WO2003045692A1 - Biodegradable laminated resin sheet and article formed therefrom - Google Patents

Biodegradable laminated resin sheet and article formed therefrom Download PDF

Info

Publication number
WO2003045692A1
WO2003045692A1 PCT/JP2002/012155 JP0212155W WO03045692A1 WO 2003045692 A1 WO2003045692 A1 WO 2003045692A1 JP 0212155 W JP0212155 W JP 0212155W WO 03045692 A1 WO03045692 A1 WO 03045692A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
biodegradable
laminated
base fabric
resin sheet
Prior art date
Application number
PCT/JP2002/012155
Other languages
French (fr)
Japanese (ja)
Inventor
Hidehiko Inaba
Kyosuke Kageyama
Kozo Fukuoka
Masakatsu Shiromo
Original Assignee
Dynic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynic Corporation filed Critical Dynic Corporation
Priority to AU2002349697A priority Critical patent/AU2002349697A1/en
Publication of WO2003045692A1 publication Critical patent/WO2003045692A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer

Definitions

  • the present invention relates to a biodegradable laminated resin sheet, and a molded article of a biodegradable laminated resin sheet formed from the biodegradable laminated resin sheet.
  • a laminated resin sheet is formed by laminating a resin layer on both sides of a base fabric, and is a laminate having excellent water resistance, abrasion resistance, cutting properties, and welding properties, and is industrially manufactured as turbolin or a polylaminated sheet. It is widely used in various fields such as applications and daily necessities. For example, in the industrial field etc., flexible containers and flexible packaging materials for logistics applications, civil engineering sheets in the civil engineering and construction fields, unstacked sheets, curing sheets, leisure seats in the daily sundries field, special aprons, various packaging materials, It is also used for large banners and flags, which are used as indoor and outdoor media.
  • This laminated resin sheet is formed by laminating resin layers on both sides of a base fabric.
  • the base fabric of the laminated resin sheet is used for the purpose of strengthening the entire laminated resin sheet.
  • the base fabric of the laminated resin sheet is made of natural fibers such as cotton and hemp, and filament yarns of synthetic fibers such as polyester fibers, polyamide fibers, polyolefin fibers, and polyataryl fibers or split yarns of polyolefins such as polyethylene and polypropylene. It is used as a woven or knitted fabric by using flat yarn alone or as a mixture, or as a nonwoven fabric formed from natural fibers, synthetic resin fibers such as polyester and polyolefin.
  • thermoplastic resin such as a soft polychlorinated vinyl resin, a polyolefin resin, or a polyurethane resin is coated or melted on both surfaces of such a base fabric, and laminated as a resin layer using various laminating devices to form an integral molding.
  • a laminated resin sheet is manufactured.
  • such conventional laminated resin sheets are incinerated or landfilled as plastic waste when disposed after use. Incineration and landfilling as plastic waste in this way is becoming an important environmental issue in recent years, as it is desired to construct articles that are compatible with a natural recycling society.
  • flexible polychlorinated vinyl is widely used for flexible containers and flexible packaging materials for the manufacturing and logistics industries, civil engineering sheets for civil engineering construction, and open-air sheets due to their workability and suitability for use.
  • problems such as dioxins at the time and endocrine disrupting substances at the time of landfill. For this reason, it has recently been replaced by non-salt-dye bur resin such as polyolefin, but it has weaknesses in physical properties and workability and is still generally incinerated.
  • biodegradable plastics are decomposed into water and carbon dioxide by microorganisms when left in the soil for a certain period of time or fermented by a composter (composting device), so that endocrine disrupters such as dioxins are used.
  • composter composting device
  • endocrine disrupters such as dioxins
  • Japanese Patent Application Laid-Open No. 2000-129496 discloses a sandbag formed by weaving a biodegradable flat yarn on a woven fabric. Has been described. The decomposition rate of this sandbag varies depending on the environmental temperature and location, but is usually divided in two to three years.
  • conventional sandbags have the tensile strength of sandbags and are biodegradable, so they are considered to be useful from a functional and environmental point of view. Of course, it is not suitable for the use of the above-mentioned tarpaulin-polylaminate sheet.
  • a laminated resin sheet made of polyolefin when used as a material that substitutes for polychlorinated rubber, for example, a laminated resin sheet made of polyolefin has a high bonding strength when performing a bonding process, and a high frequency that can easily perform the bonding work. It was not suitable for heat welding such as welding. ⁇
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a biodegradable laminated resin sheet in which the entire laminated resin sheet is biodegradable and a biodegradable laminated resin sheet molded article. To provide. Another object of the present invention is that the laminated sheet is excellent in breaking strength and peeling strength, and high-frequency welder between laminates, biodegradability with excellent 180 degree peeling strength after processing, and excellent shearing peeling strength It is an object of the present invention to provide a laminated resin sheet and a biodegradable laminated resin sheet molded article. Disclosure of the invention
  • the biodegradable laminated resin sheet according to the present invention has the following configuration. That is, it is composed of a resin base cloth for reinforcement and a resin laminate laminated on both sides of the resin base cloth, and the resin base cloth and the resin laminate are composed of biodegradable plastic. This was a biodegradable laminated resin sheet.
  • the entire laminated resin sheet is biodegradable, the entire laminated resin sheet exhibits biodegradability. It is convenient to form the resin base fabric and the resin laminate by welding.
  • the resin base fabric is a biodegradable woven fabric, a biodegradable knitted fabric, or a biodegradable nonwoven fabric (for example, a spunbonded biodegradable nonwoven fabric).
  • the biodegradable laminated resin sheet is made of a resin base cloth.
  • biodegradable laminated resin sheet of the present invention can be formed by a conventionally known laminating apparatus.
  • the resin base fabric and the resin laminate are made of a biodegradable plastic that is chemically compatible at a lamination temperature.
  • the compatibility between the predetermined plastic component in the resin base fabric and the predetermined component in the resin to be laminated is good.
  • each layer is mixed Integrally, sufficient peel strength can be obtained without delamination.
  • the resin base fabric has an opening enough for resin laminates laminated from both sides at a lamination temperature to be in close contact with each other.
  • the resin laminates laminated on both sides of the cloth were composed of biodegradable plastic raw materials that are chemically compatible at the lamination temperature.
  • the resin laminates may be composed of raw materials of the same composition of the resin thread, or may be added with a part of each resin raw material that shows compatibility. May be.
  • biodegradable laminated resin sheet molded article formed from the biodegradable laminated resin sheet may be used, or the biodegradable laminated resin sheet may be formed using a high-frequency heater.
  • FIG. 1 is a cross-sectional view schematically showing a biodegradable laminated resin sheet according to the present invention.
  • FIGS. 2 (a) and 2 (b) are perspective views of a configuration of the biodegradable laminated resin sheet according to the present invention, which is a partially broken perspective view schematically showing a bonding state between a resin base fabric and a resin laminate. It is a sectional view
  • FIG. 3 is a table showing a list of biodegradable plastics according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • biodegradable plastic as used in the present invention can be used in the same way as ordinary plastic during use, regardless of its original meaning, and is used in nature after use. It is a plastic that can be converted into low molecular compounds by microorganisms and eventually decomposed into water and carbon dioxide.
  • the “biodegradable plastic” in the present invention is not particularly limited as long as it can be molded into a resin base fabric and a resin laminate constituting the laminated resin sheet of the present invention.
  • Biodegradable plastics such as biodegradable plastics, microbial biodegradable plastics such as polyhydroxybutyrate, and natural biodegradable plastics such as starch Z chemically synthesized green bra. .
  • compatible plastic raw material refers to a plastic raw material that has a similar chemical structure as a plastic raw material and becomes completely integrated when laminated.
  • the plastic raw material forming the resin laminate is composed of the resin component A alone.
  • a blend of plastic components, including the A component is a plastic raw material that has a similar chemical structure as a plastic raw material and becomes completely integrated when laminated.
  • Fig. 1 is a cross-sectional view schematically showing a biodegradable laminated resin sheet
  • Figs. 2 (a) and (b) show the structure of a biodegradable laminated resin sheet joined to a resin base fabric and a resin laminate. It is the perspective view and sectional drawing which fractured
  • a biodegradable laminated resin sheet 1 is composed of a reinforcing resin base fabric 2 formed from biodegradable plastic force, and a biodegradable plastic on both sides of the resin base fabric 2.
  • the resin laminates 3a and 3b are formed and laminated.
  • the resin base fabric 2 and the resin laminates 3a and 3b are shown as having the same thickness, but the thickness is arbitrary and the biodegradable laminated resin sheet 1 has a flatness.
  • the thickness is not particularly limited as long as the thickness can be maintained.
  • biodegradable plastic used here can be used in the same way as ordinary plastic during use, and after use, microorganisms take part in nature to become low molecular weight compounds, which eventually become water and dioxide. It is a plastic that breaks down into carbon.
  • biodegradable plastics are decomposed by extracellular enzymes such as microorganisms, Under low aerobic conditions (in the presence of oxygen), it is decomposed into carbon dioxide and water under aerobic decomposition conditions (in the presence of oxygen), and finally under aerobic decomposition conditions (in the absence of oxygen). It is decomposed into methane and carbon dioxide.
  • biodegradable laminated resin sheet 1 of the present invention there is no particular limitation as long as it can be molded into the resin base fabric 2 and the resin laminates 3a and 3b constituting the biodegradable laminated resin sheet 1 of the present invention.
  • chemically synthesized biodegradable plastics such as polylactic acid, or microbial biodegradable plastics such as polyhydroxybutyrate, or natural biodegradable plastics such as starch-free chemically synthesized green plastic Plastics.
  • is most suitable especially when used for the biodegradable laminated resin sheet 1 shown here, “ ⁇ ” is preferable, and no mark is applicable. It indicates that it is possible.
  • the resin base fabric 2 has a structure of a woven fabric formed by weaving biodegradable plastic into a thread, a structure of a knit formed by knitting a biodegradable plastic into a thread, or a biodegradable plastic. May be a nonwoven fabric such as a spun bond formed into a fibrous form. As shown in FIG. 3, the resin base fabric 2 may be a biodegradable plastic of a microorganism-producing type, a chemically synthesized type, or a natural product type, which may be used alone or in an appropriate blend.
  • the resin base fabric 2 is preferably made of a biodegradable plastic raw material that is compatible with the resin laminates 3a and 3b.
  • the term “compatible” as used herein refers to a plastic raw material that has a similar chemical structure to the plastic raw material used and that is completely integrated when laminated.
  • the plastic raw material forming the resin laminate is composed of the resin component alone. Used as a configured force or as a plastic component containing the above components.
  • the resin base cloth 2 is arranged so as to be completely interposed between the resin laminates 3a and 3b, and the resin laminates 3a and 3b face each other. It may be configured to have an opening 4 that makes contact.
  • the resin substrate 2 has the opening 4, the bridge effect between the resin laminates 3 a and 3 b is obtained.
  • the result is a relatively desirable bond strength.
  • the thickness of the resin laminates 3a and 3b should be S> It is desirable that the relationship be L 1 (L 2).
  • the configuration of the opening 4 is not particularly limited with respect to its shape, but may be square, rectangular, or another shape.
  • the resin base fabric 2 examples include aliphatic polyesters PBS and PBSA (Pionore of Showa High Polymer), which are biodegradable plastics of chemical synthesis, and PLLA, which is polylactic acid (Lishia of Mitsui Chemicals). Is used here.
  • the resin laminates 3a and 3b are formed with the same thickness here.
  • the blending of the resin laminates 3a and 3b if a chemically synthesized biodegradable plastic and a natural product based biodegradable plastic are mixed at a predetermined ratio, it is excellent in biodegradability and has one processability. A resin laminate that can be used as a sheet having high flexibility can be obtained.
  • a preferable mixing ratio of the natural biodegradable plastic is in the range of 0.5% by mass to 50% by mass.
  • a material indicated by a polymer name shown in FIG. 3 is used alone or in a blend at a predetermined ratio. The raw material thus mixed is melted and made into a paint, and is laminated on both surfaces of the resin base fabric 2.
  • the resin base fabric 2 and the resin laminates 3a, 3b are joined by welding the resin base fabric 2 and the resin laminates 3a, 3b in a sheet shape by heat. It does not matter.
  • the resin base fabric 2 of the biodegradable laminated resin sheet 1 and the resin laminates 3a and 3b are desirably the same or similar in chemical composition.
  • the following table summarizes typical examples of the “agglomerated energy density” of the resin used for each resin base fabric 2 and resin laminates 3a and 3b.
  • Cohesive Energy Density is a value related to the intermolecular force of a polymer, which is released when it is coagulated into a crystalline or amorphous solid state at a certain temperature. It is defined as energy divided by volume.
  • a material whose cohesive energy density is as close as possible is defined as an approximate component. That is, in the preferred embodiment of the present invention, the materials for the resin base fabric 2 and the resin laminates 3a and 3b are selected based on a known cohesive energy density.
  • the resin base fabric 2 can obtain relatively desirable adhesive strength due to the bridging effect between the resin laminates 3a and 3b.
  • the chemical components of the base fabric 2 need not be similar.
  • biodegradable laminated resin sheet 1 has the following characteristics when the processing characteristics are examined under the same conditions as the comparative example (not shown) having the same configuration.
  • biodegradable laminated resin sheet 1 has excellent tensile strength
  • No. 1 is also excellent in 180 ° peel strength, and has a peel strength almost equivalent to that of Shiridani Bull.
  • turbo phosphorus poly laminate sheet which requires a laminate having excellent water resistance, abrasion resistance, cutting properties, and weldability. It can be used as a sheet widely used in various fields such as industrial use and daily goods.
  • a turbo phosphorus poly laminate sheet which requires a laminate having excellent water resistance, abrasion resistance, cutting properties, and weldability. It can be used as a sheet widely used in various fields such as industrial use and daily goods.
  • flexible containers and flexible packaging materials for logistics applications civil engineering sheets in the civil engineering and construction fields, open stacking sheets, curing sheets, leisure products in the general sundries field, special aprons, various packaging materials, These are large banners and flags that are used as advertising media for indoors and outdoors.
  • the biodegradable laminated resin sheet thus configured can be biodegraded in about 4 to 60 days under composting conditions under which microorganisms can be actively activated. By burying it in the soil, it can be biodegraded in about 3 to 12 months, depending on the season and soil conditions.
  • a base yarn made of resin made of 200,000-duel flat yarn made of aliphatic polyester, which is one of the chemically synthesized biodegradable plastics, is woven in a plain weave at a density of 10 x 10 and 10 in. Base cloth) was obtained.
  • a resin for the skin 70% by mass of an aliphatic polyester-based biodegradable plastic, polybutylene succinate (Bionore # 100000, manufactured by Showa Polymer Co., Ltd.) was used.
  • About 30% by mass of Matapy NF 01 plastic A resin sheet having a thickness of 0.2 mm was prepared from the melt-kneaded mixture using a premixer using a calender roll at 120 to 140 ° C.
  • the peel strength between the base material and the surface layer of the obtained laminate was measured under the conditions described below, and the skin layers were welded to each other with a high-frequency welder under the conditions described below to obtain a 180 ° peel strength. Tensile strength was measured.
  • a substrate resin base fabric
  • 70% by mass of polybutylene succinate (Pionole # 100000 manufactured by Showa Kobunshi), which is an aliphatic polyester-based biodegradable plastic, was used.
  • Matabi NF 01 is a plastic 30 mass 0 /.
  • the resin was melt-kneaded in advance with a premixer to prepare a 0.2 mm resin sheet with a calender roll at 120 to 140 ° C., and laminated on both surfaces of the base material.
  • the peel strength between the base material and the surface layer of the obtained laminate was measured under the conditions described below. Further, the skin layers were welded to each other using a high-frequency welder under the conditions described below, and the 180 ° peel strength and the shear strength were measured. The strength was measured.
  • polybutylene succinate which is an aliphatic polyester-based biodegradable plastic
  • the coating resin polybutylene succinate Showa High content child made Pionore # 1 0 0 0
  • the coating resin polybutylene succinate is an aliphatic poly ester-based biodegradable plastic as (resin laminate) 7 0 mass 0/0, natural products About 30% by mass of Matapy NF 01, a biodegradable plastic, was previously melt-kneaded with a pre-mixer, and then 0.2 mm resin sheet with a calender at 120 to 140 ° C. Was prepared and laminated on both sides of the base material.
  • the peel strength between the base material and the surface layer of the obtained laminate was measured under the conditions described below. Further, the skin layers were welded to each other with a high-frequency welder under the conditions described below, and the 180 ° peel strength was measured. The shear strength was measured.
  • This soft chlorinated vinyl sheet contains 50% by mass of a chlorinated butyl resin (degree of polymerization: 140,000 manufactured by Vittek Co., Ltd.), 40% by mass of a plasticizer (DOP manufactured by Dainippon Ink Co., Ltd.), and calcium carbonate.
  • Breaking strength 'elongation JIS-L-1096 6.1 2.1 (1) A method Constant speed elongation method Tear strength: JIS-Shichi 1096 6.1 5.4 C method Trazoid method Welder's strength' Welder peel strength : JIS-K6006 according to A6008
  • the breaking strength and elongation were measured by JIS-L-1096 6.12.1 (1) A method and constant-speed elongation method.
  • the tear strength was determined by the JI SL-1096 6.15.4C method and the transoid method.
  • the welder shear strength and the welder peel strength were determined in accordance with JIS-A6008.
  • the processing conditions for the high-frequency welder the output was set to 3 kW, the generated current was set to 0.26 A, and the processing time was set to 1 second using the Seidensha KW3000 T, and the processing time was set to 1 second without blade preheating. Performed under the conditions.
  • Example 2 having an opening diameter of 0.5 mm ⁇ 0.5 mm of the base cloth, the chemical components of the base material and the skin resin were similar, and a practically sufficient peel strength was obtained. .
  • the adhesive strength (peel strength and shear strength) of the laminates after welding is the same or a resin with chemical components similar to each other. Adhesive strength has been obtained.
  • the biodegradable laminated resin sheet and the laminated sheet molded article according to the present invention have the following excellent effects.
  • the biodegradable laminated resin sheet will exhibit biodegradability as a whole laminated resin sheet, and will adversely affect the environment due to the generation of endocrine disrupting substances such as dioxins in the use of turbolin and poly laminate sheets. It can be used without.
  • the biodegradable laminated resin sheet may be composed of a woven fabric, a knitted fabric, or a non-woven fabric as the base fabric, and has excellent heat welding processability and biodegradability while ensuring sufficient strength. It becomes possible.
  • the biodegradable laminated resin sheet is composed of a resin base fabric and a resin laminate at the lamination temperature. Since it is composed of biodegradable plastic raw materials that are chemically compatible, it has the same peel strength and high-frequency welder processing characteristics as chloride chloride.
  • the biodegradable laminated resin sheet has a configuration in which the resin laminate faces and welds to the opening of the resin base fabric, so the variety of choice between the resin base fabric and the resin laminate is widened. .
  • the biodegradable laminated resin sheet formed from the biodegradable laminated resin sheet is formed into a molded article, and the biodegradable laminated resin sheet is molded by using a high-frequency girder so as to be environmentally friendly. It is possible to obtain a sheet-like product having excellent properties.

Landscapes

  • Laminated Bodies (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

A biodegradable laminated resin sheet (1) which is composed of a resin base fabric (2) for reinforcement and laminated resin materials (3a, 3b) laminated on both surfaces of the resin base fabric (2), characterized in that the resin base fabric and the laminated resin materials comprises a biodegradable plastic. The biodegradable laminated resin sheet is biodegradable as a whole, exhibits excellent strength at break and exfoliation strength, and also is excellent in high frequency welder processability in binding a plurality of the sheets and excellent in 180˚ peel strength and shear peel strength after such processing.

Description

生分解性積層樹脂シート及ぴその成形物品 産業上の利用分野  Biodegradable laminated resin sheet and its molded articles Industrial application fields
本発明は、 生分解性積層樹脂シート、 その生分解性積層樹脂シートにより形 成された生分解性積層樹脂シート成形物品に関するものである。 背景技術  TECHNICAL FIELD The present invention relates to a biodegradable laminated resin sheet, and a molded article of a biodegradable laminated resin sheet formed from the biodegradable laminated resin sheet. Background art
一般に、 積層樹脂シートは、 基布の両面に樹脂層を積層して構成され、 耐水 性、 耐磨耗性、 裁断性、 溶着性に優れた積層物であり、 ターボリンやポリラミ ネートシ一トとして工業用途や日用雑貨等の種々の分野に幅広く用いられてい る。 例えば、 工業分野等においては、 物流用途のフレキシブルコンテナや軟質 包材、 土木建築分野における土木シート、 野積みシート、 養生シー.トゃ日用雑 貨分野におけるレジャーシート、 特殊エプロン、 各種包材、 さらに屋内外の宣 伝媒体である大型垂れ幕や旗等に用いられている。  Generally, a laminated resin sheet is formed by laminating a resin layer on both sides of a base fabric, and is a laminate having excellent water resistance, abrasion resistance, cutting properties, and welding properties, and is industrially manufactured as turbolin or a polylaminated sheet. It is widely used in various fields such as applications and daily necessities. For example, in the industrial field etc., flexible containers and flexible packaging materials for logistics applications, civil engineering sheets in the civil engineering and construction fields, unstacked sheets, curing sheets, leisure seats in the daily sundries field, special aprons, various packaging materials, It is also used for large banners and flags, which are used as indoor and outdoor media.
この積層樹脂シートは、 基布の両面に樹脂層が積層されて構成される。 そし て、 この積層樹脂シートの基布は、 積層樹脂シート全体の強化を図る事を目的 として使用されるものである。  This laminated resin sheet is formed by laminating resin layers on both sides of a base fabric. The base fabric of the laminated resin sheet is used for the purpose of strengthening the entire laminated resin sheet.
従来、 積層樹脂シートの基布は、 木綿、 麻等の天然繊維、 ポリエステル繊維、 ポリアミド繊維、 ポリオレフィン繊維、 ポリアタリル繊維等の合成繊維のフィ ラメントゃステープルまたはポリエチレンゃポリプロピレン等のポリオレフィ ンのスプリットヤーンやフラットヤーンを単独または混合して織布や編布にし て構成され、 あるいは、 天然繊維やポリエステル、 ポリオレフイン等の合成樹 脂繊維から形成された不織布として構成され使用されている。  Conventionally, the base fabric of the laminated resin sheet is made of natural fibers such as cotton and hemp, and filament yarns of synthetic fibers such as polyester fibers, polyamide fibers, polyolefin fibers, and polyataryl fibers or split yarns of polyolefins such as polyethylene and polypropylene. It is used as a woven or knitted fabric by using flat yarn alone or as a mixture, or as a nonwoven fabric formed from natural fibers, synthetic resin fibers such as polyester and polyolefin.
そして、 このような基布の両面に軟質ポリ塩化ビュル樹脂、 ポリオレフイン 樹脂、 ポリウレタン樹脂等の熱可塑性樹脂を塗料や溶融状態にして、 種々の積 層装置を用いて樹脂層として積層して一体成形することによって、 積層樹脂シ 一トが製造される。 しかしながら、 このような従来の積層樹脂シートは、 使用後に廃棄する際に プラスチック廃棄物として焼却や埋め立てに供されているのが現状である。こ のようにプラスチック廃棄物として焼却や埋め立てすることは、 自然循環型社 会に対応する物品の構成が望まれる昨今重要な環境問題となりつつある。 Then, a thermoplastic resin such as a soft polychlorinated vinyl resin, a polyolefin resin, or a polyurethane resin is coated or melted on both surfaces of such a base fabric, and laminated as a resin layer using various laminating devices to form an integral molding. By doing so, a laminated resin sheet is manufactured. However, at present, such conventional laminated resin sheets are incinerated or landfilled as plastic waste when disposed after use. Incineration and landfilling as plastic waste in this way is becoming an important environmental issue in recent years, as it is desired to construct articles that are compatible with a natural recycling society.
特に、 製造業や物流業用途のフレキシブルコンテナや軟質包材、 土木建築用 途の土木シート、 野積シートには物性の他、 加工性や使用適性から軟質ポリ塩 化ビュルが多用されており、 焼却時のダイォキシン類や、 埋め立て時の内分泌 攪乱物質の問題等を抱えている。 そのため最近は、 ポリオレフイン等の非塩ィ匕 ビュル樹脂に置き換わりつつあるが、 物性や加工性に弱点があると共に、 依然 焼却処理されているのが一般的である。  In particular, in addition to physical properties, flexible polychlorinated vinyl is widely used for flexible containers and flexible packaging materials for the manufacturing and logistics industries, civil engineering sheets for civil engineering construction, and open-air sheets due to their workability and suitability for use. There are problems such as dioxins at the time and endocrine disrupting substances at the time of landfill. For this reason, it has recently been replaced by non-salt-dye bur resin such as polyolefin, but it has weaknesses in physical properties and workability and is still generally incinerated.
このような観点から、 生分解性プラスチックに関する期待が高まっている。 この生分解性プラスッチックは、一定期間土中に放置されたりコンポスター(堆 肥化装置) で発酵されたりすることで、 微生物により水と炭酸ガスに分解され るため、 ダイォキシン類等の内分泌攪乱物質の発生の問題を解消する素材とし て様々な構成が提案されている。  From this point of view, expectations for biodegradable plastics are increasing. This biodegradable plastic is decomposed into water and carbon dioxide by microorganisms when left in the soil for a certain period of time or fermented by a composter (composting device), so that endocrine disrupters such as dioxins are used. Various configurations have been proposed as materials for solving the problem of occurrence of cracks.
このような生分解性プラスチックを用いた例として、 例えば特開 2 0 0 0— 1 2 9 6 4 6号公報には、 織布に生分解性フラットヤーンを製織して構成され た土のう袋が記載されている。 この土のう袋の分解速度は、 環境温度や場所等 により変わってくるが、 通常、 2〜3年で分^^されるものである。  As an example of using such a biodegradable plastic, for example, Japanese Patent Application Laid-Open No. 2000-129496 discloses a sandbag formed by weaving a biodegradable flat yarn on a woven fabric. Has been described. The decomposition rate of this sandbag varies depending on the environmental temperature and location, but is usually divided in two to three years.
しかしながら、 従来の土のう袋等は、 土のう袋としての引っ張り強度を有し、 しかも生分解性であるため、 その用途としては機能面からも環境面からも有用 であると考えられるが、 皮膜層がないため当然前述のターポリンゃポリラミネ ートシートの用途には不向きである。  However, conventional sandbags have the tensile strength of sandbags and are biodegradable, so they are considered to be useful from a functional and environmental point of view. Of course, it is not suitable for the use of the above-mentioned tarpaulin-polylaminate sheet.
また、 一般にポリ塩ィ匕ビュルを代替した素材として使用される時、 例えば、 ポリオレフインからなる積層樹脂シートは、 接合処理を行なう場合に、 接合強 度が大きく接合作業を簡単に行なうことができる高周波ウェルダーなどの熱溶 着の接合処理に適していなかった。 ·  In general, when used as a material that substitutes for polychlorinated rubber, for example, a laminated resin sheet made of polyolefin has a high bonding strength when performing a bonding process, and a high frequency that can easily perform the bonding work. It was not suitable for heat welding such as welding. ·
なお、 生分解性プラスチックの素材であつても縫製では漏水したり縫い目強 度に問題があり、 強度を維持し軟性を備えかつ熱溶着の接合処理を行なうこと ができる構成が望まれていた。 Even when using biodegradable plastic materials, there is a problem of leakage of water and stitch strength during sewing. There was a need for a configuration that could do this.
本発明は、前記した問題点に鑑みて創案されたものであり、本発明の課題は、 積層樹脂シート全体が生分解性である生分解性積層樹脂シートおよび生分解性 積層樹脂シート成形物品を提供することである。 また、 本発明の別の課題は、 積層シートが破断強度、 剥離強さに.優れさらに積層物同士の高周波ウェルダー 加工性と加工後の 180度剥離強さ、 剪断剥離強さが優れた生分解性積層樹脂シ 一トおよび生分解性積層樹脂シート成形物品を提供することである。 発明の開示  The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a biodegradable laminated resin sheet in which the entire laminated resin sheet is biodegradable and a biodegradable laminated resin sheet molded article. To provide. Another object of the present invention is that the laminated sheet is excellent in breaking strength and peeling strength, and high-frequency welder between laminates, biodegradability with excellent 180 degree peeling strength after processing, and excellent shearing peeling strength It is an object of the present invention to provide a laminated resin sheet and a biodegradable laminated resin sheet molded article. Disclosure of the invention
本発明にかかる生分解性積層樹脂シートは、 以下の構成とした。 すなわち、 強化用の樹脂製基布と、 この樹脂製基布の両面に積層された樹脂積層物とから 構成され、 前記樹脂製基布及び前記樹脂積層物が生分解性プラスチックから構 成される生分解性積層樹脂シートとした。  The biodegradable laminated resin sheet according to the present invention has the following configuration. That is, it is composed of a resin base cloth for reinforcement and a resin laminate laminated on both sides of the resin base cloth, and the resin base cloth and the resin laminate are composed of biodegradable plastic. This was a biodegradable laminated resin sheet.
このように構成することにより、 積層樹脂シート全体が生分解性であるので、 積層樹脂シート全体として生分解性を示すこととなる。 なお、 樹脂製基布と樹 脂積層物とは溶着して形成すると都合がよい。  With this configuration, since the entire laminated resin sheet is biodegradable, the entire laminated resin sheet exhibits biodegradability. It is convenient to form the resin base fabric and the resin laminate by welding.
また、 前記生分解性積層樹脂シートにおいて、 前記樹脂製基布が、 生分解性 の織布、 生分解性の編物あるいは生分解性の不織布 (例えば、 スパンボンドさ れた生分解性の不織布) である構成とした。  Further, in the biodegradable laminated resin sheet, the resin base fabric is a biodegradable woven fabric, a biodegradable knitted fabric, or a biodegradable nonwoven fabric (for example, a spunbonded biodegradable nonwoven fabric). Was adopted.
このように構成されることにより、 生分解性積層樹脂シートは、 樹脂製基布 With this configuration, the biodegradable laminated resin sheet is made of a resin base cloth.
1 充分な生分解性を示すと同時に、 充分な強度を有するものであり、 なおか つ従来公知の積層装置により本発明の生分解性積層樹脂シートを形成すること が可能である。 (1) It has sufficient biodegradability and at the same time has sufficient strength, and the biodegradable laminated resin sheet of the present invention can be formed by a conventionally known laminating apparatus.
さらに、 前記生分解性積層樹脂シートにおいて、 前記樹脂製基布と前記樹脂 積層物が、 積層温度で化学的に相溶性を示す生分解性プラスチックから構成し た。  Further, in the biodegradable laminated resin sheet, the resin base fabric and the resin laminate are made of a biodegradable plastic that is chemically compatible at a lamination temperature.
このように構成することにより、 樹脂製基布中の所定プラスチック成分と積 層する樹脂中の所定成分との相溶性が良好であるので、 特にプライマー層を用 いずとも製造後の樹脂製基布と樹脂積層物とを一体成形した際に、 各層が渾然 一体となり、層間剥離を起こすことなく、充分な剥離強さを得ることができる。 また、 前記生分解性積層樹脂シートにおいて、 前記樹脂製基布は、 両面から 積層温度で積層された樹脂積層物同士が密着するのに充分な開口を有しており - 力つ前記樹脂製基布の両面に積層された樹脂積層物同士が積層温度で化学的に 相溶性を示す生分解性プラスチック原料から構成した。 With this configuration, the compatibility between the predetermined plastic component in the resin base fabric and the predetermined component in the resin to be laminated is good. When fabric and resin laminate are integrally molded, each layer is mixed Integrally, sufficient peel strength can be obtained without delamination. In addition, in the biodegradable laminated resin sheet, the resin base fabric has an opening enough for resin laminates laminated from both sides at a lamination temperature to be in close contact with each other. The resin laminates laminated on both sides of the cloth were composed of biodegradable plastic raw materials that are chemically compatible at the lamination temperature.
このように構成することによって、 例え樹脂製基布と樹脂積層物とが充分に 密着できないような場合であっても積層物全体として充分な剥離強さが得られ る。  With this configuration, even if the resin base fabric and the resin laminate cannot be sufficiently adhered to each other, a sufficient peel strength can be obtained as a whole of the laminate.
また、 このように構成することによって、 基布および樹脂積層物の選択のパ リエーションがひろがる。 なお、 この場合の樹脂積層物同士は、 同一の組成の 樹脂糸且成物における原料から構成されていても、 あるいは各々の樹脂の原料に ついて、 その一部が相溶性を示すものが添加されていてもよい。  In addition, this configuration broadens the selection of the base fabric and the resin laminate. In this case, the resin laminates may be composed of raw materials of the same composition of the resin thread, or may be added with a part of each resin raw material that shows compatibility. May be.
なお、 前記生分解性積層樹脂シートにより形成された生分解性積層樹脂シー ト成形物品とすることや、 また、 前記生分解性積層樹脂シートを高周波ゥエル ダ一により形成する構成としても良い。 図面の簡単な説明  In addition, a biodegradable laminated resin sheet molded article formed from the biodegradable laminated resin sheet may be used, or the biodegradable laminated resin sheet may be formed using a high-frequency heater. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明にかかる生分解性積層樹脂シートを模式的に示した断面図であ る。  FIG. 1 is a cross-sectional view schematically showing a biodegradable laminated resin sheet according to the present invention.
図 2 ( a )、 ( b ) は、 本発明にかかる生分解性積層樹脂シートの構成として 樹脂製基布と樹脂積層物との接合状態を模式的に示した一部を破断した斜視図 及び断面図である  FIGS. 2 (a) and 2 (b) are perspective views of a configuration of the biodegradable laminated resin sheet according to the present invention, which is a partially broken perspective view schematically showing a bonding state between a resin base fabric and a resin laminate. It is a sectional view
図 3は本発明にかかる生分解性プラスチックの一覧を示す表図である。 発明を実施するための最良の形態  FIG. 3 is a table showing a list of biodegradable plastics according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本宪明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described.
本発明に使用される用語は、 以下に定義されるものである。  The terms used in the present invention are as defined below.
本発明において使用される用語 「生分解性プラスチック」 とは、 その原義と は無関係に使用中は通常のプラスチックと同様に使えて、 使用後は自然界にお いて微生物が関与して低分子化合物になり、最終的に水と二酸ィ匕炭素に分解す るプラスチックである。 本発明における 「生分解性プラスチック」 は、 本発明 の積層樹脂シートを構成する樹脂製基布および樹脂積層物に成形可能であるも のであれば特に限定されず、 例えば、 ポリ乳酸等の化学合成系生分解性プラス チックや、 また、 ポリヒドロキシプチレート等の微生物産生系生分解性プラス チック、 あるいは、 澱粉 Z化学合成系グリーンブラ等の天然物系生分解性ブラ スチックを包含するものである。 The term "biodegradable plastic" as used in the present invention can be used in the same way as ordinary plastic during use, regardless of its original meaning, and is used in nature after use. It is a plastic that can be converted into low molecular compounds by microorganisms and eventually decomposed into water and carbon dioxide. The “biodegradable plastic” in the present invention is not particularly limited as long as it can be molded into a resin base fabric and a resin laminate constituting the laminated resin sheet of the present invention. Biodegradable plastics such as biodegradable plastics, microbial biodegradable plastics such as polyhydroxybutyrate, and natural biodegradable plastics such as starch Z chemically synthesized green bra. .
また、 本発明に使用される用語 「相溶性を示すプラスチック原料」 とは、 こ のようにプラスチック原料の化学的構造が近似しており、 積層した際に渾然ー 体となるようなプラスチック原料を言う。 例えば、 樹脂製基布が所定の樹脂成 分 A単独で構成されている場合あるいは A成分を含むプラスチック成分のブレ ンドである場合、 樹脂積層物を形成するプラスチック原料は、 樹脂成分 A単独 で構成されている力 あるいは A成分を含むプラスチック成分のブレンドから 構成されることを意味する。  In addition, the term “compatible plastic raw material” used in the present invention refers to a plastic raw material that has a similar chemical structure as a plastic raw material and becomes completely integrated when laminated. To tell. For example, when the resin base fabric is composed of a predetermined resin component A alone or is a blend of a plastic component containing the A component, the plastic raw material forming the resin laminate is composed of the resin component A alone. Or a blend of plastic components, including the A component.
以下、 本発明の特定の実施の形態を、 添付図面を参照して説明する。 しかし ながら、 本発明はこれらの実施の形態に限定されるものではなレ、。  Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to these embodiments.
図 1は、 生分解性積層樹脂シートを模式的に示した断面図、 図 2 ( a )、 ( b ) は、 生分解性積層樹脂シートの構成として樹脂製基布と樹脂積層物との接合状 態を模式的に示した一部を破断した斜視図及び断面図である。  Fig. 1 is a cross-sectional view schematically showing a biodegradable laminated resin sheet, and Figs. 2 (a) and (b) show the structure of a biodegradable laminated resin sheet joined to a resin base fabric and a resin laminate. It is the perspective view and sectional drawing which fractured | ruptured the part which showed the state typically.
図 1に示すように、 生分解性積層樹脂シート 1は、 生分解性プラスチック力 ら形成された強化用の樹脂製基布 2と、 この樹脂製基布 2の両面に生分解性プ ヲスチックから形成され積層された樹脂積層物 3 a , 3 bとから構成されてい る。 なお、 図 1では、 樹脂製基布 2と、 樹脂積層物 3 a, 3 bとが同じ厚みと して示しているが、 その厚みは任意であり生分解性積層樹脂シート 1として平 坦性を維持できる構成であれば、 特に、 厚みは限定されるものではない。  As shown in FIG. 1, a biodegradable laminated resin sheet 1 is composed of a reinforcing resin base fabric 2 formed from biodegradable plastic force, and a biodegradable plastic on both sides of the resin base fabric 2. The resin laminates 3a and 3b are formed and laminated. In FIG. 1, the resin base fabric 2 and the resin laminates 3a and 3b are shown as having the same thickness, but the thickness is arbitrary and the biodegradable laminated resin sheet 1 has a flatness. The thickness is not particularly limited as long as the thickness can be maintained.
なお、 ここで使用される生分解性プラスチックとは、 使用中は通常のプラス チックと同様に使えて、 使用後は自然界において微生物が関与して低分子化合 物になり、 最終的に水と二酸化炭素に分解するプラスチックである。  The biodegradable plastic used here can be used in the same way as ordinary plastic during use, and after use, microorganisms take part in nature to become low molecular weight compounds, which eventually become water and dioxide. It is a plastic that breaks down into carbon.
すなわち、 生分解性プラスチックは、 微生物等の菌体外酵素により分解し、 低分子量化合物となり最終的に微生物等により、好気的分解条件下(酸素の存 在下) では、 二酸ィヒ炭素と水に分解し、 缣気的分解条件下 (酸素の欠損下) で は、 メタンと二酸ィ匕炭素に分解されるものである。 In other words, biodegradable plastics are decomposed by extracellular enzymes such as microorganisms, Under low aerobic conditions (in the presence of oxygen), it is decomposed into carbon dioxide and water under aerobic decomposition conditions (in the presence of oxygen), and finally under aerobic decomposition conditions (in the absence of oxygen). It is decomposed into methane and carbon dioxide.
また、 本発明の生分解性積層樹脂シート 1を構成する樹脂製基布 2および樹 脂積層物 3 a, 3 bに成形可能であるものであれば特に限定されず、 例えば、 図 3に示すように、 ポリ乳酸等の化学合成系生分解性プラスチックや、 また、 ポリヒドロキシブチレート等の微生物産生系生分解性プラスチック、 あるいは、 澱粉ノ化学合成系グリ一ンプラ等の天然物系生分解性プラスチックが挙げられ る。 なお、 図 3に示す適用において、 「〇」 は、 特にここで示した生分解'性積層 樹脂シート 1に用いた場合に最好適であり、 「△」 は好適であり、 無印は適用可 能であることを示している。  Further, there is no particular limitation as long as it can be molded into the resin base fabric 2 and the resin laminates 3a and 3b constituting the biodegradable laminated resin sheet 1 of the present invention. As described above, chemically synthesized biodegradable plastics such as polylactic acid, or microbial biodegradable plastics such as polyhydroxybutyrate, or natural biodegradable plastics such as starch-free chemically synthesized green plastic Plastics. In the application shown in FIG. 3, “〇” is most suitable especially when used for the biodegradable laminated resin sheet 1 shown here, “△” is preferable, and no mark is applicable. It indicates that it is possible.
樹脂製基布 2は、 生分解性プラスチックを糸状にして織つて形成した織布の 構成や、 また、 生分解性プラスチックを糸状にして編んで形成した編物の構成 や、 あるいは、 生分解性プラスチックを繊維状にして形成したスパンボンド等 の不織布である構成であっても良い。 なお、 樹脂製基布 2は、 図 3に示すよう に、 微生物産生系、 化学合成系、 天然物系の生分解性プラスチックをそれぞれ 単独あるいは適宜ブレンドして使用しても構わない。  The resin base fabric 2 has a structure of a woven fabric formed by weaving biodegradable plastic into a thread, a structure of a knit formed by knitting a biodegradable plastic into a thread, or a biodegradable plastic. May be a nonwoven fabric such as a spun bond formed into a fibrous form. As shown in FIG. 3, the resin base fabric 2 may be a biodegradable plastic of a microorganism-producing type, a chemically synthesized type, or a natural product type, which may be used alone or in an appropriate blend.
そして、 この樹脂製基布 2は、 樹脂積層物 3 a、 3 bに対して相溶性を示す 生分解性プラスチック原料から構成されることが好ましい。 こ^でいう相溶性 を示すとは、 用いるプラスチック原料の化学的構造が近似しており、 積層した 際に渾然一体となるようなプラスチック原料を言う。 もちろん、 所定の樹脂成 分単独で構成されている場合あるいは、 ある成分を含むプラスチック成分の混 紡や混織等の混合系である場合、 樹脂積層物を形成するプラスチック原料は、 樹脂成分単独で構成されている力、 あるいは、 前記成分を含むプラスチック成 分として使用される。  The resin base fabric 2 is preferably made of a biodegradable plastic raw material that is compatible with the resin laminates 3a and 3b. The term “compatible” as used herein refers to a plastic raw material that has a similar chemical structure to the plastic raw material used and that is completely integrated when laminated. Of course, when the resin component is composed of a predetermined resin component alone, or when the plastic component containing a certain component is a mixed system such as a blended or mixed fabric, the plastic raw material forming the resin laminate is composed of the resin component alone. Used as a configured force or as a plastic component containing the above components.
また、 この樹脂製基布 2は、 樹脂積層物 3 a, 3 bに対して完全に介在する ように配置される構成とされることや、 また、 樹脂積層物 3 a, 3 bが対面し て接触する開口 4を備えるように構成されていても構わない。 なお、 樹脂製基 布 2が開口 4を備える構成であると、 樹脂積層物 3 a, 3 b同士のブリッジ効 果で比較的望ましい接着強度が得られる。その開口径は両側の表皮層が溶融時 にプリッジ効果を得るためには、開口 4の面積の平方根 Sに対して樹脂積層物 3 a , 3 bの各厚さ L l, L 2が S > L 1 ( L 2 ) となる関係であることが望 ましい。 The resin base cloth 2 is arranged so as to be completely interposed between the resin laminates 3a and 3b, and the resin laminates 3a and 3b face each other. It may be configured to have an opening 4 that makes contact. When the resin substrate 2 has the opening 4, the bridge effect between the resin laminates 3 a and 3 b is obtained. The result is a relatively desirable bond strength. In order to obtain a ridge effect when the skin layers on both sides are melted, the thickness of the resin laminates 3a and 3b should be S> It is desirable that the relationship be L 1 (L 2).
さらに、 表皮層の厚さに相当する開口長さ以上 (長方形の場合は短い方) 力 S 最低確保されることが条件とされてもよい。 この開口 4の構成は、 その形状に ついて特に限定されるものではないが、 正方形であることや、 また、 長方形、 あるいは他の形状であっても構わない。  Furthermore, it may be a condition that a minimum force S is secured, which is equal to or greater than the opening length corresponding to the thickness of the skin layer (the shorter one in the case of a rectangle). The configuration of the opening 4 is not particularly limited with respect to its shape, but may be square, rectangular, or another shape.
なお、 樹脂基布 2は、 その一例として、 化学合成系の生分解性プラスチック である脂肪族ポリエステルの P B S、 P B S A (昭和高分子のピオノーレ他) やポリ乳酸である P L L A (三井化学のレイシァ他) をここでは用いている。 つぎに、 樹脂積層物 3 a, 3 bは、 ここでは、 同じ厚さ寸法により形成され る。 また、 樹脂積層物 3 a, 3 bの配合に関して、 化学合成系と天然物系の生 分解性プラスチックを所定の割合で混合すると、 生分解性に優れ且つゥエルダ 一加工性を有して、 適度な柔軟性を備えるシートとして使用可能な樹脂積層物 とすることができる。 ここで、 好ましい天然物系の生分解性プラスチックの配 合割合は、 0 . 5質量%〜5 0質量%の範囲内である。 残部の化学合成系の生 分解性プラスチックは、 例えば図 3に示す高分子名称に示す素材を単独または 所定割合でブレンドしたものを使用する。 そして、 このようにして配合した素 材を溶融、 塗料化して樹脂製基布 2の両面に積層されている。  Examples of the resin base fabric 2 include aliphatic polyesters PBS and PBSA (Pionore of Showa High Polymer), which are biodegradable plastics of chemical synthesis, and PLLA, which is polylactic acid (Lishia of Mitsui Chemicals). Is used here. Next, the resin laminates 3a and 3b are formed with the same thickness here. In addition, regarding the blending of the resin laminates 3a and 3b, if a chemically synthesized biodegradable plastic and a natural product based biodegradable plastic are mixed at a predetermined ratio, it is excellent in biodegradability and has one processability. A resin laminate that can be used as a sheet having high flexibility can be obtained. Here, a preferable mixing ratio of the natural biodegradable plastic is in the range of 0.5% by mass to 50% by mass. As the remaining biosynthetic plastics of the chemical synthesis system, for example, a material indicated by a polymer name shown in FIG. 3 is used alone or in a blend at a predetermined ratio. The raw material thus mixed is melted and made into a paint, and is laminated on both surfaces of the resin base fabric 2.
なお、 樹脂製基布 2と樹脂積層物 3 a, 3 bとの接合は、 あらかじめシート 状に形成され樹脂製基布 2と樹脂積層物 3 a , 3 bとを熱により溶着すること により行なっても構わない。  The resin base fabric 2 and the resin laminates 3a, 3b are joined by welding the resin base fabric 2 and the resin laminates 3a, 3b in a sheet shape by heat. It does not matter.
さらに、 生分解性積層樹脂シート 1の樹脂製基布 2と樹脂積層物 3 a, 3 b とは、 化学成分上同じか、 近似した成分が望ましい。 望ましい近似した指標と して、 各樹脂製基布 2と樹脂積層物 3 a, 3 bに使用している樹脂の 「凝集ェ ネルギー密度」 の代表例を以下の表に要約する。
Figure imgf000010_0001
Further, the resin base fabric 2 of the biodegradable laminated resin sheet 1 and the resin laminates 3a and 3b are desirably the same or similar in chemical composition. As a preferable approximate index, the following table summarizes typical examples of the “agglomerated energy density” of the resin used for each resin base fabric 2 and resin laminates 3a and 3b.
Figure imgf000010_0001
Figure imgf000010_0002
凝集エネルギー密度 (C o h e s i v e En e r g y De n s i t y (C ED)) は、 ポリマーの分子間力に関連する値であり、 ある一定温度で結晶また は非結晶の固体状態に凝集させた時、 放出する凝集エネルギーを体積で割った 値として定義される。 本発明においては、 この凝集エネルギー密度ができるだ け近似する素材を近似した成分として規定する。 すなわち、 本発明の好ましい 実施の形態において、 樹脂製基布 2と樹脂積層物 3 a、 3 bの素材の選択を既 知の凝集エネルギー密度を基にして行っている。
Figure imgf000010_0002
Cohesive Energy Density (C ED) is a value related to the intermolecular force of a polymer, which is released when it is coagulated into a crystalline or amorphous solid state at a certain temperature. It is defined as energy divided by volume. In the present invention, a material whose cohesive energy density is as close as possible is defined as an approximate component. That is, in the preferred embodiment of the present invention, the materials for the resin base fabric 2 and the resin laminates 3a and 3b are selected based on a known cohesive energy density.
また、 樹脂製基布 2は、 開口径を維持する場合、 樹脂積層物 3 a, 3 b同士 のブリツジ効果で比較的望ましい接着強度が得られるため、 樹脂積層物 3 a, 3 bと樹脂製基布 2の化学成分が近似していなくてもよい。  When the opening diameter is maintained, the resin base fabric 2 can obtain relatively desirable adhesive strength due to the bridging effect between the resin laminates 3a and 3b. The chemical components of the base fabric 2 need not be similar.
また、 生分解性積層樹脂シート 1は、 同じ構成の比較例 (図示せず) と、 同 じ条件で加工特性を調べた場合は、 つぎのような特性を備えている。  Further, the biodegradable laminated resin sheet 1 has the following characteristics when the processing characteristics are examined under the same conditions as the comparative example (not shown) having the same configuration.
例えば、 高周波ウェルダー加工を行なった場合は、 塩化ビュルとほぼ同等の 高周波ウェルダー加工性を示す。 これは、生分解性積層樹脂シート 1の樹脂製 基布 2及び樹脂積層物 3 a , 3 bがそれぞれ、極性基を備えている樹脂を用い ているため、 高周波ウェルダー加工を行なうことで極性基の振動により発熱し 溶着性に優れるためである。 For example, when high-frequency welding is performed, it is almost equivalent to chloride chloride. Shows high frequency welder workability. This is because the resin base fabric 2 and the resin laminates 3 a and 3 b of the biodegradable laminated resin sheet 1 each use a resin having a polar group. This is because heat is generated by the vibration of the steel and the weldability is excellent.
さらに、 生分解性積層樹脂シート 1は、 引っ張り強度に優れており、 塩ィ匕ビ Furthermore, the biodegradable laminated resin sheet 1 has excellent tensile strength, and
-ルとほぼ同等の引っ張り強度を備えている。 また、 生分角军性積層樹脂シート-Has almost the same tensile strength as In addition, the raw laminated angle resin sheet
1は、 1 8 0度剥離強さにおいても優れており、 塩ィ匕ビュルとほぼ同等の剥離 強さを備えている。 No. 1 is also excellent in 180 ° peel strength, and has a peel strength almost equivalent to that of Shiridani Bull.
なお、 生分解性積層樹脂シート 1から成形される積層シート成形物品として は、 耐水性、 耐磨耗性、 裁断性、 溶着性に優れた積層物を必要とされるターボ リンゃポリラミネートシートとして工業用途や日用雑貨等の種々の分野に幅広 く用いられるシートとして使用することができる。 例えば、 工業分野等におい ては、 物流用途のフレキシブルコンテナや軟質包材、 土木建築分野における土 木シート、野積みシート、養生シートゃ日用雑貨分野におけるレジャーシート、 特殊エプロン、 各種包材、 さらに屋内外の宣伝媒体である大型垂れ幕や旗等で ある。  In addition, as a laminated sheet molded article molded from the biodegradable laminated resin sheet 1, there is a turbo phosphorus poly laminate sheet which requires a laminate having excellent water resistance, abrasion resistance, cutting properties, and weldability. It can be used as a sheet widely used in various fields such as industrial use and daily goods. For example, in the industrial field, etc., flexible containers and flexible packaging materials for logistics applications, civil engineering sheets in the civil engineering and construction fields, open stacking sheets, curing sheets, leisure products in the general sundries field, special aprons, various packaging materials, These are large banners and flags that are used as advertising media for indoors and outdoors.
このようにして構成された生分解性積層樹脂シートは、 微生物が活発に活動 できるコンポスト化条件下で 4〜 6 0日程度で生分解させることが可能である。 また、 土中に埋設させることにより、 季節あるいは土質条件にもよるが、 3〜 1 2ヶ月程度で生分解させることが可能である。  The biodegradable laminated resin sheet thus configured can be biodegraded in about 4 to 60 days under composting conditions under which microorganisms can be actively activated. By burying it in the soil, it can be biodegraded in about 3 to 12 months, depending on the season and soil conditions.
以下、 本発明の実施例について表 2を参照して説明する。 なお、 本発明は、 この実施例に限定されるものではない。  Hereinafter, examples of the present invention will be described with reference to Table 2. Note that the present invention is not limited to this embodiment.
(実施例 1 )  (Example 1)
化学合成系生分解性プラスチックの一つである脂肪族ポリエステルからなる 2 0 0 0デユールのフラットヤーンを縦 1 0本 X横 1 0本 Zィンチの打ち込み 密度で平織りに製織し基材 (樹脂製基布) を得た。 次に、 表皮用樹脂 (樹脂積 層物) として脂肪族ポリエステル系生分解性ブラスチックであるポリプチレン サクシネート (昭和高分子製ビオノーレ # 1 0 0 0 ) 7 0質量%と、 天然物系 生分解性プラスチックであるマタピー N F 0 1を 3 0質量%について、 あらか じめプレミキサーで溶融混練したものを、 1 2 0〜1 4 0 °Cのカレンダーロー ルで 0 . 2 mmの樹脂シートを作成し、 前記基材の両面に積層した。 得られた 積層物の、 基材と表面層の剥離強さは後記する条件で測定し、 さらに、 表皮層 同士を後記の条件で高周波ウェルダーにより溶着し、 1 8 0度剥離強さと、 せ ん断強さを測定した。 A base yarn (made of resin) made of 200,000-duel flat yarn made of aliphatic polyester, which is one of the chemically synthesized biodegradable plastics, is woven in a plain weave at a density of 10 x 10 and 10 in. Base cloth) was obtained. Next, as a resin for the skin (resin laminate), 70% by mass of an aliphatic polyester-based biodegradable plastic, polybutylene succinate (Bionore # 100000, manufactured by Showa Polymer Co., Ltd.) was used. About 30% by mass of Matapy NF 01 plastic A resin sheet having a thickness of 0.2 mm was prepared from the melt-kneaded mixture using a premixer using a calender roll at 120 to 140 ° C. and laminated on both surfaces of the base material. The peel strength between the base material and the surface layer of the obtained laminate was measured under the conditions described below, and the skin layers were welded to each other with a high-frequency welder under the conditions described below to obtain a 180 ° peel strength. Tensile strength was measured.
(実施例 2 )  (Example 2)
化学合成系生分解性ブラスチックの一つであるポリ乳酸からなる 5 0 0デュ ール (9 6 f ) の繊維を縦 2 0本 X横 2 0本/インチの打ち込み密度で平織り に製織し基材 (樹脂製基布) を得た。 次に、 被覆用樹脂 (樹脂積層物) として 脂肪族ポリエステル系生分解性プラスチックであるポリブチレンサクシネート (昭和高分子製ピオノーレ# 1 0 0 0 ) 7 0質量%と、 天然物系生分解性ブラ スチックであるマタビー N F 0 1を 3 0質量0 /。について、 あらかじめプレミキ サ一で溶融混練したものを、 1 2 0〜1 4 0 °Cのカレンダーロールで 0 . 2 m mの樹脂シートを作成し、 前記基材の両面に積層した。 得られた積層物の、 基 材と表面層の剥離強さは後記の条件で測定し、 さらに、 表皮層同士を後記の条 件で高周波ウェルダーにより溶着し、 1 8 0度剥離強さと、 せん断強さを測定 した。 500 dur (96 f) fibers made of polylactic acid, one of the chemically synthesized biodegradable plastics, are woven in a plain weave at a driving density of 20 fibers vertically and 20 fibers horizontally per inch. A substrate (resin base fabric) was obtained. Next, as a resin for coating (resin laminate), 70% by mass of polybutylene succinate (Pionole # 100000 manufactured by Showa Kobunshi), which is an aliphatic polyester-based biodegradable plastic, was used. Matabi NF 01 is a plastic 30 mass 0 /. The resin was melt-kneaded in advance with a premixer to prepare a 0.2 mm resin sheet with a calender roll at 120 to 140 ° C., and laminated on both surfaces of the base material. The peel strength between the base material and the surface layer of the obtained laminate was measured under the conditions described below. Further, the skin layers were welded to each other using a high-frequency welder under the conditions described below, and the 180 ° peel strength and the shear strength were measured. The strength was measured.
(比較例 1 )  (Comparative Example 1)
ォレフィン系プラスチックの一つであるポリエチレンからなる 2 0 0 0デニ ールのフラットヤーンを縦 1 0本 X横 1 0本/インチの打ち込み密度で平織り に製織し基材 (樹脂製基布) を得た。 次に、 表皮用樹脂 (樹脂積層物) として 脂肪族ポリエステル系生分解性プラスチックであるポリプチレンサクシネート A 200-denier flat yarn made of polyethylene, which is one of the plastics of olefins, is woven in a plain weave at a driving density of 10 lines x 10 lines / inch and the base material (resin base cloth) is formed. Obtained. Next, as a resin for skin (resin laminate), polybutylene succinate, which is an aliphatic polyester-based biodegradable plastic
(昭和高分子製ピオノーレ# 1 0 0 0 ) 7 0質量%と、 天然物系生分解性ブラ スチックであるマタピー N F 0 1を 3 0質量%について、 あらかじめプレミキ サ一で溶融混練したものを、 1 2 0〜1 4 0 °Cのカレンダーロールで 0 . 2 m mの樹脂シートを作成し、 前記基材の両面に積層した。 得られた積層物の、 基 材と表面層の剥離強さ後記の条件で測定し、 さらに、 表皮層同士を後記の条件 で高周波ゥエルダーにより溶着し、 1 8 0度剥離強さと、 せん断強さを測定し た。 (比較例 2 ) (Showa Polymer's Pionore # 100000) 70% by mass and 30% by mass of natural material-based biodegradable plastic Matapy NF 01 were melt-kneaded with a premixer in advance. A 0.2 mm resin sheet was prepared with a calender roll at 120 to 140 ° C., and laminated on both sides of the base material. Peel strength of the base material and surface layer of the obtained laminate was measured under the conditions described below, and the skin layers were welded to each other by a high-frequency elder under the conditions described below to obtain a 180 degree peel strength and a shear strength. Was measured. (Comparative Example 2)
合成繊維の一つである 5 0 0デニールのポリェ テルフイラメント系 (9 6 f ) を使って縦 2 0本 X横 2 0本/インチの打ち込み密度で平織りに製織し基 材 (樹脂製基布) を得た。 次に、 被覆用樹脂 (樹脂積層物) として脂肪族ポリ エステル系生分解性プラスチックであるポリブチレンサクシネート (昭和高分 子製ピオノーレ # 1 0 0 0 ) 7 0質量0 /0と、 天然物系生分解性プラスチックで あるマタピー N F 0 1を 3 0質量%について、 あらかじめプレミキサーで溶融 混練したものを、 1 2 0〜 1 4 0 °Cのカレンダーロー で 0 . 2 mmの樹脂シ ートを作成し、 前記基材の両面に積層した。 得られた積層物の、 基材と表面層 の剥離強さは後記の条件で測定し、 さらに、 表皮層同士を後記の条件で、 高周 波ウェルダーにより溶着し、 1 8 0度剥離強さと、 せん断強さを測定した。 Using a 500 denier polyester filament system (96 f), which is one of the synthetic fibers, weave in a plain weave with a driving density of 20 lines vertically and 20 lines horizontally per inch. ) Got. Then, the coating resin polybutylene succinate (Showa High content child made Pionore # 1 0 0 0) is an aliphatic poly ester-based biodegradable plastic as (resin laminate) 7 0 mass 0/0, natural products About 30% by mass of Matapy NF 01, a biodegradable plastic, was previously melt-kneaded with a pre-mixer, and then 0.2 mm resin sheet with a calender at 120 to 140 ° C. Was prepared and laminated on both sides of the base material. The peel strength between the base material and the surface layer of the obtained laminate was measured under the conditions described below. Further, the skin layers were welded to each other with a high-frequency welder under the conditions described below, and the 180 ° peel strength was measured. The shear strength was measured.
(比較例 3 )  (Comparative Example 3)
合成繊維の一つである 5 0 0デニールのポリエステルフィラメント系 (9 6 f ) を使って縦 2 0本 X横 2 0本/インチの打ち込み密度で平織りに製織し基 材 (樹脂製基布) を得た。 次に、 被覆用樹脂 (樹脂積層物) として軟質塩化ビ ニルシート用いた。 この軟質塩化ビュルシートは、 塩化ビュル樹脂 (ヴィテツ ク (株) 製重合度: 1 4 0 0 ) を 5 0質量%、 可塑剤 (大日本インキ (株) 製 D O P) 4 0質量%、 炭酸カルシウム 3質量% (白石カルシウム)、 安定剤 (ァ デカサイザ一) 4質量%、 顔科 3質量%とについて、 あらかじめプレミキサー で溶融混練したものを、 1 7 0〜1 9 0 °Cのカレンダーロールで 0 . 2 mmの 樹脂シートを作成し、 前記基材の両面に積層した。 得られた積層物の、 基材と 表面層の剥離強さは後記の条件で測定し、 さらに、 表皮層同士を後記の条件で 高周波ウェルダーにより溶着し、 1 8 0度剥離強さと、せん断強さを測定した。 2 A base fabric (resin base fabric) woven in a plain weave at a driving density of 20 filaments by 20 filaments / inch using a 500-denier polyester filament system (96 f), which is one of synthetic fibers I got Next, a soft vinyl chloride sheet was used as a coating resin (resin laminate). This soft chlorinated vinyl sheet contains 50% by mass of a chlorinated butyl resin (degree of polymerization: 140,000 manufactured by Vittek Co., Ltd.), 40% by mass of a plasticizer (DOP manufactured by Dainippon Ink Co., Ltd.), and calcium carbonate. About 3% by mass (calcium Shiroishi), 4% by mass of stabilizer (Adecaizer), and 3% by mass of facial medicine, melt-kneaded with a pre-mixer in advance, using a calender roll at 170 to 190 ° C. A 0.2 mm resin sheet was prepared and laminated on both sides of the substrate. The peel strength between the base material and the surface layer of the obtained laminate was measured under the conditions described below. Further, the skin layers were welded to each other with a high-frequency welder under the conditions described below, and the 180 ° peel strength and the shear strength were measured. Was measured. Two
(実施例 1 2、比較例 1 3)の性能比較 Performance comparison of (Example 12 and Comparative Example 13)
Figure imgf000014_0001
Figure imgf000014_0001
(測定方法及び判定基準) (Measurement method and criteria)
破靳強度'伸び率: JIS-L - 1096 6.1 2.1 (1 )A法 定速伸長形法 引裂強度: JIS—し一 1096 6.1 5.4 C法 トラぺゾイド法 ウェルダーせん靳強さ'ウェルダー剥離強さ: JIS— A6008に準じる 耐揉強さ: JIS— K一 6328  Breaking strength 'elongation: JIS-L-1096 6.1 2.1 (1) A method Constant speed elongation method Tear strength: JIS-Shichi 1096 6.1 5.4 C method Trazoid method Welder's strength' Welder peel strength : JIS-K6006 according to A6008
生分解性: JIS— K一 6953に準じる  Biodegradability: According to JIS-K-1 6953
差替え用紙(規則 26) なお、 破断強度、 伸び率は、 J I S— L—1096 6. 12. 1 (1) A 法、 定速伸張形法により行なった。 また、 引裂強度は、 J I S-L-1096 6. 1 5. 4 C法、 トラぺゾイド法により行なった。 さらに、 ウェルダーせ ん断強さ、 及ぴ、 ウェルダー剥離強さは、 J I S— A6008に準じて行なつ た。 さらに、 高周波ウェルダーの加工条件として、 精電社の KW3000 Tを 使用して、 出力を 3 k wとし、 発生電流を 0. 26 Aとし、 かつ、 加工時間と して 1秒として刃の予熱なしの条件により行なった。 Replacement form (Rule 26) The breaking strength and elongation were measured by JIS-L-1096 6.12.1 (1) A method and constant-speed elongation method. The tear strength was determined by the JI SL-1096 6.15.4C method and the transoid method. Furthermore, the welder shear strength and the welder peel strength were determined in accordance with JIS-A6008. Furthermore, as the processing conditions for the high-frequency welder, the output was set to 3 kW, the generated current was set to 0.26 A, and the processing time was set to 1 second using the Seidensha KW3000 T, and the processing time was set to 1 second without blade preheating. Performed under the conditions.
以上の実施例と比較例から判る通り、 基材成分と表皮用樹脂が近似成分の場 合 (実施例 1) は基材と表皮用樹脂との成分が離れている比較例 1よりも剥離 強さが大幅に優れており、 塩化ビュルシートとほぼ同等の加工物性を備えてい る。  As can be seen from the above Examples and Comparative Examples, when the base material component and the skin resin are similar components (Example 1), the peel strength is higher than in Comparative Example 1 in which the components of the base material and the skin resin are separated. The properties are much better, and it has almost the same processing properties as chloride chloride sheet.
また、 基布の開口径 0. 5mmX0. 5 mmを有する実施例 2は、 基材と表 皮用樹脂との化学的成分も近似しており、 実用上十分な剥離強さが得られてい る。  Further, in Example 2 having an opening diameter of 0.5 mm × 0.5 mm of the base cloth, the chemical components of the base material and the skin resin were similar, and a practically sufficient peel strength was obtained. .
さらに、 積層物同士のウェルダー後の接着強度 (剥離強さ及び剪断強度) は 同一の樹脂ないしは互いに近似した化学的成分を有する樹脂を使用しているた め基布の開口径にかかわらず所定の接着強度を得られている。 産業上の利用可能性  Furthermore, the adhesive strength (peel strength and shear strength) of the laminates after welding is the same or a resin with chemical components similar to each other. Adhesive strength has been obtained. Industrial applicability
以上述べたように、 本発明にかかる生分解性積層樹脂シート及びその積層シ 一ト成形物品は以下の優れた効果を奏する。  As described above, the biodegradable laminated resin sheet and the laminated sheet molded article according to the present invention have the following excellent effects.
(1) 生分解性積層樹脂シートは、 積層樹脂シート全体として生分解性を示す こととなり、 ターボリンやポリラミネートシートの用途に、 ダイォキシン類等 の内分泌攪乱物質等の発生による環境に対する悪影響を与えることなく使用す ることができる。  (1) The biodegradable laminated resin sheet will exhibit biodegradability as a whole laminated resin sheet, and will adversely affect the environment due to the generation of endocrine disrupting substances such as dioxins in the use of turbolin and poly laminate sheets. It can be used without.
(2) 生分解性積層樹脂シートは、 基布の構成として織布、 編物、 不織布から 構成しても良く、 充分な強度を確保しながら熱溶着加工性に優れ生分解性を示 すことが可能となる。  (2) The biodegradable laminated resin sheet may be composed of a woven fabric, a knitted fabric, or a non-woven fabric as the base fabric, and has excellent heat welding processability and biodegradability while ensuring sufficient strength. It becomes possible.
(3) 生分解性積層樹脂シートは、 榭脂製基布と樹脂積層物が積層温度で化学 的に相溶性を示す生分解性ブラスチック原料から構成されているため、塩化ビ ュルと同等の剥離強さ、 高周波ウェルダー加工特性を有している。 (3) The biodegradable laminated resin sheet is composed of a resin base fabric and a resin laminate at the lamination temperature. Since it is composed of biodegradable plastic raw materials that are chemically compatible, it has the same peel strength and high-frequency welder processing characteristics as chloride chloride.
( 4 ) 生分解性積層樹脂シートは、 樹脂製基布の開口に対して樹脂積層物が対 面して溶着する構成であるため、 樹脂製基布および樹脂積層物の選択のバリェ ーションがひろがる。  (4) The biodegradable laminated resin sheet has a configuration in which the resin laminate faces and welds to the opening of the resin base fabric, so the variety of choice between the resin base fabric and the resin laminate is widened. .
( 5 ) 前記生分解性積層樹脂シートにより形成された生分解性積層樹脂シート 成形物品とすることや、 また、 前記生分解性積層樹脂シートを高周波ゥエルダ 一により成形することにより、 環境に優しく加工性に優れたシート状製品を得 ることができる。  (5) The biodegradable laminated resin sheet formed from the biodegradable laminated resin sheet is formed into a molded article, and the biodegradable laminated resin sheet is molded by using a high-frequency girder so as to be environmentally friendly. It is possible to obtain a sheet-like product having excellent properties.

Claims

請求の範囲 The scope of the claims
1 . 強化用の樹脂製基布と、 この樹脂製基布の両面に積層された樹脂積層物 とから構成され、 前記樹脂製基布及び前記樹脂積層物が生分解性ブラスチック から構成されることを特徴とする生分解性積層樹脂シート。 1. A resin base fabric for reinforcement, and a resin laminate laminated on both sides of the resin base fabric, wherein the resin base fabric and the resin laminate are made of biodegradable plastic. A biodegradable laminated resin sheet, characterized in that:
2 . 前記樹脂製基布が、 生分解性の織布、 生分解性の編物あるいは生分解性 の不織布であることを特徴とする請求の範囲第 1項に記載の生分解性積層樹脂 シート。  2. The biodegradable laminated resin sheet according to claim 1, wherein the resin base fabric is a biodegradable woven fabric, a biodegradable knitted fabric, or a biodegradable nonwoven fabric.
3 . 前記樹脂製基布と前記樹脂積層物が積層温度で化学的に相溶性を示す生 分解性プラスチック原料から構成されていることを特徴とする請求の範囲第 1 項に記載の生分解性積層樹脂シート。  3. The biodegradable resin according to claim 1, wherein the resin base fabric and the resin laminate are made of a biodegradable plastic raw material that is chemically compatible at a lamination temperature. Laminated resin sheet.
4 . 前記樹脂製基布と前記樹脂積層物が積層温度で化学的に相溶性を示す生 分解性プラスチック原料から構成されていることを特徴とする請求の範囲第 2 項に記載の生分解性積層樹脂シート。  4. The biodegradable product according to claim 2, wherein the resin base fabric and the resin laminate are made of a biodegradable plastic raw material that is chemically compatible at a lamination temperature. Laminated resin sheet.
5 . 前記樹脂製基布は、 両面から積層温度で積層された樹脂積層物同士が密 着するのに充分な開口を有しており、 かつ前記基布の両面に積層された樹脂積 層物同士が積層温度で化学的に相溶性を示す生分解性プラスチックから構成さ れていることを特徴とする請求の範囲第 1項に記載の生分解性積層樹脂シート,5. The resin base fabric has an opening enough for the resin laminates laminated on both sides at the laminating temperature to adhere to each other, and the resin laminates laminated on both surfaces of the base fabric. The biodegradable laminated resin sheet according to claim 1, wherein each of the biodegradable plastic sheets is composed of biodegradable plastics that are chemically compatible at a lamination temperature.
6 . 前記樹脂製基布は、 両面から積層温度で積層された樹脂積層物同士が密 着するのに充分な開口を有しており、 かつ前記基布の両面に積層された樹脂積 層物同士が積層温度で化学的に相溶性を示す生分解性プラスチックから構成さ れていることを特徴とする請求の範囲第 2項に記載の生分解性積層樹脂シート <6. The resin base fabric has an opening sufficient for the resin laminates laminated at both sides at the laminating temperature to adhere to each other, and the resin laminates laminated on both surfaces of the base fabric. The biodegradable laminated resin sheet according to claim 2, wherein each of the biodegradable plastic sheets is composed of biodegradable plastics that are chemically compatible at a lamination temperature.
7 . 前記樹脂製基布は、 両面から積層温度で積層された樹脂積層物同士が密 着するのに充分な開口を有しており、 かつ前記基布の両面に積層された樹脂積 層物同士が積層温度で化学的に相溶性を示す生分解性プラスチックから構成さ れていることを特徴とする請求の範囲第 3項に記載の生分解性積層樹脂シート<7. The resin base cloth has an opening enough for the resin laminates laminated at both sides at the lamination temperature to adhere to each other, and the resin laminates laminated on both sides of the base cloth. 4. The laminated biodegradable resin sheet according to claim 3, wherein the laminated plastic sheets are composed of biodegradable plastics that are chemically compatible at a lamination temperature.
8 . 請求の範囲第 1項ないし第 7項のいずれか一項に記載の生分解性積層樹 脂シートより形成された生分解性積層樹脂シート成形物品。 8. A molded article of a biodegradable laminated resin sheet formed from the biodegradable laminated resin sheet according to any one of claims 1 to 7.
9 . 前記生分解性積層樹脂シートは、 高周波ウェルダーにより形成された請 求の範囲第 8項に記載の生分解性積層樹脂シート成形物品。 9. The biodegradable laminated resin sheet is a sheet formed by a high-frequency welder. Item 10. The molded article of a biodegradable laminated resin sheet according to Item 8.
PCT/JP2002/012155 2001-11-27 2002-11-21 Biodegradable laminated resin sheet and article formed therefrom WO2003045692A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002349697A AU2002349697A1 (en) 2001-11-27 2002-11-21 Biodegradable laminated resin sheet and article formed therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001360390A JP2004358658A (en) 2001-11-27 2001-11-27 Biodegradable laminated resin sheet and molded article thereof
JP2001-360390 2001-11-27

Publications (1)

Publication Number Publication Date
WO2003045692A1 true WO2003045692A1 (en) 2003-06-05

Family

ID=19171212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012155 WO2003045692A1 (en) 2001-11-27 2002-11-21 Biodegradable laminated resin sheet and article formed therefrom

Country Status (4)

Country Link
JP (1) JP2004358658A (en)
AU (1) AU2002349697A1 (en)
TW (1) TW200303264A (en)
WO (1) WO2003045692A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2473348B1 (en) * 2009-08-31 2015-10-14 PHP Fibers GmbH Sheet material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132566A (en) * 1994-11-07 1996-05-28 New Oji Paper Co Ltd Biodecomposable composite sheet material
JPH1052178A (en) * 1996-08-12 1998-02-24 Chisso Corp Sheet for agriculture and horticulture
JPH10310968A (en) * 1997-05-08 1998-11-24 Kanebo Ltd Network nonwoven fabric, sheet for separating solid from liquid using the same and its formed product
JPH1142732A (en) * 1997-07-25 1999-02-16 Toyo Purasuto:Kk Thermal adhesive biodegradable fiber composite
JPH1148436A (en) * 1997-08-05 1999-02-23 Shin Etsu Polymer Co Ltd Agricultural biodegradation sheet
JP2000014252A (en) * 1998-07-02 2000-01-18 Sakanaka Ryokka Shizai:Kk Sheet-shaped material for agriculture and horticulture
JP2000191930A (en) * 1998-12-24 2000-07-11 Daicel Chem Ind Ltd Biodegradable resin composition and its molded article
JP2000301668A (en) * 1999-04-22 2000-10-31 Showa Denko Kk Multilayer laminate and its manufacture

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132566A (en) * 1994-11-07 1996-05-28 New Oji Paper Co Ltd Biodecomposable composite sheet material
JPH1052178A (en) * 1996-08-12 1998-02-24 Chisso Corp Sheet for agriculture and horticulture
JPH10310968A (en) * 1997-05-08 1998-11-24 Kanebo Ltd Network nonwoven fabric, sheet for separating solid from liquid using the same and its formed product
JPH1142732A (en) * 1997-07-25 1999-02-16 Toyo Purasuto:Kk Thermal adhesive biodegradable fiber composite
JPH1148436A (en) * 1997-08-05 1999-02-23 Shin Etsu Polymer Co Ltd Agricultural biodegradation sheet
JP2000014252A (en) * 1998-07-02 2000-01-18 Sakanaka Ryokka Shizai:Kk Sheet-shaped material for agriculture and horticulture
JP2000191930A (en) * 1998-12-24 2000-07-11 Daicel Chem Ind Ltd Biodegradable resin composition and its molded article
JP2000301668A (en) * 1999-04-22 2000-10-31 Showa Denko Kk Multilayer laminate and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2473348B1 (en) * 2009-08-31 2015-10-14 PHP Fibers GmbH Sheet material

Also Published As

Publication number Publication date
AU2002349697A1 (en) 2003-06-10
JP2004358658A (en) 2004-12-24
TW200303264A (en) 2003-09-01

Similar Documents

Publication Publication Date Title
TWI265950B (en) A ternary mixture of biodegradable polyesters and products obtained therefrom
CA2434763C (en) Ternary mixtures of biodegradable polyesters and products manufactured from them
KR100584054B1 (en) Biaxially Oriented Polylactic Acid-Based Resin Films
JP2008044356A (en) Laminated sheet material
US20080268190A1 (en) Degradable, soft-feel netting
JP2010037679A (en) Industrial belt
CN104494260B (en) Degradable foaming coextrusion PET barrier film
JP4684060B2 (en) Laminated body
JP2011241276A (en) Biodegradable resin composition and method for producing the same
JP5346502B2 (en) Resin composition, and film and laminate using the same
WO2003045692A1 (en) Biodegradable laminated resin sheet and article formed therefrom
JP5623479B2 (en) Resin composition, and film and laminate using the same
JPH10146936A (en) Biodegradable bag with fastener
JP2013134427A (en) Sound absorbing material having laminated body of aliphatic polyester nonwoven fabric
JP2004181969A (en) Thermal fusing method of surface treated sheet
JP4072382B2 (en) Net bag for packaging with label and package using the same
KR100904144B1 (en) Biodegradable biaxially oriented laminate film
JP4242109B2 (en) Adhesive tape
JP5620190B2 (en) Biodegradable resin laminate
JP2005280797A (en) Bags made of biodegradable film
JPH10310968A (en) Network nonwoven fabric, sheet for separating solid from liquid using the same and its formed product
JP4245401B2 (en) Tarpaulin film
JP2006088490A (en) Biodegradable resin sheet and its manufacturing method
JP2022098002A (en) Packaging body for extraction
JP2004148839A (en) Surface treatment sheet excellent in joining property and its joining and gluing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase