WO2003042516A2 - Systeme de gestion de l'energie thermique d'un moteur thermique comprenant deux reseaux - Google Patents

Systeme de gestion de l'energie thermique d'un moteur thermique comprenant deux reseaux Download PDF

Info

Publication number
WO2003042516A2
WO2003042516A2 PCT/FR2002/003855 FR0203855W WO03042516A2 WO 2003042516 A2 WO2003042516 A2 WO 2003042516A2 FR 0203855 W FR0203855 W FR 0203855W WO 03042516 A2 WO03042516 A2 WO 03042516A2
Authority
WO
WIPO (PCT)
Prior art keywords
main
network
radiator
heat
pipe
Prior art date
Application number
PCT/FR2002/003855
Other languages
English (en)
Other versions
WO2003042516A3 (fr
Inventor
Ngy Srun Ap
Pascal Guerrero
Philippe Jouanny
Original Assignee
Valeo Thermique Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermique Moteur filed Critical Valeo Thermique Moteur
Priority to EP02793225A priority Critical patent/EP1499795A2/fr
Publication of WO2003042516A2 publication Critical patent/WO2003042516A2/fr
Publication of WO2003042516A3 publication Critical patent/WO2003042516A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/36Heat exchanger mixed fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/14Condenser

Definitions

  • Thermal energy management system of a heat engine comprising two networks
  • the invention relates to a thermal energy management system developed by a thermal engine of a motor vehicle, comprising a main network including a main pump for circulating a coolant cycle fluid between the vehicle engine and a main radiator exchanging heat. heat with outside atmospheric air.
  • Motor vehicles include an engine cooling system that keeps the engine at an optimal operating temperature.
  • This circuit includes a cooling radiator placed at the front of the vehicle and traversed by an air flow to evacuate the heat from the coolant cycle fluid which cools the engine.
  • the engine cooling circuit is also used to heat the passenger compartment of the vehicle by means of an air heater through which the same coolant cycle fluid flows.
  • the present invention relates to a system for managing the thermal energy of a thermal engine of a motor vehicle which overcomes these drawbacks.
  • the purpose of this system is to reduce the number of components and, consequently, the space taken up under the engine hood, as well as the cost price of the assembly.
  • the thermal energy management system further comprises a secondary network in which the same coolant cycle fluid circulates as in the main network, this secondary network.
  • this secondary network including a secondary radiator and a secondary pump, the main network and the secondary network having a common expansion tank.
  • the thermal energy management system uses a single fluid, namely the cycle fluid which cools the vehicle's thermal engine.
  • the engine coolant acts as a cold source to cool or heat all other fluids (air intake, exhaust gas, air conditioning fluid, engine and / or gearbox lubricating oil, fuel, etc.) that require it. Only the engine coolant exchanges heat with the ambient air.
  • the system includes a single expansion tank which is used for all equipment in the vehicle. The number of components, and therefore their size, is greatly reduced. Said expansion tank also allows the common filling of the two networks.
  • the expansion tank may have no interior partitions.
  • the common expansion vessel ensures the passage of cycle fluid from one network to another.
  • the common expansion vessel includes a partition for total or partial separation. In the latter case, said partition exceeds the ordinary level of the cycle fluid in the expansion tank.
  • Such a partition makes it possible to avoid the transmission of shock waves which can propagate in one of the networks to the other network.
  • the two networks are in principle separate, but the possibility of a circulation of fluid from one network to another is preserved by overflowing above the partition.
  • the partition of the expansion tank is pierced with a restriction.
  • This restriction allows communication from one network to another, but this communication is limited by the passage section of the restriction.
  • Such a restriction facilitates the filling of each of the parts of the expansion tank. She is advantageously located in the lower half of the partition.
  • the main network includes a four-way valve, a first way being connected to the outlet of the main radiator, a second way being connected to the outlet of the engine cooling circuit, a third way being connected to the inlet of the pump main and a fourth channel at the exit of one heater;
  • the system includes a control device which receives information on the temperature of the fluid at different points of the main network and of the secondary network in order to control the four-way valve;
  • control unit also controls the starting and stopping of the secondary pump
  • the main network comprises an engine pipeline on which the main pump and the heat engine are mounted, a heating pipe on which the air heater is mounted, a main radiator pipe on which the main radiator is mounted, a short circuit, the engine line, the heating line, the main radiator line and the short circuit line being connected in parallel;
  • the motor vehicle comprises one or more pieces of equipment in heat exchange relation with the environment which is external to them by means of an equipment heat exchanger, the equipment heat exchanger (s) being integrated into the main network and / or to the secondary network, each heat exchanger being in a heat exchange relationship with the coolant cycle fluid.
  • FIG. 1 is a schematic general view of a thermal energy management system according to the present invention
  • FIG. 2 is a schematic sectional view of a first variant of a common expansion tank for a thermal energy management system according to the invention
  • FIG. 3 is a second alternative embodiment of an expansion tank
  • FIG. 4 is a third alternative embodiment of an expansion tank.
  • the thermal energy management system developed by a thermal engine of the invention shown in Figure 1 consists of a main network designated by the general reference 2 and a secondary network designated by the general reference 4.
  • the main network 2 comprises a heat engine pipe 8 on which is mounted a heat engine 10.
  • a main pump 12 circulates a heat transfer fluid in the engine cooling circuit 10, as shown schematically by the arrows 14.
  • the main network also includes a radiator pipe 16 on which a main radiator 18 is mounted.
  • a short-circuit pipe 20 is mounted in parallel with the radiator pipe 16.
  • the fluid which is used to cool the heat engine 10 is also used to heat the vehicle interior. To this end, it circulates by means of a heating pipe 22 in a heating or air heater 24 mounted on the pipe 22.
  • a four-way valve 70 regulates the temperature of the engine, for example around a set temperature of 100 °.
  • a first channel 70 ⁇ of the valve 70 is connected to the radiator pipe 16, a second channel 70 2 is connected to the short-circuit line 20, a third channel 70 3 is connected to the motor line 8 and a fourth channel 70 4 is connected to the heating line 22.
  • the main network can also optionally include additional equipment such as an engine lubricating oil cooler 26 mounted on an equipment pipe 28.
  • the secondary network 4 comprises a closed loop 30 on which is mounted a secondary radiator 32.
  • An electric circulation pump 34 ensures the circulation of the coolant cycle fluid in the loop 30 and, consequently, in the secondary radiator 32.
  • optional equipment exchangers can be mounted on the cooling loop 30.
  • the vehicle is equipped with an air conditioning circuit for the passenger compartment of the motor vehicle.
  • the condenser 36 of the air conditioning circuit is mounted on the loop 30 so as to be cooled by the coolant cycle fluid which leaves the secondary radiator 32.
  • a monitoring device 40 receives a temperature signal from a probe 42 installed at the outlet of the cooling circuit of the heat engine 10 and also from a probe 44 installed at the outlet of the secondary radiator 32.
  • the monitoring device 40 uses this information to control the operation of the four-way valve 70.
  • This valve regulates the temperature of the motor and manages the short-circuit 20, air heater 22, main radiator 16 and equipment pipe 28 tracks.
  • the four-way valve 70 thus replaces the thermostatic valve usually used in conventional systems. For example, if it is necessary to heat the passenger compartment of the vehicle, the heating pipe 22 on which the air heater 24 is mounted is open. Otherwise, this pipe is closed.
  • the control device 40 also controls the operation of the pump 34 of the secondary network 4.
  • the main radiator 18 is connected to an expansion tank 50 by a pipe 52.
  • the pipe 52 is also connected to the engine pipe 8 by a branch 54.
  • the secondary radiator 32 is connected to the expansion 50 by a pipe 56.
  • the expansion tank 50 is thus common to the main network 2 and to the secondary network 4. When the temperature of the fluid increases, the latter expands and the excess volume is received in the expansion tank. Conversely, when the fluid cools, or when a loss of liquid occurs as a result of a leak, a quantity of heat transfer fluid can be admitted into the main network by a pipe 58 and into the secondary network by a line 60.
  • the main radiator 18 and the secondary radiator 32 can be produced in the form of two separate exchangers. They can also be placed one in front of the other to form an exchange module having a reduced bulk.
  • the secondary radiator 32 will preferably be placed in front of the main radiator 18.
  • the secondary radiator will see the air first. In other words, it will be the first to be cooled by the outside air flow.
  • the main radiator which will be cooled by the air flow which has already passed through the secondary radiator will advantageously be cooled.
  • the secondary network 4 will constitute a low temperature network relative to the main network 2 which will constitute a high temperature network.
  • the main radiator 18 or high temperature radiator and the secondary radiator 32 or low temperature radiator can also be part of a so-called Amultifunction ⁇ exchanger, that is to say of a heat exchange module in which the two exchangers are superimposed so as to be traversed by the same air flow, a high temperature radiator outlet manifold 18 communicating with a low temperature radiator inlet manifold 32 by a passage orifice (not shown ) valve means making it possible to open or close this passage orifice.
  • the expansion tank 50 therefore has two inlets, namely an inlet 62 for the fluid of the main network 2 and an inlet 64 for the heat transfer fluid of the secondary network 4.
  • the expansion tank 50 also has two outlets, namely a output 66 to the main network 2 and an output 68 to the secondary network 4.
  • the inputs and / or outputs can also be common, as illustrated in Figure 2 in dotted lines for outputs 66 and 68.
  • FIG. 2 shows a first alternative embodiment of the expansion tank 50 common to the main network 2 and to the secondary network 4.
  • This expansion tank has an inlet 62 connected to the main network 2 and an inlet 64 connected to the network secondary 4. It also includes an outlet 66 connected to the main network 2 and an outlet 68 connected to the secondary network 4.
  • the level of the heat transfer fluid in the expansion tank 50 has been designated by the reference 67.
  • the thermal energy management system therefore uses a single fluid, which is a difference compared to other systems that use a different fluid for each piece of equipment to be cooled.
  • This feature also allows for different configurations, depending on the engine load. In case of low load, the high temperature radiator 18 can be used to cool equipment such as the air conditioning condenser, a charge air cooler or even an exhaust gas cooler. Conversely, in the event of strong • or very heavy load of the engine, the low temperature radiator can be used to complete the cooling of the heat engine 10.
  • FIG. 3 a second alternative embodiment of the common expansion tank 50. It comprises a partition 69 which divides it into two separate parts. Thus, the main network 2 and the secondary network 4 do not communicate with each other and, in principle, no exchange of fluid is established between these two circuits, unless the level 67 of the fluid passes through above the partition 69.
  • FIG. 4 shows a third alternative embodiment of the common expansion tank 50.
  • the partition 69 is pierced by a calibrated orifice 71 which ensures a limited passage of the heat transfer fluid through the partition 69, that is to say from one network to another.
  • a circulation of fluid can be established from one network to the other, as in the case of the embodiment of FIG. 2.
  • this circulation is limited by the dimension of the calibrated orifice 71.
  • Said calibrated orifice may be replaced by a thermostatic valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

Le système de gestion de l'énergie thermique développée par un moteur thermique (10) de véhicule automobile comprend un réseau principal (2) incluant une pompe principale (12) pour faire circuler un fluide de cycle caloporteur entre le moteur thermique et un radiateur principal (18) échangeant de la chaleur avec l'air atmosphérique extérieur. Il comprend, en outre, un réseau secondaire (4) dans lequel circule le même fluide de cycle caloporteur que dans le réseau principal (2). Ce réseau secondaire inclut un radiateur secondaire (32) et une pompe secondaire (34). Le réseau principal (2) et le réseau secondaire (4) possèdent un vase d'expansion commun (50). Ce vase peut comporter une cloison de séparation qui peut être percée d'une restriction.

Description

Système de gestion de l'énergie thermique d'un moteur thermique comprenant deux réseaux
L'invention concerne un système de gestion de l'énergie thermique développée par un moteur thermique de véhicule automobile, comprenant un réseau principal incluant une pompe principale pour faire circuler un fluide de cycle caloporteur entre le moteur du véhicule et un radiateur principal échangeant de la chaleur avec l'air atmosphérique extérieur.
Les véhicules automobiles comprennent un circuit de refroidissement du moteur qui permet de maintenir ce dernier à une température de fonctionnement optimale. Ce circuit inclut un radiateur de refroidissement disposé à l'avant du véhicule et traversé par un flux d'air pour évacuer la chaleur du fluide de cycle caloporteur qui refroidit le moteur. Le circuit de refroidissement du moteur est également utilisé pour réchauffer l'habitacle du véhicule au moyen d'un aérotherme traversé par le même fluide de cycle caloporteur.
D'autre part, les véhicules modernes comprennent de plus en plus souvent des équipements qui améliorent le confort ou la sécurité des passagers, ou encore qui réduisent la pollution ou augmentent les performances du véhicule. C'est ainsi que de nombreux véhicules sont équipés d'un circuit de climatisation qui permet de refroidir l'habitacle du véhicule. Certains véhicules sont équipés également d'un circuit de refroidissement de l'huile. Les moteurs suralimentés comprennent fréquemment un refroidisseur d'air de suralimentation qui permet d'abaisser la température de l'air avant son introduction dans les cylindres du moteur. Enfin, les véhicules modernes sont fréquemment équipés d'un refroidisseur de gaz d'échappement qui permet de réduire la pollution du véhicule . Chacun de ces équipements nécessite un circuit de fluide séparé dans lequel circule un fluide particulier approprié. En outre, chacun de ces circuits de refroidissement possède son propre vase d'expansion dont la fonction est de permettre la dilatation du fluide lorsque ce dernier monte en température. Le vase d'expansion constitue également une réserve de fluide qui permet de s'assurer que le circuit est toujours rempli de fluide, même en cas de légère fuite.
Ces systèmes connus présentent plusieurs inconvénients. Tout d'abord, le fait de prévoir un circuit séparé pour chaque équipement du véhicule augmente le nombre de canalisations et, par conséquent, l'encombrement sous le capot moteur. En outre, le fait que chaque circuit de fluide dispose de son propre vase d'expansion conduit à la multiplication de ce composant.
La présente invention a pour objet un système de gestion de l'énergie thermique d'un moteur thermique de véhicule automobile qui remédie à ces inconvénients. Ce système a pour but de réduire le nombre des composants et, par suite, l'encombrement sous le capot moteur, ainsi que le prix de revient de l'ensemble.
Ces buts sont atteints, conformément à l'invention, par le fait que le système de gestion de l'énergie thermique comprend, en outre, un réseau secondaire dans lequel circule le même fluide de cycle caloporteur que dans le réseau principal, ce réseau secondaire incluant un radiateur secondaire et une pompe secondaire, le réseau principal et le réseau secondaire possédant un vase d'expansion commun.
Grâce à ces caractéristiques, le système de gestion de l'énergie thermique fait appel à un fluide unique, à savoir le fluide de cycle qui refroidit le moteur thermique du véhicule. Le fluide de refroidissement du moteur sert de source froide pour refroidir ou réchauffer tous les autres fluides (air d'admission, gaz d'échappement, liquide de climatisation, huile de lubrification moteur et/ou boite, carburant, etc.) qui le nécessitent. Seul le fluide de refroidissement du moteur thermique échange de la chaleur avec l'air ambiant.
En outre, le nombre de canalisations est très nettement diminué. Le système comporte un vase d'expansion unique qui sert pour tous les équipements du véhicule. Le nombre des composants, et par conséquent leur encombrement, est fortement réduit. Ledit vase d'expansion permet également le remplissage commun des deux réseaux.
Le vase d'expansion peut ne comporter aucune séparation intérieure. Dans ce cas, le vase d'expansion commun assure le passage de fluide de cycle d'un réseau à un autre.
Dans une autre réalisation, le vase d'expansion commun comporte une cloison de séparation totale ou partielle. Dans ce dernier cas ladite cloison dépasse le niveau ordinaire du fluide de cycle dans le vase d'expansion.
Une telle cloison permet d'éviter la transmission des ondes de choc pouvant se propager dans un des réseaux à l'autre réseau.
Avec une cloison de séparation partielle telle qu'évoquée plus haut, les deux réseaux sont en principe séparés, mais la possibilité d'une circulation de fluide d'un réseau à un autre est conservée par débordement au dessus de la cloison.
Dans une autre réalisation encore, la cloison de séparation du vase d'expansion est percée d'une restriction.
Cette restriction permet une communication d'un réseau à un autre, mais cette communication est limitée par la section de passage de la restriction. Une telle restriction facilite le remplissage de chacune des parties du vase d'expansion. Elle est avantageusement située dans la moitié inférieure de la cloison.
Des caractéristiques complémentaires ou optionnelles de l'invention sont énumérées ci-après :
— le réseau principal comporte une vanne à quatre voies, une première voie étant reliée à la sortie du radiateur principal, une deuxième voie étant reliée à la sortie du circuit de refroidissement du moteur, une troisième voie étant reliée à l'entrée de la pompe principale et une quatrième voie à la sortie de 1 ' aérotherme ;
— le système comporte un appareil de contrôle qui reçoit des informations sur la température du fluide en différents points du réseau principal et du réseau secondaire afin de commander la vanne à quatre voies ;
— l'appareil de contrôle commande également la mise en marche et l'arrêt de la pompe secondaire ;
— le réseau principal comprend une canalisation de moteur sur laquelle sont montés la pompe principale et le moteur thermique, une .canalisation de chauffage sur laquelle est monté 1 ' aérotherme, une canalisation de radiateur principal sur laquelle est monté le radiateur principal, une canalisation de court-circuit, la canalisation de moteur, la canalisation de chauffage, la canalisation de radiateur principal et la canalisation de court-circuit étant montées en parallèle ;
— le véhicule automobile comporte un ou plusieurs équipements en relation d'échange thermique avec le milieu qui leur est extérieur par l'intermédiaire d'un échangeur de chaleur d'équipement, le ou les échangeurs de chaleur d'équipement étant intégrés au réseau principal et/ou au réseau secondaire, chaque échangeur de chaleur étant en relation d'échange de chaleur avec le fluide de cycle caloporteur.
D'autres caractéristiques et avantages de la présente invention apparaîtront encore à la lecture de la description qui suit d'exemples de réalisation donnés à titre illustratif en référence aux figures annexées. Sur ces figures :
- la Figure 1 est une vue générale schématique d'un système de gestion de l'énergie thermique conforme à la présente invention ;
- la Figure 2 est une vue schématique en coupe d'une première variante d'un vase d'expansion commun destiné à un système de gestion de l'énergie thermique conforme à l'invention ;
- la Figure 3 est une deuxième variante de réalisation d'un vase d'expansion ; et
- la Figure 4 est une troisième variante de réalisation d'un vase d'expansion.
Le système de gestion de l'énergie thermique développée par un moteur thermique de l'invention représenté sur la Figure 1 est constitué d'un réseau principal désigné par la référence générale 2 et d'un réseau secondaire désigné par la référence générale 4. Le réseau principal 2 comporte une canalisation de moteur thermique 8 sur laquelle est monté un moteur thermique 10. Une pompe principale 12 fait circuler un fluide caloporteur dans le circuit de refroidissement du moteur 10, comme schématisé par les flèches 14. Le réseau principal comporte également une canalisation de radiateur 16 sur laquelle est monté un radiateur principal 18. Par ailleurs, une canalisation de court-circuit 20 est montée en parallèle à la canalisation de radiateur 16. Le fluide qui sert à refroidir le moteur thermique 10 est utilisé également pour chauffer l'habitacle du véhicule. A cet effet, il circule par l'intermédiaire d'une canalisation de chauffage 22 dans un radiateur de chauffage ou aérotherme 24 monté sur la canalisation 22. Une vanne à quatre voies 70 assure la régulation en température du moteur, par exemple autour d'une température de consigne de 100°. Une première voie 70χ de la vanne 70 est reliée à la canalisation de radiateur 16, une seconde voie 702 est reliée à la canalisation de court-circuit 20, une troisième voie 703 est reliée à la canalisation de moteur 8 et une quatrième voie 704 est reliée à la canalisation de chauffage 22.
Le réseau principal peut, en outre, comporter de manière optionnelle des équipements complémentaires tels qu'un refroidisseur d'huile de lubrification moteur 26 monté sur une canalisation d'équipement 28.
Le réseau secondaire 4 comprend une boucle fermée 30 sur laquelle est monté un radiateur secondaire 32. Une pompe de circulation électrique 34 assure la circulation du fluide de cycle caloporteur dans la boucle 30 et, par conséquent, dans le radiateur secondaire 32. En outre, des échangeurs d'équipements optionnels peuvent être montés sur la boucle de refroidissement 30. Par exemple, dans l'exemple représenté, le véhicule est équipé d'un circuit de climatisation de l'habitacle du véhicule automobile. Le condenseur 36 du circuit de climatisation est monté sur la boucle 30 afin d'être refroidi par le fluide de cycle caloporteur qui sort du radiateur secondaire 32.
Un appareil de contrôle 40 reçoit un signal de température d'une sonde 42 installée à la sortie du circuit de refroidissement du moteur thermique 10 et également d'une sonde 44 installée à la sortie du radiateur secondaire 32. L'appareil de contrôle 40 utilise ces informations pour piloter le fonctionnement de la vanne à quatre voies 70. Cette vanne assure la régulation en température du moteur et gère les voies de court-circuit 20, d' aérotherme 22, de radiateur principal 16 et de la canalisation d'équipement 28. La vanne à quatre voies 70 remplace ainsi la vanne thermostatique habituellement utilisée dans les systèmes conventionnels. Par exemple, s'il est nécessaire de chauffer l'habitacle du véhicule, la canalisation de chauffage 22 sur laquelle est monté l' aérotherme 24 est ouverte. Dans le cas contraire, cette canalisation est fermée. L'appareil de contrôle 40 pilote également le fonctionnement de la pompe 34 du réseau secondaire 4.
Le radiateur principal 18 est relié à un vase d'expansion 50 par une canalisation 52. La canalisation 52 est également reliée à la canalisation de moteur 8 par une branche 54. De la même manière, le radiateur secondaire 32 est relié au vase d'expansion 50 par une canalisation 56. Le vase d'expansion 50 est ainsi commun au réseau principal 2 et au réseau secondaire 4. Lorsque la température du fluide augmente, ce dernier se dilate et le volume excédentaire est reçu dans le vase d'expansion. Inversement, lorsque le fluide se refroidit, ou lorsqu'une perte de liquide se produit par suite d'un défaut d' étanchéité, une quantité de fluide caloporteur peut être admise dans le réseau principal par une canalisation 58 et dans le réseau secondaire par une canalisation 60.
Le radiateur principal 18 et le radiateur secondaire 32 peuvent être réalisés sous la forme de deux échangeurs distincts. Ils peuvent également être placés l'un devant l'autre pour former un module d'échange présentant un encombrement réduit. Dans ce cas, le radiateur secondaire 32 sera de préférence placé devant le radiateur principal 18. Le radiateur secondaire verra l'air en premier. En d'autres termes, c'est lui qui sera refroidi le premier par le flux d'air extérieur. Le radiateur principal qui sera refroidi par le flux d'air ayant déjà traversé le radiateur secondaire sera avantageusement refroidi. De la sorte, le réseau secondaire 4 constituera un réseau à basse température relativement au réseau principal 2 qui constituera un réseau à haute température.
Le radiateur principal 18 ou radiateur à haute température et le radiateur secondaire 32 ou radiateur à basse température peuvent encore faire partie d'un échangeur dit AmultifonctionΘ, c'est-à-dire d'un module d'échange de chaleur dans lequel les deux échangeurs sont superposés de manière à être traversés par un même flux d'air, une boîte collectrice de sortie du radiateur à haute température 18 communiquant avec une boîte collectrice d'entrée du radiateur à basse température 32 par un orifice de passage (non représenté) des moyens de vanne permettant d'ouvrir ou de fermer cet orifice de passage. Le vase d'expansion 50 comporte donc deux entrées, à savoir une entrée 62 pour le fluide du réseau principal 2 et une entrée 64 pour le fluide caloporteur du réseau secondaire 4. Le vase d'expansion 50 comporte également deux sorties, à savoir une sortie 66 vers le réseau principal 2 et une sortie 68 vers le réseau secondaire 4. Les entrées et/ou les sorties peuvent également être communes, comme illustré à la Figure 2 en pointillé pour les sorties 66 et 68.
On a représenté sur la Figure 2 une première variante de réalisation du vase d'expansion 50 commun au réseau principal 2 et au réseau secondaire 4. Ce vase d'expansion comporte une entrée 62 reliée au réseau principal 2 et une entrée 64 reliée au réseau secondaire 4. Il comporte également une sortie 66 reliée au réseau principal 2 et une sortie 68 reliée au réseau secondaire 4. En variante, il est possible de prévoir une sortie unique en Y comportant deux branches 66 et 68, comme représenté en traits pointillés. On a désigné par la référence 67 le niveau du fluide caloporteur dans le vase d'expansion 50.
Grâce à la présence du vase d'expansion, le réseau principal 2 et le réseau secondaire 4 ne sont pas entièrement séparés, une communication entre eux s'établit par l'intermédiaire du vase d'expansion. Le fluide caloporteur peut passer d'un réseau dans l'autre et vice versa par l'intermédiaire du vase d'expansion commun et des canalisations 52 et 58 pour le réseau principal, et 56 et 60 pour le réseau secondaire. Cette caractéristique permet d'utiliser le même fluide de cycle caloporteur dans les deux réseaux. Le système de gestion de l'énergie thermique utilise donc un fluide unique, ce qui constitue une différence par rapport aux autres systèmes qui utilisent un fluide différent pour chaque équipement à refroidir. Cette caractéristique permet également de réaliser des configurations différentes, en fonction de la charge du moteur. En cas de faible charge, le radiateur à haute température 18 peut être utilisé pour refroidir des équipements tels que le condenseur de climatisation, un refroidisseur d'air de suralimentation ou même un refroidisseur de gaz d'échappement. Inversement, en cas de forte ou de très forte charge du moteur, le radiateur à basse température peut être utilisé pour compléter le refroidissement du moteur thermique 10.
On a représenté sur la Figure 3 une deuxième variante de réalisation du vase d'expansion commun 50. Il comporte une cloison de séparation 69 qui le divise en deux parties séparées. Ainsi, le réseau principal 2 et le réseau secondaire 4 ne communiquent pas l'un avec l'autre et, en principe, aucun échange de fluide ne s'établit entre ces deux circuits, à moins que le niveau 67 du fluide ne passe par-dessus la cloison 69.
On a représenté sur la Figure 4 une troisième variante de réalisation du vase d' expansion commun 50. Dans cette variante, la cloison de séparation 69 est percée par un orifice calibré 71 qui assure un passage limité du fluide caloporteur à travers la cloison 69, c ' est-à-dire d ' un réseau vers l ' autre . Ainsi, une circulation de fluide peut s ' établir d' un réseau vers l ' autre, comme dans le cas du mode de réalisation de la Figure 2 . Toutefois, cette circulation est limitée par la dimension de l ' orifice calibré 71. Ledit orifice calibré pourra être remplacé par une vanne thermostatique .

Claims

Revendications
1. Système de gestion de l'énergie thermique développée par un moteur thermique (10) de véhicule automobile, comprenant un réseau principal (2) incluant une pompe principale (12) pour faire circuler un fluide de cycle caloporteur entre le moteur thermique (10) et un radiateur principal (18) échangeant de la chaleur avec l'air atmosphérique extérieur, caractérisé en ce qu'il comprend, en outre, un réseau secondaire (4) dans lequel circule le même fluide de cycle caloporteur que dans le réseau principal (2), ce réseau secondaire (4) incluant un radiateur secondaire (32) et une pompe secondaire (34), le réseau principal (2) et le réseau secondaire (4) possédant un vase d'expansion commun (50).
2. Système selon la revendication 1, caractérisé en ce que le vase d'expansion commun (50) comporte une cloison de séparation (69) qui dépasse le niveau ordinaire (67) du fluide dans le vase d'expansion.
3. Système selon la revendication 2, caractérisé en ce que la cloison (69) est percée d'une restriction (71) .
4. Système selon l'une des revendications 1 à 3, caractérisé en ce que le réseau principal (2) comporte une vanne à quatre voies (70) , une première voie (70ι) étant liée à la sortie du radiateur principal (18) , une deuxième voie (702) étant reliée à la sortie du circuit de refroidissement du moteur (10) , une troisième voie (703) étant reliée à l'entrée de la pompe principale (18), une quatrième voie (704) étant reliée à la sortie de l'aérotherme (24).
5. Système selon la revendication 4, caractérisé en ce qu'il comporte un appareil de contrôle (40) qui reçoit des informations sur la température du fluide en différents points du réseau principal (2) et du réseau secondaire (4) afin de commander la vanne à quatre voies (70) .
6. Système selon la revendication 5, caractérisé en ce que l'appareil de contrôle (40) commande également la mise en marche et l'arrêt de la pompe secondaire (34) .
7. Système selon l'une des revendications 1 à 6, caractérisé en ce que le réseau principal (2) comprend une canalisation de moteur (8) sur laquelle sont montés la pompe principale (12) et le moteur thermique (10), une canalisation de chauffage (22) sur laquelle est monté l'aérotherme (24), une canalisation de radiateur principal (16) sur laquelle est monté le radiateur principal (18), une canalisation de court-circuit (20), la canalisation de moteur (8), la canalisation de chauffage (22), la canalisation de radiateur principal (16) et la canalisation de court-circuit (20) étant montées en parallèle.
8. Système selon l'une des revendications 1 à 7, caractérisé en ce que le véhicule automobile comporte un ou plusieurs équipements en relation d'échange thermique avec le milieu qui leur est extérieur par l'intermédiaire d'un échangeur de chaleur d'équipement (26, 36), le ou les échangeurs de chaleur d'équipement étant intégrés au réseau principal (2) et/ou au réseau secondaire (4), chaque échangeur de chaleur (26, 36) étant en relation d'échange de chaleur avec le fluide de cycle caloporteur qui refroidit le moteur thermique (10) .
PCT/FR2002/003855 2001-11-13 2002-11-08 Systeme de gestion de l'energie thermique d'un moteur thermique comprenant deux reseaux WO2003042516A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02793225A EP1499795A2 (fr) 2001-11-13 2002-11-08 Systeme de gestion de l'energie thermique d'un moteur thermique comprenant deux reseaux

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0114663A FR2832186B1 (fr) 2001-11-13 2001-11-13 Systeme de gestion de l'energie thermique d'un moteur thermique comprenant deux reseaux
FR01/14663 2001-11-13

Publications (2)

Publication Number Publication Date
WO2003042516A2 true WO2003042516A2 (fr) 2003-05-22
WO2003042516A3 WO2003042516A3 (fr) 2004-11-11

Family

ID=8869340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003855 WO2003042516A2 (fr) 2001-11-13 2002-11-08 Systeme de gestion de l'energie thermique d'un moteur thermique comprenant deux reseaux

Country Status (3)

Country Link
EP (1) EP1499795A2 (fr)
FR (1) FR2832186B1 (fr)
WO (1) WO2003042516A2 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008074953A1 (fr) * 2006-12-21 2008-06-26 Peugeot Citroën Automobiles SA Systeme de refroidissement pour un moteur a combustion interne d'un vehicule
DE102007054855A1 (de) * 2007-11-16 2009-05-28 Bayerische Motoren Werke Aktiengesellschaft Ausgleichsbehälter für wenigstens zwei Wärmeübertragungsmittelkreisläufe, Wärmeübertragungsmittelkreislauf sowie Kraftfahrzeug
WO2010059106A1 (fr) * 2008-11-21 2010-05-27 Scania Cv Ab Vase d’expansion
FR3016923A3 (fr) * 2014-01-29 2015-07-31 Renault Sa Bocal de degazage et systeme de refroidissement pour vehicule automobile comprenant un tel bocal de degazage
DE102015205492A1 (de) 2014-05-27 2015-12-03 Ford Global Technologies, Llc Kühlsystem für ein Kraftfahrzeug
CN105179059A (zh) * 2015-10-16 2015-12-23 安徽江淮汽车股份有限公司 一种包括有双膨胀水壶的冷却系统
CN105179062A (zh) * 2015-10-16 2015-12-23 安徽江淮汽车股份有限公司 一种带双膨胀水壶的双循环冷却系统改进结构
DE102015111407A1 (de) * 2015-07-14 2017-01-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlsystem für ein Fahrzeug
EP3483406A1 (fr) * 2017-11-09 2019-05-15 Volkswagen Aktiengesellschaft Circuit de refroidissement pour une unité d'entraînement d'un véhicule automobile
US20190170053A1 (en) * 2017-12-05 2019-06-06 Illinois Tool Works Inc. Coolant Reservoir Tank
EP3521583A1 (fr) * 2018-02-01 2019-08-07 MAN Truck & Bus SE Dispositif de refroidissement doté d'au moins deux circuits de refroidissement et d'une conduite de remplissage refroidie
EP3521584A1 (fr) * 2018-02-01 2019-08-07 MAN Truck & Bus SE Réservoir de compensation pour circuits de refroidissement à différents niveaux de température et addition de pression
GB2575454A (en) * 2018-07-09 2020-01-15 Ford Global Tech Llc A Combined Reservoir and Degas Bottle
WO2020182568A3 (fr) * 2019-03-12 2021-01-14 Jaguar Land Rover Limited Dispositif de dégazage
SE2050583A1 (en) * 2020-05-19 2021-11-20 Scania Cv Ab Cooling system and vehicle comprising such a cooling system
US11199125B2 (en) 2018-04-17 2021-12-14 Scania Cv Ab Cooling system comprising at least two cooling circuits connected to a common expansion tank
SE2050811A1 (en) * 2020-07-01 2022-01-02 Scania Cv Ab Thermal Management System and Vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1128702B (de) * 1959-03-26 1962-04-26 Sueddeutsche Kuehler Behr Fluessigkeits-Kuehlanlage fuer Brennkraftmaschinen mit Aufladung
DE4033261A1 (de) * 1990-10-19 1992-04-23 Freudenberg Carl Fa Verbrennungskraftmaschine
EP0541995A1 (fr) * 1991-11-14 1993-05-19 Man Nutzfahrzeuge Ag Système de chauffage pour l'habitacle d'une voiture automobile
US5215044A (en) * 1991-02-11 1993-06-01 Behr Gmbh & Co. Cooling system for a vehicle having an internal-combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1128702B (de) * 1959-03-26 1962-04-26 Sueddeutsche Kuehler Behr Fluessigkeits-Kuehlanlage fuer Brennkraftmaschinen mit Aufladung
DE4033261A1 (de) * 1990-10-19 1992-04-23 Freudenberg Carl Fa Verbrennungskraftmaschine
US5215044A (en) * 1991-02-11 1993-06-01 Behr Gmbh & Co. Cooling system for a vehicle having an internal-combustion engine
EP0541995A1 (fr) * 1991-11-14 1993-05-19 Man Nutzfahrzeuge Ag Système de chauffage pour l'habitacle d'une voiture automobile

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008074953A1 (fr) * 2006-12-21 2008-06-26 Peugeot Citroën Automobiles SA Systeme de refroidissement pour un moteur a combustion interne d'un vehicule
FR2910608A1 (fr) * 2006-12-21 2008-06-27 Peugeot Citroen Automobiles Sa Systeme de refroidissement pour un moteur a combustion interne d'un vehicule
DE102007054855A1 (de) * 2007-11-16 2009-05-28 Bayerische Motoren Werke Aktiengesellschaft Ausgleichsbehälter für wenigstens zwei Wärmeübertragungsmittelkreisläufe, Wärmeübertragungsmittelkreislauf sowie Kraftfahrzeug
WO2010059106A1 (fr) * 2008-11-21 2010-05-27 Scania Cv Ab Vase d’expansion
EP2358984A1 (fr) * 2008-11-21 2011-08-24 Scania CV AB Vase d expansion
RU2462604C1 (ru) * 2008-11-21 2012-09-27 Сканиа Св Аб Расширительный резервуар
US8356724B2 (en) 2008-11-21 2013-01-22 Scania Cv Ab Expansion tank
EP2358984A4 (fr) * 2008-11-21 2014-01-08 Scania Cv Ab Vase d expansion
FR3016923A3 (fr) * 2014-01-29 2015-07-31 Renault Sa Bocal de degazage et systeme de refroidissement pour vehicule automobile comprenant un tel bocal de degazage
DE102015205492A1 (de) 2014-05-27 2015-12-03 Ford Global Technologies, Llc Kühlsystem für ein Kraftfahrzeug
DE102015205492B4 (de) 2014-05-27 2022-04-14 Ford Global Technologies, Llc Kühlsystem für ein Kraftfahrzeug
DE102015111407A1 (de) * 2015-07-14 2017-01-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlsystem für ein Fahrzeug
US10364737B2 (en) 2015-07-14 2019-07-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling system for a vehicle
CN105179059B (zh) * 2015-10-16 2018-05-04 安徽江淮汽车集团股份有限公司 一种包括有双膨胀水壶的冷却系统
CN105179062B (zh) * 2015-10-16 2018-05-04 安徽江淮汽车集团股份有限公司 一种带双膨胀水壶的双循环冷却系统改进结构
CN105179062A (zh) * 2015-10-16 2015-12-23 安徽江淮汽车股份有限公司 一种带双膨胀水壶的双循环冷却系统改进结构
CN105179059A (zh) * 2015-10-16 2015-12-23 安徽江淮汽车股份有限公司 一种包括有双膨胀水壶的冷却系统
KR102234911B1 (ko) * 2017-11-09 2021-04-02 폭스바겐 악티엔 게젤샤프트 자동차의 구동 유닛용 냉각 회로
EP3483406A1 (fr) * 2017-11-09 2019-05-15 Volkswagen Aktiengesellschaft Circuit de refroidissement pour une unité d'entraînement d'un véhicule automobile
KR20190053100A (ko) * 2017-11-09 2019-05-17 폭스바겐 악티엔 게젤샤프트 자동차의 구동 유닛용 냉각 회로
CN109763888A (zh) * 2017-11-09 2019-05-17 大众汽车有限公司 用于机动车的驱动单元的冷却回路
CN109763888B (zh) * 2017-11-09 2021-09-03 大众汽车有限公司 用于机动车的驱动单元的冷却回路
US20190170053A1 (en) * 2017-12-05 2019-06-06 Illinois Tool Works Inc. Coolant Reservoir Tank
US11035286B2 (en) * 2017-12-05 2021-06-15 Illinois Tool Works Inc. Coolant reservoir tank
EP3521583A1 (fr) * 2018-02-01 2019-08-07 MAN Truck & Bus SE Dispositif de refroidissement doté d'au moins deux circuits de refroidissement et d'une conduite de remplissage refroidie
EP3521584A1 (fr) * 2018-02-01 2019-08-07 MAN Truck & Bus SE Réservoir de compensation pour circuits de refroidissement à différents niveaux de température et addition de pression
US11199125B2 (en) 2018-04-17 2021-12-14 Scania Cv Ab Cooling system comprising at least two cooling circuits connected to a common expansion tank
GB2575454B (en) * 2018-07-09 2022-02-16 Ford Global Tech Llc A Combined Reservoir and Degas Bottle
GB2575454A (en) * 2018-07-09 2020-01-15 Ford Global Tech Llc A Combined Reservoir and Degas Bottle
US11584191B2 (en) 2018-07-09 2023-02-21 Ford Global Technologies, Llc Methods and system for a degas bottle
US11713708B2 (en) 2019-03-12 2023-08-01 Jaguar Land Rover Limited Degassing apparatus
WO2020182568A3 (fr) * 2019-03-12 2021-01-14 Jaguar Land Rover Limited Dispositif de dégazage
WO2021235990A1 (fr) * 2020-05-19 2021-11-25 Scania Cv Ab Système de refroidissement et véhicule comprenant un tel système de refroidissement
SE544139C2 (en) * 2020-05-19 2022-01-11 Scania Cv Ab Cooling system and vehicle comprising such a cooling system
SE2050583A1 (en) * 2020-05-19 2021-11-20 Scania Cv Ab Cooling system and vehicle comprising such a cooling system
US11732636B2 (en) 2020-05-19 2023-08-22 Scania Cv Ab Cooling system and vehicle comprising such a cooling system
WO2022005373A1 (fr) * 2020-07-01 2022-01-06 Scania Cv Ab Système de gestion thermique à circuits multiples comprenant des lignes de mélange, et véhicule
SE2050811A1 (en) * 2020-07-01 2022-01-02 Scania Cv Ab Thermal Management System and Vehicle
SE545158C2 (en) * 2020-07-01 2023-04-25 Scania Cv Ab Thermal Management System and Vehicle
US20230278415A1 (en) * 2020-07-01 2023-09-07 Scania Cv Ab Multiple circuit thermal management system comprising mixing lines, and vehicle

Also Published As

Publication number Publication date
EP1499795A2 (fr) 2005-01-26
WO2003042516A3 (fr) 2004-11-11
FR2832186A1 (fr) 2003-05-16
FR2832186B1 (fr) 2004-05-07

Similar Documents

Publication Publication Date Title
WO2003042516A2 (fr) Systeme de gestion de l'energie thermique d'un moteur thermique comprenant deux reseaux
EP1132229B1 (fr) Dispositif de climatisation de véhicule comportant un échangeur de chaleur polyvalent
EP1444473B1 (fr) Module d'echange de chaleur comportant un radiateur principal et un radiateur secondaire
EP1558886B1 (fr) Système de gestion de l'énergie thermique développée par un moteur thermique de véhicule automobile
EP0960755A1 (fr) Circuit de climatisation utilisant un fluide réfrigérant à l'état supercritique, notamment pour véhicule
EP0960756A1 (fr) Dispositif de climatisation de véhicule utilisant un fluide réfrigérant à l'état supercritique
EP3564504B1 (fr) Systeme de refroidissement d'un moteur avec deux thermostats et integrant un circuit selon un cycle de rankine
FR3037639A1 (fr) Dispositif de gestion thermique
FR2890430A1 (fr) Circuit de refroidissement de l'huile d'une boite de vitesses
FR3036135A1 (fr) Circuit de refroidissement d’un moteur
FR2811376A1 (fr) Dispositif de regulation thermique de l'air d'admission d'un moteur a combustion interne de vehicule automobile
EP1963657A1 (fr) Dispositif de refroidissement de l'air d'admission et des gaz d'echappement recircules
WO2014167199A1 (fr) Circuit de refroidissement d'un moteur a combustion interne
FR2883806A1 (fr) Installation et procede de refroidissement d'un equipement de vehicule automobile
EP0670414B1 (fr) Système de refroidissement pour un moteur à combustion interne
WO2021197936A1 (fr) Dispositif de gestion thermique pour un véhicule automobile hybride
FR2914356A1 (fr) Systeme et procede de refroidissement d'un groupe motopropulseur de vehicule automobile.
EP2641037A1 (fr) Boucle de climatisation munie d'électrovanne et fonctionnant comme pompe à chaleur.
EP1556588A1 (fr) Systeme de refroidissement d'un groupe motopropulseur, notament de vehicule automobile, comprenant un echangeur liquide/liquide
EP0850791B1 (fr) Système de chauffage de l'habitacle d'un véhicule automobile à moteur diesel à injection directe
FR2855562A1 (fr) Dispositif d'apport calorifique integre a un groupe motopropulseur d'un vehicule automobile
FR3066537B1 (fr) Procede de regulation d’une temperature d’huile de lubrification d’un moteur thermique a deux flux de sortie
EP2061959B1 (fr) Systeme de refroidissement d'un groupe motopropulseur de vehicule automobile, et procede de commande d'un tel systeme
FR2842248A1 (fr) Circuit d'echanges thermiques pour un vehicule automobile
FR2978206A1 (fr) Dispositif de regulation thermique pour vehicule automobile

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP