WO2003036719A2 - Composant micro ou nano-electronique comportant une source d'energie et des moyens de protection de la source d'energie - Google Patents

Composant micro ou nano-electronique comportant une source d'energie et des moyens de protection de la source d'energie Download PDF

Info

Publication number
WO2003036719A2
WO2003036719A2 PCT/FR2002/003589 FR0203589W WO03036719A2 WO 2003036719 A2 WO2003036719 A2 WO 2003036719A2 FR 0203589 W FR0203589 W FR 0203589W WO 03036719 A2 WO03036719 A2 WO 03036719A2
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
component according
energy source
component
micro
Prior art date
Application number
PCT/FR2002/003589
Other languages
English (en)
Other versions
WO2003036719A3 (fr
Inventor
Jean Brun
Raphaël Salot
Hélène ROUAULT
Gilles Poupon
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to EP02795333A priority Critical patent/EP1438748A2/fr
Priority to JP2003539104A priority patent/JP2005506714A/ja
Priority to AU2002360134A priority patent/AU2002360134A1/en
Priority to KR10-2004-7006007A priority patent/KR20040071130A/ko
Priority to US10/492,048 priority patent/US20050001214A1/en
Publication of WO2003036719A2 publication Critical patent/WO2003036719A2/fr
Publication of WO2003036719A3 publication Critical patent/WO2003036719A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/57Protection from inspection, reverse engineering or tampering
    • H01L23/573Protection from inspection, reverse engineering or tampering using passive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/073Special arrangements for circuits, e.g. for protecting identification code in memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/073Special arrangements for circuits, e.g. for protecting identification code in memory
    • G06K19/07309Means for preventing undesired reading or writing from or onto record carriers
    • G06K19/07372Means for preventing undesired reading or writing from or onto record carriers by detecting tampering with the circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/20Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device gaseous at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Definitions

  • Micro or nano-electronic component comprising an energy source and means for protecting the energy source
  • the invention relates to a micro or nano-electronic component comprising an energy source produced in the form of thin films deposited on a substrate and means for protecting the energy source from the ambient atmosphere.
  • Energy sources produced in the form of thin films deposited on a substrate include elements which react with the ambient environment, which can cause rapid deterioration of the energy source.
  • the metallic lithium constituting the negative electrode of a micro-battery for example, oxidizes rapidly on contact with air, in particular in the presence of moisture. It is therefore essential to protect these energy sources from the ambient air with effective protection compatible with their use in microelectronics.
  • US patent 5561004 describes a lithium battery, produced in the form of thin films, protected from the external atmosphere by at least one additional layer.
  • the protective layers are deposited in the form of thin films directly on the lithium electrode of the battery so as to completely cover the exposed parts of this electrode.
  • the materials which can be used to form these protective layers are metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-ceramic-metal combination. This type of coating provides chemical protection for the battery, but does not offer protection against mechanical break-ins.
  • the invention aims to improve the security of a micro or nano-electronic component comprising an energy source formed on a substrate.
  • this object is achieved by a component according to the appended claims and, more particularly, by the fact that the protection means comprise a sealed cavity in which the unprotected energy source is disposed, any penetration of the ambient atmosphere in the sealed cavity causing, by oxidation, the destruction of the energy source, thus rendering the component unusable.
  • the cavity can be under vacuum or filled with an inert gas.
  • the component comprises a pressure sensor disposed inside the cavity and detecting a pressure variation inside the cavity to render the component unusable when the pressure variation exceeds a predetermined threshold .
  • the cavity is filled with a filling material consisting of silicone resin, thermosetting resin, polymer, epoxy, fusible glass or a metal chosen from indium, l , tin, or their alloys.
  • the energy source can be constituted by a micro-battery or a micro-supercapacitor.
  • FIG. 1 represents a first embodiment of a component according to the invention.
  • FIG. 2 illustrates a second embodiment of a component according to the invention, before closing the cavity.
  • FIG. 3 represents a particular method of closing the cavity of a component according to FIG. 2.
  • FIG. 4 represents a micro-supercapacitor which can constitute the energy source.
  • FIG. 5 illustrates a particular mode of decommissioning of the component.
  • FIG. 1 represents a component in which an energy source is formed on an integrated circuit 1, itself formed on an insulating substrate 2.
  • the energy source is intended to supply at least part of the elements of the integrated circuit 1
  • the energy source and the integrated circuit are arranged side by side, on the substrate 2.
  • the upper layer of the integrated circuit can act as its substrate.
  • the topology (tormented surface) and / or the density of the upper layer of the integrated circuit may however be ill-suited to the production of additional layers having the desired electrical properties for the energy source.
  • an intermediate insulating layer 3 is deposited on the integrated circuit and serves as a substrate supporting the various elements of the energy source.
  • the intermediate insulating layer 3 deposited on the integrated circuit is thick enough to be flattened on its upper face, before the formation of the energy source, if necessary.
  • the intermediate insulating layer can be made of mineral material (glass, Si0 2 , etc.) or of organic material (polymer, epoxy, etc.). Its leveling can be carried out by mechanical or mechanical-chemical means (by polishing, for example).
  • a flat intermediate insulating layer can also be obtained directly if it is formed on the integrated circuit by the liquid route.
  • the intermediate insulating layer 3, planar, preferably covers all of the integrated circuit 2 and of the substrate 1 (FIG. 1). The energy source is then produced on the intermediate insulating layer 3, which serves as its substrate.
  • the substrate 2, made of any known suitable material, can in particular be a silicon, glass, plastic substrate, etc.
  • the integrated circuit 1 is also produced in a known manner, by any type of technology used for the manufacture of semi -integrated conductors.
  • the energy source can be constituted by a micro-battery, the thickness of which is between 7 ⁇ m and 30 ⁇ m (preferably of the order of 15 ⁇ m), for example by a lithium micro-battery formed by conventional techniques of chemical vapor deposition ("chemical vapor deposition ": CVD) or physical (“ physical vapor deposition ": PVD).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • Such a micro-battery, in the form of thin films, is especially described in documents WO-A-9848467 and US-A-5561004.
  • the operating principle of a micro-battery is based, in a known manner, on the insertion and disinsertion of an alkali metal ion or a proton in the positive electrode of the micro-battery, preferably an ion Li + lithium from a metallic lithium electrode.
  • the micro-battery is formed by a stack of layers obtained by CVD or PVD deposition, respectively constituting two current collectors 4a and 4b, a positive electrode 5, an electrolyte 6 and a negative electrode 7.
  • the electrical connections between the integrated circuit and the micro-battery are thus ensured by the metallic contact between the associated layers constituting the connection pads.
  • the energy source constituted by the micro-battery can thus supply at least part of the elements of the integrated circuit 1 on which it is formed.
  • the elements of the micro-battery can be made of various materials: -
  • the metallic current collectors 4a and 4b can, for example, be based on platinum (Pt), chromium (Cr), gold (Au ) or titanium (Ti).
  • the positive electrode 5 can consist of LiCo0 2 , LiNi0 2 ,
  • the electrolyte 6, a good ionic conductor and electrical insulator, can consist of a glassy material based on boron oxide, lithium oxides or lithium salts.
  • the negative electrode 7 can be constituted by metallic lithium deposited by thermal evaporation, by a metallic alloy based on lithium or by an insertion compound of the SiTON, SnN x , lnN x , Sn0 2 type , etc.
  • the operating voltage of a micro-battery is between 2V and 4V, with a surface capacity of the order of 100 ⁇ Ah / cm 2 . Charging a micro-battery requires only a few minutes of charging.
  • the metallic lithium constituting the negative electrode of micro-batteries in particular, oxidizes rapidly on contact with air, in particular in the presence of moisture.
  • the component comprises a sealed cavity 9 in which are arranged the parts to be protected of the component, that is to say at least the energy source.
  • the energy source and the integrated circuit 1 are entirely housed in the cavity 9.
  • the integrated circuit and the energy source can be arranged separately or as an assembly in the cavity 9, but are preferably manufactured directly in the cavity, the bottom of which serves as a substrate.
  • the cavity 9 is closed by a cover 10 which is attached to the elements to be protected, more particularly to the micro-battery.
  • the cover is preferably made up of a silicon, metal, polymer, epoxy or glass plate, in which the cavity 9 is engraved.
  • the cover 10 is fixed on the substrate 2 or on the intermediate plate 3 serving as a substrate for the micro-battery, so as to surround the parts to be protected of the component.
  • the cavity 9 is thus delimited by the cover and by the intermediate plate 3. Connection pads other than the pads 8a and 8b can be taken outwards.
  • the assembly can be carried out by any appropriate means making it possible to seal the cavity 9, in particular by gluing or by anodic sealing (“Anodic bonding below 180 ° C for packaging and assembling of MEMS using lithium”, Shuichi Shoji, DECE, Waseda University, 3-4-1, ohkubo, Shinjuku, Tokyo 169, 1997, IEEE). Bonding can be carried out using an adhesive, polymer or epoxy, or a photosensitive resin deposited beforehand on at least one of the surfaces to be assembled.
  • bonding can be carried out by means of a fusible material, such as fusible glass deposited in the form of a bead or a thin layer or a eutectic metal (indium or lead alloy- tin, for example) whose melting temperature is lower than that of lithium.
  • a fusible material such as fusible glass deposited in the form of a bead or a thin layer or a eutectic metal (indium or lead alloy- tin, for example) whose melting temperature is lower than that of lithium.
  • the assembly of the cover 10 on the substrate 2 or on the intermediate insulating layer 3 is preferably carried out under vacuum or under inert gas (argon or nitrogen, for example), so that the energy source is in a sealed cavity having a neutral or protective atmosphere.
  • inert gas argon or nitrogen, for example
  • the inert gas possibly contained in the cavity escapes and the ambient atmosphere penetrates into the cavity 9 and comes directly into contact with the parts to be protected.
  • the energy source consists of very reactive materials, such as lithium which reacts to air humidity, any attempt to intrude into the component leading to contact with the atmosphere of these materials causes immediate destruction of the energy source and, consequently, makes the component unusable, which reinforces its security vis-à-vis an unauthorized user who tries to access the integrated circuit.
  • the integration of an energy source on the same substrate as an integrated circuit, which it supplies at least in part, essentially aims at securing the integrated circuit.
  • the energy source can be used to save sensitive information, such as a confidential code, in a memory. Destruction of the energy source in the event of an intrusion removes this information, making the card inviolable and its subsequent use impossible.
  • the cavity 9 is delimited laterally by a wall 11 surrounding all of the parts to be protected, the height of the wall 11 being greater than the thickness parties to protect.
  • the wall 11, made of glass is formed on the substrate 2 by screen printing, by injection of powders and precursors by means of an injector of the motor vehicle injector type, by injection by means of micro- injectors of the type used in the printer heads, by depositing a glass or resin bead by photolithography or by injection, or by etching a thick layer.
  • the cavity is produced by etching the substrate 2, the integrated circuit 1 and the energy source then being buried in the substrate 2.
  • the cavity 9 can be closed in leaktight manner by a cover fixed to the wall 11 and constituted by a plate of the same type as the cover 10 described above.
  • the cavity 9 is filled with a filling material intended to improve protection and consisting of silicone resin, thermosetting resin, polymer, epoxy, fusible glass or of a metal chosen from indium, tin, lead or their alloys.
  • a filling material intended to improve protection and consisting of silicone resin, thermosetting resin, polymer, epoxy, fusible glass or of a metal chosen from indium, tin, lead or their alloys.
  • the filled cavity 9 can, moreover, be covered by an additional protective coating 12.
  • the latter can consist of a thin, metallic or insulating layer, obtained by deposition (for example CVD or PVD) or by collage of a thin metal sheet.
  • the energy source must provide sufficient energy to perform a limited number of operations during the lifetime of the component, while having dimensions as small as possible, compatible with the dimensions of integrated circuits, in particular with their thickness ( from a few tens to a few hundred microns).
  • Another suitable source of energy is micro-supercapacity.
  • Such supercapacitor is produced in the form of thin films, with the same type of technology as micro-batteries.
  • it is constituted by the stack, on an insulating substrate 2, preferably made of silicon, of layers constituting respectively a lower current collector 13, a lower electrode 14, an electrolyte 15, an upper electrode 16 and an upper current collector 17.
  • the elements of micro-supercapacity can be made of various materials.
  • the electrodes 14 and 16 can be based on carbon or oxides of metals such as Ru0 2 , Ir0 2 , Ta0 2 or Mn0 2 .
  • the electrolyte 15 can be a glassy electrolyte of the same type as that of the micro-batteries.
  • the micro-supercapacitor can have a surface capacity of the order of 10 ⁇ Ah / cm 2 and its full charge can be obtained in less than a second.
  • FIG. 4 A particular embodiment of a micro-supercapacitor usable in a component according to the invention is shown in Figure 4.
  • the micro-supercapacitor is formed on the insulating substrate 2, in silicon. It is formed in five successive deposition steps: - In a first step, the lower current collector 13 is formed by deposition of a layer of platinum of 0.2 ⁇ 0.1 ⁇ m in thickness, by radio frequency sputtering.
  • the lower electrode 14 made of ruthenium oxide
  • Ru0 2 is produced from a metallic ruthenium target, by reactive radio frequency sputtering in a mixture of argon and oxygen (Ar / O 2 ) at room temperature.
  • the layer formed has a thickness of 1.5 ⁇ 0.5 ⁇ m.
  • a layer of 1.2 ⁇ 0.4 ⁇ m thick, constituting the electrolyte 15, is formed. It is a conductive glass of the Lipon type (Li 3 PO 2 5 N 03 ), obtained by cathode sputtering under partial pressure of nitrogen with a target of Li 3 P0 4 or 0.75 (Li 2 O) -0.25 (P 2 O 5 ).
  • the upper electrode 16, made of ruthenium oxide (Ru0 2 ) is produced in the same way as the lower electrode 14 during the second step.
  • the upper current collector 17, made of platinum is formed in the same way as the lower current collector 13 during the first step. It is possible to further improve the securing of the component, when the cavity 9 is not filled with a filling material, by placing a pressure sensor inside the cavity 9. The pressure sensor detects any variation in pressure inside the cavity and makes the component unusable when the pressure variation exceeds a predetermined threshold.
  • the internal pressure of the cavity whether it is lower (empty) or higher than atmospheric pressure, is likely to vary over time depending on the quality of the assembly (leak, etc.). Its evolution over time is unpredictable and not measurable from the outside.
  • the internal pressure of the cavity thus constitutes an inviolable code. Such protection renders an intrusion which would be carried out in a controlled and inert atmosphere ineffective.
  • a switch 18, normally open, is connected in parallel to the energy source 19.
  • the switch 18 is automatically closed by the pressure sensor when the pressure variation exceeds the predetermined threshold, then short-circuits the energy source 19, which discharges immediately, causing the component to be put out of service.
  • the switch 18 may, for example, be constituted by a membrane of the pressure sensor, one face of which is subjected to atmospheric pressure in the event of deterioration of the cavity and the displacement of which causes the short circuit of the energy source. .
  • the pressure sensor is supplied by the energy source and managed by the integrated circuit 1.
  • the integrated circuit 1 periodically reads the value of the pressure measured by the pressure sensor and detects, by differential comparison, any leakage from the cavity or any malicious intrusion.
  • the integrated circuit 1 causes the component to be put out of service, for example by discharging the energy source through an electronic switch constituted by a transistor.
  • the frequency of measurement of the pressure in the cavity is adjusted so as to make it impossible for any intrusion into the component, while limiting energy consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Security & Cryptography (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Measuring Fluid Pressure (AREA)
  • Micromachines (AREA)

Abstract

Le composant comporte une cavité (9) étanche dans laquelle est disposée la source d'énergie (4-7) non protégée, constituée par une micro-batterie ou une micro-supercapacité. Toute pénétration de l'atmosphère ambiante dans la cavité étanche provoque, par oxydation, la destruction de la source d'énergie, rendant ainsi le composant inutilisable. La cavité (9) peut être sous vide ou remplie d'un gaz inerte. Un capteur de pression peut être disposé à l'intérieur de la cavité et détecter une variation de pression à l'intérieur de la cavité pour rendre le composant inutilisable lorsque la variation de pression dépasse un seuil prédéterminé. La cavité (9) peut être fermée par un capot (10) ou remplie par un matériau de remplissage constitué de résine de silicone, de résine thermodurcissable, de polymère, d'époxy, de verre fusible ou d'un métal choisi parmi l'indium, l'étain, le plomb ou leurs alliages.

Description

Composant micro ou nano-électronique comportant une source d'énergie et des moyens de protection de la source d'énergie
Domaine technique de l'invention
L'invention concerne un composant micro ou nano-électronique comportant une source d'énergie réalisée sous forme de films minces déposés sur un substrat et des moyens de protection de la source d'énergie vis-à-vis de l'atmosphère ambiante.
État de la technique
Les sources d'énergie réalisées sous la forme de films minces déposés sur un substrat comportent des éléments qui réagissent avec l'environnement ambiant, pouvant provoquer une détérioration rapide de la source d'énergie. Le lithium métallique constituant l'électrode négative d'une micro-batterie, par exemple, s'oxyde rapidement au contact de l'air, notamment en présence d'humidité. Il est donc indispensable de protéger ces sources d'énergie de l'air ambiant par une protection efficace et compatible avec leur utilisation en microélectronique.
Le brevet US 5561004 décrit une batterie au lithium, réalisée sous forme de films minces, protégée de l'atmosphère extérieure par au moins une couche supplémentaire. Les couches de protection sont déposées sous forme de films minces directement sur l'électrode en lithium de la batterie de manière à recouvrir totalement les parties exposées de cette électrode. Les matériaux utilisables pour former ces couches de protection sont le métal, la céramique, une combinaison céramique-métal, une combinaison parylène-métal, une combinaison parylène-céramique ou une combinaison parylène-céramique- métal. Ce type de revêtement permet une protection chimique de la batterie, mais n'offre pas de protection contre une effraction de type mécanique.
Objet de l'invention
L'invention a pour but d'améliorer la sécurité d'un composant micro ou nano- électronique comportant une source d'énergie formée sur un substrat.
Selon l'invention, ce but est atteint par un composant selon les revendications annexées et, plus particulièrement, par le fait que les moyens de protection comportent une cavité étanche dans laquelle est disposée la source d'énergie non protégée, toute pénétration de l'atmosphère ambiante dans la cavité étanche provoquant, par oxydation, la destruction de la source d'énergie, rendant ainsi le composant inutilisable.
La cavité peut être sous vide ou remplie par un gaz inerte.
Selon un développement de l'invention, le composant comporte un capteur de pression disposé à l'intérieur de la cavité et détectant une variation de pression à l'intérieur de la cavité pour rendre le composant inutilisable lorsque la variation de pression dépasse un seuil prédéterminé.
Selon un autre développement de l'invention, la cavité est remplie par un matériau de remplissage constitué de résine de silicone, de résine thermodurcissable, de polymère, d'époxy, de verre fusible ou d'un métal choisi parmi l'indium, l'étain, le plomb ou leurs alliages. La source d'énergie peut être constituée par une micro-batterie ou une micro- supercapacité.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs, et représentés aux dessins annexés, dans lesquels :
La figure 1 représente un premier mode de réalisation d'un composant selon l'invention.
La figure 2 illustre un second mode de réalisation d'un composant selon l'invention, avant fermeture de la cavité.
La figure 3 représente un mode particulier de fermeture de la cavité d'un composant selon la figure 2.
La figure 4 représente une micro-supercapacité pouvant constituer la source d'énergie. La figure 5 illustre un mode particulier de mise hors service du composant.
Description de modes particuliers de réalisation.
La figure 1 représente un composant dans lequel une source d'énergie est formée sur un circuit intégré 1 , lui-même formé sur un substrat isolant 2. La source d'énergie est destinée à alimenter au moins une partie des éléments du circuit intégré 1. Dans une variante de réalisation (non représentée) la source d'énergie et le circuit intégré sont disposés côte à côte, sur le substrat 2. Lorsque la source d'énergie est formée sur le circuit intégré, la couche supérieure du circuit intégré peut lui tenir lieu de substrat. La topologie (surface tourmentée) et/ou la densité de la couche supérieure du circuit intégré peuvent cependant être mal adaptées à la réalisation de couches supplémentaires présentant les propriétés électriques désirées pour la source d'énergie. Dans un mode de réalisation préféré, une couche isolante intermédiaire 3 est déposée sur le circuit intégré et sert de substrat supportant les divers éléments de la source d'énergie. La couche isolante intermédiaire 3 déposée sur le circuit intégré est suffisamment épaisse pour pouvoir être aplanie sur sa face supérieure, avant la formation de la source d'énergie, si nécessaire. La couche isolante intermédiaire peut être en matériau minéral (verre, Si02, etc..) ou en matériau organique (polymère, époxy, etc.). Son aplanissement peut être réalisé par des moyens mécaniques ou mécano-chimiques (par polissage, par exemple). Une couche isolante intermédiaire plane peut également être obtenue directement si elle est formée sur le circuit intégré par voie liquide. La couche isolante intermédiaire 3, plane, recouvre, de préférence, la totalité du circuit intégré 2 et du substrat 1 (figure 1). La source d'énergie est alors fabriquée sur la couche isolante intermédiaire 3, qui lui sert de substrat.
Le substrat 2, constitué de tout matériau approprié connu, peut notamment être un substrat en silicium, en verre, en plastique, etc.. Le circuit intégré 1 est également réalisé de manière connue, par tout type de technologie utilisée pour la fabrication de semi-conducteurs intégrés.
La source d'énergie peut être constituée par une micro-batterie, dont l'épaisseur est comprise entre 7μm et 30μm (de préférence de l'ordre de 15μm), par exemple par une micro-batterie au lithium formée par les techniques classiques de dépôt en phase vapeur par voie chimique (« chemical vapor déposition » :CVD) ou physique (« physical vapor déposition » :PVD). Une telle micro-batterie, sous forme de films minces, est notamment décrite dans les documents WO-A-9848467 et US-A-5561004.
Le principe de fonctionnement d'une micro-batterie repose, de manière connue, sur l'insertion et la désinsertion d'un ion de métal alcalin ou d'un proton dans l'électrode positive de la micro-batterie, de préférence un ion lithium Li+ issu d'une électrode en lithium métallique. La micro-batterie est formée par un empilement de couches obtenues par dépôt CVD ou PVD, constituant respectivement deux collecteurs de courant 4a et 4b, une électrode positive 5, un électrolyte 6 et une électrode négative 7.
Des plots de connexion 8a et 8b du circuit intégré 1 , équipant la partie supérieure du circuit intégré, traversent la couche isolante intermédiaire 3 pour venir en contact avec les collecteurs de courant 4a et 4b constituant les plots de connexion de la micro-batterie. Les connexions électriques entre le circuit intégré et la micro-batterie sont ainsi assurées par le contact métallique entre les couches associées constituant les plots de connexion. La source d'énergie que constitue la micro-batterie peut ainsi alimenter au moins une partie des éléments du circuit intégré 1 sur lequel elle est formée.
Les éléments de la micro-batterie peuvent être réalisés en divers matériaux : - Les collecteurs de courant 4a et 4b, métalliques, peuvent, par exemple, être à base de platine (Pt), de chrome (Cr), d'or (Au) ou de titane (Ti). - L'électrode positive 5 peut être constituée de LiCo02, de LiNi02, de
LiMn204, de CuS, de CuS2, de WOySz, de TiOySz, de V204 ou de V3O8 ainsi que des formes lithiées de ces oxydes de vanadium et de sulfures métalliques. - L'électrolyte 6, bon conducteur ionique et isolant électrique, peut être constitué par un matériau vitreux à base d'oxyde de bore, d'oxydes de lithium ou de sels de lithium.
- L'électrode négative 7 peut être constituée par du lithium métallique déposé par évaporation thermique, par un alliage métallique à base de lithium ou par un composé d'insertion de type SiTON, SnNx, lnNx, Sn02, etc..
Selon les matériaux utilisés, la tension de fonctionnement d'une micro-batterie est comprise entre 2V et 4V, avec une capacité surfacique de l'ordre de 100μAh/cm2. La recharge d'une micro-batterie ne nécessite que quelques minutes de chargement.
Il peut être indispensable de protéger le composant, et plus particulièrement la source d'énergie, de l'environnement ambiant. En effet, certains éléments entrant dans la composition d'une micro-source d'énergie sont sensibles aux conditions atmosphériques. Le lithium métallique constituant l'électrode négative des micro-batteries, en particulier, s'oxyde rapidement au contact de l'air, notamment en présence d'humidité.
Le type de revêtement décrit dans le brevet US 5561004 pour protéger de l'atmosphère extérieure une batterie au lithium, réalisée sous forme de films minces, permet une protection chimique de la batterie, mais n'offre pas de protection du composant contre une effraction de type mécanique.
Selon l'invention, le composant comporte une cavité étanche 9 dans laquelle sont disposées les parties à protéger du composant, c'est-à-dire au moins la source d'énergie. Sur les figures 1 à 3, la source d'énergie et le circuit intégré 1 sont en totalité logés dans la cavité 9. Le circuit intégré et la source d'énergie peuvent être disposés séparément ou sous forme d'un ensemble dans la cavité 9, mais sont de préférence fabriqués directement dans la cavité, dont le fond sert de substrat.
Dans un premier mode de réalisation, représenté à la figure 1 , la cavité 9 est fermée par un capot 10 qui est rapporté sur les éléments à protéger, plus particulièrement sur la micro-batterie. Le capot est, de préférence, constitué par une plaque de silicium, de métal, de polymère, d'époxy ou de verre, dans laquelle est gravée la cavité 9. Le capot 10 est fixé sur le substrat 2 ou sur la plaque intermédiaire 3 servant de substrat à la micro-batterie, de manière à entourer les parties à protéger du composant. Sur la figure 1 , la cavité 9 est ainsi délimitée par le capot et par la plaque intermédiaire 3. Des plots de connexion autres que les plots 8a et 8b peuvent être sortis vers l'extérieur.
L'assemblage peut être réalisé par tout moyen approprié permettant d'assurer l'étanchéité de la cavité 9, notamment par collage ou par scellement anodique (« Anodic bonding below 180°C for packaging and assembling of MEMS using lithium », Shuichi Shoji, D.E.C.E., Waseda University, 3-4-1 , ohkubo, Shinjuku, Tokyo 169, 1997, IEEE). Le collage peut être réalisé à l'aide d'une colle, en polymère ou en époxy, ou d'une résine photosensible déposée au préalable sur au moins une des surfaces à assembler. Selon une autre variante d'assemblage, le collage peut être réalisé par l'intermédiaire d'un matériau fusible, comme du verre fusible déposé sous forme d'un cordon ou d'une couche mince ou un métal eutectique (indium ou alliage plomb-étain, par exemple) dont la température de fusion est inférieure à celle du lithium.
L'assemblage du capot 10 sur le substrat 2 ou sur la couche isolante intermédiaire 3 est de préférence réalisé sous vide ou sous gaz inerte (argon ou azote, par exemple), de manière à ce que la source d'énergie se trouve dans une cavité étanche ayant une atmosphère neutre ou protectrice. En cas d'effraction ou de tentative d'intrusion, le gaz inerte éventuellement contenu dans la cavité s'échappe et l'atmosphère ambiante pénètre dans la cavité 9 et vient directement en contact avec les parties à protéger. La source d'énergie étant constituée par des matériaux très réactifs, comme le lithium qui réagit à l'humidité de l'air, toute tentative d'intrusion dans le composant conduisant à la mise au contact avec l'atmosphère de ces matériaux provoque une destruction immédiate de la source d'énergie et, en conséquence, rend le composant inutilisable, ce qui en renforce la sécurité vis-à-vis d'un utilisateur non-autorisé qui tente d'accéder au circuit intégré. En effet, l'intégration d'une source d'énergie sur le même substrat qu'un circuit intégré, qu'elle alimente au moins en partie, a essentiellement pour but la sécurisation du circuit intégré. Dans le cas d'une carte à puce, par exemple, la source d'énergie peut être utilisée pour sauvegarder dans une mémoire une information sensible, comme un code confidentiel. La destruction de la source d'énergie en cas d'intrusion supprime cette information, rendant la carte inviolable et son utilisation ultérieure impossible.
Dans un second mode de réalisation, représenté à la figure 2 avant fermeture de la cavité 9, la cavité 9 est délimitée latéralement par une paroi 11 entourant l'ensemble des parties à protéger, la hauteur de la paroi 11 étant supérieure à l'épaisseur des parties à protéger. Dans une première variante de réalisation, la paroi 11, en verre, est formée sur le substrat 2 par sérigraphie, par injection de poudres et de précurseurs au moyen d'un injecteur de type injecteur de véhicule automobile, par injection au moyen de micro-injecteurs du type utilisé dans les têtes d'imprimante, par dépôt d'un cordon de verre ou de résine par photolithographie ou par injection, ou par gravure d'une couche épaisse. Dans une seconde variante de réalisation, la cavité est réalisée par gravure du substrat 2, le circuit intégré 1 et la source d'énergie étant alors enfouis dans le substrat 2. La cavité 9 peut être fermée de manière étanche par un capot fixé à la paroi 11 et constitué par une plaque du même type que le capot 10 décrit ci- dessus.
Dans un autre mode de réalisation, représenté à la figure 3, la cavité 9 est remplie par un matériau de remplissage destiné à améliorer la protection et constitué de résine de silicone, de résine thermodurcissable, de polymère, d'époxy, de verre fusible ou d'un métal choisi parmi l'indium, l'étain, le plomb ou leurs alliages. Pour assurer une meilleure étanchéité, la cavité 9 remplie peut, de plus, être recouverte par un revêtement protecteur additionnel 12. Ce dernier peut être constitué par une couche mince, métallique ou isolante, obtenue par dépôt (par exemple CVD ou PVD) ou par collage d'une mince feuille métallique.
La source d'énergie doit fournir suffisamment d'énergie pour effectuer un nombre limité d'opérations pendant la durée de vie du composant, tout en ayant des dimensions aussi faibles que possibles, compatibles avec les dimensions des circuits intégrés, notamment avec leur épaisseur (de quelques dizaines à quelques centaines de microns).
Une micro-supercapacité peut constituer une autre source d'énergie appropriée.
Une telle supercapacité est réalisée sous forme de films minces, avec le même type de technologie que les micro-batteries. Comme représenté à la figure 4, elle est constituée par l'empilement, sur un substrat isolant 2, de préférence en silicium, de couches constituant respectivement un collecteur de courant inférieur 13, une électrode inférieure 14, un électrolyte 15, une électrode supérieure 16 et un collecteur de courant supérieur 17.
Les éléments de la micro-supercapacité peuvent être réalisés en divers matériaux. Les électrodes 14 et 16 peuvent être à base de carbone ou d'oxydes de métaux comme Ru02, Ir02, Ta02 ou Mn02. L'électrolyte 15 peut être un électrolyte vitreux du même type que celui des micro-batteries. La micro- supercapacité peut avoir une capacité surfacique de l'ordre de 10μAh/cm2 et sa charge complète peut être obtenue en moins d'une seconde.
Un mode particulier de réalisation d'une micro-supercapacité utilisable dans un composant selon l'invention est représenté à la figure 4. La micro-supercapacité est formée sur le substrat isolant 2, en silicium. Elle est formée en cinq étapes successives de dépôt : - Dans une première étape, le collecteur de courant inférieur 13 est formé par dépôt d'une couche de platine de 0,2±0,1μm d'épaisseur, par pulvérisation cathodique radiofrequence.
Dans une seconde étape, l'électrode inférieure 14, en oxyde de ruthénium
(Ru02) est réalisée à partir d'une cible de ruthénium métallique, par pulvérisation cathodique radiofrequence réactive dans un mélange d'argon et d'oxygène (Ar / O2) à température ambiante. La couche formée a une épaisseur de 1 ,5±0,5μm.
Dans une troisième étape, une couche de 1 ,2±0,4μm d'épaisseur, constituant l'électrolyte 15, est formée. C'est un verre conducteur de type Lipon (Li3PO2 5N03), obtenu par pulvérisation cathodique sous pression partielle d'azote avec une cible de Li3P04 ou 0,75(Li2O)-0,25(P2O5).
Dans une quatrième étape, l'électrode supérieure 16, en oxyde de ruthénium (Ru02) est réalisée de la même manière que l'électrode inférieure 14 pendant la seconde étape. - Dans une cinquième étape, le collecteur de courant supérieur 17, en platine, est formé de la même manière que le collecteur de courant inférieur 13 pendant la première étape. Il est possible d'améliorer encore la sécurisation du composant, lorsque la cavité 9 n'est pas remplie par un matériau de remplissage, en disposant un capteur de pression à l'intérieur de la cavité 9. Le capteur de pression détecte toute variation de pression à l'intérieur de la cavité et rend le composant inutilisable lorsque la variation de pression dépasse un seuil prédéterminé. La pression interne de la cavité, qu'elle soit inférieure (vide) ou supérieure à la pression atmosphérique, est susceptible de varier dans le temps en fonction de la qualité de l'assemblage (fuite, etc.). Son évolution dans le temps est imprévisible et non mesurable de l'extérieur. La pression interne de la cavité constitue ainsi un code inviolable. Une telle protection rend inefficace une intrusion qui serait effectuée en atmosphère contrôlée et inerte.
Dans le mode de réalisation illustré à la figure 5, un interrupteur 18, normalement ouvert, est connecté en parallèle sur la source d'énergie 19.
L'interrupteur 18 est automatiquement fermé par le capteur de pression lorsque la variation de pression dépasse le seuil prédéterminé, court-circuitant alors la source d'énergie 19, qui se décharge immédiatement, provoquant la mise hors service du composant. L'interrupteur 18 peut, par exemple, être constitué par une membrane du capteur de pression, dont une face est soumise à la pression atmosphérique en cas de détérioration de la cavité et dont le déplacement provoque le court-circuit de la source d'énergie.
Dans une variante de réalisation, non représentée, le capteur de pression est alimenté par la source d'énergie et géré par le circuit intégré 1. Le circuit intégré
1 lit périodiquement la valeur de la pression mesurée par le capteur de pression et détecte, par comparaison différentielle, toute fuite de la cavité ou toute intrusion malintentionnée. Lorsque la variation de pression dépasse le seuil prédéterminé, le circuit intégré 1 provoque une mise hors service du composant, par exemple par décharge de la source d'énergie à travers un interrupteur électronique constitué par un transistor. La fréquence de mesure de la pression dans la cavité est ajustée de manière à rendre impossible toute intrusion dans le composant, tout en limitant la consommation d'énergie.

Claims

Revendications
1. Composant micro ou nano-électronique comportant une source d'énergie réalisée sous forme de films minces déposés sur un substrat et des moyens de protection de la source d'énergie vis-à-vis de l'atmosphère ambiante, composant caractérisé en ce que les moyens de protection comportent une cavité (9) étanche dans laquelle est disposée la source d'énergie non protégée, toute pénétration de l'atmosphère ambiante dans la cavité étanche provoquant, par oxydation, la destruction de la source d'énergie, rendant ainsi le composant inutilisable.
2. Composant selon la revendication 1 , caractérisé en ce que la cavité (9) est remplie par un gaz inerte.
3. Composant selon la revendication 1 , caractérisé en ce que l'intérieur de la cavité (9) est sous vide.
4. Composant selon l'une des revendications 2 et 3, caractérisé en ce qu'il comporte un capteur de pression disposé à l'intérieur de la cavité et détectant une variation de pression à l'intérieur de la cavité pour rendre le composant inutilisable lorsque la variation de pression dépasse un seuil prédéterminé.
5. Composant selon la revendication 4, caractérisé en ce que le capteur de pression court-circuite la source d'énergie (19) lorsque la variation de pression dépasse le seuil prédéterminé.
6. Composant selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la cavité (9) est fermée par un capot (10).
7. Composant selon la revendication 6, caractérisé en ce que le capot (10) est constitué par une plaque de silicium, de métal, de polymère, d'époxy ou de verre.
8. Composant selon la revendication 7, caractérisé en ce que la cavité (9) est gravée dans le capot (10).
9. Composant selon l'une quelconque des revendications 6 à 8, caractérisé en ce que le capot (10) est fixé par collage.
10. Composant selon la revendication 1 , caractérisé en ce que la cavité (9) est remplie par un matériau de remplissage constitué de résine de silicone, de résine thermodurcissable, de polymère, d'époxy, de verre fusible ou d'un métal choisi parmi l'indium, l'étain, le plomb ou leurs alliages.
11. Composant selon la revendication 10, caractérisé en ce que la cavité (9) remplie est recouverte par un revêtement protecteur (12).
12. Composant selon la revendication 11 , caractérisé en ce que le revêtement protecteur (12) est constitué par une couche mince formée par des techniques de fabrication de semi-conducteurs.
13. Composant selon la revendication 11 , caractérisé en ce que le revêtement protecteur (12) est constitué par une feuille métallique mince collée sur la cavité remplie.
14. Composant selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la cavité (9) est formée par gravure dans le substrat (2), la source d'énergie étant formée sur le fond de la cavité.
15. Composant selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la cavité (9) est délimitée latéralement par une paroi (11) entourant l'ensemble des parties à protéger, la hauteur de la paroi étant supérieure à l'épaisseur des parties à protéger.
16. Composant selon la revendication 15, caractérisé en ce que la paroi (11) est formée par sérigraphie sur le substrat.
17. Composant selon la revendication 15, caractérisé en ce que la paroi (11) est formée par injection sur le substrat (2).
18. Composant selon la revendication 15, caractérisé en ce que la paroi (11) est formée par photolithographie sur le substrat (2).
19. Composant selon l'une quelconque des revendications 1 à 18, caractérisé en ce que la source d'énergie est constituée par une micro-batterie.
20. Composant selon l'une quelconque des revendications 1 à 18, caractérisé en ce que la source d'énergie est constituée par une supercapacité.
PCT/FR2002/003589 2001-10-22 2002-10-21 Composant micro ou nano-electronique comportant une source d'energie et des moyens de protection de la source d'energie WO2003036719A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP02795333A EP1438748A2 (fr) 2001-10-22 2002-10-21 Composant micro ou nano-electronique comportant une source d'energie et des moyens de protection de la source d'energie
JP2003539104A JP2005506714A (ja) 2001-10-22 2002-10-21 電源と電源保護手段とを備えたマイクロまたはナノ電子部品
AU2002360134A AU2002360134A1 (en) 2001-10-22 2002-10-21 Micro- or nano-electronic component comprising a power source and means for protecting the power source
KR10-2004-7006007A KR20040071130A (ko) 2001-10-22 2002-10-21 전원과 전원을 보호하는 수단을 포함하는 마이크로 또는나노 전자 부품
US10/492,048 US20050001214A1 (en) 2001-10-22 2002-10-21 Micro- or nano-electronic component comprising a power source and means for protecting the power source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/13569 2001-10-22
FR0113569A FR2831327B1 (fr) 2001-10-22 2001-10-22 Composant micro ou nano-electronique comportant une source d'energie et des moyens de protection de la source d'energie

Publications (2)

Publication Number Publication Date
WO2003036719A2 true WO2003036719A2 (fr) 2003-05-01
WO2003036719A3 WO2003036719A3 (fr) 2004-03-04

Family

ID=8868532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003589 WO2003036719A2 (fr) 2001-10-22 2002-10-21 Composant micro ou nano-electronique comportant une source d'energie et des moyens de protection de la source d'energie

Country Status (8)

Country Link
US (1) US20050001214A1 (fr)
EP (1) EP1438748A2 (fr)
JP (1) JP2005506714A (fr)
KR (1) KR20040071130A (fr)
CN (1) CN1300847C (fr)
AU (1) AU2002360134A1 (fr)
FR (1) FR2831327B1 (fr)
WO (1) WO2003036719A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102795A1 (fr) * 2004-12-09 2007-09-13 Honeywell International Inc. Utilisation d'accumulateurs thermiques a film mince pour assurer une protection de sécurité a des systèmes électroniques
JP2007535743A (ja) * 2004-04-30 2007-12-06 マイクロナス・ゲーエムベーハー 電源装置を装備したチップ
JP2008525954A (ja) * 2004-12-23 2008-07-17 コミッサリア タ レネルジー アトミーク ナノ構造のマイクロ電池向けの電極

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776478B2 (en) 2005-07-15 2010-08-17 Cymbet Corporation Thin-film batteries with polymer and LiPON electrolyte layers and method
JP2009502011A (ja) * 2005-07-15 2009-01-22 シンベット・コーポレイション 軟質および硬質電解質層付き薄膜電池および方法
FR2901639B1 (fr) * 2006-05-24 2008-08-22 Commissariat Energie Atomique Micro-composant integre associant les fonctions de recuperation et de stockage de l'energie
FR2910991B1 (fr) * 2007-01-02 2009-07-31 Ingenico Sa Module de securite materiel,procede de mise en service et terminal de paiement electronique utilisant ce module
EP2132806A4 (fr) * 2007-03-30 2012-12-19 Univ Michigan Batterie microarchitecturée déposée
ATE547926T1 (de) * 2007-08-09 2012-03-15 Panasonic Corp Schaltungsmodul und das modul verwendende elektronische einrichtung
FR2925227B1 (fr) 2007-12-12 2009-11-27 Commissariat Energie Atomique Dispositif electrochimique au lithium encaspule.
FR2946461B1 (fr) * 2009-06-09 2011-07-22 Commissariat Energie Atomique Dispositif d'encapsulation flexible d'une micro-batterie
FR2952477B1 (fr) * 2009-11-06 2011-12-09 St Microelectronics Tours Sas Procede de formation d'une batterie de type lithium-ion en couches minces
US11527774B2 (en) 2011-06-29 2022-12-13 Space Charge, LLC Electrochemical energy storage devices
US10601074B2 (en) 2011-06-29 2020-03-24 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US9853325B2 (en) 2011-06-29 2017-12-26 Space Charge, LLC Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices
US11996517B2 (en) 2011-06-29 2024-05-28 Space Charge, LLC Electrochemical energy storage devices
GB201116253D0 (en) * 2011-09-20 2011-11-02 Eight19 Ltd Photovoltaic device
FR2994338A1 (fr) * 2012-08-03 2014-02-07 St Microelectronics Tours Sas Procede de formation d'une batterie de type lithium-ion
JP5632031B2 (ja) * 2013-03-06 2014-11-26 セイコーインスツル株式会社 電子部品パッケージの製造方法
DE102014222899B4 (de) 2014-11-10 2018-03-22 Robert Bosch Gmbh Sensorgehäuse
US10446331B2 (en) * 2015-09-22 2019-10-15 Analog Devices, Inc. Wafer-capped rechargeable power source
DE102016109960A1 (de) * 2016-05-31 2017-11-30 Infineon Technologies Ag Halbleitergehäuse, Chipkarte und Verfahren zum Herstellen eines Halbleitergehäuses
EP3762989A4 (fr) 2018-03-07 2021-12-15 Space Charge, LLC Dispositifs d'accumulation d'énergie à électrolyte solide à film mince

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431261A1 (fr) * 1989-12-07 1991-06-12 International Business Machines Corporation Boîtier pour circuit intégré ayant un couvercle et dispositif formé dans le même matériau
US5323150A (en) * 1992-06-11 1994-06-21 Micron Technology, Inc. Method for reducing conductive and convective heat loss from the battery in an RFID tag or other battery-powered devices
US5338625A (en) * 1992-07-29 1994-08-16 Martin Marietta Energy Systems, Inc. Thin film battery and method for making same
US5406630A (en) * 1992-05-04 1995-04-11 Motorola, Inc. Tamperproof arrangement for an integrated circuit device
EP0658927A1 (fr) * 1993-12-15 1995-06-21 Robert Bosch Gmbh Procédé de formation d'une cavité en forme de parallélépipède destinée à accueillir un composant dans un support
US5907477A (en) * 1995-09-19 1999-05-25 Micron Communications, Inc. Substrate assembly including a compartmental dam for use in the manufacturing of an enclosed electrical circuit using an encapsulant
US5998858A (en) * 1995-07-20 1999-12-07 Dallas Semiconductor Corporation Microcircuit with memory that is protected by both hardware and software
US6264709B1 (en) * 1998-08-21 2001-07-24 Korea Institute Of Science And Tech. Method for making electrical and electronic devices with vertically integrated and interconnected thin-film type battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561004A (en) * 1994-02-25 1996-10-01 Bates; John B. Packaging material for thin film lithium batteries

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431261A1 (fr) * 1989-12-07 1991-06-12 International Business Machines Corporation Boîtier pour circuit intégré ayant un couvercle et dispositif formé dans le même matériau
US5406630A (en) * 1992-05-04 1995-04-11 Motorola, Inc. Tamperproof arrangement for an integrated circuit device
US5323150A (en) * 1992-06-11 1994-06-21 Micron Technology, Inc. Method for reducing conductive and convective heat loss from the battery in an RFID tag or other battery-powered devices
US5338625A (en) * 1992-07-29 1994-08-16 Martin Marietta Energy Systems, Inc. Thin film battery and method for making same
EP0658927A1 (fr) * 1993-12-15 1995-06-21 Robert Bosch Gmbh Procédé de formation d'une cavité en forme de parallélépipède destinée à accueillir un composant dans un support
US5998858A (en) * 1995-07-20 1999-12-07 Dallas Semiconductor Corporation Microcircuit with memory that is protected by both hardware and software
US5907477A (en) * 1995-09-19 1999-05-25 Micron Communications, Inc. Substrate assembly including a compartmental dam for use in the manufacturing of an enclosed electrical circuit using an encapsulant
US6264709B1 (en) * 1998-08-21 2001-07-24 Korea Institute Of Science And Tech. Method for making electrical and electronic devices with vertically integrated and interconnected thin-film type battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535743A (ja) * 2004-04-30 2007-12-06 マイクロナス・ゲーエムベーハー 電源装置を装備したチップ
WO2007102795A1 (fr) * 2004-12-09 2007-09-13 Honeywell International Inc. Utilisation d'accumulateurs thermiques a film mince pour assurer une protection de sécurité a des systèmes électroniques
JP2008525954A (ja) * 2004-12-23 2008-07-17 コミッサリア タ レネルジー アトミーク ナノ構造のマイクロ電池向けの電極

Also Published As

Publication number Publication date
CN1575523A (zh) 2005-02-02
KR20040071130A (ko) 2004-08-11
AU2002360134A1 (en) 2003-05-06
CN1300847C (zh) 2007-02-14
US20050001214A1 (en) 2005-01-06
FR2831327B1 (fr) 2004-06-25
WO2003036719A3 (fr) 2004-03-04
JP2005506714A (ja) 2005-03-03
FR2831327A1 (fr) 2003-04-25
EP1438748A2 (fr) 2004-07-21

Similar Documents

Publication Publication Date Title
EP1438748A2 (fr) Composant micro ou nano-electronique comportant une source d'energie et des moyens de protection de la source d'energie
EP2071657B1 (fr) Dispositif électrochimique au lithium encapsulé
US8679674B2 (en) Battery with protective packaging
EP2984697B1 (fr) Accumulateur électrochimique au lithium avec boitier à dissipation thermique améliorée, pack-batterie et procédés de réalisation associés
JP5583387B2 (ja) モノリシックパッケージ化された基板上のマイクロバッテリ
WO2003036670A2 (fr) Dispositif de stockage d'energie a recharge rapide, sous forme de films minces
EP3076453B1 (fr) Dispositif électrochimique, tel qu'une microbatterie ou un système électrochrome, recouvert par une couche d'encapsulation comprenant un film barrière et un film adhésif, et procédé de réalisation d'un tel dispositif
EP1438763A1 (fr) Procede de fabrication d'une micro-batterie
EP1673820A2 (fr) Couche et procede de protection de microbatteries par une bicouche ceramique-metal
FR2946461A1 (fr) Dispositif d'encapsulation flexible d'une micro-batterie
EP3157050B1 (fr) Procédé de réalisation d'un dispositif microélectronique et dispositif microélectronique ainsi fabriqué
EP3012886B1 (fr) Dispositif électrochimique, tel qu'une microbatterie ou un système électrochrome, et son procédé de réalisation
US20140356694A1 (en) Thin film battery having improved battery performance through substrate surface treatment and method for manufacturing same
EP3157057A1 (fr) Boitier pour composants microélectroniques
FR3068830B1 (fr) Systeme d'encapsulation pour composants electroniques et batteries
EP3673278B1 (fr) Element electrochimique et batterie avec capteur et/ou actionneur integre
FR3105605A1 (fr) Batterie, notamment en couches minces, avec un nouveau système d’encapsulation
EP3576177B1 (fr) Microbatterie encapsulee presentant une etancheite amelioree et procede d'encapsulation offrant une etancheite amelioree
FR2606215A1 (fr) Pile electrochimique
EP3503142B1 (fr) Réalisation d'un collecteur de dispositif microélectronique
FR3105603A1 (fr) Dispositif électrochimique de type batterie possédant une durée de vie améliorée, comprenant des moyens d’étanchéité et de conduction électrique perfectionnés, et son procédé de fabrication
EP3503143B1 (fr) Réalisation d'un collecteur de dispositif microélectronique
EP4082062A1 (fr) Batterie, notamment en couches minces, avec un nouveau systeme d'encapsulation
FR3114147A1 (fr) Objet fonctionnalise avec capteur d’ondes mecaniques integre et procede de fabrication associe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10492048

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002795333

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20028209656

Country of ref document: CN

Ref document number: 2003539104

Country of ref document: JP

Ref document number: 1020047006007

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002795333

Country of ref document: EP