WO2003050028A1 - Elevator control apparatus - Google Patents

Elevator control apparatus Download PDF

Info

Publication number
WO2003050028A1
WO2003050028A1 PCT/JP2002/012851 JP0212851W WO03050028A1 WO 2003050028 A1 WO2003050028 A1 WO 2003050028A1 JP 0212851 W JP0212851 W JP 0212851W WO 03050028 A1 WO03050028 A1 WO 03050028A1
Authority
WO
WIPO (PCT)
Prior art keywords
stop floor
car
floor
speed pattern
next stop
Prior art date
Application number
PCT/JP2002/012851
Other languages
French (fr)
Japanese (ja)
Inventor
Masaya Sakai
Takaharu Ueda
Kouichi Sasakawa
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to DE10296269.3T priority Critical patent/DE10296269B4/en
Priority to KR1020037010449A priority patent/KR100568397B1/en
Publication of WO2003050028A1 publication Critical patent/WO2003050028A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/285Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical with the use of a speed pattern generator

Definitions

  • the present invention relates to an elevator control device that adjusts an acceleration and a maximum speed by changing a speed pattern or the like applied to a motor such as an elevator according to a load.
  • FIG. Figure 15 is a diagram showing the relationship between the output frequency (speed: hereafter frequency means the same as speed) and torque of a conventional elevator control device.
  • f O is the base frequency (rated speed)
  • T in a X is the maximum output torque value
  • T x is the torque value required at the first load
  • T y is the second load (ex.
  • Fx indicates the maximum output frequency that can be output with the first load
  • fy indicates the maximum output frequency that can be output with the second load.
  • the maximum output frequency for the first load is such that the torque obtained in a frequency band higher than the frequency fX is smaller than the torque TX required for the first load. Therefore, the frequency is lower than fx. Also, the maximum output frequency for the second load (required torque T y) is less than the frequency ⁇ y because the torque obtained in a frequency band higher than the frequency fy is smaller than the torque T y required for the second load. .
  • the operating frequency was set to a frequency lower than the output frequency at which the torque for the maximum load could be obtained, and the motor was rotated.
  • the maximum output frequency can be set high when the load is small, but if the load is large, the maximum output frequency must be set low, and sufficient torque cannot be obtained and it is impossible to raise with an elevator. Due to problems, it is necessary to set the maximum output frequency to a frequency that provides sufficient torque at the maximum load, and operate was there.
  • the maximum output frequency was set to fX, and the maximum output frequency was fX even when the load was small. For this reason, when the load is small, the maximum output frequency is low, so that it takes time to accelerate, and there is a problem that the operating time cannot be shortened and the efficiency is poor.
  • Japanese Patent Application Laid-Open No. 3-56308 discloses a method in which a power value is obtained from a voltage and a current at a frequency equal to or higher than the rated frequency, and the speed setting value is compared with the power value at the rated frequency. Outputting to the transmission.
  • a variable speed device having an inverter unit for converting DC power into a variable frequency and a variable voltage AC power
  • the input side of the inverter unit is provided.
  • a voltage detection circuit that detects the DC bus voltage
  • a current detection circuit that detects the current of each phase on the output side of the inverter
  • a control circuit for automatically determining the magnitude of the applied load, determining the maximum output frequency, and outputting the determined output frequency.
  • the maximum speed was changed according to the load in order to reduce the operation time.
  • increasing the maximum speed does not necessarily shorten the operation time. If the travel distance is short, the operation time may be shorter when the acceleration is higher than the maximum speed. Therefore, changing the maximum speed only according to the load has a problem in that the driving time becomes longer depending on the moving distance.
  • the present invention has been made to solve the above problems, and has an elevator control device capable of changing a maximum speed and an acceleration according to a load and a moving distance, thereby shortening an operation time.
  • the purpose is to provide. Disclosure of the invention
  • An elevator control device is an elevator that drives a hoist having a counterweight connected to a passenger car via a rope by a motor fed by an inverter, wherein the weight of the passenger car is used as a car load.
  • Base Car speed pattern generating means for generating a car speed pattern in which the passenger car reaches the next stop floor within the allowable driving range of the motor and in the shortest time.
  • component temperature detection means for measuring the temperature of the components constituting the inverter
  • limit temperature setting means for setting a temperature rise limit value of the components
  • Temperature rise allowable value calculating means for calculating a temperature rise limit allowable value based on the temperature and the temperature rise limit value set by the limit temperature setting means
  • the car speed pattern generating means comprises: Is within the allowable driving range of the motor based on the temperature rise limit allowable value, the power load, and the next stop floor, and the expected temperature rise amount of the component is the temperature rise limit allowable value.
  • the passenger power bar will generate a car speed pattern that will reach the next stop floor.
  • the speed pattern generating means sets the upper limit of the car maximum speed, the car acceleration, and the rate of change of the car acceleration when generating the car speed pattern.
  • the power speed pattern generating means converts a motor torque waveform related to a power speed drive command given to the motor into a current value flowing through the constituent element, and the current value waveform corresponds to the temperature rise limit allowable value.
  • the car speed pattern is generated based on the conditions constrained by the value function.
  • the next stop floor setting means calculates the next stop floor for generating the car speed pattern from the number of times the elevator is started and the statistic of the moving distance from the car departure floor to the next stop stop floor. It is the average stop floor of Rigogo.
  • next stop floor setting means may set the average stop floor of the car as a stop floor at each departure floor where the expected value of the travel time to the stop determination floor is minimized.
  • the next stop floor setting means sets the average stop floor of the car based on the statistics of the stop determination floor for each time zone in which the passenger demand is different.
  • the car speed pattern generating means generates a power speed pattern by comparing the next stop floor with the average stop floor of the car.
  • the car speed pattern generating means may include a stoppable floor at which the car can be stopped and the car stoppable floor. This is to generate a power go speed pattern by comparing the average stop floor of power go.
  • FIG. 1 is a configuration diagram showing Embodiment 1 of the present invention
  • FIG. 2 is a characteristic diagram showing a relationship between a generated torque and a rotation speed of the motor according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram for deriving an elevator mechanical system model according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a car speed pattern and a motor torque pattern in Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart showing a car speed pattern calculation procedure according to the first embodiment of the present invention.
  • FIG. 6 is a diagram showing the relationship between the parameters and the constraints in the calculation of the car speed pattern according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of calculation of a car speed pattern according to the first embodiment of the present invention.
  • FIG. 8 is a diagram for explaining the diagram at the bottom of FIG.
  • FIG. 9 is a diagram showing a moving distance of a gyro at the time of driving with a gyro speed pattern in the middle stage of FIG. 7.
  • FIG. 10 is a configuration diagram showing a second embodiment of the present invention.
  • FIG. 11 is a flowchart showing a procedure of calculating a car speed pattern according to the second embodiment of the present invention.
  • FIG. 12 is a diagram showing a moving floor of a car and its occurrence probability according to the third embodiment of the present invention.
  • FIG. 13 is a flowchart showing a simplified speed pattern calculation procedure according to the third embodiment of the present invention.
  • FIG. 14 is a diagram showing a calculation example of a speed pattern according to the fourth embodiment of the present invention.
  • FIG. 15 is a diagram showing the relationship between the output frequency and the torque of a conventional acceleration / deceleration device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram showing Embodiment 1 of the present invention.
  • 1 is the next stop floor setting means for setting the next stop floor
  • 2 is the car load detection means
  • 3 is the power load obtained by the car load detection means 2 and the next stop floor setting means 1.
  • Car speed pattern generating means for generating a car speed pattern in which the passenger power go 7 reaches the next stop floor within the allowable driving range of the motor 5 and in the shortest time from the next stop floor to be executed
  • 4 is an inverter
  • 6 Is a hoist having a counterweight 8 connected to a passenger basket 7 via a rope.
  • the next stop floor setting means 1 can be realized by providing a device for registering the next stop floor in a landing and a rickshaw. It can also be set remotely by wireless or other communication means.
  • FIG. 2 is a diagram showing characteristics of motor torque and motor rotation speed.
  • FIG. 3 is a diagram showing the relationship between the motor 5, the hoist 6, the cage 7, and the counterweight 8.
  • the lower part of Fig. 4 shows the motor torque pattern, and the upper part shows the car speed pattern at that time.
  • FIG. 5 is a flowchart showing a processing procedure for generating a car speed pattern.
  • the motor 5 can operate in an area including a hatched area surrounded by a motor torque axis and a curve and an area including a boundary thereof.
  • This region may be a convex set. Even if it is not the case, the motion region may be approximated to be a convex set.
  • the region where the torque is positive indicates the power state, and the region where the torque is negative indicates the regenerative state.
  • this area is represented by ⁇ .
  • Tm is the motor torque
  • J is the motive moment of the hoist
  • r is the radius of the hoist
  • m1 is the weight of the counterweight
  • m2 is the mass of the power
  • Power acceleration and ⁇ represent the rotating speed of the hoist, respectively.
  • g be the gravitational acceleration.
  • Equation (1) the relational expression between the car acceleration and the motor torque is expressed as shown in Equation (1).
  • the configuration is not limited to this configuration as long as the relationship between the two can be described by a linear function. I'm sorry.
  • the rotation speed of the motor is equal to the rotation speed of the hoist, and V is the car speed
  • the car speed can be calculated from the motor speed as follows.
  • FIG. 2 can be converted into a relational expression between the motor torque and the car speed.
  • the motor rotation speed and the winding machine rotation speed are assumed to be equal, the conversion is not limited to the above equation (2) as long as the relational expression between the two can be described by a linear function.
  • the present invention can be applied to a case where a reduction gear is used.
  • the upper speed pattern is calculated based on the above equation (1) and its integral with respect to the lower torque pattern.
  • tO to t7 indicate time
  • ⁇ t1 to ⁇ t7 indicate time intervals
  • V0 to V7 indicate power speeds for each time
  • TmO to Tm7 indicate motor torque for each time.
  • ⁇ 11 to ⁇ 17 are the movement amounts of the gyro during the sections At1 to ⁇ t7, respectively.
  • al and ⁇ 2 are the absolute values of the car acceleration in section 2 and At6, respectively, and can be calculated as shown in the figure using the above equation (1) and T M1 and T M2 . Also, ⁇ 1 ⁇ ⁇
  • V 0 to v 7 can be calculated as shown in the figure using ctl, hi 2, 61 to 64 and t 1 to At 7 calculated above.
  • ⁇ 11 to ⁇ 17 can be calculated as shown in the figure using V0 to ⁇ 7, ⁇ 1, ⁇ 2, 6 ⁇ to ⁇ 4, and At1 to ⁇ t7 calculated above. Therefore, ⁇ 11 to ⁇ 17 can be described using the time section At1 to ⁇ 7 and the motor torques ⁇ 1 and ⁇ 2 as parameters.
  • L A 1 1 + ⁇ ⁇ 2 + ⁇ 1 3 + ⁇ 1 4 + ⁇ 1 5 + ⁇
  • the values of the weight ml of the counterweight 8, the radius r of the hoist 6, the moment of inertia J of the hoist 6, and the gravitational acceleration g are read.
  • the car weight m 2 is detected by the car load detecting means 2.
  • step 24 the constraint conditions in FIG. 6 are set, and the upper limit value of the car maximum speed, the upper limit value of the car acceleration, and the upper limit value of the car jerk are determined.
  • the car speed pattern that reaches the earliest within the constraints according to the load is generated.
  • the restriction on the speed of the bargo has the effect of adjusting the maximum speed of the elevator, and can keep the speed of the cage within a desired range, thereby preventing the speed from increasing too much.
  • V— from the maximum rotation speed of the motor to be larger than the car speed derived from the above equation (2), the car reaches the fastest speed within the range of motor characteristics without limiting the car maximum speed.
  • a speed pattern can be generated. Setting the upper limit to a small value in the constraints on gyro acceleration has the effect of improving the ride comfort of the elevator.
  • the generated torque of the motor is suppressed, excessive operation of the motor and the inverter can be avoided, and energy can be saved.
  • the torque constraint has the effect of keeping the speed pattern and torque pattern in Fig. 4 within the operating range of the motor. For example, if the boundary of ⁇ is approximated by combining a straight line, the simultaneous inequality condition can be obtained, and the torque can be easily solved.
  • Fig. 4 the time section is divided into At1 to ⁇ 7, and the torque pattern is set as shown in the lower part of Fig. 4. If a torque pattern that is convex in the section and the torque pattern from the start of deceleration to the deceleration stop is a concave function in each time section is selected, the torque constraint is evaluated only with the torque constraint at the end point of the time section in the same manner as described above. it can.
  • the torque pattern in the entire section falls within the operating range of the motor.
  • the car speed can be obtained by converting the torque pattern into the power acceleration pattern and integrating the converted pattern.
  • the operating distance can be obtained by integrating the above-mentioned speed pattern. If a method such as limiting the maximum value of each of the car acceleration constraints and jerk constraints in each time interval can be formulated as an optimization problem in the same manner as described above. At this time, by smoothing the torque pattern or increasing the number of time sections, a smoother speed pattern can be generated, and the riding comfort is improved.
  • the unknown variables were defined as torque and time interval.However, if the combination of variables is such that the speed pattern is uniquely determined, the same effect can be obtained by selecting another combination. is there. For example, select unknown variables for acceleration and time interval Can also be formulated as an optimization problem. At this time, the constraint expression becomes equivalent to the one described above. Also, the objective function does not change.
  • the speed pattern calculated by the optimization problem solution process in step 25, the speed pattern generation process in step 26, or the corresponding data is calculated in advance and the speed pattern is calculated.
  • the same effect as described above can also be realized by storing the data in a table provided in the memory provided in the memory generation means 3 and reading and using the data. At this time, since the calculation by the optimization problem solving process in step 25 is not required, it can be realized with a less expensive calculation device.
  • Fig. 7 the upper, middle, and lower rows are the motor torque pattern and car speed pattern, respectively, and Fig. 2 is a diagram (torque constraint line) obtained by converting Fig. 2 into motor torque and car speed by the above equation (2).
  • the middle car speed pattern is obtained by the upper motor torque pattern.
  • the curved line indicated by a hexagon represents the driving locus of the motor with respect to the motor torque pattern in the upper part and the car speed pattern in the middle part.
  • the maximum car speed, jerk, and acceleration were set to certain upper limits in all patterns (the same for all three patterns).
  • the upper limit of the maximum car speed is set higher than the number of revolutions that can be output by the motor, so that it can be as large as possible within the range where the motor can be driven.
  • the travel distance is the same for all patterns.
  • FIG. 8 is a diagram for explaining the motor drive locus in the lower part of FIG. Drive motor
  • the trajectory moves on the hexagonal side with time as shown in the figure.
  • the symbols in the figure correspond to Figure 4. Therefore, the maximum car speed is the speed on the point of V3 or V4.
  • the amount indicated by the arrow in the figure is proportional to the absolute value of the gyro acceleration.
  • the absolute value of the slope of the side shown in the figure is inversely proportional to the jerk time (acceleration / jerk).
  • the speed pattern is generated in the area where the motor can be driven.
  • the boundary of the motor torque constraint region at V3 or V4 it can be seen that the pattern generates the maximum possible speed.
  • Fig. 9 shows the graph (car travel distance) obtained by integrating the velocity pattern in the middle part of Fig. 7. From this figure, it can be seen that the movement distance is the specified value for all patterns. From the above, it can be seen that, while satisfying the constraint condition expression (4) above, the speed pattern in which the acceleration and jerk fall within the upper limit values and reach the earliest is generated according to the car load.
  • Embodiment 2
  • FIG. 10 is a configuration diagram showing Embodiment 2 of the present invention. This embodiment is different from the configuration of FIG. 1 described in the first embodiment in that electronic component temperature detection means 11 as component element temperature detection means, limit temperature setting means 12, and temperature rise allowable value calculation means 13 is newly provided.
  • electronic component temperature detecting means 11 is for detecting the temperature of an electronic device such as an inverter and the electronic components constituting the electronic device, and includes, for example, a temperature sensor such as a thermistor.
  • the limit temperature setting means 12 is for setting an upper limit value or a lower limit value of the temperature which guarantees that the above-mentioned electronic device operates normally.
  • the temperature rise allowable value calculating means 13 and the temperature detected by the electronic component temperature detecting means 11 This is for calculating the temperature margin of the electronic device by comparing the temperatures set by the limit temperature setting means 12.
  • the calculation method of the shortest time speed pattern in the second embodiment takes into account the temperature rise of the electronic device as a constraint on the calculation method of the first embodiment, and has an effect of preventing the destruction of the electronic device due to heat. is there.
  • Embodiment 2 will be described with reference to an example of a temperature rise amount of an inverter element.
  • the convergence value (expressed as W) of the temperature rise of the inverter is proportional to the time average value (expressed as I s) obtained by dividing the time integral value of the absolute direct amount of the current pattern flowing through the inverter by the convergence time until convergence. I do. That is, if k is a proportionality constant, the following equation (7) holds.
  • k can be known by conducting experiments or the like in advance.
  • the above equation (7) is the time integral value of the absolute value of the current pattern (represented by i a ) flowing through the inverter in a certain time interval (represented by T int ) including one up and down movement of the car. divided by the time average value (represented by I i nt) is if you continue to drive the elevator under the constraint that is less than I s, which means that it is possible to suppress the temperature rise below W.
  • I int is represented by the following equation (8) (the integration start time is set to 0 for simplicity of explanation).
  • the current value of the inverter is calculated from the motor torque command value and the motor rotation speed.
  • the temperature margin of the inverter is calculated by the temperature rising allowable value calculating means 13 in FIG. 10, and the inverter temperature detected by the electronic component temperature detecting means 11 and the limit temperature setting means are set. It is calculated by taking the difference from the limit temperature of the inverter set in advance by 1 and 2.
  • the temperature margin calculated in step 31 is represented by W—.
  • V—, ⁇ —, ⁇ 2-, ⁇ —, ⁇ 2-, ⁇ - corresponding to the constraint condition represented by the above equation (4) Specify 3—, 64— and the time interval T int .
  • Equation (9) is a constraint condition equation for the temperature rise of the inverter element, which can suppress the temperature rise to W— or less, and as a result, has the effect of preventing the inverter from being damaged by heat.
  • the amount of temperature rise when the elevator is started at each time interval T s can be limited to a certain value or less. This makes it possible to consider operation patterns for various passenger generation patterns.
  • the same effect as in the present embodiment can be obtained by restricting the amount of temperature rise by a function using a torque value instead of a current value. Further, since the torque value is proportional to the acceleration, the same effect as in the present embodiment can be obtained by restricting the amount of temperature rise by a function using the acceleration.
  • the integral value of the gyro acceleration is the gyro speed
  • the integral value of the absolute value of the gyro acceleration is twice the value of the maximum gyro speed in consideration of gyro acceleration and deceleration. The same effect as in the present embodiment can be obtained by measuring the amount of temperature rise based on the maximum speed of the iron.
  • the configuration of the present embodiment is substantially the same as the configuration of FIG. 1 described in the first embodiment or FIG. 10 of the above-described embodiment, but the next stop floor is set as described later.
  • the function of the next stop floor setting means 1 is different from the case of FIGS. 1 and 10.
  • the speed pattern generation means 3 functions as an arithmetic processing device.
  • step 21 for performing parameter reading processing to step 26 for performing speed pattern generation processing is the same as in the first and second embodiments.
  • the optimization problem for minimizing the arrival time in the motor driving area shown in FIG. The speed and jerk are determined, and the speed pattern shown in Fig. 4 is calculated using them.
  • the step 21 for performing the next stop floor setting process is different from the first and second embodiments in that the average stop floor of the car is set.
  • the following is an example of a method for determining the average stop floor.
  • FIGS. Fig. 12 is a graph showing the moving floor and the probability of occurrence of the rickshaw from the departure floor to the stop decision floor in a certain time section when there is a stop floor with an owl size n floor in the hoistway. It is.
  • the average stop floor of kyogo can be set as the following formula (10) in which the expected value of the moving floor is converted into the distance.
  • the statistics shown in FIG. 12 may be provided for each departure floor, and the average stop floor may be set for each departure floor as described above.
  • next stop floor is fixed to one value for each departure floor or one departure floor, it is not necessary to calculate the next stop floor every time the elevator is started, and it is only necessary to read it as a parameter.
  • the calculation procedure of the control device can be simplified as shown in FIG. 13, and the amount of calculation can be reduced.
  • the following procedures (a) to (c) include the expected value of the time required for the moving of the kyogo to the stop determination floor at each departure floor. Is shown below. It is assumed that the travel distance of the car to each floor and the frequency of occurrence have the statistical data shown in Fig.12.
  • the curves in the figure indicate the speed of the elevator when the car call enters on the way and stops on the way to the elevator speed pattern generated by using the first embodiment and the fourth embodiment, respectively. Shows a pattern.
  • a and B in the figure represent the car speed patterns calculated using Embodiment 4 and Embodiments 1 and 2, respectively.
  • a next stop floor larger than the average stop floor is set, and the speed pattern is calculated accordingly.
  • Embodiments 1 and 2 shown in B the car acceleration is reduced in order to raise the upper limit of the car maximum speed. This shows that the vehicle is decelerating.
  • the next stop floor is set as the average stop floor, so that the difference between the next stop floor and the stop determination floor is smaller than in Embodiments 1 and 2.
  • the operation time is shorter with the first and second embodiments.
  • the speed pattern is obtained using an average stop floor that minimizes the expected value of the car travel time by using the amount of car movement, the starting frequency for each stop decision floor, and the statistics of the car load. As a result, the travel time of passengers can be reduced on average.
  • Embodiment 5 depending on the probability distribution of the stop decision floor, the total operation time reduced compared to Embodiments 1 and 2 is larger than the total increase in operation time. However, it has the effect of improving operating efficiency. Also, since the average stop floor is used for the next stop floor, there is no extreme change in the moving distance due to the power call after the start of the movement as compared with Embodiments 1 and 2. This means that low acceleration, low jerk and high maximum speed operating patterns set for long travel distances are less frequently applied for short travel distances. This reduces the variation in arrival time for the same travel distance, thereby reducing passenger discomfort.
  • Embodiment 5 Embodiment 5
  • the statistics shown in Fig. 12 used in the procedure for setting the average stop floor described in Embodiments 3 and 4 above are used for each time period when passenger demand is different, such as when commuting or leaving work. Prepare them, and use them to determine the average stop floor for each time zone using the method described above. Then, the average stop floor is switched for each corresponding time zone and set as the average stop floor, and the car speed pattern is calculated. As a result, the statistics used to determine the average stop floor more accurately reflect actual passenger demand. Therefore, the set average stop floor is closer to the actual average stop floor, so that further improvement in operation efficiency can be realized.
  • Embodiment 6 Embodiment 6.
  • the travel distance of the car to the average stop floor is compared with the travel distance of the next stop floor set by the passenger before the movement of the rikosago, and Set the next stop floor according to the situation, and calculate the car speed pattern.
  • the car speed pattern obtained by setting the next stop floor as the average stop floor is used when the next stop floor is set to be the average stop floor and the vehicle arrives earlier than when calculating the power stop speed pattern. This can prevent delays in reaching the stop decision floor. For example, the following cases correspond to this.
  • next stop floor set by the passenger before the car moves is smaller than the average stop floor, the next stop floor is reset to the next stop floor set by the passenger before the rickshaw moves, In other cases, the next stop floor is set as the average stop floor.Thus, it is possible to eliminate the case where the traveling time is definitely slowed down by calculating the car speed pattern using the average stop floor, and further improve the operation efficiency. The reason for this is explained below.
  • the acceleration and the jerk each reach faster than increasing the maximum speed, rather than increasing the maximum speed. This is because if the moving distance of the rig is short, the time to operate at the maximum speed is relatively shorter than the acceleration time or jerk time.
  • the motor operation trajectory is as shown in Fig. 8. Therefore, high torque is required for the motor in order to achieve high acceleration and high jerk, but Fig. 2 shows that the maximum speed cannot be increased as the torque increases.
  • the travel distance is shortened when a car call is received, so the above-mentioned reason (the shorter the next stop floor, the lower the maximum speed, the higher the acceleration, the higher the jerk solution can be obtained, and the travel distance As the speed becomes shorter, it is faster to increase the acceleration and jerk than to increase the maximum speed). Therefore, the car speed pattern is obtained earlier without setting the next stop floor as the average stop floor. As a result, if the travel distance due to the next stop floor set before the movement of the car is smaller than the average stop floor, it is determined that the next stop floor is reset to the stop floor set before the movement of the rickshaw, and the stop is determined earlier. The floor is reached, resulting in improved operating efficiency.
  • the average stop floor is compared with the stoppable floor, and when the average stop floor is set in the express zone, for example, when there is an express zone in the ascent / descent process, the next stop floor is reset.
  • Calculate the car speed pattern For example, set as follows. When the next stop floor, which is the stoppable floor set by the passenger before the mosquito moves, passes through the express zone and the travel distance there is greater than the travel distance of the average stop floor, Resets the next stop floor to the end floor of the express zone section.
  • the average stop floor is set as the next stop floor and the car speed pattern is calculated. It is possible to prevent delays in reaching the stop decision floor, and to suppress an increase in operating time. The reason is the same as described above. In other words, the longer the next stop floor, the higher the maximum speed, the lower the acceleration, and the lower the jerk solution.The higher the maximum speed, the faster the acceleration and the jerk. By reaching.
  • an elevator for driving a hoist having a counterweight connected to a passenger power bar via a mouth by a motor fed by an inverter.
  • Car load detecting means for measuring the weight of the car as a car load
  • next stop floor setting means for setting the next stop floor
  • the power load obtained by the power load detection means and the next stop floor setting means is provided.
  • a power go speed pattern generating means for generating a power go speed pattern in which the passenger power go reaches the next stop floor within the allowable driving range of the motor based on the next stop floor and in the shortest time. This has the effect of shortening the travel time of passengers and increasing the efficiency of basket operation.
  • the weight of the passenger car is measured as a car load.
  • Car load detection means next stop floor setting means for setting the next stop floor, component temperature detection means for measuring the temperature of the components constituting the inverter, and setting the temperature rise limit value of the components Limit temperature setting means; and a temperature rise allowable value calculation for calculating a temperature rise limit allowable value based on the component temperature obtained from the component temperature detection means and the temperature rise limit value set by the limit temperature setting means.
  • a power speed pattern generating means for generating a power speed pattern for the passenger power to reach the next stop floor in the shortest time when the expected temperature rise of the component is within the temperature rise limit allowable value.
  • the speed pattern generating means sets the upper limit of the car maximum speed, the car acceleration, and the rate of change of the car acceleration when generating the bolster speed pattern, so that the ride comfort of the elevator can be improved.
  • the car speed pattern generating means may include a car speed drive provided to the motor.
  • the motor torque waveform related to the motion command is converted to the current value flowing through the above-mentioned components, and the current value waveform generates the car speed pattern based on the condition restricted by the function of the temperature rise limit allowable value. Therefore, the amount of temperature rise is predicted from the waveform of the current flowing through the component, and there is an effect that the traveling time of the passenger is shortened within a range where the destruction of the component such as the electronic device can be prevented.
  • the next-stop floor setting means calculates the next-stop floor for generating the car speed pattern from the number of activations of the elevator and the statistic of the moving distance from the departure floor to the next stop-stop floor.
  • the average stop floor of the ergogo it is not necessary to set the next stop floor for each number of activations of the elevator, thereby simplifying the calculation process, speeding up the speed pattern generation process, and further averaging the stop.
  • the operation time can be shortened as compared with the conventional method when the next stop floor is changed due to the call of the rigo after the start of the movement of the rigo.
  • next stop floor setting means sets the average stop floor of the car as the stop floor at each departure floor where the expected value of the travel time to the stop determination floor is minimized. This has the effect that the next stop floor can be set so that the effect of reducing the traveling time of the passengers is increased.
  • next stop floor setting means sets the average stop floor of the car based on the statistics of the stop determination floor for each time zone with different passenger demand, the average stop floor is set according to the passenger demand. Therefore, there is an effect that the effect of reducing the traveling time of passengers is further increased.
  • the above-mentioned gyro speed pattern generation means generates a car speed pattern by comparing the next stop floor with the average gyro stop floor, so that the next stop floor is set as an average stop floor. If there is a stop floor to calculate a speed pattern that will arrive more reliably than when calculating the speed pattern, the stop floor can be set as the next stop floor, further improving operating efficiency. This has the effect.
  • the car speed pattern generating means compares the stoppable floor at which the car can be stopped with the average stop floor of the rikgo to generate a powergo speed pattern, so that the average stop floor is not a stoppable floor.
  • an elevator control device capable of changing the maximum speed and the acceleration degree according to the load and the moving distance, and shortening the operation time.

Abstract

An elevator control apparatus capable of improving movement of a cage by reducing the operation time by adjusting the maximum speed and acceleration according to the load and movement distance. In the elevator, a motor (5) supplied with power from an inverter (4) drives a traction machine (6) having a balancing weight (8) connected to a passenger cage (7) via a rope. The elevator control apparatus includes cage load detection means (2) for measuring the weight of the passenger cage (7) as a cage load, next stop floor setting means (1) for setting the next floor where the cage stops, and cage speed pattern generation means (3) which uses the cage load obtained by the cage load detection means (2) and the next stop floor set by the next stop floor setting means (1), so as to generate a cage speed pattern in which the cage (7) reaches the next stop floor in the shortest time within the allowable range of the motor (5).

Description

明 細 書 エレベータの制御装置 技術分野  Description Elevator control equipment Technical field
この発明は、 負荷に応じて昇降機等のモータに与える速度パターン等を変更し て、 加速度や最高速度を調整するエレベータの制御装置に関するものである。 背景技術  The present invention relates to an elevator control device that adjusts an acceleration and a maximum speed by changing a speed pattern or the like applied to a motor such as an elevator according to a load. Background art
従来のエレベータの制御装置に関する技術について、 図 1 5を参照しながら説 明する。 図 1 5は、 従来のエレベータの制御装置の出力周波数 (速度:以下周波 数は速度と同じ意味) とトルクの関係を示す図である。 図 1 5において、 f Oは 基底周波数 (定格速度) 、 T in a Xは最大出力トルク値、 T xは第 1の負荷にて 必要なトルク値、 T yは第 2の負荷 (く第 1の負荷) にて必要なトルク値、 f x は第 1の負荷にて出力できる最大出力周波数、 f yは第 2の負荷にて出力できる 最大出力周波数をそれぞれ示す。  The technology related to the conventional elevator control device will be described with reference to FIG. Figure 15 is a diagram showing the relationship between the output frequency (speed: hereafter frequency means the same as speed) and torque of a conventional elevator control device. In FIG. 15, f O is the base frequency (rated speed), T in a X is the maximum output torque value, T x is the torque value required at the first load, and T y is the second load (ex. Fx indicates the maximum output frequency that can be output with the first load, and fy indicates the maximum output frequency that can be output with the second load.
基底周波数 f 0以上の周波数域では、 例えば第 1の負荷 (必要トルク T X ) に 対する最大出力周波数は、 周波数 f Xより高い周波数帯で得られるトルクが第 1 の負荷に必要なトルク T Xより小さくなるため、 周波数 f x以下となる。 また、 第 2の負荷 (必要トルク T y ) に対する最大出力周波数は、 周波数 f yより高い 周波数帯で得られるトルクが第 2の負荷に必要なトルク T yより小さくなるため 、 周波数 ί y以下となる。  In the frequency range above the base frequency f0, for example, the maximum output frequency for the first load (required torque TX) is such that the torque obtained in a frequency band higher than the frequency fX is smaller than the torque TX required for the first load. Therefore, the frequency is lower than fx. Also, the maximum output frequency for the second load (required torque T y) is less than the frequency ί y because the torque obtained in a frequency band higher than the frequency fy is smaller than the torque T y required for the second load. .
以上により、 大小各種の負荷に対して十分なトルクを得るためには、 最大負荷 に対するトルクを得ることができる出力周波数以下の周波数に運転周波数を設定 しモータを回転させていた。 '  As described above, in order to obtain sufficient torque for various loads, large and small, the operating frequency was set to a frequency lower than the output frequency at which the torque for the maximum load could be obtained, and the motor was rotated. '
上述したような制御装置では、 負荷が小さい場合は最大出力周波数を高く設定 できるが、 負荷が大きい場合には最大出力周波数を低く設定しないと十分なトル クが得られず昇降機等では上昇できないといった問題があるため、 最大出力周波 数を負荷が最大の場合にて十分なトルクが得られる周波数に設定し運転する必要 があった。 With the control device described above, the maximum output frequency can be set high when the load is small, but if the load is large, the maximum output frequency must be set low, and sufficient torque cannot be obtained and it is impossible to raise with an elevator. Due to problems, it is necessary to set the maximum output frequency to a frequency that provides sufficient torque at the maximum load, and operate was there.
つまり、 図 1 5に示す例では、 最大出力周波数を f Xに設定し、 負荷が小さい 場合でも最大出力周波数が f Xであった。 このため、 負荷が小さい場合には最大 出力周波数が低いため加速に時間がかかり、 運転時間が短縮できず効率が悪いと いう問題点がある。  That is, in the example shown in FIG. 15, the maximum output frequency was set to fX, and the maximum output frequency was fX even when the load was small. For this reason, when the load is small, the maximum output frequency is low, so that it takes time to accelerate, and there is a problem that the operating time cannot be shortened and the efficiency is poor.
この問題点については、 特開平 3— 5 6 3 0 8号公報においては、 定格周波数 以上の周波数を電圧、 電流から電力値を求め、 定格周波数での電力値と比較し速 度設定値を可変速装置に出力している。  Regarding this problem, Japanese Patent Application Laid-Open No. 3-56308 discloses a method in which a power value is obtained from a voltage and a current at a frequency equal to or higher than the rated frequency, and the speed setting value is compared with the power value at the rated frequency. Outputting to the transmission.
また、 特開平 8— 1 0 7 6 9 9公報における制御装置では、 直流電力を可変周 波数、 可変電圧の交流電力に変換するインバータ部を有する可変速装置において 、 インバ一タ部の入力側の直流母線電圧を検出する電圧検出回路と、 インバータ 部の出力側の各相の電流を検出する電流検出回路と、 検出した直流母線電圧およ び検出した各相の電流を用いてインバータ部に接続された負荷の大小を自動判別 し、 最大出力周波数を決定して出力する制御回路とを備えている。  Also, in the control device disclosed in Japanese Patent Application Laid-Open No. 8-107699, in a variable speed device having an inverter unit for converting DC power into a variable frequency and a variable voltage AC power, the input side of the inverter unit is provided. A voltage detection circuit that detects the DC bus voltage, a current detection circuit that detects the current of each phase on the output side of the inverter, and a connection to the inverter using the detected DC bus voltage and the detected current of each phase And a control circuit for automatically determining the magnitude of the applied load, determining the maximum output frequency, and outputting the determined output frequency.
従来の制御装置では、 運転時間を短縮するため、 負荷に応じて最高速度を変更 するものであった。 しかしながら、 最高速度を上げただけで運転時間が短縮する とは限らず、 移動距離が短ければ、 最高速度より加速度を上げた場合の方が、 運 転時間が短くなると考えられる。 このため、 負荷に応じて最高速度を変更するだ けでは、 移動距離によつて運転時間が長くなるという問題点があつた。  In conventional control devices, the maximum speed was changed according to the load in order to reduce the operation time. However, increasing the maximum speed does not necessarily shorten the operation time. If the travel distance is short, the operation time may be shorter when the acceleration is higher than the maximum speed. Therefore, changing the maximum speed only according to the load has a problem in that the driving time becomes longer depending on the moving distance.
この発明は、 上記のような問題点を解決するためになされたものであり、 負荷 と移動距離に応じて、 最高速度や加速度を変更し、 運転時間を短縮することがで きるェレベータの制御装置を提供することを目的とする。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has an elevator control device capable of changing a maximum speed and an acceleration according to a load and a moving distance, thereby shortening an operation time. The purpose is to provide. Disclosure of the invention
この発明のエレベータ制御装置は、 インバータで給電されるモータにより、 乗 客カゴにロープを介して連結された釣合錘を有する卷上機を駆動するエレベータ において、 上記乗客カゴの重量をカゴ負荷として計測するカゴ負荷検出手段と、 次回停止階を設定する次回停止階設定手段と、 上記カゴ負荷検出手段によって得 られる力ゴ負荷と上記次回停止階設定手段によつて設定される次回停止階とに基 づいて上記モータの許容されうる駆動範囲内でかつ最短時間で次回停止階に上記 乗客カゴが到達するカゴ速度パターンを生成するカゴ速度パターン生成手段とを 備えたものである。 An elevator control device according to the present invention is an elevator that drives a hoist having a counterweight connected to a passenger car via a rope by a motor fed by an inverter, wherein the weight of the passenger car is used as a car load. Car load detection means to be measured, next stop floor setting means for setting the next stop floor, power load obtained by the car load detection means and the next stop floor set by the next stop floor setting means Base Car speed pattern generating means for generating a car speed pattern in which the passenger car reaches the next stop floor within the allowable driving range of the motor and in the shortest time.
また、 上記ィンバータを構成する構成要素の温度を計測する構成要素温度検出 手段と、 上記構成要素の温度上昇限界値を設定する限界温度設定手段と、 上記構 成要素温度検出手段から得られる構成要素温度と上記限界温度設定手段で設定さ れた温度上昇限界値とに基づいて温度上昇限界許容値を演算する温度上昇許容値 演算手段とをさらに備え、 上記カゴ速度パターン生成手段は、 上記構成要素の温 度上昇限界許容値と上記力ゴ負荷と上記次回停止階とに基づいて上記モータの許 容されうる駆動範囲内でかつ上記構成要素の予想される温度上昇量が温度上昇限 界許容値以内に最短時間で上記乗客力ゴが次回停止階に到達するカゴ速度パター ンを生成するものである。  Also, component temperature detection means for measuring the temperature of the components constituting the inverter, limit temperature setting means for setting a temperature rise limit value of the components, and components obtained from the component temperature detection means Temperature rise allowable value calculating means for calculating a temperature rise limit allowable value based on the temperature and the temperature rise limit value set by the limit temperature setting means, wherein the car speed pattern generating means comprises: Is within the allowable driving range of the motor based on the temperature rise limit allowable value, the power load, and the next stop floor, and the expected temperature rise amount of the component is the temperature rise limit allowable value. Within the shortest time within this time, the passenger power bar will generate a car speed pattern that will reach the next stop floor.
また、 上記速度パターン生成手段は、 カゴ速度パターンを生成する際に、 カゴ 最高速度、 カゴ加速度、 カゴ加速度の変化率の上限を定めるものである。  Further, the speed pattern generating means sets the upper limit of the car maximum speed, the car acceleration, and the rate of change of the car acceleration when generating the car speed pattern.
また、 上記力ゴ速度パターン生成手段は、 上記モータに与えられるカゴ速度駆 動指令に関連したモータトルク波形を上記構成要素に流れる電流値に換算し、 そ の電流値波形が上記温度上昇限界許容値の関数によって制約される条件に基づい てカゴ速度パターンを生成するものである。  Further, the power speed pattern generating means converts a motor torque waveform related to a power speed drive command given to the motor into a current value flowing through the constituent element, and the current value waveform corresponds to the temperature rise limit allowable value. The car speed pattern is generated based on the conditions constrained by the value function.
また、 上記次回停止階設定手段は、 上記カゴ速度パターンを生成するための次 回停止階をエレベータの起動回数とカゴ出発階から次に停止する停止決定階まで の移動距離の統計量から求めた力ゴの平均停止階とするものである。  The next stop floor setting means calculates the next stop floor for generating the car speed pattern from the number of times the elevator is started and the statistic of the moving distance from the car departure floor to the next stop stop floor. It is the average stop floor of Rigogo.
また、 上記次回停止階設定手段は、 上記カゴの平均停止階を各出発階床におけ る、 停止決定階への移動時間の期待値が最小となる停止階として設定するもので める。  In addition, the next stop floor setting means may set the average stop floor of the car as a stop floor at each departure floor where the expected value of the travel time to the stop determination floor is minimized.
また、 上記次回停止階設定手段は、 上記カゴの平均停止階を乗客需要の異なる 時間帯毎の停止決定階の統計量に基づいて設定するものである。  The next stop floor setting means sets the average stop floor of the car based on the statistics of the stop determination floor for each time zone in which the passenger demand is different.
また、 上記カゴ速度パターン生成手段は、 上記次回停止階と上記カゴの平均停 止階を比較して力ゴ速度パターンを生成するものである。  Further, the car speed pattern generating means generates a power speed pattern by comparing the next stop floor with the average stop floor of the car.
また、 上記カゴ速度パターン生成手段は、 カゴが停止可能な停止可能階と上記 力ゴの平均停止階を比較して力ゴ速度パターンを生成するものである。 In addition, the car speed pattern generating means may include a stoppable floor at which the car can be stopped and the car stoppable floor. This is to generate a power go speed pattern by comparing the average stop floor of power go.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 この発明の実施の形態 1を示す構成図、  FIG. 1 is a configuration diagram showing Embodiment 1 of the present invention,
図 2は、 この発明の実施の形態 1におけるモータの発生トルクと回転数の関 係を表す特性図、  FIG. 2 is a characteristic diagram showing a relationship between a generated torque and a rotation speed of the motor according to the first embodiment of the present invention.
図 3は、 この発明の実施の形態 1におけるエレベータの機械系モデル導出の ための概略図、  FIG. 3 is a schematic diagram for deriving an elevator mechanical system model according to Embodiment 1 of the present invention.
図 4は、 この発明の実施の形態 1におけるカゴ速度パターンとモータのトル クパターンを表す図、  FIG. 4 is a diagram showing a car speed pattern and a motor torque pattern in Embodiment 1 of the present invention.
図 5は、 この発明の実施の形態 1におけるカゴ速度パターン演算手順を示す フローチヤ一ト、  FIG. 5 is a flowchart showing a car speed pattern calculation procedure according to the first embodiment of the present invention.
図 6は、 この発明の実施の形態 1におけるカゴ速度パターンの演算において 、 各パラメータの関係、 および制約条件を示した図、  FIG. 6 is a diagram showing the relationship between the parameters and the constraints in the calculation of the car speed pattern according to the first embodiment of the present invention.
図 7は、 この発明の実施の形態 1におけるカゴ速度パターン演算例を示す図 図 8は、 図 7の下段の図を説明するための図、  FIG. 7 is a diagram showing an example of calculation of a car speed pattern according to the first embodiment of the present invention. FIG. 8 is a diagram for explaining the diagram at the bottom of FIG.
図 9は、 図 7の中段の力ゴ速度パターンで駆動時の力ゴ移動距離を示した図 図 1 0は、 この発明の実施の形態 2を示す構成図、  FIG. 9 is a diagram showing a moving distance of a gyro at the time of driving with a gyro speed pattern in the middle stage of FIG. 7. FIG. 10 is a configuration diagram showing a second embodiment of the present invention.
図 1 1は、 この発明の実施の形態 2におけるカゴ速度パターン演算手順を示 すフローチヤ一ト、  FIG. 11 is a flowchart showing a procedure of calculating a car speed pattern according to the second embodiment of the present invention.
図 1 2は、 この発明の実施の形態 3におけるカゴの移動階床とその発生確率 を示す図、  FIG. 12 is a diagram showing a moving floor of a car and its occurrence probability according to the third embodiment of the present invention.
図 1 3は、 この発明の実施の形態 3における簡略化された速度パターン演算 手順を示すフローチヤ一ト、  FIG. 13 is a flowchart showing a simplified speed pattern calculation procedure according to the third embodiment of the present invention.
図 1 4は、 この発明の実施の形態 4における速度パターンの演算例を示す図 図 1 5は、 従来の加変速装置の出力周波数とトルクの関係を示す図である。 発明を実施するための最良の形態 FIG. 14 is a diagram showing a calculation example of a speed pattern according to the fourth embodiment of the present invention. FIG. 15 is a diagram showing the relationship between the output frequency and the torque of a conventional acceleration / deceleration device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の形態を、 図に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施の形態 1 . Embodiment 1
図 1は、 この発明の実施の形態 1を示す構成図である。 図 1において、 1は次 回停止階を設定する次回停止階設定手段、 2はカゴ負荷検出手段、 3はカゴ負荷 検出手段 2によって得られる力ゴ負荷と次回停止階設定手段 1によつて設定され る次回停止階とからモータ 5の許容されうる駆動範囲内でかつ最短時間で次回停 止階に乗客力ゴ 7が到達するカゴ速度パターンを生成するカゴ速度パターン生成 手段、 4はインバータ、 6は乗客カゴ 7にロープを介して連結された釣合錘 8を 有する巻上機である。  FIG. 1 is a configuration diagram showing Embodiment 1 of the present invention. In Fig. 1, 1 is the next stop floor setting means for setting the next stop floor, 2 is the car load detection means, 3 is the power load obtained by the car load detection means 2 and the next stop floor setting means 1. Car speed pattern generating means for generating a car speed pattern in which the passenger power go 7 reaches the next stop floor within the allowable driving range of the motor 5 and in the shortest time from the next stop floor to be executed, 4 is an inverter, 6 Is a hoist having a counterweight 8 connected to a passenger basket 7 via a rope.
次回停止階設定手段 1は乗り場および力ゴ内に次回停止階を登録するための装 置を設けることにより実現することができる。 また、 無線等の通信手段によって 遠隔からも設定することができる。  The next stop floor setting means 1 can be realized by providing a device for registering the next stop floor in a landing and a rickshaw. It can also be set remotely by wireless or other communication means.
次に、 動作について、 図 2〜図 5を参照しながら説明する。 図 2は、 モータト ルクとモータ回転数の特性を表す図である。 図 3は、 モータ 5、 卷上機 6、 カゴ 7、 釣合錘 8の関係を示した図である。 図 4の下段はモータトルクパターンを表 し、 その上段はそのときのカゴ速度パターンを表す。 図 5はカゴ速度パターンを 生成するための処理手順を示したフローチャートである。  Next, the operation will be described with reference to FIGS. FIG. 2 is a diagram showing characteristics of motor torque and motor rotation speed. FIG. 3 is a diagram showing the relationship between the motor 5, the hoist 6, the cage 7, and the counterweight 8. The lower part of Fig. 4 shows the motor torque pattern, and the upper part shows the car speed pattern at that time. FIG. 5 is a flowchart showing a processing procedure for generating a car speed pattern.
図 2において、 モータ 5はモータトルク軸と曲線上で囲まれる斜線部の領域と その境界上を含む領域内での動作が可能である。 この領域は凸集合であればよい 力 そうでない場合も動作領域を凸集合となるように近似するなどすればよい。 トルクが正の領域はカ行状態、負の領域は回生状態を表す。 この領域を Ωで表す 図 3において、 T mはモータトルク、 Jは卷上機の憒性モーメント、 rは卷上 機半径、 m 1は釣合錘質量、 m 2は力ゴ質量、 αは力ゴ加速度、 ωは卷上機回転 速度をそれぞれ表す。 また、 gを重力加速度とする。 図の構成に対して運動方程 式を導くことにより、 カゴ加速度とモータトルクの関係式が次式のように得られ る。 = ( 1 )In FIG. 2, the motor 5 can operate in an area including a hatched area surrounded by a motor torque axis and a curve and an area including a boundary thereof. This region may be a convex set. Even if it is not the case, the motion region may be approximated to be a convex set. The region where the torque is positive indicates the power state, and the region where the torque is negative indicates the regenerative state. In Fig. 3, this area is represented by Ω. In Fig. 3, Tm is the motor torque, J is the motive moment of the hoist, r is the radius of the hoist, m1 is the weight of the counterweight, m2 is the mass of the power, and α is Power acceleration and ω represent the rotating speed of the hoist, respectively. Also, let g be the gravitational acceleration. By deriving the equation of motion for the configuration in the figure, the relational expression between car acceleration and motor torque can be obtained as follows: You. = (1)
Figure imgf000008_0001
Figure imgf000008_0001
なお、 図 3の構成では、 カゴ加速度とモータトルクの関係式は式 (1) のよう に表されるが、 両者の関係が一次関数で記述されうるような構成ならばこの構成 に限らなくてもよレ、。 次に、 モータの回転速度と卷上機回転速度を等しいとし、 Vをカゴ速度とすると、 モータの回転速度からカゴ速度が次式のように演算でき る。  In the configuration of Fig. 3, the relational expression between the car acceleration and the motor torque is expressed as shown in Equation (1). However, the configuration is not limited to this configuration as long as the relationship between the two can be described by a linear function. I'm sorry. Next, assuming that the rotation speed of the motor is equal to the rotation speed of the hoist, and V is the car speed, the car speed can be calculated from the motor speed as follows.
V =ί·ω (2)  V = ίω (2)
従って、 図 2はモータトルクとカゴ速度の関係式へ変換することができる。 なお、 モータの回転数と卷上機回転速度を等しいとしたが、 両者の関係式が一 次関数で記述されうるような変換ならば上記式 (2) に限らなくてもよい。 例え ば減速機等を用 1/、た場合もこの発明を適用できる。  Therefore, FIG. 2 can be converted into a relational expression between the motor torque and the car speed. Although the motor rotation speed and the winding machine rotation speed are assumed to be equal, the conversion is not limited to the above equation (2) as long as the relational expression between the two can be described by a linear function. For example, the present invention can be applied to a case where a reduction gear is used.
図 4において、 上段の速度パターンは下段のトルクパターンに対し、 上記式 ( 1) とその積分値により演算されるものである。 また、 図 4において、 t O〜t 7は時刻、 Δ t 1〜Δ t 7は時間区間、 V 0〜 V 7は各時刻に対する力ゴ速度、 T mO〜Tm7は各時刻に対するモータトルクを示している。 ここで TmO=Tm 3 =Tm4 =Tm 7 =TM0, Tm 1 =Tm 2 = TM1、 Tm5=Tm6 = TM2で ある。 また、 v O = 0, t O = 0とする。 In FIG. 4, the upper speed pattern is calculated based on the above equation (1) and its integral with respect to the lower torque pattern. In FIG. 4, tO to t7 indicate time, Δt1 to Δt7 indicate time intervals, V0 to V7 indicate power speeds for each time, and TmO to Tm7 indicate motor torque for each time. ing. Here is TmO = Tm 3 = Tm4 = Tm 7 = T M0, Tm 1 = Tm 2 = T M1, Tm5 = Tm6 = T M2. Also, let vO = 0 and tO = 0.
この図 4において、 区間 At l, At 3, At 5, At 7はジャーク (カゴ加速 度の変化率) 値一定走行、 区間 At 2, Δΐ 6は加速度一定走行、 区間 At 4は速 度一定走行区間である。 また、 釣合トルク TM0は上記式 (1) に α=0を代入し て下記の式 (3) のように計算できる。In Fig. 4, the sections Atl, At3, At5, and At7 travel with constant jerk (change rate of the car acceleration) value, sections At2 and Δΐ6 travel with constant acceleration, and section At4 runs with constant speed. It is a section. Further, the balancing torque T M0 can be calculated by the following equation (3) by substituting α = 0 into the above equation (1).
Figure imgf000008_0002
Figure imgf000008_0002
図 6において、 Δ 1 1〜Δ 1 7はそれぞれ区間 At 1 ~Δ t 7の間の力ゴの移動 量である。 al、 α 2はそれぞれ区間 2、 At 6でのカゴ加速度の絶対値であ り、 上記式 (1) と TM1, TM2を用いて図中のように計算できる。 また、 β1〜βIn FIG. 6, Δ11 to Δ17 are the movement amounts of the gyro during the sections At1 to Δt7, respectively. al and α2 are the absolute values of the car acceleration in section 2 and At6, respectively, and can be calculated as shown in the figure using the above equation (1) and T M1 and T M2 . Also, β1 ~ β
4はそれぞれ区間 At l, At 3, Δΐ 5, At 7のジャークの絶対値であり、 前 記で計算した α1、 α2および At 1, At 3, Δΐ 5, At 7を用いて図中のよう に計算できる。 速度 V 0〜v 7は上記で計算された ctl、 ひ2、 61〜64ぉょび t 1〜At 7を用いて図中のように計算できる。 4 is the absolute value of the jerk in the sections Atl, At3, Δΐ5, and At7, respectively, using α1, α2 and At1, At3, Δΐ5, and At7 calculated in the above. Like Can be calculated. The velocities V 0 to v 7 can be calculated as shown in the figure using ctl, hi 2, 61 to 64 and t 1 to At 7 calculated above.
そして、 Δ1 1〜Δ1 7は前記で計算された V 0〜ν 7、 α1、 α2、 6ΐ ~β4お ょぴ At 1〜Δ t 7を用いて図中のように計算できる。従って、時間区間 At 1〜 Δΐ 7とモータトルク ΤΜ1, ΤΜ2をパラメータとして Δ1 1〜Δ 1 7が記述できる 。 カゴの移動足巨離を Lとすると、 L=A 1 1 +Δ Ι 2+Δ 1 3 +Δ 1 4 +Δ 1 5 +ΔΔ11 to Δ17 can be calculated as shown in the figure using V0 to ν7, α1, α2, 6ΐ to β4, and At1 to Δt7 calculated above. Therefore, Δ11 to Δ17 can be described using the time section At1 to Δΐ7 and the motor torques Τ1 and Τ2 as parameters. L = A 1 1 + Δ Ι 2 + Δ 1 3 + Δ 1 4 + Δ 1 5 + Δ
1 6 +Δ 1 7である。 16 + Δ17.
実施の形態 1における最短時間速度パターンの演算法について、 図 5、 図 6を 用いて説明する。 図 5において、 ステップ 2 1の次回停止階設定処理では、 次回 停止階設定手段 1によつて設定された次回停止階をもとに力ゴの移動距離 Lが設 定さ る。  The calculation method of the shortest time speed pattern in the first embodiment will be described with reference to FIGS. In FIG. 5, in the next stop floor setting process of step 21, the moving distance L of the power bar is set based on the next stop floor set by the next stop floor setting means 1.
次に、 ステップ 2 2のパラメータ読出処理では、 釣合錘 8の重量 m l、 卷上機 6の半径 r、 卷上機 6の慣性モーメント J、 重力加速度 gの値を読み出す。 次に、 ステップ 23のカゴ負荷検出処理では、 カゴ負荷検出手段 2によりカゴ 重量 m 2を検出する。  Next, in the parameter reading process of step 22, the values of the weight ml of the counterweight 8, the radius r of the hoist 6, the moment of inertia J of the hoist 6, and the gravitational acceleration g are read. Next, in the car load detecting process in step 23, the car weight m 2 is detected by the car load detecting means 2.
次に、 ステップ 24の制約条件設定処理では、 図 6における制約条件を設定し 、 そのうちカゴ最高速度の上限値、 カゴ加速度の上限値、 カゴジャークの上限値 を決定する。  Next, in the constraint condition setting process in step 24, the constraint conditions in FIG. 6 are set, and the upper limit value of the car maximum speed, the upper limit value of the car acceleration, and the upper limit value of the car jerk are determined.
Figure imgf000009_0001
Figure imgf000009_0001
つまり、 式 (4) で表される制約式のうち、 V―、 αΐ—、 α2—、 β1 _、 β 1 In other words, among the constraint expressions expressed by equation (4), V-, αΐ-, α2-, β1_, β1
2—、 83—、 β4—を指定する (なお、 この明細書において、 各符号に付いてい る一は、 式 (4) からも分かるように、 便宜上各符号の上部にバーが付されてい ることを表している) 。 2—, 83—, β4— (in this specification, The first is that, as can be seen from Equation (4), a bar is attached at the top of each symbol for convenience.)
次に、 ステップ 2 5の最適化問題求解処理では、 制約条件である上記式 (4) のもとで、 下記の式 (5 ) で定義される目的関数 T (運行時間) を最小化する最 適化問題を解く。 この問題は A t l〜At 7、 TM1, TM2をパラメータとした非線 型計画問題となり、 数値的に解くことが可能である。 Next, in the optimization problem solving process of step 25, the objective function T (operation time) defined by the following equation (5) is minimized under the above constraint (4). Solve the optimization problem. This problem is a nonlinear programming problem with Atl to At 7, T M1 and T M2 as parameters, and can be solved numerically.
Γ = At! + At2 + At3 + At4 + A†5 + At6 + Δ ( 5 ) Γ = At! + At 2 + At 3 + At 4 + A † 5 + At 6 + Δ (5)
次に、 ステップ 2 6の速度パターン生成処理では、 ステップ 2 5の最適化問題 求解処理で求解された A t l〜At 7、 TM1, TM2と図 6中の v l〜v 6を用いて 下記の式 (6) のように速度パターン Vを生成する。 Next, in the speed pattern generation process in step 26, the following is used using Atl to At7, T M1 and T M2 solved in the optimization problem solution process in step 25, and vl to v6 in Fig. 6. The velocity pattern V is generated as in equation (6).
t χ t χ
V】 + xt t t2 V] + x ttt 2
V = (6)V = (6)
Figure imgf000010_0001
Figure imgf000010_0001
ν5 - 2t t&At6 ν 5 - 2 t t & At 6
Λ -1/2  Λ -1/2
伹し、 t 1 =Δ, t 2 = t l +A t 2, t 3 = t 2 +At 3 , t 4 = t 3 +At 4 , t 5 = t 4 +A t 5, t 6 = t 5 +A t 6 , t 7 = t 6 +Δ t 7である。  And t 1 = Δ, t 2 = tl + A t 2, t 3 = t 2 + At 3, t 4 = t 3 + At 4, t 5 = t 4 + A t 5, t 6 = t 5 + A t 6, t 7 = t 6 + Δt 7.
以上の手順により、 負荷に応じて制約条件内で最も早く到達するカゴ速度パタ ーンを生成する。  According to the above procedure, the car speed pattern that reaches the earliest within the constraints according to the load is generated.
力ゴ速度に関する制約はェレベータの最高速度を調節できる効果があり、 カゴ 速度を所望の範囲内に収めることができるため、 速度が上がりすぎるのを防止で きる。 一方、 V—をモータの最大回転数から上記式 (2) により導かれるカゴ速 度よりも大きく指定することにより、 カゴ最高速度に制約をかけずに、 モータ特 性の範囲内で最も早く到達する力ゴ速度パターンを生成することができる。 力ゴ加速度に関する制約において、 上限値を小さく設定することはェレベータ の乗り心地を改善する効果がある。 また、 モータの発生トルクを抑制するため、 モータ、 インバータの過度な運転を回避でき、 省エネルギーが実現できる。 さら にはモータ、 インバータの発熱を減少させる効果がある。 ジャークに関する制約 は上限値を小さくすることでエレベータの乗り心地の改善、 および図 4の速度パ ターンで運行する場合に最高速度を引き伸ばす効果をもたらす。 また、 乗客が乗 つていないときには、 カゴ加速度制約とジャーク制約の上限値を大きくすること によりカゴの運行効率を上げることができる。 また、 移動距離が短いときには、 カゴ最高速度の上限値を大きく設定するよりも、 カゴ加速度、 ジャークの上限値 を大きく設定した方が早く到達する場合がある。 The restriction on the speed of the bargo has the effect of adjusting the maximum speed of the elevator, and can keep the speed of the cage within a desired range, thereby preventing the speed from increasing too much. On the other hand, by specifying V— from the maximum rotation speed of the motor to be larger than the car speed derived from the above equation (2), the car reaches the fastest speed within the range of motor characteristics without limiting the car maximum speed. A speed pattern can be generated. Setting the upper limit to a small value in the constraints on gyro acceleration has the effect of improving the ride comfort of the elevator. In addition, since the generated torque of the motor is suppressed, excessive operation of the motor and the inverter can be avoided, and energy can be saved. In addition, it has the effect of reducing the heat generated by the motor and inverter. Jerk restrictions By lowering the upper limit, the ride quality of the elevator is improved, and the maximum speed is increased when operating at the speed pattern shown in Fig. 4. In addition, when no passengers are on board, increasing the upper limits of the car acceleration constraint and the jerk constraint can improve the car operation efficiency. In addition, when the travel distance is short, it may be possible to reach faster when the upper limit of the car acceleration and jerk is set higher than the upper limit of the maximum car speed is set.
トルク制約条件は、 図 4の速度パターンおよびトルクパターンをモータの動作 範囲内に納める効果がある。 トルク制約条件は例えば Ωの境界部を直線を組み合 わせて近似すれば、 連立不等式条件となり、 解き易くなる。  The torque constraint has the effect of keeping the speed pattern and torque pattern in Fig. 4 within the operating range of the motor. For example, if the boundary of Ω is approximated by combining a straight line, the simultaneous inequality condition can be obtained, and the torque can be easily solved.
図 4のようなトルクパターンを選んだことにより、 トルク制約条件として T m 1〜T m 7を加えるだけで、 全時間区間でのトルクパターンをモータの動作範囲 内に収めることができる。 これにより、 計算量を減らすことができる。  By selecting the torque pattern as shown in Fig. 4, it is possible to keep the torque pattern in the entire time section within the operating range of the motor simply by adding Tm1 to Tm7 as torque constraints. This can reduce the amount of calculation.
なお、図 4においては、時間区間を A t 1〜Δ ΐ 7に分割し、 トルクパターンを 図 4下のように設定しているが、 加速初めから最高速度に達するまでのトルクパ ターンが各時間区間で凸関数となり、 かつ減速初めから減速停止までのトルクパ ターンが各時間区間で凹関数となるようなトルクパターンを選べば、 上述と同様 にトルク制約条件を時間区間端点におけるトルク制約のみで評価できる。  In Fig. 4, the time section is divided into At1 to Δΐ7, and the torque pattern is set as shown in the lower part of Fig. 4. If a torque pattern that is convex in the section and the torque pattern from the start of deceleration to the deceleration stop is a concave function in each time section is selected, the torque constraint is evaluated only with the torque constraint at the end point of the time section in the same manner as described above. it can.
さらに、 時間区間の分割数を変えた場合にも、 上記のような速度パターンであ れば時間区間端点におけるトルク制約が満足されれば全区間でのトルクパターン はモータの動作範囲内に収まる。 このとき、 カゴ速度は、 トルクパターンから力 ゴ加速度パターンに変換後、 それを積分することにより求めることができる。 ま た、 運行距離は前記力ゴ速度パターンを積分することにより求めることができる 。 カゴ加速度制約、 ジャーク制約は各時間区間でのそれぞれの最大値を制限する といった方法を用いれば上記と同様に最適化問題として定式化できる。 このとき 、 トルクパターンを滑らかなものにしたり、 時間区間数を増やしたりすることで 、 より滑らかな速度パターンを生成することができ、 乗り心地が改善する。 なお、 最適化問題の定式化と求解時において、 未知変数をトルクと時間区間と したが、 速度パターンが唯一に定まるような変数の組合せならば他の組合せを選 んでも上記と同様の効果がある。 例えば、 未知変数を加速度と時間区間に選んで も最適化問題として定式化できる。 このとき、 制約条件式は上記で述べたものと 等価なものとなる。 また、 目的関数は変わらない。 Furthermore, even when the number of divisions of the time section is changed, if the torque constraint at the end point of the time section is satisfied if the speed pattern is as described above, the torque pattern in the entire section falls within the operating range of the motor. At this time, the car speed can be obtained by converting the torque pattern into the power acceleration pattern and integrating the converted pattern. Further, the operating distance can be obtained by integrating the above-mentioned speed pattern. If a method such as limiting the maximum value of each of the car acceleration constraints and jerk constraints in each time interval can be formulated as an optimization problem in the same manner as described above. At this time, by smoothing the torque pattern or increasing the number of time sections, a smoother speed pattern can be generated, and the riding comfort is improved. In formulating and solving the optimization problem, the unknown variables were defined as torque and time interval.However, if the combination of variables is such that the speed pattern is uniquely determined, the same effect can be obtained by selecting another combination. is there. For example, select unknown variables for acceleration and time interval Can also be formulated as an optimization problem. At this time, the constraint expression becomes equivalent to the one described above. Also, the objective function does not change.
また、 力ゴ下降時においても最短時間到達についての最適化問題の定式化は上 記と同様の考え方が適用できる。  In addition, the same idea as above can be applied to formulate the optimization problem for reaching the shortest time even at the time of the descent.
複数のカゴ負荷および制約条件に対して、 ステップ 2 5の最適化問題求解処理 、 ステップ 2 6の速度パターン生成処理により計算される速度パターン、 あるい はそれに相当するデータをあらかじめ計算して速度パタ一ン生成手段 3内に設け たメモリにテーブル化して保存しておき、 読み出して用いることによつても上記 と同様の効果が実現できる。 このとき、 ステップ 2 5の最適化問題求解処理によ る演算を必要としないため、 より安価な演算装置で実現できる。  For a plurality of car loads and constraints, the speed pattern calculated by the optimization problem solution process in step 25, the speed pattern generation process in step 26, or the corresponding data is calculated in advance and the speed pattern is calculated. The same effect as described above can also be realized by storing the data in a table provided in the memory provided in the memory generation means 3 and reading and using the data. At this time, since the calculation by the optimization problem solving process in step 25 is not required, it can be realized with a less expensive calculation device.
図 7に一例を示しながら前記で述べた手順に従って決定された速度パターンに ついて説明する。  The speed pattern determined according to the procedure described above will be described with reference to an example shown in FIG.
図 7において、 上段、 中段、 下段はそれぞれモータトルクパターン、 カゴ速度 パターン、 図 2を上記式 (2 ) によりモータトルクとカゴ速度に変換した図 (ト ルク制約の線) である。 中段のカゴ速度パターンは上段のモータトルクパターン により得られる。 また、 図 7下段のトルク特性図内の、 六角形で示されている曲 線は、 上段のモータトルクパターンと中段のカゴ速度パターンに対するモータの 駆動軌跡を表している。 これらは 3パターン示しているが、 それぞれカゴ重量 m 2と釣合錘の重量 m lの割合を変えたものを示しており、 本実施の形態に従って 速度パターンを求めたものである。  In Fig. 7, the upper, middle, and lower rows are the motor torque pattern and car speed pattern, respectively, and Fig. 2 is a diagram (torque constraint line) obtained by converting Fig. 2 into motor torque and car speed by the above equation (2). The middle car speed pattern is obtained by the upper motor torque pattern. In the torque characteristic diagram in the lower part of FIG. 7, the curved line indicated by a hexagon represents the driving locus of the motor with respect to the motor torque pattern in the upper part and the car speed pattern in the middle part. These show three patterns, each showing a change in the ratio of the weight m 2 of the car weight and the weight ml of the counterweight, and the speed pattern is obtained according to the present embodiment.
このとき、 カゴ最高速度、 ジャーク、 加速度はどのパターンにおいてもある上 限値 (3パターンとも同じ) とした。 このうち、 カゴ最高速度についてはその上 限値をモータの出力可能な回転数よりも大きく設定することで、 モータの駆動可 能な領域内で可能な限り大きくとれるようにしている。 また、 移動距離も全ての パターンで等しくしている。 図 4の形状のトルクパターン (速度パターン) を与 えた場合、 モータの駆動軌跡は図 7下段で示すように六角形となる。 これらの速 度パターンが、 制約条件である上記式 (4 ) を満たしていることを図 8により説 明する。  At this time, the maximum car speed, jerk, and acceleration were set to certain upper limits in all patterns (the same for all three patterns). Of these, the upper limit of the maximum car speed is set higher than the number of revolutions that can be output by the motor, so that it can be as large as possible within the range where the motor can be driven. In addition, the travel distance is the same for all patterns. When a torque pattern (speed pattern) having the shape shown in Fig. 4 is given, the driving locus of the motor becomes a hexagon as shown in the lower part of Fig. 7. FIG. 8 explains that these speed patterns satisfy the above-mentioned equation (4) as a constraint.
図 8は、 図 7下段のモータ駆動軌跡を説明するための図である。 モータの駆動 軌跡は図に示すように時間とともに六角形の辺上を移動する。 図中の記号は図 4 に対応している。 従って、 カゴ最高速度ついては V 3または V 4の点上における 速度となる。 力ゴ加速度については図中の矢印で示す量が力ゴ加速度の絶対値量 と比例する。 FIG. 8 is a diagram for explaining the motor drive locus in the lower part of FIG. Drive motor The trajectory moves on the hexagonal side with time as shown in the figure. The symbols in the figure correspond to Figure 4. Therefore, the maximum car speed is the speed on the point of V3 or V4. The amount indicated by the arrow in the figure is proportional to the absolute value of the gyro acceleration.
また、 カゴジャークについては図中に示す辺の傾きの絶対値量がジャーク時間 (加速度/ジャーク) に反比例する。 図 7下段において、 全てのモータ駆動軌跡 がモータトルク制約領域内に存在することから、 モータの駆動可能な領域内で速 度パターンが生成されていることが分かる。 さらに、 V 3または V 4でモータト ルク制約領域の境界上に存在することから、 可能な限りの最高速度を出すパター ンを生成していることがわかる。  For the kago jerk, the absolute value of the slope of the side shown in the figure is inversely proportional to the jerk time (acceleration / jerk). In the lower part of FIG. 7, since all the motor driving trajectories exist in the motor torque constraint area, it can be seen that the speed pattern is generated in the area where the motor can be driven. Furthermore, since it exists on the boundary of the motor torque constraint region at V3 or V4, it can be seen that the pattern generates the maximum possible speed.
カゴ加速度、 カゴジャークについては、 図 7中段の全ての速度パターンが加速 時の傾きが等しく、 加速丸めの形状も等しいことから、 設定された上限値に制約 されていることがわかる。 また、 図 9に図 7中段の速度パターンを積分したグラ フ (カゴ移動距離) を示す。 この図より、 全てのパターンについて移動距離は指 定した値になっていることが分かる。 以上より、 上記式 ( 4 ) の制約条件式を満 たす中で、 加速度、 ジャークが上限値内に収まり最も早く到達する速度パターン をカゴ負荷に応じて生成していることがわかる。 実施の形態 2 .  Regarding car acceleration and basket jerk, all the velocity patterns in the middle row of Fig. 7 have the same slope during acceleration and the same shape of acceleration rounding, indicating that they are restricted to the set upper limit. Fig. 9 shows the graph (car travel distance) obtained by integrating the velocity pattern in the middle part of Fig. 7. From this figure, it can be seen that the movement distance is the specified value for all patterns. From the above, it can be seen that, while satisfying the constraint condition expression (4) above, the speed pattern in which the acceleration and jerk fall within the upper limit values and reach the earliest is generated according to the car load. Embodiment 2
本実施の形態において以下で述べる発明は、 上記実施の形態 1で述べたあらゆ る方法に追加され得るものである。 図 1 0は、 この発明の実施の形態 2を示す構 成図である。 本実施の形態は、 上記実施の形態 1で述べた図 1の構成に、 構成要 素温度検出手段としての電子部品温度検出手段 1 1、 限界温度設定手段 1 2、 温 度上昇許容値演算手段 1 3を新たに設けたものである。  The invention described below in the present embodiment can be added to any of the methods described in the first embodiment. FIG. 10 is a configuration diagram showing Embodiment 2 of the present invention. This embodiment is different from the configuration of FIG. 1 described in the first embodiment in that electronic component temperature detection means 11 as component element temperature detection means, limit temperature setting means 12, and temperature rise allowable value calculation means 13 is newly provided.
図 1 0において、 電子部品温度検出手段 1 1はィンバータ等の電子機器やこれ を構成する電子部品の温度を検出するためのものであり、 例えばサーミスタ等の 温度センサがある。 限界温度設定手段 1 2は前述の電子機器が正常に動作するこ とを保証する温度の上限値または下限値を設定するためのものである。 温度上昇 許容値演算手段 1 3は上記電子部品温度検出手段 1 1によって検出された温度と 限界温度設定手段 12によって設定された温度を比較することにより、 電子機器 の温度余裕を演算するためのものである。 In FIG. 10, electronic component temperature detecting means 11 is for detecting the temperature of an electronic device such as an inverter and the electronic components constituting the electronic device, and includes, for example, a temperature sensor such as a thermistor. The limit temperature setting means 12 is for setting an upper limit value or a lower limit value of the temperature which guarantees that the above-mentioned electronic device operates normally. The temperature rise allowable value calculating means 13 and the temperature detected by the electronic component temperature detecting means 11 This is for calculating the temperature margin of the electronic device by comparing the temperatures set by the limit temperature setting means 12.
次に、 本実施の形態における最短時間速度パターンの演算法について、 図 1 1 のフローチャートを用いて説明する。 図 1 1において、 図 5と同じ番号で示した 部分は上記実施の形態 1で述べた図 5と同じ処理を行う。 実施の形態 2における 最短時間速度パターンの演算法は上記実施の形態 1の演算法の制約条件に電子機 器の温度上昇量を考慮したものであり、 電子機器の熱による破壊を防止する効果 がある。 実施の形態 2として、 インバ一タ素子の温度上昇量を例に挙げて説明す る。  Next, a method of calculating the shortest time speed pattern in the present embodiment will be described with reference to the flowchart in FIG. In FIG. 11, portions denoted by the same reference numerals as those in FIG. 5 perform the same processing as in FIG. 5 described in the first embodiment. The calculation method of the shortest time speed pattern in the second embodiment takes into account the temperature rise of the electronic device as a constraint on the calculation method of the first embodiment, and has an effect of preventing the destruction of the electronic device due to heat. is there. Embodiment 2 will be described with reference to an example of a temperature rise amount of an inverter element.
インバータの温度上昇量の収束値 (Wで表す) は、 収束するまでにインバータ に流れる電流パターンの絶対ィ直量の時間積分値を収束時間で割った時間平均値 ( I sで表す) に比例する。 つまり、 kを比例定数とすると、 下記の式 (7) が成 り立つ。  The convergence value (expressed as W) of the temperature rise of the inverter is proportional to the time average value (expressed as I s) obtained by dividing the time integral value of the absolute direct amount of the current pattern flowing through the inverter by the convergence time until convergence. I do. That is, if k is a proportionality constant, the following equation (7) holds.
W = kls (7) W = kl s (7)
また、 kは予め実験等を行うことにより知ることができる。 ここで、 上記式 ( 7) はカゴの 1回の昇降を含むある時間区間 (Ti n tで表す) でのインバータに 流れる電流パターン ( i aで表す) の絶対値量の時間積分値を Ti n tで割った時間 平均値 (I i ntで表す) が I s以下であるという拘束のもとでエレベータを駆動 しつづければ、 温度上昇を W以下に抑えることができることを意味する。 なお、 I i ntは下記の式 (8) で表される (説明の簡単化のため積分開始時刻は 0とす る) 。
Figure imgf000014_0001
Further, k can be known by conducting experiments or the like in advance. Here, the above equation (7) is the time integral value of the absolute value of the current pattern (represented by i a ) flowing through the inverter in a certain time interval (represented by T int ) including one up and down movement of the car. divided by the time average value (represented by I i nt) is if you continue to drive the elevator under the constraint that is less than I s, which means that it is possible to suppress the temperature rise below W. Note that I int is represented by the following equation (8) (the integration start time is set to 0 for simplicity of explanation).
Figure imgf000014_0001
ここで、 インバータの電流値はモータのトルク指令値、 およびモータの回転速 度から計算される。  Here, the current value of the inverter is calculated from the motor torque command value and the motor rotation speed.
次に、 速度パターンの演算法について説明する。 上記実施の形態 1で述べたよ うに時間区間 At 1〜Δΐ 7とモータトノレク ΤΜ1, ΤΜ2をパラメータとして、 αΐNext, a method of calculating a speed pattern will be described. As described in the first embodiment above, the time interval At 1 to Δΐ 7 and the motor tongue Τ Μ 1 , Τ Μ 2 are used as parameters, and αΐ
、 α2、 β1〜64、 ν 0〜ν 7および移動距離 Lが表せ、 それらを用いて図 4上 段の速度パターン Vが上記式 (6) により表される。 また、 そのときのトルクパ ターン Tmも図 4下段図から △ t 1〜Δ t 7とモータトルク TM1, TM2をパラメ ータとして表される。 このとき、 インパータに流れる電流パターン i aはこれら Vおよび Tmの関数として表せることから At 1 -At 7、 TM1, TM2をパラメ一 タとして表せることが分かる。 , Α2, β1 to 64, ν0 to ν7, and the moving distance L, and the velocity pattern V in the upper part of FIG. 4 is expressed by the above equation (6) using them. Also, the torque The turn Tm is also represented by the parameters Δt1 to Δt7 and the motor torques T M1 and T M2 from the lower diagram in FIG. At this time, since the current pattern ia flowing through the inverter can be expressed as a function of V and Tm, it can be seen that At 1 -At 7, T M1 , and T M2 can be expressed as parameters.
図 1 1において、 ステップ 2 1の次回停止階設定処理、 ステップ 22のパラメ 一タ読出処理、 ステップ 23のカゴ負荷検出処理およびステップ26の速度パタ ーン生成処理で行われる処理は、 上記実施の形態 1で述べたとおりであり、 その 説明を省略する。 In Figure 1 1, the next stop floor setting process in step 2 1, parameter Ichita reading process in step 22, processing performed by the car load detection process and the speed patterns generation processing in step 2 6 step 23, the above-described As described in the first embodiment, the description is omitted.
次に、 ステップ 31の温度許容値演算処理においては、 図 10における温度上 昇許容値演算手段 13によりインバータの温度余裕を、 電子部品温度検出手段 1 1によって検出されたインバータ温度と限界温度設定手段 1 2によってあらかじ め設定されているインバータの限界温度との差をとることにより演算する。 この ステップ 3 1によって演算された温度余裕量を W—で表す。  Next, in the temperature allowable value calculating process in step 31, the temperature margin of the inverter is calculated by the temperature rising allowable value calculating means 13 in FIG. 10, and the inverter temperature detected by the electronic component temperature detecting means 11 and the limit temperature setting means are set. It is calculated by taking the difference from the limit temperature of the inverter set in advance by 1 and 2. The temperature margin calculated in step 31 is represented by W—.
次に、 ステップ 32の制約条件設定処理では、 上記実施の形態 1と同様に上記 式 (4) で表される制約条件に対応する V—、 αΐ—、 α2—、 βΐ—、 β2—、 β 3—、 64—と時間区間 Ti n tを指定する。 Next, in the constraint condition setting process in step 32, as in the first embodiment, V—, αΐ—, α2-, βΐ—, β2-, β- corresponding to the constraint condition represented by the above equation (4) Specify 3—, 64— and the time interval T int .
次に、 ステップ 33の最適化問題求解処理では上記実施の形態 1で述べた最適 化問題を、 制約条件式である上記式 (4) に下記の式 (9) を追カ卩して角 く。 な お、 目的関数は上記式 (5) と同様である。 式 (9) はインバータ素子の温度上 昇量に関する制約条件式であり、 温度上昇量を W—以下に抑えることができ、 そ の結果熱によるインバータの破壊を防止する効果がある。  Next, in the optimization problem solving process in step 33, the optimization problem described in the first embodiment is obtained by adding the following expression (9) to the above-mentioned expression (4) which is a constraint condition expression. . Note that the objective function is the same as in the above equation (5). Equation (9) is a constraint condition equation for the temperature rise of the inverter element, which can suppress the temperature rise to W— or less, and as a result, has the effect of preventing the inverter from being damaged by heat.
kIini≤W (9) kI ini ≤W (9)
なお、 本実施の形態では、 ステップ 3 2の制約条件設定処理で時間区間 T ; n t を指定してから最適化問題を解いた力 S、これを指定せずに At l〜At 7の関数と して解くこともできる。 例えば目的関数 Tと適当な値 T sを用いて、 Ti n t = TIn the present embodiment, in the constraint condition setting process in step 32, the time interval T ; nt is specified, and then the force S that solves the optimization problem. You can also solve it. For example, using the objective function T and an appropriate value T s, T int = T
+ T sとすれば、 時間間隔 T sごとにエレベータが起動されるときの温度上昇量 をある値以下に制約することができる。 これにより様々な乗客発生パターンに対 する運行パターンを考慮することができる。 If + T s, the amount of temperature rise when the elevator is started at each time interval T s can be limited to a certain value or less. This makes it possible to consider operation patterns for various passenger generation patterns.
なお、 同期電動機において弱め磁束制御を行わない場合、 インバータ電流とモ ータトルクは比例するため、 電流値の代わりにトルク値を用いた関数で温度上昇 量を制約することよっても本実施の形態と同様の効果が得られる。 さらに、 トル ク値と力ゴ加速度は比例するため、 力ゴ加速度を用いた関数で温度上昇量を制約 することよっても本実施の形態と同様の効果が得られる。 Note that if the flux weakening control is not performed in the synchronous motor, the inverter current and the motor Since the motor torque is proportional, the same effect as in the present embodiment can be obtained by restricting the amount of temperature rise by a function using a torque value instead of a current value. Further, since the torque value is proportional to the acceleration, the same effect as in the present embodiment can be obtained by restricting the amount of temperature rise by a function using the acceleration.
また、 力ゴ加速度の積分値は力ゴ速度となるため、 力ゴ加速度の絶対値の積分 値は、 力ゴ加速時と減速時を考慮すれば力ゴ最高速度の 2倍の値となるため、 力 ゴ最高速度により温度上昇量を測ることによつても本実施の形態と同様の効果が 得られる。  Also, since the integral value of the gyro acceleration is the gyro speed, the integral value of the absolute value of the gyro acceleration is twice the value of the maximum gyro speed in consideration of gyro acceleration and deceleration. The same effect as in the present embodiment can be obtained by measuring the amount of temperature rise based on the maximum speed of the iron.
また、 電子機器の温度上昇量が電子機器に流れる電流値の関数として表される ものであれば、 本実施の形態と同様の定式化が可能であり、 同様の効果が得られ る。 実施の形態 3 .  If the temperature rise of the electronic device is represented as a function of the value of the current flowing through the electronic device, the same formulation as in the present embodiment can be performed, and the same effect can be obtained. Embodiment 3.
本実施の形態において以下で述べる発明は、 上記実施の形態 1および 2で述べ たあらゆる方法に追加され得るものである。  The invention described below in the present embodiment can be added to any of the methods described in the first and second embodiments.
本実施の形態の構成は、 上記実施の形態 1で述べた図 1または上記実施の形態 の図 1 0の構成と実質的に同じであるが、 後述するように、 次回停止階を設定す る次回停止階設定手段 1はその機能が図 1および図 1 0の場合と異なる。 また、 速度パターン生成手段 3は演算処理装置として機能する。  The configuration of the present embodiment is substantially the same as the configuration of FIG. 1 described in the first embodiment or FIG. 10 of the above-described embodiment, but the next stop floor is set as described later. The function of the next stop floor setting means 1 is different from the case of FIGS. 1 and 10. Further, the speed pattern generation means 3 functions as an arithmetic processing device.
次に、 動作について、 上述の図 5を参照しながら説明する。 各処理手順におけ る演算処理は上記実施の形態 1、 2と同じ手順で行うが、 次回停止階設定手段 1 による次回停止階設定処理を行うステップ 2 1における次回停止階の設定方法が 、 上記実施の形態 1、 2とは異なる。 この処理では、 次回停止階として、 ある時 間区間のカゴの平均停止階を設定する。 この平均停止階の具体的な計算方法につ いては後述する。  Next, the operation will be described with reference to FIG. The arithmetic processing in each processing procedure is performed in the same procedure as in the first and second embodiments. However, the method for setting the next stop floor in step 21 in which the next stop floor setting processing is performed by the next stop floor setting means 1 is as described above. This is different from the first and second embodiments. In this process, the average stop floor of the car in a certain time section is set as the next stop floor. The specific calculation method of this average stop floor will be described later.
図 5において、 パラメータ読出し処理を行うステップ 2 1〜速度パターン生成 処理を行うステップ 2 6までの手順は、 上記実施の形態 1、 2と同様である。 こ れらの演算処理では、 上記実施の形態 1、 2と同様に、 図 2で表されるモータの 駆動領域内で到達時間を最小化する最適化問題を解くことにより、 最高速度、 カロ 速度およびジャークが求まり、 それらを用いて、 図 4で表される速度パターンが 演算される。 In FIG. 5, the procedure from step 21 for performing parameter reading processing to step 26 for performing speed pattern generation processing is the same as in the first and second embodiments. In these arithmetic processings, as in the first and second embodiments, the optimization problem for minimizing the arrival time in the motor driving area shown in FIG. The speed and jerk are determined, and the speed pattern shown in Fig. 4 is calculated using them.
さて、 本実施の形態では、 次回停止階設定処理を行うステップ 2 1が上記実施 の形態 1、 2とは異なり、 カゴの平均停止階を設定することを特徴とする。 そし てその平均停止階の決定法の一例として以下のものがある。  By the way, in the present embodiment, the step 21 for performing the next stop floor setting process is different from the first and second embodiments in that the average stop floor of the car is set. The following is an example of a method for determining the average stop floor.
平均停止階の決定法の一例を、 図 1 2を用いて説明する。 図 1 2は昇降路内に 梟大 n階床の停止階が存在する場合の、 ある時間区間内での出発階から停止決定 階までの力ゴの移動階床とその発生確率を表したグラフである。  An example of a method for determining the average stop floor will be described with reference to FIGS. Fig. 12 is a graph showing the moving floor and the probability of occurrence of the rickshaw from the departure floor to the stop decision floor in a certain time section when there is a stop floor with an owl size n floor in the hoistway. It is.
ここで、 k階床の移動が発生する確率を X ( k ) とし、 k階床の移動距離を L ( k ) とする。 平均停止階はこれらの統計量を用いてカゴの平均的な移動時間が 小さくなるように、 適切に設定される。 その設定例の一例として、 力ゴの平均停 止階を移動階床の期待値を距離に換算した下記の式 (1 0 ) 等として設定するこ とができる。
Figure imgf000017_0001
Here, let X (k) be the probability that the k floor will move, and L (k) the distance that the k floor moves. The average stop floor is set appropriately using these statistics so that the average travel time of the car is reduced. As an example of the setting example, the average stop floor of kyogo can be set as the following formula (10) in which the expected value of the moving floor is converted into the distance.
Figure imgf000017_0001
また、 図 1 2の統計量を出発階床毎に持ち、 各出発階床毎に平均停止階を上記 のように設定してもよい。  Alternatively, the statistics shown in FIG. 12 may be provided for each departure floor, and the average stop floor may be set for each departure floor as described above.
その結果、 平均停止階以上に次回停止階が設定された後力ゴの移動開始後の力 ゴ呼びのために次回停止階が変更された場合に、 運行時間が従来法と比べて短縮 できる。 '  As a result, when the next stop floor is set to be higher than the average stop floor, and the next stop floor is changed due to the call of the gygo after the start of movement of the rikgo, the operation time can be shortened compared to the conventional method. '
また、 次回停止階は一つ、 または出発階床毎に一つの値に固定されるため、 ェ レベータの起動毎に次回停止階を演算する必要がなく、 パラメータとして読み出 すだけでよい。 これにより、 制御装置の演算手順を図 1 3のように簡略化でき、 演算量を減らすことができる。  In addition, since the next stop floor is fixed to one value for each departure floor or one departure floor, it is not necessary to calculate the next stop floor every time the elevator is started, and it is only necessary to read it as a parameter. As a result, the calculation procedure of the control device can be simplified as shown in FIG. 13, and the amount of calculation can be reduced.
さらに、 上記の方法により予め速度パターンを各状況に応じて求めておき、 そ れらをメモリ等の記憶装置に記憶して読み出して用いる場合に、 記憶容量が従来 手法を用いた場合に比べて少なくてすむ。 これによつて制御装置をより安価なも のとすることができる。 実施の形態 4. Furthermore, when the speed patterns are obtained in advance according to each situation by the above-described method, and these are stored in a storage device such as a memory and read out for use, the storage capacity is smaller than when the conventional method is used. I need less. This allows the control device to be less expensive. Embodiment 4.
本実施の形態では、 上記実施の形態 3における平均停止階の設定手順において 、 以下の手順 (ィ) 〜 (ハ) に、 力ゴの各出発階床における停止決定階への移動 時間の期待値を最小にする平均停止階の演算手順を示す。 なお、 カゴの各階床へ の移動距離とその発生頻度は図 1 2の統計データを持つとする。  In the present embodiment, in the procedure for setting the average stop floor in Embodiment 3 described above, the following procedures (a) to (c) include the expected value of the time required for the moving of the kyogo to the stop determination floor at each departure floor. Is shown below. It is assumed that the travel distance of the car to each floor and the frequency of occurrence have the statistical data shown in Fig.12.
手順 (ィ) : L (k) , k = l,..., nのそれぞれを次回停止階に設定し、 図 5 の手順で最適化問題を解くことにより力ゴ速度パターン (力ゴ最高速度、 力ゴ加 速度、 ジャーク) を演算する。 このとき、 最適化問題を解くために必要なカゴ負 荷の値は適切に設定される。 例えば、 起動時にカゴにかかるカゴ負荷の統計量を 用いて、 k階床移動時における平均値としたり、 全体 (全階床移動時) の平均値 とすることができる。 この結果、 n個の (カゴ最高速度、 カゴ加速度、 ジャーク ) の組が求まる。 L (k) に対応する (カゴ最高速度、 カゴ加速度、 ジャーク) の組を V (k) とおく。  Procedure (a): Each of L (k), k = l, ..., n is set to the next stop floor, and the optimization problem is solved by the procedure of Fig. 5 to obtain the power speed pattern (power speed maximum speed). , Acceleration, jerk). At this time, the value of the basket load necessary to solve the optimization problem is set appropriately. For example, using the statistical value of the car load applied to the car at the time of startup, the average value during the k-floor movement or the average value of the entirety (all-floor movement) can be obtained. As a result, n sets of (car speed, car acceleration, jerk) are obtained. Let V (k) be the set of (car maximum speed, car acceleration, jerk) corresponding to L (k).
手順 (口) : V ( j ) を用いた場合の、 図 1 2の分布に対するカゴの移動時間 の期待値 T (V ( j ) ) を演算する。 これは次式により求めることができる。 た だし、 T (V ( j ) , L (k) ) は V ( j ) を用いたときに L (k) 移動する のに要する時間を表す。  Procedure (mouth): Calculate the expected value T (V (j)) of the car movement time for the distribution in Fig. 12 when V (j) is used. This can be obtained by the following equation. However, T (V (j), L (k)) represents the time required to move L (k) when V (j) is used.
WU)) =∑ X( L (V(j)Mk)) (i i) WU)) = ∑ X ( L (V (j) Mk)) (ii)
k=\  k = \
手順 (ハ) :上記式 (1 1) の Τ (V ( j ) ) が最小となる jを用いて L ( j を平均停止階と決定する。  Procedure (c): L (j is determined as the average stop floor using j that minimizes Τ (V (j)) in equation (11).
なお、 図 1 2に示した確率 X (k) , k = l , 2..., 11を連続的な確率密度関 数 X (k) , O k≤nに置換えても上記で述べたことと同様の議論ができる。 本実施の形態における効果について、 図 1 4を用いて説明する。  Even if the probabilities X (k), k = l, 2 ..., 11 shown in Fig. 12 are replaced by continuous probability density functions X (k), Ok≤n The same argument can be made. Effects in the present embodiment will be described with reference to FIGS.
図中の曲線はそれぞれ上記実施の形態 1と、 この実施の形態 4を用いて生成さ れたエレベータの速度パターンに対して、 途中でカゴ呼びが入り、 途中階に停止 した時の力ゴ速度パターンを示している。 図中の Aおよび Bはそれぞれ実施の形 態 4と上記実施の形態 1、 2を用いて演算されたカゴ速度パターンを表している この図 1 4において、 実施の形態 1、 2では平均停止階よりも大きな次回停止 階が設定され、 それに従って速度パターンが演算されている。 Bに示す実施の形 態 1、 2ではカゴ最高速度の上限を上げるために、 カゴ加速度を小さくしている が途中で力ゴ呼びが入つたため、 力ゴ最高速度まで上げることができずに減速し ている様子を示している。 実施の形態 4を用いた場合は次回停止階を平均停止階 で設定しているため、 実施の形態 1、 2と比較して次回停止階と停止決定階の差 が小さくなっている。 The curves in the figure indicate the speed of the elevator when the car call enters on the way and stops on the way to the elevator speed pattern generated by using the first embodiment and the fourth embodiment, respectively. Shows a pattern. A and B in the figure represent the car speed patterns calculated using Embodiment 4 and Embodiments 1 and 2, respectively. In FIG. 14, in Embodiments 1 and 2, a next stop floor larger than the average stop floor is set, and the speed pattern is calculated accordingly. In Embodiments 1 and 2 shown in B, the car acceleration is reduced in order to raise the upper limit of the car maximum speed. This shows that the vehicle is decelerating. When Embodiment 4 is used, the next stop floor is set as the average stop floor, so that the difference between the next stop floor and the stop determination floor is smaller than in Embodiments 1 and 2.
この結果、 実施の形態 1、 2よりも高加速度でかつ最高速度まで到達すること ができるため、 実施の形態 1、 2よりも早く停止決定階に到達している。 逆に途 中で力ゴ呼びが入らない場合や、 平均停止階以下の次回停止階が乗客によって設 定されていた場合の運行時間は実施の形態 1、 2を用いた方が短くなる。 本実施 の形態では、 カゴの移動量、 各停止決定階に対する起動頻度およびカゴ負荷の統 計量を用いてカゴ移動時間の期待値が最小になるような平均停止階を用いて速度 パターンを求めているため、 乗客の移動時間を平均的に短縮することができる。 さらに、 停止決定階の確率分布によっては、 実施の形態 1、 2と比較して短縮 される運行時間の総和が、 運行時間の増加の総和よりも大きくなるため、 本実施 の形態を用いた方が、 運行効率が良くなるという効果がある。 また、 次回停止階 に平均停止階を用いていることから、 実施の形態 1、 2と比べて移動開始後の力 ゴ呼びによる極端な移動距離の変更がない。 つまり、 長移動距離に対して設定さ れた、 低加速、 低ジャークおよび高最高速度による運行パターンが短移動距離に 対して適用される頻度が減少する。 これにより同じ移動距離に対する到達時間の ばらつきが少なくなり、 これによる乗客の不快感を減少させることができる。 実施の形態 5 .  As a result, it is possible to reach the maximum speed with higher acceleration than in the first and second embodiments, so that the vehicle reaches the stop determination floor earlier than in the first and second embodiments. Conversely, in the case where a rickshaw call does not enter in the middle, or when the next stop floor below the average stop floor is set by the passenger, the operation time is shorter with the first and second embodiments. In the present embodiment, the speed pattern is obtained using an average stop floor that minimizes the expected value of the car travel time by using the amount of car movement, the starting frequency for each stop decision floor, and the statistics of the car load. As a result, the travel time of passengers can be reduced on average. Further, depending on the probability distribution of the stop decision floor, the total operation time reduced compared to Embodiments 1 and 2 is larger than the total increase in operation time. However, it has the effect of improving operating efficiency. Also, since the average stop floor is used for the next stop floor, there is no extreme change in the moving distance due to the power call after the start of the movement as compared with Embodiments 1 and 2. This means that low acceleration, low jerk and high maximum speed operating patterns set for long travel distances are less frequently applied for short travel distances. This reduces the variation in arrival time for the same travel distance, thereby reducing passenger discomfort. Embodiment 5
本実施の形態では、 上記実施の形態 3および 4で述べた平均停止階の設定手順 で用いた図 1 2の統計量を、 通勤時や退勤時などの乗客需要が異なる時間帯毎に 複数個用意し、 それらを用いて時間帯毎の平均停止階を前記の方法等で求めてお く。 そして、 それらの平均停止階を対応する各時間帯毎に切替えて平均停止階と 設定し、 カゴ速度パターンを演算する。 これにより、 平均停止階を求めるために用いた統計量が実際の乗客需要をより 正確に反映したものとなる。 よって、 設定される平均停止階が実際の平均停止階 に、 より近づくため、 さらなる運行効率の改善が実現できる。 実施の形態 6 . In this embodiment, the statistics shown in Fig. 12 used in the procedure for setting the average stop floor described in Embodiments 3 and 4 above are used for each time period when passenger demand is different, such as when commuting or leaving work. Prepare them, and use them to determine the average stop floor for each time zone using the method described above. Then, the average stop floor is switched for each corresponding time zone and set as the average stop floor, and the car speed pattern is calculated. As a result, the statistics used to determine the average stop floor more accurately reflect actual passenger demand. Therefore, the set average stop floor is closer to the actual average stop floor, so that further improvement in operation efficiency can be realized. Embodiment 6.
本実施の形態では、 次回停止階として、 カゴの平均停止階に対する移動距離と 力ゴの移動前に乗客によつて設定される次回停止階の移動距離を比較し、 力ゴが 通過する区間の状況に応じて、 次回停止階を設定し、 カゴ速度パターンを演算す る。  In the present embodiment, as the next stop floor, the travel distance of the car to the average stop floor is compared with the travel distance of the next stop floor set by the passenger before the movement of the rikosago, and Set the next stop floor according to the situation, and calculate the car speed pattern.
これにより、 次回停止階を平均停止階と設定して力ゴ速度パターンを演算する 場合よりも確実に早く到達する場合に、 次回停止階を平均停止階と設定して求め たカゴ速度パターンを用いることで停止決定階への到達が遅くなることを防止で きる。 例えば次のような場合がこれに該当する。  In this way, the car speed pattern obtained by setting the next stop floor as the average stop floor is used when the next stop floor is set to be the average stop floor and the vehicle arrives earlier than when calculating the power stop speed pattern. This can prevent delays in reaching the stop decision floor. For example, the following cases correspond to this.
カゴが移動する前に乗客によって設定された次回停止階が、 平均停止階よりも 小さいときには、 次回停止階を力ゴが移動する前に乗客によつて設定された次回 停止階と設定し直し、 それ以外の場合には、 次回停止階を平均停止階と設定する これにより、 平均停止階を用いてカゴ速度パターンを演算することで移動時間 が確実に遅くなる場合を除去でき、 運行効率がさらに改善されるが、 この理由を 以下に説明する。  If the next stop floor set by the passenger before the car moves is smaller than the average stop floor, the next stop floor is reset to the next stop floor set by the passenger before the rickshaw moves, In other cases, the next stop floor is set as the average stop floor.Thus, it is possible to eliminate the case where the traveling time is definitely slowed down by calculating the car speed pattern using the average stop floor, and further improve the operation efficiency. The reason for this is explained below.
まず、 運行時間に関して、 移動距離が短くなるにつれて最高速度を大きくする よりも加速度とジャークをそれぞれ大きくするほうが早く到達する。 これは、 力 ゴの移動距離が短いと、 最高速度で運行する時間が加速時間やジャーク時間に比 ベて相対的に短くなるためである。 また、 図 4のようなカゴ速度パターンで運行 すると、 モータの動作軌跡は図 8のようになる。 よって高加速度、 高ジャークを 出すためにはモータに高トルクが要求されるが、 高トルクになるに従い最高速度 を大きくできないことが図 2より分かる。  First, with regard to the operation time, as the traveling distance becomes shorter, the acceleration and the jerk each reach faster than increasing the maximum speed, rather than increasing the maximum speed. This is because if the moving distance of the rig is short, the time to operate at the maximum speed is relatively shorter than the acceleration time or jerk time. When the car is operated with the car speed pattern shown in Fig. 4, the motor operation trajectory is as shown in Fig. 8. Therefore, high torque is required for the motor in order to achieve high acceleration and high jerk, but Fig. 2 shows that the maximum speed cannot be increased as the torque increases.
以上より、 最適化問題を解いてカゴ速度パターンを求めるときには、 力ゴの移 動距離を大きくとって求める場合よりも、 小さくとって求める場合の方が高加速 度、 高ジャーク、 低最高速度の解が求まる。 次回停止階と停止決定階が一致すれ ば、 カゴは停止決定階に最短時間で到達するため、 カゴの移動距離が平均停止階 以下の場合に次回停止階を平均停止階に設定した速度パターンで運行した場合に 運行途中で力ゴ呼びが入らなかつた場合には必ず運行時間が増加する。 From the above, when solving the optimization problem and calculating the car speed pattern, higher acceleration is obtained when the gyro is moved to a smaller distance than when it is determined to be longer. Degree, high jerk, low top speed solution is required. If the next stop floor matches the stop decision floor, the car will reach the stop decision floor in the shortest time, so if the travel distance of the car is less than the average stop floor, the car will follow the speed pattern set for the next stop floor as the average stop floor. When the train is running, the running time will always increase if the rickshaw call does not come in the middle of the run.
さらに、 カゴ呼びが入った場合には移動距離が短縮されるため、 前記の理由 ( 次回停止階を短く設定した方が低最高速度、 高加速度、 高ジャークの解が求まる こと、 および移動距離が短くなるにつれて最高速度を大きくするよりも加速度と ジャークをそれぞれ大きくするほうが早く到達すること) から次回停止階を平均 停止階と設定せずにカゴ速度パターンを求めた方が早く到達する。 これにより、 カゴの移動前に設定された次回停止階による移動距離が平均停止階よりも小さい ときには、 次回停止階を力ゴの移動前に設定された停止階と設定し直す方が早く 停止決定階に到達し、 その結果運行効率が改善される。 実施の形態 7 .  In addition, the travel distance is shortened when a car call is received, so the above-mentioned reason (the shorter the next stop floor, the lower the maximum speed, the higher the acceleration, the higher the jerk solution can be obtained, and the travel distance As the speed becomes shorter, it is faster to increase the acceleration and jerk than to increase the maximum speed). Therefore, the car speed pattern is obtained earlier without setting the next stop floor as the average stop floor. As a result, if the travel distance due to the next stop floor set before the movement of the car is smaller than the average stop floor, it is determined that the next stop floor is reset to the stop floor set before the movement of the rickshaw, and the stop is determined earlier. The floor is reached, resulting in improved operating efficiency. Embodiment 7
本実施の形態では、 平均停止階と停止可能階を比較し、 昇降行程内に急行ゾー ンを有する場合などで、 平均停止階が急行ゾーン内に設定されたとき、 次回停止 階を設定し直しカゴ速度パターンを演算する。 例えば、 次のように設定する。 力 ゴが移動する前に乗客によつて設定された停止可能階である次回停止階が急行ゾ ーンを通過するときで、 かつそこまでの移動距離が平均停止階の移動距離以上の 場合には、 次回停止階を急行ゾーン区間の終端階に設定し直す。  In the present embodiment, the average stop floor is compared with the stoppable floor, and when the average stop floor is set in the express zone, for example, when there is an express zone in the ascent / descent process, the next stop floor is reset. Calculate the car speed pattern. For example, set as follows. When the next stop floor, which is the stoppable floor set by the passenger before the mosquito moves, passes through the express zone and the travel distance there is greater than the travel distance of the average stop floor, Resets the next stop floor to the end floor of the express zone section.
これにより、 力ゴが急行ゾーン区間を通過する場合で平均停止階以上の移動距 離を移動する場合に、 次回停止階に平均停止階を設定してカゴ速度パターンを演 算することが原因で停止決定階への到達が遅くなることを防止し、 運行時間の増 加を抑えることができる。 この理由は前記で述べたものと同様である。 つまり、 次回停止階を長く設定した方が高最高速度、 低加速度、 低ジャークの解が求まる こと、 および移動距離が長くなるにつれて加速度とジャークをそれぞれ大きくす るよりも最高速度を大きくするほうが早く到達することによる。  As a result, when the gygo moves through the express zone section and moves a distance greater than the average stop floor, the average stop floor is set as the next stop floor and the car speed pattern is calculated. It is possible to prevent delays in reaching the stop decision floor, and to suppress an increase in operating time. The reason is the same as described above. In other words, the longer the next stop floor, the higher the maximum speed, the lower the acceleration, and the lower the jerk solution.The higher the maximum speed, the faster the acceleration and the jerk. By reaching.
また、 急行ゾーンを有する場合だけでなく、 停止決定階が移動開始前に予め決 定しており変更がない場合に、 次回停止階を停止決定階とすることによつても、 次回停止階を平均停止階と設定して求めた力ゴ速度パターンを用いることで到達 が遅くなることを防止できる。 以上のように、 この発明によれば、 インバータで給電されるモータにより、 乗 客力ゴに口一プを介して連結された釣合錘を有する卷上機を駆動するエレベータ において、 上記乗客カゴの重量をカゴ負荷として計測するカゴ負荷検出手段と、 次回停止階を設定する次回停止階設定手段と、 上記力ゴ負荷検出手段によって得 られる力ゴ負荷と上記次回停止階設定手段によって設定される次回停止階とに基 づいて上記モータの許容されうる駆動範囲内でかつ最短時間で次回停止階に上記 乗客力ゴが到達する力ゴ速度パターンを生成する力ゴ速度パターン生成手段とを 備えたので、 乗客の移動時間が短縮され、 カゴの運行効率が上がるという効果が あ 。 In addition to the case where there is an express zone, if the stop decision floor is determined before moving and there is no change, by making the next stop floor the stop decision floor, It is possible to prevent the arrival from being delayed by using the strength speed pattern obtained by setting the next stop floor as the average stop floor. As described above, according to the present invention, there is provided an elevator for driving a hoist having a counterweight connected to a passenger power bar via a mouth by a motor fed by an inverter. Car load detecting means for measuring the weight of the car as a car load, next stop floor setting means for setting the next stop floor, and the power load obtained by the power load detection means and the next stop floor setting means. A power go speed pattern generating means for generating a power go speed pattern in which the passenger power go reaches the next stop floor within the allowable driving range of the motor based on the next stop floor and in the shortest time. This has the effect of shortening the travel time of passengers and increasing the efficiency of basket operation.
また、 この発明によれば、 インバータで給電されるモータにより、 乗客カゴに ロープを介して連結された釣合錘を有する卷上機を駆動するエレベータにおいて 、 上記乗客カゴの重量をカゴ負荷として計測するカゴ負荷検出手段と、 次回停止 階を設定する次回停止階設定手段と、 上記ィンバータを構成する構成要素の温度 を計測する構成要素温度検出手段と、 上記構成要素の温度上昇限界値を設定する 限界温度設定手段と、 上記構成要素温度検出手段から得られる構成要素温度と上 記限界温度設定手段で設定された温度上昇限界値とに基づいて温度上昇限界許容 値を演算する温度上昇許容値演算手段と、 上記構成要素の温度上昇限界許容値と 上記力ゴ負荷と上記次回停止階とに基づいて上記モータの許容されうる駆動範囲 内でかつ上記構成要素の予想される温度上昇量が温度上昇限界許容値以内に最短 時間で上記乗客力ゴが次回停止階に到達する力ゴ速度パターンを生成する力ゴ速 度パタ一ン生成手段とを備えたので、 温度上昇による電子機器等の構成要素の破 壌を防止できる範囲内で乗客の移動時間が短縮されるという効果がある。  According to the present invention, in an elevator for driving a hoist having a counterweight connected to a passenger car via a rope by a motor supplied with an inverter, the weight of the passenger car is measured as a car load. Car load detection means, next stop floor setting means for setting the next stop floor, component temperature detection means for measuring the temperature of the components constituting the inverter, and setting the temperature rise limit value of the components Limit temperature setting means; and a temperature rise allowable value calculation for calculating a temperature rise limit allowable value based on the component temperature obtained from the component temperature detection means and the temperature rise limit value set by the limit temperature setting means. Means, within an allowable driving range of the motor based on the temperature rise limit allowable value of the component, the power load and the next stop floor, and A power speed pattern generating means for generating a power speed pattern for the passenger power to reach the next stop floor in the shortest time when the expected temperature rise of the component is within the temperature rise limit allowable value. As a result, the traveling time of passengers can be shortened within a range in which components such as electronic devices can be prevented from being broken due to a rise in temperature.
また、 上記速度パターン生成手段は、 力ゴ速度パターンを生成する際に、 カゴ 最高速度、 カゴ加速度、 カゴ加速度の変化率の上限を定めるので、 エレベータの 乗り心地を改善できるという効果がある。  In addition, the speed pattern generating means sets the upper limit of the car maximum speed, the car acceleration, and the rate of change of the car acceleration when generating the bolster speed pattern, so that the ride comfort of the elevator can be improved.
また、 上記カゴ速度パターン生成手段は、 上記モータに与えられるカゴ速度駆 動指令に関連したモータトルク波形を上記構成要素に流れる電流値に換算し、 そ の電流値波形が上記温度上昇限界許容値の関数によつて制約される条件に基づい てカゴ速度パターンを生成するので、 構成要素に流れる電流波形からその温度上 昇量を予測し、 電子機器等の構成要素の破壊を防止できる範囲内で乗客の移動時 間が短縮されるという効果がある。 Further, the car speed pattern generating means may include a car speed drive provided to the motor. The motor torque waveform related to the motion command is converted to the current value flowing through the above-mentioned components, and the current value waveform generates the car speed pattern based on the condition restricted by the function of the temperature rise limit allowable value. Therefore, the amount of temperature rise is predicted from the waveform of the current flowing through the component, and there is an effect that the traveling time of the passenger is shortened within a range where the destruction of the component such as the electronic device can be prevented.
また、 上記次回停止階設定手段は、 上記カゴ速度パターンを生成するための次 回停止階をェレベータの起動回数と力ゴ出発階から次に停止する停止決定階まで の移動距離の統計量から求めた力ゴの平均停止階とするので、 ェレベータの起動 回数毎に次回停止階を設定する必要が無くなり、 以て、 演算処理が簡略化され、 速度パターンの生成処理が速くなり、 さらに、 平均停止階以上に次回停止階が設 定された後力ゴの移動開始後の力ゴ呼びのために次回停止階が変更された場合に 、 運行時間が従来法と比べて短縮できるという効果がある。  The next-stop floor setting means calculates the next-stop floor for generating the car speed pattern from the number of activations of the elevator and the statistic of the moving distance from the departure floor to the next stop-stop floor. As the average stop floor of the ergogo is used, it is not necessary to set the next stop floor for each number of activations of the elevator, thereby simplifying the calculation process, speeding up the speed pattern generation process, and further averaging the stop. When the next stop floor is changed to the next stop floor after the next stop floor has been set, the operation time can be shortened as compared with the conventional method when the next stop floor is changed due to the call of the rigo after the start of the movement of the rigo.
また、 上記次回停止階設定手段は、 上記カゴの平均停止階を各出発階床におけ る、 停止決定階への移動時間の期待値が最小となる停止階として設定するので、 平均的に、 乗客の移動時間の短縮効果が大きくなるような次回停止階を設定する ことができるという効果がある。  In addition, the next stop floor setting means sets the average stop floor of the car as the stop floor at each departure floor where the expected value of the travel time to the stop determination floor is minimized. This has the effect that the next stop floor can be set so that the effect of reducing the traveling time of the passengers is increased.
また、 上記次回停止階設定手段は、 上記カゴの平均停止階を乗客需要の異なる 時間帯毎の停止決定階の統計量に基づいて設定するので、 平均停止階が乗客需要 に応じて設定されるため、 乗客の移動時間の短縮効果がさらに大きくなるという 効果がある。  In addition, since the next stop floor setting means sets the average stop floor of the car based on the statistics of the stop determination floor for each time zone with different passenger demand, the average stop floor is set according to the passenger demand. Therefore, there is an effect that the effect of reducing the traveling time of passengers is further increased.
また、 上記力ゴ速度パタ一ン生成手段は、 上記次回停止階と上記力ゴの平均停 止階を比較してカゴ速度パターンを生成するので、 次回停止階を平均停止階と設 定して速度パターンを演算する場合よりも確実に早く到達する速度パターンを演 算するための停止階が存在する場合に、 その停止階を次回停止階に設定すること ができ、 さらに運行効率が改善されるという効果がある。  In addition, the above-mentioned gyro speed pattern generation means generates a car speed pattern by comparing the next stop floor with the average gyro stop floor, so that the next stop floor is set as an average stop floor. If there is a stop floor to calculate a speed pattern that will arrive more reliably than when calculating the speed pattern, the stop floor can be set as the next stop floor, further improving operating efficiency. This has the effect.
また、 上記カゴ速度パターン生成手段は、 カゴが停止可能な停止可能階と上記 力ゴの平均停止階を比較して力ゴ速度パターンを生成するので、 平均停止階が停 止可能階でない場合に、 次回停止階を平均停止階に設定して演算した速度パター ンを用いて運行することで運行時間が遅くなることを回避でき、 運行効率が改善 されるという効果がある。 産業上の利用の可能性 In addition, the car speed pattern generating means compares the stoppable floor at which the car can be stopped with the average stop floor of the rikgo to generate a powergo speed pattern, so that the average stop floor is not a stoppable floor. By operating using the speed pattern calculated by setting the next stop floor as the average stop floor, it is possible to avoid a delay in operation time and improve operation efficiency It has the effect of being done. Industrial potential
以上のように、 この発明によれば、 負荷と移動距離に応じて、 最高速度や加速 度を変更し、 運転時間を短縮することができるエレベータの制御装置を提供する ことができる。  As described above, according to the present invention, it is possible to provide an elevator control device capable of changing the maximum speed and the acceleration degree according to the load and the moving distance, and shortening the operation time.

Claims

請 求 の 範 囲 The scope of the claims
1 . インバータで給電されるモータにより、 乗客カゴにロープを介して連 結された釣合錘を有する卷上機を駆動するエレベータにおいて、 1. In an elevator that drives a hoisting machine having a counterweight connected to a passenger car via a rope by a motor supplied by an inverter,
上記乗客力ゴの重量を力ゴ負荷として計測するカゴ負荷検出手段と、 次回停止階を設定する次回停止階設定手段と、  A car load detecting means for measuring the weight of the passenger power as a power load, a next stop floor setting means for setting a next stop floor,
上記カゴ負荷検出手段によって得られるカゴ負荷と上記次回停止階設定手段に よって設定される次回停止階とに基づいて上記モータの許容されうる駆動範囲内 でかつ最短時間で次回停止階に上記乗客力ゴが到達する力ゴ速度パターンを生成 する力ゴ速度パターン生成手段と  Based on the car load obtained by the car load detection means and the next stop floor set by the next stop floor setting means, the passenger power is transferred to the next stop floor within the allowable driving range of the motor and in the shortest time. A gyro speed pattern generating means for generating a gyro speed pattern to reach
を備えたことを特徴とするェレベータの制御装置。  An elevator control device comprising:
2 . 上記ィンバータを構成する構成要素の温度を計測する構成要素温度検 出手段と、 2. A component temperature detecting means for measuring the temperature of the components constituting the inverter,
上記構成要素の温度上昇限界値を設定する限界温度設定手段と、  Limit temperature setting means for setting a temperature rise limit value of the above components,
上記構成要素温度検出手段から得られる構成要素温度と上記限界温度設定手段 で設定された温度上昇限界値とに基づいて温度上昇限界許容値を演算する温度上 昇許容値演算手段と  Temperature rise allowable value calculating means for calculating a temperature rise limit allowable value based on the component temperature obtained from the component temperature detecting means and the temperature rise limit value set by the limit temperature setting means;
をさらに備え、  Further comprising
上記力ゴ速度パターン生成手段は、 上記構成要素の温度上昇限界許容値と上記 力ゴ負荷と上記次回停止階とに基づいて上記モータの許容されうる駆動範囲内で かつ上記構成要素の予想される温度上昇量が温度上昇限界許容値以内に最短時間 で上記乗客力ゴが次回停止階に到達するカゴ速度パターンを生成する  The gyro speed pattern generating means is configured to estimate the temperature of the component within an allowable driving range of the motor based on the temperature rise limit allowable value of the component, the gyro load, and the next stop floor. Generates a car speed pattern in which the passenger power reaches the next stop floor in the shortest time when the temperature rise amount is within the temperature rise limit allowable value.
ことを特徴とする請求項 1記載のエレベータの制御装置。  The elevator control device according to claim 1, wherein:
3 . 上記速度パターン生成手段は、 力ゴ速度パタ一ンを生成する際に、 力 ゴ最高速度、 カゴ加速度、 カゴ加速度の変化率の上限を定めることを特徴とする 請求項 1記載のェレベータの制御装置。 3. The speed pattern generating means, when generating the power pattern, sets the maximum speed of the power, the speed of the car, and the upper limit of the rate of change of the speed of the car. Control device.
4 . 上記カゴ速度パターン生成手段は、 上記モータに与えられるカゴ速度 駆動指令に関連したモータ トルク波形を上記構成要素に流れる電流値に換算し、 その電流値波形が上記温度上昇限界許容値の関数によって制約される条件に基づ いて力ゴ速度パターンを生成することを特徴とする請求項 2記載のェレベータの 制御装置。 4. The car speed pattern generating means converts a motor torque waveform related to the car speed drive command given to the motor into a current value flowing through the above-mentioned component, and the current value waveform is a function of the temperature rise limit allowable value. 3. The control device for an elevator according to claim 2, wherein the power speed pattern is generated based on a condition constrained by the following.
5 . 上記次回停止階設定手段は、 上記力ゴ速度パターンを生成するための 次回停止階をエレベータの起動回数とカゴ出発階から次に停止する停止決定階ま での移動距離の統計量から求めたカゴの平均停止階とすることを特徴とする請求 項 1記載のレベータ制御装置。 5. The next stop floor setting means obtains the next stop floor for generating the power speed pattern from the number of times the elevator is started and the statistic of the travel distance from the car departure floor to the next stop stop floor. The elevator control device according to claim 1, wherein the cage is an average stop floor of the car.
6 . 上記次回停止階設定手段は、 上記カゴの平均停止階を各出発階床にお ける、 停止決定階への移動時間の期待 が最小となる停止階として設定すること を特徴とする請求項 5記載のェレベータの制御装置。 6. The next stop floor setting means sets the average stop floor of the car as a stop floor at each departure floor, which minimizes an expectation of a travel time to a stop determination floor. 5. The control device of the elevator according to 5.
7 . 上記次回停止階設定手段は、 上記カゴの平均停止階を乗客需要の異な る時間帯毎の停止決定階の統計量に基づいて設定することを特徴とする請求項 5 記載のェレベータの制御装置。 7. The elevator control according to claim 5, wherein the next stop floor setting means sets the average stop floor of the car based on statistics of stop determination floors for each time zone with different passenger demand. apparatus.
8 . 上記カゴ速度パターン生成手段は、 上記次回停止階と上記カゴの平均 停止階を比較してカゴ速度パターンを生成することを特徴とする請求項 5記載の エレベータの制御装置。 8. The elevator control device according to claim 5, wherein the car speed pattern generation means generates a car speed pattern by comparing the next stop floor with an average stop floor of the car.
9 . 上記力ゴ速度パターン生成手段は、 力ゴが停止可能な停止可能階と上 記力ゴの平均停止階を比較して力ゴ速度パターンを生成することを特徴とする 求項 5記載のェレベータの制御装置。 9. The gyro speed pattern generating means according to claim 5, wherein the gyro speed pattern generating means generates a gyro speed pattern by comparing a stoppable floor at which the gyro can be stopped with an average stop floor of the gyro. Elevator control device.
PCT/JP2002/012851 2001-12-10 2002-12-09 Elevator control apparatus WO2003050028A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10296269.3T DE10296269B4 (en) 2001-12-10 2002-12-09 Control device for lifts
KR1020037010449A KR100568397B1 (en) 2001-12-10 2002-12-09 Elevator control apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-375697 2001-12-10
JP2001375697 2001-12-10
JP2002-60752 2002-03-06
JP2002060752A JP4158883B2 (en) 2001-12-10 2002-03-06 Elevator and its control device

Publications (1)

Publication Number Publication Date
WO2003050028A1 true WO2003050028A1 (en) 2003-06-19

Family

ID=26624964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012851 WO2003050028A1 (en) 2001-12-10 2002-12-09 Elevator control apparatus

Country Status (5)

Country Link
JP (1) JP4158883B2 (en)
KR (4) KR100568397B1 (en)
CN (1) CN1302975C (en)
DE (1) DE10296269B4 (en)
WO (1) WO2003050028A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044894A (en) * 2004-08-05 2006-02-16 Mitsubishi Electric Corp Elevator device
US7588125B2 (en) 2005-11-14 2009-09-15 Mitsubishi Electric Corporation Elevator control device
US7681697B2 (en) 2005-08-25 2010-03-23 Mitsubishi Electric Corporation Elevator operation control device which controls the elevator based on a sensed temperature
US7740112B2 (en) 2005-09-30 2010-06-22 Mitsubishi Electric Corporation Elevator operation control device for selecting an operation control profile
US7748502B2 (en) 2006-04-13 2010-07-06 Mitsubishi Electric Corporation Elevator apparatus
US7823705B2 (en) 2005-09-30 2010-11-02 Mitsubishi Electric Corporation Elevator apparatus control by measuring changes in a physical quantity other than temperature
US7833992B2 (en) 2001-05-18 2010-11-16 Merck Sharpe & Dohme Conjugates and compositions for cellular delivery
US7931128B2 (en) 2005-07-26 2011-04-26 Mitsubishi Electric Corporation Elevator device
CN114890258A (en) * 2022-05-05 2022-08-12 国新电梯科技股份有限公司 Intelligent speed control method and system for elevator
CN116395512A (en) * 2023-03-28 2023-07-07 宁波汉科思液压有限公司 Hydraulic system and control method

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7837012B2 (en) 2003-09-29 2010-11-23 Mitsubishi Denki Kabushiki Kaisha Control device for elevator
JP4368854B2 (en) * 2003-11-21 2009-11-18 三菱電機株式会社 Elevator equipment
CN101844718B (en) * 2003-11-21 2012-01-25 三菱电机株式会社 Elevator device
JP4896711B2 (en) * 2004-03-26 2012-03-14 三菱電機株式会社 Elevator control device
JPWO2005092764A1 (en) * 2004-03-29 2008-02-14 三菱電機株式会社 Elevator control device
JP2005280933A (en) * 2004-03-30 2005-10-13 Mitsubishi Electric Corp Elevator control device
EP1731467B1 (en) * 2004-03-30 2011-11-16 Mitsubishi Denki Kabushiki Kaisha Control device of elevator
CN100500542C (en) * 2004-03-30 2009-06-17 三菱电机株式会社 Control device for elevator
CN100486880C (en) 2004-06-07 2009-05-13 三菱电机株式会社 Group management control device of elevators
JP4959124B2 (en) * 2004-10-12 2012-06-20 オーチス エレベータ カンパニー Elevator control device and control method
CN101044080B (en) * 2004-10-28 2011-05-11 三菱电机株式会社 Control device of rotating machine for elevator
KR100652917B1 (en) * 2005-03-14 2006-12-01 경남산업건기(주) Speed control apparatus of lift for construction
JP4584019B2 (en) * 2005-05-10 2010-11-17 三菱電機ビルテクノサービス株式会社 Elevator control device
KR100735352B1 (en) * 2005-11-30 2007-07-04 미쓰비시덴키 가부시키가이샤 Control device of elevator
KR100771719B1 (en) * 2006-03-28 2007-10-30 미쓰비시덴키 가부시키가이샤 Control device for elevator
KR100803872B1 (en) * 2006-04-27 2008-02-14 미쓰비시덴키 가부시키가이샤 Control device of elevator
KR100994582B1 (en) * 2006-05-16 2010-11-15 미쓰비시덴키 가부시키가이샤 Control device for elevator
KR100829319B1 (en) * 2006-06-30 2008-05-13 미쓰비시덴키 가부시키가이샤 Elevator control device
CN101203449B (en) * 2006-07-06 2012-01-04 三菱电机株式会社 Display equipment of elevator
JP4888093B2 (en) * 2006-12-06 2012-02-29 三菱電機株式会社 Elevator control device
KR101115918B1 (en) 2007-02-14 2012-02-13 미쓰비시덴키 가부시키가이샤 Elevator
JP4925146B2 (en) * 2007-03-26 2012-04-25 三菱電機株式会社 Elevator equipment
KR100858190B1 (en) * 2007-04-19 2008-09-10 미쓰비시덴키 가부시키가이샤 Control device for elevator
CN101678994B (en) * 2007-07-12 2012-10-10 三菱电机株式会社 Elevator system
KR20100020486A (en) 2007-08-28 2010-02-22 미쓰비시덴키 가부시키가이샤 Indication unit of elevator
KR100905750B1 (en) * 2008-06-12 2009-07-01 미쓰비시덴키 가부시키가이샤 Elevator control system
JP2010058865A (en) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp Elevator control device
FR2937432B1 (en) * 2008-10-22 2015-10-30 Schneider Toshiba Inverter METHOD AND DEVICE FOR CONTROLLING A LIFTING LOAD
WO2010103643A1 (en) * 2009-03-12 2010-09-16 三菱電機株式会社 Elevator equipment
WO2011008207A1 (en) 2009-07-15 2011-01-20 Otis Elevator Company Energy savings with optimized motion profiles
JP4818405B2 (en) 2009-07-21 2011-11-16 三菱電機株式会社 Fuel supply device
JP5554336B2 (en) * 2009-09-09 2014-07-23 三菱電機株式会社 Elevator control device
JP5428900B2 (en) * 2010-01-28 2014-02-26 三菱電機株式会社 Elevator speed control device
KR101412226B1 (en) 2010-03-03 2014-06-25 미쓰비시덴키 가부시키가이샤 Control device for elevator
JP5058310B2 (en) * 2010-08-12 2012-10-24 株式会社日立ビルシステム Elevator control device
US8973731B2 (en) * 2010-12-17 2015-03-10 Otis Elevator Company Regenerative power control for passenger conveyors
JP5524893B2 (en) * 2011-04-01 2014-06-18 三菱電機株式会社 Elevator rotating machine control device
JP5668599B2 (en) * 2011-05-18 2015-02-12 三菱電機株式会社 Elevator speed control device
JP2015016933A (en) * 2013-07-09 2015-01-29 東芝エレベータ株式会社 Drive control device of elevator
JP6256620B2 (en) 2014-09-09 2018-01-10 三菱電機株式会社 Elevator equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107699A (en) * 1994-10-05 1996-04-23 Mitsubishi Electric Corp Speed control apparatus
GB2310770A (en) * 1996-02-28 1997-09-03 Hitachi Ltd Control device for controlling an ac motor such as that driving an elevator
JPH11228043A (en) * 1998-02-13 1999-08-24 Nippon Otis Elevator Co Cooling controller for elevator control motor and recording medium recording cooling control program
JPH11255442A (en) * 1998-03-13 1999-09-21 Toshiba Corp Elevator control device
JP2001171921A (en) * 1999-12-22 2001-06-26 Hitachi Ltd Control device for plural elevator units
JP2001240319A (en) * 2000-02-28 2001-09-04 Mitsubishi Electric Corp Control device for elevator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035301A (en) 1989-07-03 1991-07-30 Otis Elevator Company Elevator speed dictation system
JPH0356308A (en) 1989-07-21 1991-03-11 Hitachi Kiden Kogyo Ltd Article storehouse
FI99108C (en) 1994-11-29 1997-10-10 Kone Oy A method of controlling an elevator
JP3251844B2 (en) * 1996-03-29 2002-01-28 三菱電機株式会社 Elevator control device
KR200196786Y1 (en) * 2000-04-12 2000-09-15 주식회사대기시트 A rear leg fixing structure of seat for a vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107699A (en) * 1994-10-05 1996-04-23 Mitsubishi Electric Corp Speed control apparatus
GB2310770A (en) * 1996-02-28 1997-09-03 Hitachi Ltd Control device for controlling an ac motor such as that driving an elevator
JPH11228043A (en) * 1998-02-13 1999-08-24 Nippon Otis Elevator Co Cooling controller for elevator control motor and recording medium recording cooling control program
JPH11255442A (en) * 1998-03-13 1999-09-21 Toshiba Corp Elevator control device
JP2001171921A (en) * 1999-12-22 2001-06-26 Hitachi Ltd Control device for plural elevator units
JP2001240319A (en) * 2000-02-28 2001-09-04 Mitsubishi Electric Corp Control device for elevator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833992B2 (en) 2001-05-18 2010-11-16 Merck Sharpe & Dohme Conjugates and compositions for cellular delivery
JP4575076B2 (en) * 2004-08-05 2010-11-04 三菱電機株式会社 Elevator equipment
JP2006044894A (en) * 2004-08-05 2006-02-16 Mitsubishi Electric Corp Elevator device
US7931128B2 (en) 2005-07-26 2011-04-26 Mitsubishi Electric Corporation Elevator device
US7681697B2 (en) 2005-08-25 2010-03-23 Mitsubishi Electric Corporation Elevator operation control device which controls the elevator based on a sensed temperature
US7740112B2 (en) 2005-09-30 2010-06-22 Mitsubishi Electric Corporation Elevator operation control device for selecting an operation control profile
US7823705B2 (en) 2005-09-30 2010-11-02 Mitsubishi Electric Corporation Elevator apparatus control by measuring changes in a physical quantity other than temperature
US7588125B2 (en) 2005-11-14 2009-09-15 Mitsubishi Electric Corporation Elevator control device
US7748502B2 (en) 2006-04-13 2010-07-06 Mitsubishi Electric Corporation Elevator apparatus
CN114890258A (en) * 2022-05-05 2022-08-12 国新电梯科技股份有限公司 Intelligent speed control method and system for elevator
CN114890258B (en) * 2022-05-05 2023-09-08 国新电梯科技股份有限公司 Intelligent speed control method and system for elevator
CN116395512A (en) * 2023-03-28 2023-07-07 宁波汉科思液压有限公司 Hydraulic system and control method
CN116395512B (en) * 2023-03-28 2024-01-12 宁波汉科思液压有限公司 Hydraulic system and control method

Also Published As

Publication number Publication date
DE10296269B4 (en) 2019-12-24
CN1491179A (en) 2004-04-21
KR20040016838A (en) 2004-02-25
JP2003238037A (en) 2003-08-27
KR20080111527A (en) 2008-12-23
KR100868129B1 (en) 2008-11-10
KR20050046023A (en) 2005-05-17
KR100568397B1 (en) 2006-04-05
KR100995161B1 (en) 2010-11-17
DE10296269T5 (en) 2004-03-04
CN1302975C (en) 2007-03-07
KR20050106129A (en) 2005-11-08
JP4158883B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
WO2003050028A1 (en) Elevator control apparatus
JP5313978B2 (en) Elevator control device
JP4701171B2 (en) Elevator control device
US7637353B2 (en) Control device for elevator
WO2007013448A1 (en) Elevator device
EP1487730B1 (en) Method and aparatus for increasing the traffic handling performance of an elevator system
US8789660B2 (en) Elevator system using a movement profile
US7837012B2 (en) Control device for elevator
EP1721855A2 (en) Controller for elevator
EP1731466B1 (en) Elevator control device
JP4397721B2 (en) Elevator control device
JP5107021B2 (en) elevator
JP5428900B2 (en) Elevator speed control device
WO2019073527A1 (en) Elevator control device and control method
JP2007168933A (en) Elevator speed control device
KR100829319B1 (en) Elevator control device
JP5764848B2 (en) Elevator control device
KR100881370B1 (en) Elevator control device
JP5095223B2 (en) Elevator equipment
JP2004010335A (en) Control device of elevator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE KR

WWE Wipo information: entry into national phase

Ref document number: 1020037010449

Country of ref document: KR

Ref document number: 028047338

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037010449

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 10296269

Country of ref document: DE

Date of ref document: 20040304

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10296269

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

WWG Wipo information: grant in national office

Ref document number: 1020037010449

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607