーボンナノホーン複合体とその製造方法に関するもの である。 背景技術
情報通信ならびに化学工業等の広い分野における利用の可 能性を秘めた新しいナノ構造物質と して、 カーボンナノチュ ーブおよびカーボンナノホーン集合体が注目 を集め、 その特 性を利用した様々な応用研究が行われている。
カーボンナノチューブは、 約 1 ~ 1 0 n mのナノ メー トル サイズの直径を持ち、 長さは数 mに及ぶ円筒状炭素物質で あ り 、 極めて規則正しい六員環の連続構造を有してお り 、 こ の微小で特異な形状や電気的特性等を利用 して、 燃料電池材 料等の様々な応用が期待されている。
そして、 カーボンナノ ホーン集合体は、 カーボンナノチュ ーブの先端が先端角約 2 0 ° の角 (ホーン) 状に尖った形状 のカーボンナノホーンが、 円錐状の先端部を外側にして放射 状に集合し、 直径約 1 O O n m程度の球状集合体を形成した ものである。 このカーボンナノホーン集合体は、 この独特な 構造と、 各種のガスを選択的に吸着する特性から、 吸着材等 と しての利用が期待されている。
これらのカーボンナノチューブおよびカーボンナノホーン 集合体については、 高い収率の得られる製造方法が既にいく つか提案されている。 しかしながら、 大量に製造されたカー ボンナノチューブは、 カーボンナノチューブ間に生じるファ ンデルワールスカによって数十本程度が集合した束 (バン ド ル) を形成してしまい、 これらを単独で分散させておく こと は困難であった。 一方の、 カーボンナノホーン集合体は、 非 常に軽い炭素超微粒子であるため、 大量に製造した場合であ つても溶液中において簡単に分散させることができる。 しか し、 単独では、 カーボンナノホーン集合体同士が密に凝集し てしまい、 カーボンナノホーン集合体特有の構造を有効に活 用することはできないという問題があった。
そこで、 この出願の発明は、 以上の通りの事情に鑑みてな されたものであり、 従来技術の問題点を解消し、 カーボンナ ノチューブおよびカーボンナノホーン集合体の表面をよ り有 効に活用でき、 利用可能性を拡大することができる新規な力 一ボンナノチューブ · カーボンナノホーン複合体とその製造 方法を提供することを課題と している。 発明の開示
そこで、 この出願の発明は、 上記の課題を解決するものと して、 以下の通りの発明を提供する。
すなわち、 まず第 1 には、 この出願の発明は、 カーボンナ ノチューブとカーボンナノホーン集合体が分散されて凝集さ れていることを特徴とするカーボンナノチューブ · カーボン ナノホーン複合体を提供する。
そして、 この出願の発明は、 第 2 には、 カーボンナノチュ 一ブを液溶媒に入れて超音波を照射し、 カーボンナノチュー ブを液溶媒に分散させる工程 1 と、 このカーボンナノチュー ブが分散された液溶媒にカーボンナノホーン集合体を加え、 液溶媒を除去する工程 2 を含むことを特徴とするカーボンナ ノチューブ · カーボンナノホーン複合体の製造方法を提供す る。
また、 この出願の発明は、 上記の発明のカーボンナノチュ 一プ · カーボンナノホーン複合体の製造方法において、 第 3 には、 液溶媒が有機溶媒であることを特徴とする製造方法を 、 第 4 には、 工程 1 で得たカーボンナノチューブ分散液溶媒 をろ過し、 再度液溶媒に入れる工程 1 Aを含むことを特徴と する製造方法を、 第 5 には、 工程 1 Aでろ過後のカーボンナ ノチューブを、 酸素雰囲気中で加熱した後、 液溶媒に入れる 工程 1 Bを含むことを特徴とする製造方法を提供する。 図面の簡単な説明
この出願の発明のカーボンナノチューブ · カーボンナノホ ーン複合体の S E M観察像の一例である。
図 2 は、 この出願の発明のカーボンナノチューブ , カーボ ンナノホーン複合体の T E M観察像を例示した写真である。 発明を実施するための最良の形態
この出願の発明は、 上記の通りの特徴を持つものであるが 、 以下にその実施の形態について説明する。
まず、 この出願の発明が提供するカーボンナノチューブ · カーボンナノホーン複合体は、 カーボンナノチューブとカー
3
差替え用銥 ( \9d ボンナノホーン集合体が分散されて凝集されていることを特 徴と している。 この分散の状態は、 カーボンナノチューブが バン ドルを全く形成していないか、 あるいは極少数本からな るバン ドルとなって絡まり、 その各々のカーボンナノチュー ブの間にカーボンナノホーン集合体がほぼ均一な分布状態で 入り込んだ状態であり、 カーボンナノチューブおよびカーボ ンナノホーン集合体のそれぞれが互いに分散され、 互いの凝 集を防いでいる。
したがって、 この出願の発明のカーボンナノチューブ · 力 一ボンナノホーン複合体において、 例えば、 カーボンナノホ —ン集合体に着目すると、 カーボンナノホーン集合体に特有 の表面構造である、 カーボンナノホーン先端間に形成される 空間を極めて有効に活用することができるよう になる。 また 、 カーボンナノチューブにおいても、 バン ドルが形成されな いため、 有効比表面積が増えることになる。
以上のようなこのカーボンナノチューブ · カーボンナノホ ーン複合体は、 カーボンナノチューブを液溶媒に入れて超音 波を照射し、 カーボンナノチューブを液溶媒に分散させるェ 程 1 と、 このカーボンナノチューブが分散された液溶媒に力 一ボンナノホーン集合体を加え、 液溶媒を除去する工程 2 を 含む、 出願の発明のカーボンナノチューブ · カーボンナノホ ーン複合体の製造方法により製造することができる。
この出願の発明の方法において、 カーボンナノチューブと しては、 直径および長さ等に制限はなく 、 また円筒が一重の 単層カーボンナノチューブあるいは円筒が複数の多層カーボ ンナノチューブのいずれであってもよく 、 カーボンナノチュ ーブの内部容量や使用目的等に応じて任意のものを用いるこ とができる。 また、 カーボンナノホーン集合体についても同様でその直 径等に制限はなく 、 カーボンナノホーンがダリ アの花状に集 合したダリ ァ状カーボンナノホーン集合体あるいは花のつぼ み状に集合したつぼみ状カーボンナノホーン集合体のいずれ であってもよく 、 使用目的等に応じて任意のものを用いるこ とができる。
液溶媒についても各種のものを使用することができ、 たと えば、 水, 硫酸や塩酸等の酸, 二硫化炭素等の無機溶媒、 ベ ンゼン, トルエン, キシレン等の炭化水素やアルコール、 ェ 一テル、 およびその誘導体等の有機溶媒、 ポリ メタク リル酸 メチル ( P M M A ) 、 ポリエチレン ( P E ) 、 ポ 塩化ビニ ル ( P V C ) 等の高分子およびこれらの混合物等を適宜選択 して使用することができる。 この出願の発明において、 液溶 媒として扱いやすいのは有機溶媒である。
この出願の発明の工程 1 では、 この液溶媒にカーボンナノ チューブを入れ、 必要に応じてスターラー等で攪拌してカー ボンナノチューブと液溶媒とをなじませてから、 超音波を照 射する。 カーボンナノチューブは、 液溶媒 1 リ ッ トルあたり にたとえば 0 . 1 〜 0 . 5 g程度を入れるようにするのが好 適な例と して示される。 ここで液溶媒に分散されたカーボン ナノチューブは、 超音波を照射されることによりバン ドルが ほぐされ、 その一部は切断されたり欠陥および細孔等を形成 し、 また欠陥部で液溶媒分子と反応するなどする。 すなわち 、 通常のカーボンナノチューブはファ ンデルワールス力の強 い凝集力のため速やかにバン ドルを再形成してしまうが、 こ の出願の発明の方法によると、 カーボンナノチューブを構成 するグラフアイ 卜シー トの六員環ネッ 卜ワークが不連続にな り、 カーボンナノチューブ間に作用するファ ンデルワールス 力による凝集力が弱められ、 分散状態を維持することができ るよう になるのである。
液溶媒に照射する超音波は、 比較的エネルギーが強いもの であることが好ましい。 この超音波のエネルギーについては 、 使用するカーボンナノチューブ状態や液溶媒の種類、 およ びそれらの量、 さ らには超音波の照射時間等と関連するため 一概には言えないが、 グラフアイ 卜シー 卜の六員環ネッ 卜ヮ ークを切断するために必要とされるエネルギーを供給するこ とになる。 具体的には、 2 5 0〜 3 5 0 W Z c m 2程度の超音 波を 3 〜 6 時間程度照射することを目安とすることができ、 より具体的には、 たとえば、 1 5 〜 3 0 m I 程度の液溶媒に 対して 3 0 O W Z c m 2程度の超音波を 5時間照射すること等 が好適な例と して例示される。 超音波の最適な照射時間は液 溶媒の量に比例して変化し、 たとえば液溶媒が数 m I ならば 1 時間、 1 0 0 m I ならば 1 5 時間程度を目安とすることが できる。 より好ま しい超音波の照射条件は、 おおよそ、 液溶 媒が 3 O m l 程度のとき、 3 0 O W Z c m 2程度の超音波を 5 時間程度照射することである。 このとき、 超音波供給手段の チップ等を直接液溶媒に接触させて超音波を照射することが より効果的である。
次いで、 工程 2では、 このよう にカーボンナノチューブが 分散された液溶媒にカーボンナノホーン集合体を加え、 必要 に応じて均一になるよう攪拌し、 ろ過する等して液溶媒を除 去する。 この出願の発明においては、 カーボンナノチューブ とカーボンナノホーン集合体の混合比について特に制限はな く 、 目的に応じて任意のものとすることができる。 たとえば 、 燃料電池電極と して利用する場合には、 重量比を 1 : 1 程 度とすることで双方とも過不足なく分散するために好ま しい と考えられる。 カーボンナノチューブあるいはカーボンナノ ホーン集合体のいずれかが極端に多い場合には複合体と して の収率が低下してしまうために好ましくない。 そして液溶媒 中に入れられたナノホーン集合体は、 分散しているナノチュ ーブの間に均一に入り込み、 溶媒を除去した後もこの状態を 保ったまま固体状態となる。 この工程で、 カーボンナノホー ン集合体は、 カーボンナノチューブの表面に物理吸着すると 共に、 カーボンナノチューブに形成された活性な切断部位あ るいは欠陥および細孔部位等に化学吸着され、 凝集と同時に 絡み取られていく。 これによつて、 上記の通りのこの出願の 発明のカーボンナノチューブ · カーボンナノホーン複合体を 得ることができる。
また、 たとえばカーボンナノチューブを大量生産する場合 等には製造工程でフラーレン、 アモルファスカーボン、 触媒 金属粒子等が不純物と して混入することがある。 これらの不 純物は、 カーボンナノチューブの間隙に多く が付着している そこで、 この出願の発明においては、 工程 1 Aと して、 上記 の工程 1 で得た液溶媒をろ過することで、 カーボンナノチュ ーブが分散すると共に脱離した不純物を除去することなどを 考慮することができる。 ろ過後のカーボンナノチューブを新 しい液溶媒に入れた後は、 上記と同様の手順とすることがで さる。
さ らにこの出願の発明においては、 工程 1 B と して、 上記 の工程 1 Aでろ過したカーポンナノチューブを液溶媒に入れ る前に、 酸素雰囲気中で加熱することなども考慮することが できる。 この加熱の条件と しては、 たとえば、 圧力 3 0 0 T 0 r r、 酸素流量 1 O O m l Z m i nの 1 0 0 %酸素雰囲気 で温度 4 0 0 °C程度で処理するのが好適である。 これによつ て、 カーボンナノチューブと反応した液溶媒分子やさ らなる 残留不純物等を除去することができる。
このよう にして得られたカーボンナノチューブ · カーボン ナノホーン複合体は、 超音波処理によって分散されたナノチ ユ ーブ間にナノホーン集合体が入り込んだ構造を維持するこ とができ、 それぞれがお互いの凝集を防いでいる。 したがつ て、 カーボンナノホーン集合体の構造に特有の、 ホーン先端 間の空間を極めて有効に活用することができる。 また、 ナノ チューブのバン ドルを分散させ、 ナノチューブの表面および 内部をも有効に利用することが可能となる。
このカーボンナノチューブ , カーボンナノホーン複合体に よると、 たとえは、 ガス吸着において、 ナノホーン集合体単 独で用いるより、 比表面積を増加させることができるため、 その吸着量増加が期待できる。 また、 燃料電池等の電極材料 の金属触媒担持材料と して用いる場合、 同じく比表面積の増 加から、 単位量あたりの担持量を増やすことができ、 その性 能向上が期待できる。
以下に実施例を示し、 この発明の実施の形態についてさ ら に詳しく説明する。 以下、 添付した図面に沿って実施例を示し、 この発明の実 施の形態についてさらに詳しく説明する。 実施例
金属触媒と して C 0 と N i が添加されたグラフアイ 卜ペレ ッ 卜をターゲッ トと し、 1 2 0 0 °C 、 A r 気流下で N d : Y A G レーザーの第 2高調波によリアブレーシヨ ンするレーザ 一アブレーシヨ ン法によって単層カーボンナノチューブを製 造した。 この単層カーボンナノチューブは、 不揃いの長さの ものがおよそ 5 0本程度凝集してバン ドルを形成していた。 液溶媒と して 2 %のポリ メチルメタク リ レー 卜 ( P M M A ) のモノクロ口ベンゼン ( M C B ) 溶液を用い、 この M B C 溶液 1 5 m l と単層カーボンナノチューブおよそ 5 m g とを マグネッチックスターラーで 2 時間混合した。 この M C B溶 液に、 超音波発生装置の直径 3 m mのチップ (超音波発生用 振動棒) を接触させて超音波を照射した。 超音波処理の条件 は、 エネルギー 3 0 0 W Z c m 2、 照射時間 5時間とした。
超音波照射後の M C B溶液を細孔径 2 0 mおよび 5 μ m のフィルターでろ過することで、 単層カーボンナノチューブ と M C B溶液および不純物を分離した。 さ らにこの単層カー ボンナノチューブから、 残存している M C Bやアモルファス カーボン、 フラーレン、 カーボンナノカプセル等の炭素質の 不純物を除去するために、 さ らに 4 0 0 °C , 3 0 0 T 0 r r , 1 0 0 m I / m i nの酸素雰囲気中で 3 0分間焼成処理を 施した。
この単層カーボンナノチューブを再び M C B溶液に入れ、 マグネチックスターラーで攪拌した。 このとき、 M C B溶液 中で単層カーボンナノチューブは容易に分散され、 攪拌後も 凝集することなく分散状態を維持することが確認された。
この単層カーボンナノチューブが分散された M C B溶液に カーボンナノホーン集合体を重量比が 1 : 1 となるように入 れた。 なお、 使用したカー ンナノホーン集合体は、 波長 1 0 . 6 m , ビー厶径 1 O m mの C 02レーザーを、 反応チヤ ンバー (室温, 7 6 0 T 0 r r , A r 雰囲気) 内に設けた φ 3 0 X 5 O m mのグラフ アイ 卜タ一ゲッ 卜に照射して発生さ せ、 収集フィルター上に回収したものである。 再度、 この溶液をマグネチックスターラーで攪拌し、 ろ過 して固体物を得た。 この得られた物質を走査型電子顕微鏡 (
S E M ) で観察した結果を図 1 に、 透過型電子顕微鏡 ( T E M ) で観察した結果を図 2 にそれぞれ示した。
図 1 において大小の球状のものがカーボンナノホーン集合 体を、 細い曲線と して見えるものがカーボンナノチューブで ある。 このカーボンナノチューブは、 1 0本程度が束となつ ており、 カーボンナノホーン集合体粒子間に入り込むかたち になっている。 この図 1 から、 カーボンナノチューブとカー ボンナノホーン集合体が、 互いに均一に、 よく混ざり合って いる様子が確認され、 高度に分散されたこの出願め発明の力 一ボンナノチューブ · カーボンナノホーン複合体が得られて いることが確認された。
また、 図 2からは、 カーボンナノホーン集合体が 1 0本程 度で束になったカーボンナノチューブに絡まれ、 両者のダラ ファイ ト層が複雑に入り組んでいる様子が観察された。 カー ボンナノホーン集合体が有孔カーボンナノチューブの表面に 物理吸着すると共に、 有孔カーボンナノチューブ表面におい て活性な細孔あるいは欠陥部位に化学吸着され、 さらには、 有孔カーボンナノチューブがファ ンデルワールス力によって 凝集すると同時に数〜数十個のカーボンナノホーン集合体が 絡み取られている様子が分かった。
もちろん、 この発明は以上の例に限定されるものではなく 、 細部については様々な態檫が可能であることは言うまでも ない。 産業上の利用分野
以上詳しく説明した通り、 この発明によって、 カーボンナ ノチューブおよびカーボンナノホーン集合体の表面をよ り有 効に活用でき、 利用可能性を拡大することができる新規な力 一ボンナノチューブ · カーボンナノホーン複合体とその製造 方法が提供される。

Claims

請求の範囲
1 . カーボンナノチューブとカーボンナノホーン集合体が 分散されて凝集されていることを特徴とするカーボンナノチ ユーブ * カーボンナノホーン複合体。
2 . カーボンナノチューブを液溶媒に入れて超音波を照射 し、 カーボンナノチューブを液溶媒に分散させる工程 1 と、 このカーボンナノチューブが分散された液溶媒にカーボンナ ノ ホーン集合体を加え、 液溶媒を除去する工程 2 を含むこと を特徴とするカーボンナノチューブ · カーボンナノホーン複 合体の製造方法。
3 . 液溶媒が有機溶媒であることを特徴とする請求項 2 記 載のカーボンナノチューブ · カーボンナノホーン複合体の製 造方法。
4 . 工程 1 で得たカーボンナノチューブ分散液溶媒をろ過 し、 再度液溶媒に入れる工程 1 Aを含むことを特徴とする請 求項 2 または 3 記載のカーボンナノチューブ · カーボンナノ ホーン複合体の製造方法。
5 . 工程 1 Aでろ過後のカーボンナノチューブを、 酸素雰 囲気中で加熱した後、 液溶媒に入れる工程 1 B を含むことを 特徴とする請求項 4記載のカーボンナノチューブ · カーボン ナノホーン複合体の製造方法。
PCT/JP2002/009506 2002-01-08 2002-09-17 Complexe de nanotubes de carbone-nanocornets de carbone et son procede de production WO2003057623A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020047010680A KR100881317B1 (ko) 2002-01-08 2002-09-17 카본나노튜브-카본나노혼 복합체와 그 제조방법
US10/499,010 US7067096B2 (en) 2002-01-08 2002-09-17 Carbon nanotube-carbon nanohorn complex and method for producing the same
EP02770203A EP1473274A4 (en) 2002-01-08 2002-09-17 CARBON NANOROH CARBON NANOHORN COMPLEX AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002001803A JP3453377B2 (ja) 2002-01-08 2002-01-08 カーボンナノチューブ・カーボンナノホーン複合体とその製造方法
JP2002-001803 2002-01-08

Publications (1)

Publication Number Publication Date
WO2003057623A1 true WO2003057623A1 (fr) 2003-07-17

Family

ID=19190659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009506 WO2003057623A1 (fr) 2002-01-08 2002-09-17 Complexe de nanotubes de carbone-nanocornets de carbone et son procede de production

Country Status (7)

Country Link
US (1) US7067096B2 (ja)
EP (1) EP1473274A4 (ja)
JP (1) JP3453377B2 (ja)
KR (1) KR100881317B1 (ja)
CN (1) CN1292983C (ja)
TW (1) TW572846B (ja)
WO (1) WO2003057623A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107297182A (zh) * 2015-09-10 2017-10-27 青岛科技大学 一种带有静电除尘装置的碳纳米管分散设备

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723299B1 (en) * 2001-05-17 2004-04-20 Zyvex Corporation System and method for manipulating nanotubes
US20040034177A1 (en) * 2002-05-02 2004-02-19 Jian Chen Polymer and method for using the polymer for solubilizing nanotubes
JP3826867B2 (ja) * 2002-09-24 2006-09-27 日本電気株式会社 燃料電池用触媒担持粒子および燃料電池用触媒電極の製造方法
US20060147647A1 (en) * 2003-02-10 2006-07-06 Takeshi Azami Apparatus and method for manufacturing nano carbon
WO2004106420A2 (en) * 2003-05-22 2004-12-09 Zyvex Corporation Nanocomposites and method for production
JP4618128B2 (ja) * 2003-09-19 2011-01-26 日本電気株式会社 カーボンナノホーンを用いたフィルタ
JP4556409B2 (ja) * 2003-09-24 2010-10-06 東レ株式会社 カーボンナノチューブを含有する組成物の精製方法およびカーボンナノチューブ組成物
KR20060133099A (ko) * 2004-04-13 2006-12-22 지벡스 코포레이션 모듈식 폴리(페닐렌에티닐렌)의 합성 방법 및 나노물질의관능화를 위한 이의 전자 특성을 미세 튜닝하는 방법
JP4908745B2 (ja) * 2004-08-09 2012-04-04 双葉電子工業株式会社 カーボンナノチューブの複合材料とその製造方法
US7296576B2 (en) * 2004-08-18 2007-11-20 Zyvex Performance Materials, Llc Polymers for enhanced solubility of nanomaterials, compositions and methods therefor
US8148276B2 (en) 2005-11-28 2012-04-03 University Of Hawaii Three-dimensionally reinforced multifunctional nanocomposites
US7658870B2 (en) * 2005-12-20 2010-02-09 University Of Hawaii Polymer matrix composites with nano-scale reinforcements
US8264137B2 (en) * 2006-01-03 2012-09-11 Samsung Electronics Co., Ltd. Curing binder material for carbon nanotube electron emission cathodes
JP2008133178A (ja) * 2006-10-25 2008-06-12 Kuraray Co Ltd カーボンナノチューブの製造方法
CN101425583B (zh) * 2007-11-02 2011-06-08 清华大学 燃料电池膜电极及其制备方法
WO2010001791A1 (ja) * 2008-06-30 2010-01-07 日本電気株式会社 ナノチューブ・ナノホーン複合体、およびその製造方法
JP5603059B2 (ja) 2009-01-20 2014-10-08 大陽日酸株式会社 複合樹脂材料粒子及びその製造方法
US9786444B2 (en) * 2009-06-25 2017-10-10 Nokia Technologies Oy Nano-structured flexible electrodes, and energy storage devices using the same
TWM373127U (en) * 2009-08-06 2010-02-01 Liang-Yang Lin disassembleable warm-keeping clothing set formed of solar nano-carbon balls composite material
US20120202060A1 (en) * 2009-10-16 2012-08-09 Nec Corporation Nanotube-nanohorn complex and method of manufacturing the same
US8172163B2 (en) * 2010-03-22 2012-05-08 King Abdulaziz University System and method for producing nanomaterials
JP5093287B2 (ja) * 2010-04-13 2012-12-12 トヨタ自動車株式会社 膜電極接合体及び燃料電池
KR101658846B1 (ko) * 2011-02-07 2016-09-22 다이요 닛산 가부시키가이샤 복합 수지 재료 입자, 복합 수지 재료 입자의 제조 방법, 복합 수지 성형체 및 그 제조 방법
JP5920600B2 (ja) * 2011-03-31 2016-05-18 日本電気株式会社 カーボンナノチューブ・カーボンナノホーン複合体、カーボンナノチューブ・カーボンナノホーン複合体の製造方法および用途
EP3312225A4 (en) * 2015-06-22 2019-03-27 Nec Corporation NANOCARBON COMPOSITE MATERIAL AND METHOD FOR PRODUCING THE SAME
EP3509408B1 (en) * 2016-09-05 2021-11-10 Nec Corporation Electromagnetic wave absorbent material
US11387103B1 (en) * 2019-05-01 2022-07-12 The United States Of America As Represented By The Secretary Of The Army Process for fabricating semiconductor nanofibers

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DILLON A.C. ET AL.: "Storage of hydrogen in single-walled carbon nanotubes", NATURE, vol. 386, 1997, pages 377 - 379, XP000877483 *
IIJIMA S. ET AL.: "Nano-aggregates of single-walled graphitic carbon nano-horns", CHEM. PHYS. LETT., vol. 309, 1999, pages 165 - 170, XP002955889 *
KATSUJIKI MURATA ET AL.: "Methane storage property of single walled carbon nanohorn", vol. 21, 2001, pages 25, XP002960702 *
See also references of EP1473274A4 *
THESS ANDREAS ET AL.: "Crystalline ropes of metallic carbon nanotubes", SCIENCE, vol. 273, 1996, pages 483 - 487, XP000610196 *
YUDASAKA M. ET AL.: "Effect of an organic polymer in purification and cutting of single-wall carbon nanotubes", APPL. PHYS. A, vol. 71, no. 4, 2000, pages 449 - 451, XP002960703 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107297182A (zh) * 2015-09-10 2017-10-27 青岛科技大学 一种带有静电除尘装置的碳纳米管分散设备

Also Published As

Publication number Publication date
JP3453377B2 (ja) 2003-10-06
EP1473274A1 (en) 2004-11-03
US7067096B2 (en) 2006-06-27
JP2003206113A (ja) 2003-07-22
KR20040076884A (ko) 2004-09-03
TW572846B (en) 2004-01-21
CN1612843A (zh) 2005-05-04
CN1292983C (zh) 2007-01-03
US20050031525A1 (en) 2005-02-10
KR100881317B1 (ko) 2009-02-03
EP1473274A4 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
WO2003057623A1 (fr) Complexe de nanotubes de carbone-nanocornets de carbone et son procede de production
Douglas et al. Toward small-diameter carbon nanotubes synthesized from captured carbon dioxide: critical role of catalyst coarsening
Hilding et al. Dispersion of carbon nanotubes in liquids
JP3962691B2 (ja) 過酸素化合物で酸化する事に依るカーボンナノチューブの改質
JP4234812B2 (ja) 単層カーボンナノホーン構造体とその製造方法
JP4483152B2 (ja) 中空グラフェンシート構造体及び電極構造体とそれら製造方法並びにデバイス
AU2005332975B2 (en) Improved ozonolysis of carbon nanotubes
WO2009110591A1 (ja) カーボンナノチューブの製造方法及びカーボンナノチューブ製造装置
JP5193829B2 (ja) 濾過構造体
JP4900376B2 (ja) カーボンナノチューブを処理する方法
JP5509595B2 (ja) カーボンナノチューブの製造方法
JP2005162877A (ja) カーボンナノチューブ分散極性有機溶媒及びその製造方法
Du et al. Particle− wire− tube mechanism for carbon nanotube evolution
JP2003201108A (ja) カーボン材料
Edelmann Fullerene Pipes, Tube‐in‐Tube Membranes, and Carbon‐Nanotube Tips: Adding New Dimensions to Molecular Technology
WO2008018619A1 (fr) appareil de pulvérisation cathodique à barillet polygonal, matériau de carbone modifié de surface et procédé de fabrication du matériau de carbone modifié de surface
JP4834957B2 (ja) 触媒構造体およびこれを用いたカーボンナノチューブの製造方法
JP3843736B2 (ja) カーボンナノチューブデバイスおよびその製造方法、並びに、カーボンナノチューブの精製方法
Pillai et al. Purification of multi-walled carbon nanotubes
EP2240277A1 (en) Processes for the recovery of catalytic metal and carbon nanotubes
JP2004018328A (ja) カーボンナノチューブネットワークとその製造方法
Bhagabati et al. Synthesis/preparation of carbon materials
Ye et al. Supercritical fluid attachment of palladium nanoparticles on aligned carbon nanotubes
Ko et al. Direct synthesis of cup-stacked carbon nanofiber microspheres by the catalytic pyrolysis of poly (ethylene glycol)
Martínez-Ruiz et al. New synthesis of Cu2O and Cu nanoparticles on multi-wall carbon nanotubes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10499010

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20028269470

Country of ref document: CN

Ref document number: 1020047010680

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002770203

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002770203

Country of ref document: EP