WO2003036696A1 - Method and instrument for measuring concentration, method and unit for exposure to light, and method for manufacturing device - Google Patents

Method and instrument for measuring concentration, method and unit for exposure to light, and method for manufacturing device Download PDF

Info

Publication number
WO2003036696A1
WO2003036696A1 PCT/JP2002/011044 JP0211044W WO03036696A1 WO 2003036696 A1 WO2003036696 A1 WO 2003036696A1 JP 0211044 W JP0211044 W JP 0211044W WO 03036696 A1 WO03036696 A1 WO 03036696A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
concentration
flow rate
pressure
space
Prior art date
Application number
PCT/JP2002/011044
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Aoki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2003539086A priority Critical patent/JPWO2003036696A1/en
Publication of WO2003036696A1 publication Critical patent/WO2003036696A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0016Sample conditioning by regulating a physical variable, e.g. pressure or temperature

Definitions

  • the present invention relates to a method and an apparatus for measuring the concentration of an arbitrary substance contained in a gas discharged from a space to be replaced with a gas, and particularly to a semiconductor element, a liquid crystal display element, an image pickup element (CCD, etc.).
  • the present invention relates to an exposure method for manufacturing an electronic device such as a thin film magnetic head and a technique used for the apparatus.
  • a pattern image of a mask or reticle (hereinafter, referred to as a reticle) having a pattern formed thereon is exposed to a photosensitive material (hereinafter referred to as a reticle) through a projection optical system.
  • a projection exposure apparatus is used to project each shot (shot) area on a substrate coated with a resist.
  • the circuit of the electronic device is transferred by exposing a circuit pattern on a substrate to be exposed by the projection exposure apparatus, and is formed by post-processing.
  • the exposure illumination beam (exposure beam) in the projection exposure apparatus tends to be shorter in wavelength.
  • a short-wavelength light source such as a KrF excimer laser (wavelength: 248 nm) has been used in place of the mercury lamp that has been the mainstream until now, and an even shorter-wavelength ArF excimer laser has been used.
  • Exposure systems using (193 nm) are also entering the practical stage.
  • research on exposure systems using lasers (157 nm) has been advanced.
  • Beams having a wavelength of about 190 nm or less belong to the vacuum ultraviolet region, and these beams do not pass through air. This is because the energy of the beam is absorbed by substances such as oxygen molecules 'water molecules' and carbon dioxide molecules (hereinafter referred to as light absorbing substances) contained in the air.
  • a projection exposure apparatus using an exposure beam in the vacuum ultraviolet region In order for the exposure beam to reach the plate with sufficient illuminance, the gas in the space on the optical path of the exposure beam is replaced with a gas that absorbs less energy than the light-absorbing substance in the vacuum ultraviolet region of the beam. There is a need to reduce the light absorbing material on the optical path.
  • the concentration of the light absorbing substance in the space on the optical path is preferably about 1 ppm or less.
  • the management of the concentration of the light-absorbing substance in the optical path space is usually performed by measuring the concentration of the light-absorbing substance contained in the gas discharged from the space using a predetermined concentration measuring device.
  • the present invention has been made in view of the above-described circumstances, and provides a concentration measuring method and an apparatus therefor capable of accurately measuring the concentration of a substance contained in a gas discharged from a space to be replaced with a gas.
  • the purpose is to:
  • the present invention provides a concentration measuring method for measuring the concentration of an arbitrary substance contained in gas discharged from a space to be replaced with a gas, wherein a flow rate and a pressure of the gas discharged from the space are measured. At least one of them is controlled to be substantially constant, and the concentration of an arbitrary substance contained in the controlled gas is measured.
  • the space is a space in which a gas atmosphere containing oxygen is replaced with an inert gas such as a nitrogen gas or a helium gas, and the arbitrary substance may be oxygen.
  • an inert gas such as a nitrogen gas or a helium gas
  • the arbitrary substance may be oxygen.
  • the above concentration measuring method is a concentration measuring device including a measuring unit for measuring the concentration of an arbitrary substance contained in a gas discharged from a space to be replaced with a gas.
  • the present invention can be implemented by a concentration measuring device that includes a gas control device that controls at least one of the flow rate and the pressure of the discharged gas to be substantially constant.
  • the present invention is also an exposure method for transferring a mask pattern onto a substrate by using a beam, wherein a specific gas having reduced beam absorption with respect to a light-absorbing substance that absorbs the beam is placed in a space including the optical path of the beam. At least one of the flow rate and the pressure of the gas supplied and discharged from the space is controlled to be substantially constant, the concentration of the light absorbing substance contained in the controlled gas is measured, and the transfer process is performed according to the measurement result. It is characterized by performing. In this exposure method, at least one of the flow rate and the pressure of the gas discharged from the space including the beam optical path is controlled to be substantially constant, so that the disturbance of the measurement environment is reduced, and the absorption contained in the gas is reduced. The concentration of the substance is accurately measured. Therefore, by using this measurement result, the transfer treatment can be performed in a state where the light absorbing substance is sufficiently reduced.
  • an exposure apparatus for transferring a mask pattern to a substrate by using a beam
  • a specific gas in which a beam is reduced with respect to a light absorbing substance absorbing the beam is supplied to a space including an optical path of the beam.
  • the present invention can be implemented by an exposure apparatus including a gas control device for performing constant control. According to the exposure method and the exposure apparatus according to the present invention, the exposure accuracy can be improved by reliably reducing the light absorbing material from the space including the optical path of the exposure beam based on the accurately measured concentration of the light absorbing material in the gas. Can be improved.
  • the present invention relates to a method for manufacturing a device including a lithographic process, In the graphing process, a device is manufactured using the above-described exposure method.
  • FIG. 1 is a diagram showing a piping system of one embodiment of a concentration measuring device according to the present invention.
  • FIG. 2 is a diagram showing an overall configuration of an embodiment of an exposure apparatus according to the present invention.
  • FIG. 3 is a diagram showing a piping system according to another embodiment of the concentration measuring device.
  • FIG. 4 is a flowchart showing a manufacturing process of the semiconductor device according to the present invention. Preferred embodiment
  • FIG. 1 is a diagram showing a schematic configuration of an embodiment of a concentration measuring device 10 according to the present invention.
  • the concentration measuring device 10 measures the concentration of a predetermined substance contained in the gas discharged from the space 11 to be replaced with gas, and the concentration sensor 12 as a measuring unit and the concentration from the space 11 are measured.
  • Gas supply device 13 that supplies the sampled gas to the concentration sensor 12, clean gas supply device 14 that supplies a clean predetermined gas to the concentration sensor 12, and gas that supplies the concentration sensor 12
  • a control device 16 that controls these devices as a whole.
  • the space 11 to be replaced with gas is replaced with a predetermined gas (atmosphere) such as helium gas from a state containing air (gas atmosphere). It is desirable that the space 11 be maintained in a positive pressure state.
  • the concentration measuring device 10 measures the concentration of a predetermined substance contained in the gas discharged from the space 11 to determine whether the gas replacement is in progress or not. It is used to confirm whether the state is maintained.
  • an oxygen sensor capable of measuring the oxygen concentration in the gas is used as the concentration sensor 12.
  • oxygen sensors include zirconia oxygen Various types including sensors can be used.
  • the zirconium oxide sensor detects the oxygen concentration by utilizing the properties of zirconia as a solid electrolyte having high conductivity based on the movement of ions. That is, if the oxygen concentration of the gas on both sides of the zirconia (stabilized zirconia, zirconia ceramic) with electrode processing on both sides is different, oxygen molecules are ionized on one electrode and oxygen ions on the other electrode. Is returned to oxygen molecules, and electrons are exchanged between both electrodes (ion conduction).
  • the degree of ionic conductivity increases as the difference in the oxygen concentration of the gas increases. Therefore, the degree of ionic conductivity, that is, the difference between the oxygen concentrations on both sides of the zirconia can be extracted as the magnitude of the electromotive force between both electrodes. More specifically, for example, a gas having a constant oxygen concentration is placed as a reference gas (for example, the atmosphere) outside the tube of a zirconia formed into a tube, and a gas to be measured (a sample gas) is placed inside the tube. As a result, ionic conductivity is generated between the inner side and the outer side of the tube from the high oxygen concentration side to the low oxygen concentration side, and the oxygen concentration can be measured.
  • a reference gas for example, the atmosphere
  • the oxygen sensor is not limited to the solid electrolyte sensor described above, but may be a constant potential electrolytic type or battery type oxygen sensor using an electrochemical reduction current of oxygen.
  • the electromotive force of the oxygen sensor may vary depending on the ambient temperature and the oxygen concentration of the reference gas, so the oxygen sensor should be installed in a constant temperature furnace.
  • the measurement result of the oxygen concentration measured by the oxygen sensor (concentration sensor 12) is sent to the control device 16.
  • the sample gas supply device 13 is provided with a pipe 20 for supplying the gas discharged from the space 11 to the concentration sensor 12 (oxygen sensor) and a substantially constant flow rate of the gas discharged from the space 11. It is configured to include a mass flow controller (MFC) 21 as a gas control device for controlling.
  • MFC mass flow controller
  • the response characteristics of the concentration sensor 12 such as the oxygen sensor described above may show characteristics that differ greatly from the theoretical curve depending on the measurement environment (for example, gas flow rate and pressure).
  • the output voltage of the sensor if the ionization of oxygen molecules at one electrode or the release of oxygen molecules at the other electrode cannot keep up with the speed of ion conduction between the two electrodes, the output voltage of the sensor However, it tends to be affected by the gas flow rate (or flow velocity) in contact with the electrode. Such non-ideal behavior is likely to occur, for example, when the analyte concentration is low (eg, a few ppm). In this embodiment. As described above, it is necessary to detect the progress of gas replacement and whether or not gas replacement has been completed. Therefore, it is necessary to reliably measure the oxygen concentration to a relatively low concentration level.
  • the size (inner diameter, etc.) of the pipe 20 is determined in consideration of the response speed of the system due to the internal volume of the pipe, and the concentration sensor 12 is controlled by the mass flow controller 21.
  • the flow rate of the flowing sample gas is controlled to be constant.
  • the flow rate of the sample gas controlled to be constant by the mass flow controller 21 is preset according to the characteristics of the concentration sensor 12.
  • This set flow rate can be determined by a test using a calibration gas having a predetermined oxygen concentration.
  • the concentration of a substance here, oxygen concentration
  • the oxygen concentration is measured between immediately after the start of the gas replacement and when the gas replacement is completed. The difference may be relatively large. For this reason, an appropriate set flow rate may be determined stepwise according to the progress of gas replacement.
  • the flow rate of the sample gas may be set to be substantially constant at all times, or the flow rate of the sample gas may be set to be substantially constant during an arbitrary time.
  • the mass flow controller 21 sets the flow rate of the sample gas to a value corresponding to the first flow rate so that the flow rate of the sample gas becomes a substantially constant first flow rate.
  • the mass flow controller 21 adjusts the flow rate of the sample gas to the second flow rate so that the flow rate of the sample gas becomes a substantially constant second flow rate smaller than the first flow rate. May be set to a value corresponding to.
  • the predetermined time before and after the start of the gas replacement and the predetermined time before and after the completion of the gas replacement may be the same time or different. Whether or not the gas replacement is completed may be determined based on whether a predetermined time has elapsed from immediately after the gas replacement is started, or may be determined based on the measurement result of the concentration sensor 12. Is also good. Furthermore, in addition to setting the sample gas flow rates to different values before and after the start of gas replacement and before and after the completion of gas replacement, the flow rate of the sample gas is also, for example, before and after the start of gas replacement and before and after the completion of gas replacement.
  • the value of the mass flow controller 21 d may be set so as to be substantially constant between and, or to vary step by step between them.
  • the sample gas is transferred to the concentration sensor 12 using the pressure.
  • a low differential pressure type that can reliably set the flow rate even when the pressure difference between the primary side (upstream side) and the secondary side (downstream side) is relatively small, is used as the controller unit 21. It is preferable to use it.
  • the pressure in the space 11 to be replaced with gas is expected to fluctuate to some extent, even if the pressure on the primary side fluctuates slightly, a configuration that can maintain the set flow rate on the secondary side may be used. It is preferred to use
  • the mass flow controller 21 controls the flow rate of the sample gas to be constant.
  • the flow rate of the sample gas is not necessarily strictly constant. That is, a certain degree of variation according to the response characteristics of the concentration sensor 12 is allowed.
  • the clean gas supply device 14 supplies the concentration sensor 12 with a clean gas containing a substance (oxygen in this case) measured by the concentration sensor 12 and an impurity having a sufficient adverse effect on the concentration sensor 12. It is configured to include a clean gas storage section 30 containing gas, and a pipe 31 for guiding the clean gas from the clean gas storage section 30 to the concentration sensor 12 (oxygen sensor).
  • the clean gas is mainly used for cleaning the concentration sensor 12. Therefore, the same gas as the gas (replacement gas) supplied to the space 11 for gas replacement may be used as the clean gas. In the present embodiment, the same helium gas as the replacement gas is used as the cleaning gas.
  • Helium gas is compressed or liquefied and stored in a high purity state.
  • the pressure of the clean gas is supplied to the outlet of the clean gas storage unit 30 at a predetermined pressure.
  • a pressure reducing valve 32 that can be adjusted to reduce the pressure may be attached.
  • the switching device 15 is used to switch the gas supplied to the concentration sensor 12 between the sample gas and the clean gas. Therefore, for example, a three-way solenoid valve is used as the switching device 15, and the switching device 15 is configured to perform a switching operation according to a command from the control device 16.
  • the timing of supplying the sample gas to the concentration sensor 12 is, for example, immediately before the oxygen concentration is measured by the concentration sensor 12. This enables accurate density measurement by the cleaned density sensor 12. Also, the supply of sample gas and the supply of clean gas to the concentration sensor 12 are alternately performed. Thus, the concentration sensor 12 is cleaned as needed as the gas replacement progresses, and it is possible to reduce the time for one cleaning and stabilize the measurement accuracy.
  • the calibration of the concentration sensor 12 and the setting of the flow rate of the sample gas to be supplied to the concentration sensor 12 are performed in advance.
  • the calibration of the concentration sensor 12 may be performed using the air or a calibration gas having a predetermined oxygen concentration.
  • a calibration gas is used, only a calibration gas having a low oxygen concentration of about several ppm level or less when judging that gas replacement is completed may be used, or air (air) may be used to improve measurement accuracy over a wide range.
  • a plurality of calibration gases having different oxygen concentrations may be used, such as a calibration gas having an oxygen concentration close to the above and a calibration gas having a low oxygen concentration of several ppm level.
  • a calibration gas having a predetermined oxygen concentration is supplied to the concentration sensor via the mass flow controller 21 (a new mass flow controller may be provided for the calibration gas). While supplying to 12, the fluctuation of the output voltage (or current) from the concentration sensor 12 is measured while changing the flow rate. Then, the flow rate at which the output voltage of the concentration sensor 12 stabilizes and keeps substantially constant with respect to the flow rate change is set as the flow rate of the sample gas when supplied to the concentration sensor 12.
  • the concentration measuring device 10 controls the flow rate of the sample gas discharged from the space 11 to be replaced with the gas to a predetermined set flow rate by the mass flow controller 21.
  • the mass flow controller 21 controls the flow rate of the gas supplied to the concentration sensor 12 to be constant, disturbance in the measurement environment of the concentration sensor 12 is suppressed. Therefore, it is possible to accurately measure the oxygen concentration based on the ideal response characteristics of the concentration sensor 12.
  • the concentration of oxygen contained in the gas discharged from the space 11 changes greatly with the progress of gas replacement, so the sample gas is controlled to the same flow rate at all stages during gas replacement.
  • the oxygen concentration can be measured immediately after the start of gas replacement and before and after the completion of gas replacement. Accuracy can be improved.
  • the above-described density measuring method and apparatus of the present invention can be suitably used for a reduced projection type exposure apparatus for manufacturing a semiconductor device as shown in FIG.
  • This exposure apparatus transfers the circuit pattern formed on the reticle R to each shot area on the wafer W while synchronously moving the reticle R as a mask and the wafer W as a substrate.
  • This is a scanning type scanning exposure apparatus, so-called scanning-stepper.
  • scanning-stepper so-called scanning-stepper.
  • This exposure apparatus includes a light source 40, an illumination system 41 for illuminating the reticle R with an energy beam (exposure beam IL) from the light source 40, a reticle chamber 42 for accommodating the reticle R, and an exposure beam emitted from the reticle R. It comprises a projection optical system PL for projecting the IL onto the wafer W, a wafer chamber 43 for accommodating the wafer W, and a main control system 44 for overall control of the entire apparatus.
  • a light source that emits light belonging to the vacuum ultraviolet light region with a wavelength of about 120 nm to about 180 nm such as a fluorine laser (F laser) with an oscillation wavelength of 157 nm, A krypton dimer laser (Kr laser) with a wavelength of 146 nm and an argon dimer laser (Ar laser) with an oscillation wavelength of 126 nm are used.
  • a fluorine laser F laser
  • Kr laser krypton dimer laser
  • Ar laser argon dimer laser
  • an ArF excimer laser having an oscillation wavelength of 193 nm may be used as a light source.
  • the illumination system 41 includes a mirror 50 that bends a light beam (laser beam) IL emitted from the light source 40 in a predetermined direction, and adjusts the light beam IL guided by the mirror 50 to a light beam having a substantially uniform illuminance distribution.
  • a reticle blind 56 that passes through the splitter 53 and regulates the exposure beam IL guided by the mirror 54 and the relay lens 55 to a predetermined illumination range, and passes through an opening of the reticle blind 56. It is configured to include a relay lens 57, a mirror 58, and the like for guiding the exposure beam IL to the reticle chamber 52.
  • the integrator sensor 52 includes a photoelectric conversion element and the like, and the beam splitter 53 A part of the exposure beam IL guided by the photoelectric conversion is photoelectrically converted, and the photoelectric conversion signal is supplied to the main control system 54.
  • the main control system 54 drives and stops the light source 40 based on information from the integrator sensor 52, whereby the exposure amount (irradiation amount of the exposure beam) to the wafer W is controlled. .
  • the output signal of the integrator sensor 52 is, before the exposure operation, an output obtained by receiving the exposure beam IL that has passed through the projection optical system with a radiation amount monitor attached to the wafer stage WST described later. Associated with the signal.
  • the reticle blind 56 includes, for example, a pair of blades (not shown) that are bent into a plane L shape and are combined in a plane orthogonal to the optical axis of the exposure beam IL to form a rectangular opening.
  • a light-shielding unit displacement device (not shown) for displacing these blades in a plane orthogonal to the optical axis based on an instruction from the main control system 44 is provided.
  • the blade is arranged on a plane conjugate with the pattern plane of reticle R.
  • the size of the opening of the reticle blind 56 changes with the displacement of the blade, and the exposure beam IL defined by this opening transmits the reticle placed in the reticle chamber 42 via the relay lens 57.
  • a specific area of R is illuminated with substantially uniform illuminance.
  • the reticle chamber 42 is formed by a partition wall 60 bonded to the housing of the illumination system 41 and the housing of the projection optical system PL without any gap, and has a reticle stage RST for adsorbing and holding the reticle R in its internal space. ing.
  • the reticle stage RST is arranged on a reticle base (not shown).
  • the RST is moved by a predetermined stroke in the Y direction (scan direction) on the reticle base by a stage drive system (not shown), and is moved in the X direction. , Y direction, and ⁇ direction (rotation direction).
  • the stage drive system includes, for example, a linear guide disposed parallel to the Y axis to guide the reticle stage RST in the Y direction, a scanning linear motor (voice coil motor), and the like.
  • the position and rotation angle of the reticle stage RST are measured with high precision by a laser interference system (not shown), and based on the measured values and control information from a main control system 44 composed of a computer that controls the overall operation of the entire device.
  • the reticle stage RST is driven.
  • the projection optical system PL accommodates a plurality of optical members such as lenses and reflectors made of fluoride crystals such as fluorite and lithium fluoride in a housing (barrel) and hermetically seals them. It is a higher degree.
  • a reduction optical system having a projection magnification of, for example, 14 or 15 is used as the projection optical system PL.
  • the projection optical system PL When the reticle R is illuminated by the exposure beam IL from the illumination system 41, the pattern formed on the reticle R is reduced and projected onto a specific area (shot area) on the wafer W by the projection optical system PL. .
  • the wafer chamber 43 is formed by a partition wall 67 bonded to the housing of the projection optical system PL without any gap.
  • a wafer holder 68 for holding the wafer W by vacuum suction, and a wafer holder 68 are provided in the internal space. And a wafer stage WST to be supported.
  • the wafer stage WST is moved along the XY plane (in the direction perpendicular to the optical axis of the projection optical system PL) by a drive system (not shown) including, for example, a magnetic levitation type two-dimensional linear actuator (plane motor). It is configured to be driven freely in the horizontal direction.
  • the position of the wafer stage WST is adjusted by a laser interference system including an optical member such as a laser light source and a prism and a detector.
  • the members constituting this laser interference system are arranged outside the wafer chamber 43 in order to prevent foreign matter generated from the members from adversely affecting exposure. If the generation of the light-absorbing substance from each component constituting each laser interference system is sufficiently suppressed, these components may be arranged in the wafer chamber 43.
  • an arbitrary shot area on the wafer W is positioned at the projection position (exposure position) of the reticle R pattern by moving the wafer stage WST in the XY plane. ing.
  • the main control system 44 moves the wafer stage WST so as to sequentially position each shot area on the wafer W to the exposure start position, and a shot-to-shot stepping operation;
  • the scan exposure operation of transferring the pattern of the reticle R to the shot area of the wafer W while synchronizing the movement of W with the horizontal direction along the XY plane is repeatedly performed.
  • the main control system 44 includes a microcomputer (or a microcomputer) including a CPU (central processing unit), a ROM (read “only” memory), a RAM (random “access” memory), and the like. Also, the main control system 4 4 The position of each stage is controlled while monitoring the wafer stage RST and wafer stage WST via a laser interference system.
  • the control device 16 in the concentration measuring device 10 described above is included in the main control system 44.
  • a substance having a strong absorption characteristic for light in this wavelength band (hereinafter, referred to as a light absorbing substance) is excluded from the optical path.
  • the absorption substance on the beam in the vacuum ultraviolet region oxygen (0 2), water (water vapor: H 2 0), carbon dioxide (carbon dioxide:. CO, some organic matter, and halide etc.
  • exposure beam IL is Permeable gases (substances with little energy absorption) include nitrogen (N 2 ), helium (He), neon (Ne), argon (Ar), krypton (Kr). ), Xenon (X e), and radon (Rn), which are referred to hereinafter as “permeated gas”.
  • nitrogen gas acts as a light-absorbing substance with respect to light having a wavelength of about 150 nm or less
  • helium gas acts as a transparent gas up to a wavelength of about 100 nm.
  • helium gas has a thermal conductivity that is about six times that of nitrogen gas, and the amount of change in the refractive index with respect to changes in atmospheric pressure is about 1/8 that of nitrogen gas. Excellent in stability and cooling performance. Since helium gas is expensive, if 1 50 nm or more as the wavelength of the exposure light beam is an F 2 laser, to use nitrogen gas as its gas permeability in order to reduce the operating costs It may be. In this example, from the viewpoints of the stability of the imaging characteristics and the cooling property, it is assumed that a gas that allows the exposure beam IL to pass therethrough is a Helium gas.
  • Vacuum pumps for exhausting gas containing light-absorbing substances inside through piping 70 and the like are provided in the internal spaces of the illumination system 41, the reticle chamber 42, the projection optical system PL, and the wafer chamber 23 according to the present embodiment.
  • 71 A, 71 B, 71 C and 71 D are connected.
  • a gas in a gas supply device 72 installed outside a chamber (not shown) in which the entire exposure apparatus of the present embodiment is housed is compressed or pumped in a high-purity state by a high-purity helium gas. Liquefied and stored.
  • the helium gas extracted from the cylinder as needed is supplied to the lighting system via valves 73A, 73B, 73C, 73D and piping 74A, 74B, 74C, 74D. 4 1, reticle room 4 2. It is supplied to each internal space of the projection optical system PL and the wafer chamber 43. There is a HEPA finoleta (High Efficiency Particulate Air Filter) in the cylinder or in the middle of the piping to each space, and a dust such as ULPA finoleta (Ultra Low Penetration Air Filter).
  • HEPA finoleta High Efficiency Particulate Air Filter
  • ULPA finoleta Ultra Low Penetration Air Filter
  • An air filter that removes (particles) and a chemical filter (not shown) that removes light-absorbing substances such as oxygen are provided.
  • the concentration measuring device 1 shown in FIG. 0 is connected to each.
  • the concentration measuring device 10 is equipped with a concentration sensor 12 (oxygen sensor) that can measure the oxygen concentration in the gas. 4 (control device 16).
  • the gas atmosphere in the illumination system 41, reticle chamber 42, projection optical system PL, and wafer chamber 43 is replaced with helium gas under the control of the main control system 44. Is done. Specifically, at the time of gas replacement, the main control system 44 operates the vacuum pumps 71A, 71B, 71C or 71D to operate the illumination system 41, the reticle chamber 42, and the projection system. Exhaust the gas and light-absorbing substance in the optical system PL or the wafer chamber 43, and open the valve 73A, 73B, 73C or 73D to operate the gas supply device 72.
  • a high-purity, high-temperature, hemi-gas is supplied to the illumination system 41, the reticle chamber 42, the projection optical system PL, or the internal space of the wafer chamber 43 via the pipes 74A to 74D.
  • the progress of the gas replacement can be confirmed by the measurement result of the concentration measuring device 10, that is, the oxygen concentration measured by the concentration sensor 12.
  • the main control system 44 causes the vacuum pumps 71A, 71B, 71C or 71D. To stop.
  • the interior of the illumination system 41, the reticle chamber 42, the projection optical system PL, or the wafer chamber 43 is filled with a helium gas, which has less energy absorption than a light-absorbing substance with respect to a vacuum ultraviolet beam,
  • the pressure is equal to or higher than the atmospheric pressure (for example, about 1 to 10% higher than the atmospheric pressure).
  • the main control system 44 continuously outputs a predetermined flow rate from the gas supply device 72 so that the oxygen concentration measured by the concentration sensor 12 does not exceed the preset allowable concentration. Supply Helium gas.
  • the main control system 44 monitors residual air and leaks in each of the above-mentioned spaces using the measurement result of the oxygen concentration by the concentration sensor 12.
  • the concentration measuring device 10 measures the flow rate of the sample gas discharged from the gas replacement space 11 by controlling the flow rate of the sample gas to a predetermined set flow rate by the mass flow controller 21 (see FIG. 1). The disturbance of the environment is suppressed, and the oxygen concentration is accurately measured. Therefore, this exposure apparatus accurately detects the progress of gas replacement, whether or not the gas replacement has been completed, or whether or not the gas replacement state is maintained, based on the accurately measured oxygen concentration. can do.
  • the internal oxygen concentration is measured using the concentration measurement device 10.
  • the condition where the light-absorbing substances are monitored and removed is stably maintained. Therefore, in this exposure apparatus, the energy of the exposure beam IL from the light source 40 reaches the wafer W with sufficient illuminance without being largely absorbed in these spaces, and the pattern image of the reticle R is accurately displayed on the wafer W. Transcribed well.
  • the operation procedure described in the above embodiment, or the various shapes and combinations of the constituent members are merely examples, and various changes can be made based on process conditions and design requirements without departing from the gist of the present invention. It is.
  • the present invention includes, for example, the following changes.
  • the concentration measuring device may be provided with a pressure-increasing device (for example, a vacuum pump) 80 for increasing the pressure of the sample gas.
  • the booster 80 may be disposed between the space in which the gas is replaced and the mass flow controller 81, that is, upstream of the concentration sensor 82.
  • a diaphragm pump using a diaphragm valve that generates less pollutants may be used.
  • the configuration of the concentration measuring device including the pressure-increasing device 80 ensures that the sample gas is supplied to the concentration sensor 82 even when the pressure of the space to be replaced with gas is low.
  • the concentration sensor 82 When the pressure of the supplied sample gas decreases, the response characteristics may become unstable. Even in such a case, the pressure of the gas supplied to the concentration sensor 82 is stably ensured by the booster 80, so that a decrease in the measurement accuracy of the concentration sensor 82 due to the pressure decrease can be suppressed.
  • the device for increasing the pressure of the sample gas supplied to the concentration sensor is not limited to the pressure increasing device, but may be configured to include a suction device on the downstream side of the concentration sensor.
  • a pressure sensor is provided in the space to be replaced with gas or in the middle of the pipe between this space and the booster, and based on the detection result of the pressure sensor, the pressure sensor is used.
  • the operation that is, the pressure of the sample gas may be controlled.
  • the pressure of the sample gas similarly to the case of controlling the flow rate of the sample gas, the pressure of the sample gas is substantially constant for a predetermined time before and after the start of gas replacement.
  • the pressure of the sample gas is set to a value corresponding to the first pressure so that the pressure of the sample gas is smaller than the first pressure for a predetermined time before and after the completion of the gas replacement.
  • the booster may be set to a value corresponding to the second pressure so that the pressure is two.
  • the mass flow controller (MFC) is used to control the gas flow rate, but the means for controlling the gas flow rate is not limited to this.
  • MFC mass flow controller
  • the gas flow rate is controlled to be constant in order to suppress the disturbance of the measurement environment.
  • the pressure may be controlled to be constant.
  • the concentration measuring device may include, for example, a pressure increasing device and a pressure gauge, and may be configured to control the pressure increasing device so that the gas supplied to the concentration sensor has a constant pressure. If the device has a function to control the pressure on the secondary side (downstream side), a configuration without the booster can be adopted. Furthermore, instead of controlling only one of the flow rate and the pressure, both may be controlled to a predetermined value.
  • a dehumidifier should be provided upstream of the concentration sensor to prevent the liquid from lowering the measurement accuracy of the concentration sensor. Furthermore, if impurities are mixed in the gas discharged from the gas replacement space and the impurities may adversely affect the concentration sensor, a filter corresponding to the impurities may be provided upstream of the concentration sensor. Les ,.
  • oxygen is a measurement target, but it goes without saying that the measurement target of the present invention is not limited to this.
  • the present invention is applicable to the measurement of other substances such as water (water vapor), carbon dioxide (carbon dioxide), organic substances and halides, which are the above-mentioned light-absorbing substances. In this case, sensors that measure each substance are used.
  • the inert gas such as helium (H e) as a permeated gas; nitrogen (N 2), or a rare gas (argon (Ar), etc.
  • H e helium
  • N 2 nitrogen
  • argon (Ar) argon
  • any inert gas may be used.
  • the concentration of the light absorbing substance may be controlled with different values.
  • a purge pipe may be provided by providing a permeated gas supply pipe and an exhaust pipe for each space of the optical elements constituting the illumination optical system and the projection optical system. Furthermore, the concentration of the light-absorbing substance may be controlled for each space of the optical element constituting the illumination system or the projection optical system.
  • each housing (including the cylindrical body etc.) of the wafer chamber from the illumination system, and the piping for supplying helium gas, etc. are made of a material with low impurity gas (degassing), such as stainless steel, tetrafluoroethylene, tetrafluoroethylene. It is desirable to form with various polymers such as norroethylene-tenorefnoleo mouth (alkyl vinyl ether) or tetrafluoroethylene-hexafluoropropene copolymer.
  • the reticle chamber partition, wafer chamber partition, illumination system housing, projection optical system housing (barrel), sample gas (permeate gas) and clean gas supply piping, etc. are processed by polishing, etc. to obtain a rough surface.
  • a material such as stainless steel (SUS) with reduced strength, it is possible to suppress the generation of degassing.
  • SUS stainless steel
  • the exposure apparatus to which the present invention is applied is a scanning exposure method (for example, a step-and-scan method) in which a mask (reticle) and a substrate (wafer) are relatively moved with respect to an exposure illumination beam.
  • a scanning exposure method for example, a step-and-scan method
  • the present invention is not limited to this, and a static exposure method in which a mask pattern is transferred onto a substrate while the mask and the substrate are almost stationary, for example, a step-and-repeat method may be used.
  • the present invention can be applied to a step-and-stitch type exposure apparatus that transfers a pattern to a plurality of shot areas whose peripheral portions overlap each other on a substrate.
  • the projection optical system PL may be any one of a reduction system, an equal magnification system, and an enlargement system, and may be any one of a refraction system, a reflection refraction system, and a reflection system.
  • the present invention can be applied to an exposure apparatus that does not use a projection optical system, for example, a proximity type exposure apparatus.
  • the exposure apparatus to which the present invention is applied g-ray as the exposure illumination light, i line, K r F excimer laser light, A r F excimer one laser light, F 2 laser beam, and A r 2 laser beam such as Not only ultraviolet light but also EUV light, X-ray, or charged particle beam such as electron beam or ion beam may be used.
  • the light source for exposure is not limited to a mercury lamp or excimer laser, but may be a harmonic generation device such as a YAG laser or a semiconductor laser, an SOR, a laser plasma light source, an electron gun, or the like.
  • the exposure apparatus to which the present invention is applied is not limited to semiconductor device manufacturing, but may be a liquid crystal display device, a display device, a thin-film magnetic head, an imaging device (such as a CCD), a micromachine such as a micromachine, and a DNA chip. It may be used for manufacturing a device (electronic device) or for manufacturing a photomask / reticle used in an exposure apparatus. Further, the present invention can be applied not only to an exposure apparatus, but also to another manufacturing apparatus (including an inspection apparatus) used in a device manufacturing process.
  • the stage may be of a type that moves along a guide or a guideless type that does not have a guide.
  • a planar motor is used as the stage drive system, one of the magnet unit (permanent magnet) and the armature unit is connected to the stage, and the other of the magnet unit and the armature unit moves the stage. It may be provided on the surface side (surface plate, base). Also, the reaction force generated by the movement of the wafer stage is mechanically released to the floor (ground) using a frame member as described in JP-A-8-166475. Is also good.
  • the present invention is also applicable to an exposure apparatus having such a structure.
  • reaction force generated by the movement of the reticle stage may be mechanically released to the floor (ground) using a frame member as described in JP-A-8-330224.
  • the present invention is also applicable to an exposure apparatus having such a structure.
  • the exposure apparatus to which the present invention is applied is configured such that various subsystems including the respective constituent elements recited in the claims of the present application maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. It is manufactured by assembling. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical For, adjustments are made to achieve electrical accuracy.
  • the process of assembling the exposure apparatus from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus.
  • a comprehensive adjustment is performed to ensure various precisions of the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room where the temperature, cleanliness, etc. are controlled.
  • a process 201 for designing the function and performance of the device a process 202 for manufacturing a mask (reticle) based on the design steps, and a wafer made of silicon material are used.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A method for measuring the concentration of a substance contained in a gas discharged from the space being subjected to gas substitution, which comprises controlling at least one of the flow rate and the pressure of the gas discharged from the space being subjected to gas substitution to a constant value by means of a gas control device and measuring the concentration of the substance contained in the controlled gas. The method allows the measurement with improved precision for the concentration of a substance contained in a gas discharged from the space being subjected to gas substitution.

Description

明 細 書 濃度計測方法及びその装置、 露光方法及びその装置、 並びにデバイスの製造方法 発明の背景  Description Density Measurement Method and Apparatus, Exposure Method and Apparatus, and Device Manufacturing Method Background of the Invention
1 . 発明の利用分野  1. Field of application of the invention
本発明は、 ガス置換される空間から排出されたガスに含まれる任意の物質の濃 度を計測する濃度計測方法及びその装置に係り、 特に、 半導体素子、 液晶表示素 子、 撮像素子 (C C D等) 、 薄膜磁気ヘッ ド等の電子デバイスを製造するための 露光方法及びその装置に用いられる技術に関する。  The present invention relates to a method and an apparatus for measuring the concentration of an arbitrary substance contained in a gas discharged from a space to be replaced with a gas, and particularly to a semiconductor element, a liquid crystal display element, an image pickup element (CCD, etc.). The present invention relates to an exposure method for manufacturing an electronic device such as a thin film magnetic head and a technique used for the apparatus.
2 . 従来技術の記載  2. Description of the prior art
半導体素子や液晶表示素子等の電子デバイスをフォ トリ ソグラフイエ程で製造 する際に、 パターンが形成されたマスクあるいはレチクル (以下、 レチクルと称 する) のパターン像を投影光学系を介して感光材 (レジス ト) が塗布された基板 上の各投影 (ショ ッ ト) 領域に投影する投影露光装置が使用されている。 電子デ バイスの回路は、 この投影露光装置で被露光基板上に回路パターンを露光するこ とにより転写され、 後処理によって形成される。  When manufacturing an electronic device such as a semiconductor device or a liquid crystal display device by photolithography, a pattern image of a mask or reticle (hereinafter, referred to as a reticle) having a pattern formed thereon is exposed to a photosensitive material (hereinafter referred to as a reticle) through a projection optical system. A projection exposure apparatus is used to project each shot (shot) area on a substrate coated with a resist. The circuit of the electronic device is transferred by exposing a circuit pattern on a substrate to be exposed by the projection exposure apparatus, and is formed by post-processing.
近年、 集積回路の高密度集積化、 すなわち、 回路パターンの微細化が進められ ている。 これに伴い、 投影露光装置における露光用照明ビーム (露光ビーム) は 短波長化される傾向にある。 具体的には、 これまで主流だった水銀ランプに代わ つて、 K r Fエキシマレーザ (波長: 2 4 8 n m) といった短波長の光源が用い られるようになり、 さらに短波長の A r Fエキシマレーザ (1 9 3 n m) を用い た露光装置も実用段階に入りつつある。 また、 さらなる高密度集積化をめざして、 レ一ザ (1 5 7 n m) を用いた露光装置の研究も進められている。  In recent years, high-density integration of integrated circuits, that is, miniaturization of circuit patterns, has been promoted. Along with this, the exposure illumination beam (exposure beam) in the projection exposure apparatus tends to be shorter in wavelength. Specifically, a short-wavelength light source such as a KrF excimer laser (wavelength: 248 nm) has been used in place of the mercury lamp that has been the mainstream until now, and an even shorter-wavelength ArF excimer laser has been used. Exposure systems using (193 nm) are also entering the practical stage. In addition, with the aim of achieving further high-density integration, research on exposure systems using lasers (157 nm) has been advanced.
波長約 1 9 0 n m程度以下のビームは真空紫外域に属し、 これらのビームは、 空気を透過しない。 これは、 空気中に含まれる酸素分子 '水分子 '二酸化炭素分 子などの物質 (以下、 吸光物質と称する) によってビームのエネルギーが吸収さ れるからである。  Beams having a wavelength of about 190 nm or less belong to the vacuum ultraviolet region, and these beams do not pass through air. This is because the energy of the beam is absorbed by substances such as oxygen molecules 'water molecules' and carbon dioxide molecules (hereinafter referred to as light absorbing substances) contained in the air.
このため、 真空紫外域の露光ビームを用いた投影露光装置において、 被露光基 板上に露光ビームを十分な照度で到達させるには、 露光ビームの光路上の空間内 のガスを真空紫外域のビ一ムに対するエネルギ吸収が吸光物質より少ないガスに ガス置換し、 露光ビームの光路上の吸光物質を低減する必要がある。 For this reason, a projection exposure apparatus using an exposure beam in the vacuum ultraviolet region In order for the exposure beam to reach the plate with sufficient illuminance, the gas in the space on the optical path of the exposure beam is replaced with a gas that absorbs less energy than the light-absorbing substance in the vacuum ultraviolet region of the beam. There is a need to reduce the light absorbing material on the optical path.
例えば、 F 2レーザを用いた投影露光装置では、 その露光ビームの光路上のすパ ての空間内のガスを高純度の不活性ガスにガス置換する必要がある。 この場合、 例えば全光路長を 1 0 0 O m mとすると、 光路上の空間内の吸光物質濃度は、 1 p p m程度以下が好ましいとされている。 こう した光路空間内の吸光物質濃度の 管理は、 通常、 その空間から排出されるガスに含まれる吸光物質の濃度を所定の 濃度計測装置で計測することにより行われる。 For example, in a projection exposure apparatus using F 2 laser, it is necessary to gas replacement gas in the space in the high-purity inert gas Te to Pa on the optical path of the exposure beam. In this case, for example, assuming that the total optical path length is 100 O mm, the concentration of the light absorbing substance in the space on the optical path is preferably about 1 ppm or less. The management of the concentration of the light-absorbing substance in the optical path space is usually performed by measuring the concentration of the light-absorbing substance contained in the gas discharged from the space using a predetermined concentration measuring device.
ところが、 ガス置換される空間から排出されるガスでは、 ガス置換の進行に応 じて流量や圧力などの変動が生じやすい。 ガス中の物質濃度を計測する濃度計測 装置では、 こう したガス流量や圧力などの計測環境が大きく乱れると、 応答特性 の変化などにより計測精度の低下を招く可能性がある。 · 発明の要約  However, the gas discharged from the space to be replaced is liable to change in flow rate, pressure, etc. as the gas replacement proceeds. In a concentration measuring device that measures the concentration of a substance in a gas, if the measurement environment such as the gas flow rate and pressure is greatly disturbed, the measurement accuracy may be reduced due to a change in response characteristics and the like. · Summary of the invention
本発明は、 上述する事情に鑑みてなされたものであり、 ガス置換される空間か ら排出されるガスに含まれる物質の濃度を正確に計測することができる濃度計測 方法及びその装置を提供することを目的とする。  The present invention has been made in view of the above-described circumstances, and provides a concentration measuring method and an apparatus therefor capable of accurately measuring the concentration of a substance contained in a gas discharged from a space to be replaced with a gas. The purpose is to:
また、 本発明の他の目的は、 露光精度を向上させることができる露光方法及び その装置、 並びに、 形成されるパターンの精度を向上させることができるデバイ スの製造方法を提供することにある。  It is another object of the present invention to provide an exposure method and apparatus capable of improving exposure accuracy, and a method of manufacturing a device capable of improving accuracy of a pattern to be formed.
上記課題を解決するため、 本発明では、 ガス置換される空間から排出されたガ スに含まれる任意の物質の濃度を計測する濃度計測方法において、 前記空間から 排出されたガスの流量及び圧力のうちの少なく とも一方を略一定に制御し、 制御 されたガスに含まれる任意の物質の濃度を計測することを特徴とする。  In order to solve the above problems, the present invention provides a concentration measuring method for measuring the concentration of an arbitrary substance contained in gas discharged from a space to be replaced with a gas, wherein a flow rate and a pressure of the gas discharged from the space are measured. At least one of them is controlled to be substantially constant, and the concentration of an arbitrary substance contained in the controlled gas is measured.
この濃度計測方法では、 ガス置換される空間から排出されたガスの流量及び圧 力のうちの少なく とも一方を略一定に制御することにより、 計測環境の乱れが小 さくなり、 計測精度の低下が抑制される。 その結果、 そのガスに含まれる物質の 濃度を正確に計測することができる。 この場合において、 前記空間は、 酸素を含むガス雰囲気から窒素ガスやへリウ ムガスなどの不活性ガスにガス置換される空間であり、 前記任意の物質は、 酸素 であってもよい。 この場合、 酸素濃度を計測した結果に基づき、 その空間に対す るガス置換が完了したか否かなどの、 ガス置換の進行状態が確認可能となる。 また、 上記濃度計測方法は、 ガス置換される空間から排出されたガスに含まれ る任意の物質の濃度を計測する計測部を備える濃度計測装置において、 計測部の 上流に配され、 前記空間から排出されたガスの流量及び圧力のうちの少なく とも 一方を略一定に制御するガス制御装置を備えることを特徴とする濃度計測装置に よって実施することができる。 In this concentration measurement method, by controlling at least one of the flow rate and the pressure of the gas discharged from the space to be replaced with gas to be substantially constant, disturbance in the measurement environment is reduced, and the measurement accuracy is reduced. Is suppressed. As a result, the concentration of the substance contained in the gas can be accurately measured. In this case, the space is a space in which a gas atmosphere containing oxygen is replaced with an inert gas such as a nitrogen gas or a helium gas, and the arbitrary substance may be oxygen. In this case, based on the measurement result of the oxygen concentration, it is possible to confirm the progress state of the gas replacement such as whether or not the gas replacement for the space is completed. Further, the above concentration measuring method is a concentration measuring device including a measuring unit for measuring the concentration of an arbitrary substance contained in a gas discharged from a space to be replaced with a gas. The present invention can be implemented by a concentration measuring device that includes a gas control device that controls at least one of the flow rate and the pressure of the discharged gas to be substantially constant.
また、 本発明は、 ビームによりマスクのパターンを基板に転写する露光方法で あって、 ビームを吸収する吸光物質に対してビームの吸収が低減された特定のガ スをビームの光路を含む空間に供給し、 前記空間から排出されたガスの流量及び 圧力のうちの少なくとも一方を略一定に制御し、 制御されたガスに含まれる吸光 物質の濃度を計測し、 この計測結果に応じて転写処理を行うことを特徴とする。 この露光方法では、 ビームの光路を含む空間から排出されたガスの流量及び圧 力のうちの少なく とも一方を略一定に制御することにより、 計測環境の乱れが小 さくなり、 ガスに含まれる吸光物質の濃度が正確に計測される。 従って、 この計 測結果を用いることにより、 吸光物質が十分に低減された状態で転写処理が実施 可能となる。  The present invention is also an exposure method for transferring a mask pattern onto a substrate by using a beam, wherein a specific gas having reduced beam absorption with respect to a light-absorbing substance that absorbs the beam is placed in a space including the optical path of the beam. At least one of the flow rate and the pressure of the gas supplied and discharged from the space is controlled to be substantially constant, the concentration of the light absorbing substance contained in the controlled gas is measured, and the transfer process is performed according to the measurement result. It is characterized by performing. In this exposure method, at least one of the flow rate and the pressure of the gas discharged from the space including the beam optical path is controlled to be substantially constant, so that the disturbance of the measurement environment is reduced, and the absorption contained in the gas is reduced. The concentration of the substance is accurately measured. Therefore, by using this measurement result, the transfer treatment can be performed in a state where the light absorbing substance is sufficiently reduced.
また、 上記露光方法は、 ビームによりマスクのパターンを基板に転写する露光 装置において、 ビームを吸収する吸光物質に対してビームが低減された特定のガ スをビームの光路を含む空間に供給する特定ガス供給装置と、 このガスに含まれ る吸光物質の濃度を計測する計測部と、 計測部の上流側に配され、 前記空間から 排出されたガスの流量及び圧力のうちの少なく とも一方を略一定に制御するガス 制御装置とを備えることを特徴とする露光装置によって実施することができる。 本発明に係る露光方法及び露光装置によれば、 正確に計測されたガス中の吸光 物質の濃度に基づいて、 露光ビームの光路を含む空間から吸光物質を確実に低減 することにより、 露光精度を向上させることができる。  In the above exposure method, in an exposure apparatus for transferring a mask pattern to a substrate by using a beam, a specific gas in which a beam is reduced with respect to a light absorbing substance absorbing the beam is supplied to a space including an optical path of the beam. A gas supply device, a measuring unit for measuring the concentration of the light-absorbing substance contained in the gas, and at least one of the flow rate and the pressure of the gas discharged from the space disposed upstream of the measuring unit. The present invention can be implemented by an exposure apparatus including a gas control device for performing constant control. According to the exposure method and the exposure apparatus according to the present invention, the exposure accuracy can be improved by reliably reducing the light absorbing material from the space including the optical path of the exposure beam based on the accurately measured concentration of the light absorbing material in the gas. Can be improved.
また、 本発明は、 リソグラフイエ程を含むデバイスの製造方法であって、 リソ グラフイエ程において、 上記露光方法を用いてデバイスを製造することを特徴と する。 Further, the present invention relates to a method for manufacturing a device including a lithographic process, In the graphing process, a device is manufactured using the above-described exposure method.
このデバイス製造方法によれば、 露光精度の向上により、 形成されるパターン の精度の向上を図ることが可能となる。 その結果、 精度が向上したパターンを有 するデバイスを提供することができる。 図面の簡単な説明  According to this device manufacturing method, it is possible to improve the accuracy of a formed pattern by improving the exposure accuracy. As a result, it is possible to provide a device having a pattern with improved accuracy. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る濃度計測装置の一実施様態の配管系統を示す図である。 図 2は、 本発明に係る露光装置の一実施様態の全体構成を示す図である。  FIG. 1 is a diagram showing a piping system of one embodiment of a concentration measuring device according to the present invention. FIG. 2 is a diagram showing an overall configuration of an embodiment of an exposure apparatus according to the present invention.
図 3は、 濃度計測装置の他の実施様態の配管系統を示す図である。  FIG. 3 is a diagram showing a piping system according to another embodiment of the concentration measuring device.
図 4は、 本発明に係る半導体デバイスの製造工程を示すフローチヤ一トである。 好ましい実施様態  FIG. 4 is a flowchart showing a manufacturing process of the semiconductor device according to the present invention. Preferred embodiment
以下、 本発明の実施様態について図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、 本発明に係る濃度計測装置 1 0の一実施形態の概略構成を示す図であ る。 この濃度計測装置 1 0は、 ガス置換される空間 1 1から排出されるガスに含 まれる所定の物質の濃度を計測するものであり、 計測部としての濃度センサ 1 2、 空間 1 1から排出されるガス (サンプルガス) を濃度センサ 1 2に供給するサン プルガス供給装置 1 3、 清浄な所定ガスを濃度センサ 1 2に供給する清浄ガス供 給装置 1 4、 濃度センサ 1 2に供給するガスの切り替えを行う切替装置 1 5、 及 びこれらの装置を統括的に制御する制御装置 1 6等を含んで構成されている。 ガ ス置換される空間 1 1は、 例えば空気を含む状態 (ガス雰囲気) からヘリウムガ スなどの所定のガス (雰囲気) にガス置換される。 なお、 空間 1 1は、 陽圧状態 に維持されることが望ましい。 濃度計測装置 1 0は、 空間 1 1から排出されるガ スに含まれる所定の物質の濃度を計測することにより、 ガス置換の進行状態ゃガ ス置換が完了したか否か、 あるいはガス置換された状態が維持されているか否か を確認するために用いられる。  FIG. 1 is a diagram showing a schematic configuration of an embodiment of a concentration measuring device 10 according to the present invention. The concentration measuring device 10 measures the concentration of a predetermined substance contained in the gas discharged from the space 11 to be replaced with gas, and the concentration sensor 12 as a measuring unit and the concentration from the space 11 are measured. Gas supply device 13 that supplies the sampled gas to the concentration sensor 12, clean gas supply device 14 that supplies a clean predetermined gas to the concentration sensor 12, and gas that supplies the concentration sensor 12 And a control device 16 that controls these devices as a whole. The space 11 to be replaced with gas is replaced with a predetermined gas (atmosphere) such as helium gas from a state containing air (gas atmosphere). It is desirable that the space 11 be maintained in a positive pressure state. The concentration measuring device 10 measures the concentration of a predetermined substance contained in the gas discharged from the space 11 to determine whether the gas replacement is in progress or not. It is used to confirm whether the state is maintained.
濃度センサ 1 2としては、 本実施様態においては、 ガス中の酸素濃度を計測可 能な酸素センサが用いられる。 酸素センサとしては、 例えば、 ジルコニァ式酸素 センサをはじめとする様々なタイプのものを用いることができる。 ジルコニァ酸 素センサは、 イオンの移動に基づいて高い導電性を示す固体電解質としてのジル コニァの性質を利用して酸素濃度を検出するものである。 すなわち、 両面に電極 加工が施されたジルコニァ (安定化ジルコニァ、 ジルコ二アセラミック) の両側 のガスの酸素濃度に差が生じると、 一方の電極で酸素分子がイオン化し、 他方の 電極で酸素イオンが酸素分子に戻り、 両電極間で電子の授受が行われる (イオン 導電) 。 このとき、 ガスの酸素濃度の差が大きいほどイオン導電の度合いは大き くなる。 したがって、 イオン導電の度合い、 すなわちジルコユアの両側の酸素濃 度の差を、 両電極間の起電力の大きさとして取り出すことができる。 より具体的 には、 例えば、 管状に形成されたジルコユアの管外側に酸素濃度一定のガスを基 準ガス (例えば大気) として置き、 管内側に被計測ガス (サンプルガス) を置く。 これにより、 管の内側と外側との間で酸素濃度の高い側から低い側にイオン導電 が生じ、 酸素濃度を計測することができる。 なお、 酸素センサとしては、 上述し た固体電解質センサに限らず、 酸素の電気化学還元電流を利用した定電位電解式 や電池式の酸素センサを用いてもよい。 また、 酸素センサの起電力は、 周囲温度 や基準ガスの酸素濃度によって変化する場合があるため、 酸素センサを恒温炉の 中に設置するとよい。 また、 酸素センサ (濃度センサ 1 2 ) で計測された酸素濃 度の計測結果は制御装置 1 6に送られる。 In the present embodiment, an oxygen sensor capable of measuring the oxygen concentration in the gas is used as the concentration sensor 12. Examples of oxygen sensors include zirconia oxygen Various types including sensors can be used. The zirconium oxide sensor detects the oxygen concentration by utilizing the properties of zirconia as a solid electrolyte having high conductivity based on the movement of ions. That is, if the oxygen concentration of the gas on both sides of the zirconia (stabilized zirconia, zirconia ceramic) with electrode processing on both sides is different, oxygen molecules are ionized on one electrode and oxygen ions on the other electrode. Is returned to oxygen molecules, and electrons are exchanged between both electrodes (ion conduction). At this time, the degree of ionic conductivity increases as the difference in the oxygen concentration of the gas increases. Therefore, the degree of ionic conductivity, that is, the difference between the oxygen concentrations on both sides of the zirconia can be extracted as the magnitude of the electromotive force between both electrodes. More specifically, for example, a gas having a constant oxygen concentration is placed as a reference gas (for example, the atmosphere) outside the tube of a zirconia formed into a tube, and a gas to be measured (a sample gas) is placed inside the tube. As a result, ionic conductivity is generated between the inner side and the outer side of the tube from the high oxygen concentration side to the low oxygen concentration side, and the oxygen concentration can be measured. The oxygen sensor is not limited to the solid electrolyte sensor described above, but may be a constant potential electrolytic type or battery type oxygen sensor using an electrochemical reduction current of oxygen. In addition, the electromotive force of the oxygen sensor may vary depending on the ambient temperature and the oxygen concentration of the reference gas, so the oxygen sensor should be installed in a constant temperature furnace. The measurement result of the oxygen concentration measured by the oxygen sensor (concentration sensor 12) is sent to the control device 16.
サンプルガス供給装置 1 3は、 空間 1 1から排出されたガスを濃度センサ 1 2 (酸素センサ) に供給するための配管 2 0と、 空間 1 1から排出されたガスの流 量を略一定に制御するガス制御装置としてのマスフ口一コントローラ ( Mass Flo w Controller : M F C ) 2 1とを含んで構成されている。 ここで、 上述した酸素 センサなどの濃度センサ 1 2の応答特性は、 その計測環境 (例えばガスの流量や 圧力など) により理論曲線と大きく異なる特性を示す場合がある。 例えば上述し たジルコユア酸素センサでは、 両電極間におけるイオン導電の速さに比較して、 一方の電極における酸素分子のイオン化、 あるいは他方の電極における酸素分子 の放出が追いつかない場合、 センサの出力電圧が、 電極に接するガス流量 (ある いは流速) に影響を受ける傾向がある。 こうした非理想的な挙動は、 例えば、 計 測対象の物質濃度が低い場合 (例えば数 p p m) に生じやすい。 本実施様態では. 前述したように、 ガス置換の進行状態やガス置換が完了したか否かなどを検出す る必要があるため、 比較的低濃度レベルまで確実に酸素濃度を計測する必要があ る。 そのため、 このサンプルガス供給装置 1 3では、 配管内容積によるシステム の応答速度を考慮して配管 2 0のサイズ (内径など) が定められるとともに、 マ スフローコントローラ 2 1により、 濃度センサ 1 2に流れるサンプルガスの流量 を一定に制御するようになっている。 The sample gas supply device 13 is provided with a pipe 20 for supplying the gas discharged from the space 11 to the concentration sensor 12 (oxygen sensor) and a substantially constant flow rate of the gas discharged from the space 11. It is configured to include a mass flow controller (MFC) 21 as a gas control device for controlling. Here, the response characteristics of the concentration sensor 12 such as the oxygen sensor described above may show characteristics that differ greatly from the theoretical curve depending on the measurement environment (for example, gas flow rate and pressure). For example, in the above-described zirconia oxygen sensor, if the ionization of oxygen molecules at one electrode or the release of oxygen molecules at the other electrode cannot keep up with the speed of ion conduction between the two electrodes, the output voltage of the sensor However, it tends to be affected by the gas flow rate (or flow velocity) in contact with the electrode. Such non-ideal behavior is likely to occur, for example, when the analyte concentration is low (eg, a few ppm). In this embodiment. As described above, it is necessary to detect the progress of gas replacement and whether or not gas replacement has been completed. Therefore, it is necessary to reliably measure the oxygen concentration to a relatively low concentration level. For this reason, in the sample gas supply device 13, the size (inner diameter, etc.) of the pipe 20 is determined in consideration of the response speed of the system due to the internal volume of the pipe, and the concentration sensor 12 is controlled by the mass flow controller 21. The flow rate of the flowing sample gas is controlled to be constant.
ここで、 マスフローコントローラ 2 1によって一定に制御されるサンプルガス の流量は、 濃度センサ 1 2の特性に応じて予め設定される。 この設定流量は、 所 定の酸素濃度を有する校正ガスを用いた試験などにより定めることができる。 ま た、 ガス置換される空間 1 1からの排出ガスに含まれる物質の濃度 (ここでは酸 素濃度) を計測する場合、 ガス置換の開始直後とガス置換の完了時との間で酸素 濃度の差が比較的大きくなることが考えられる。 そのため、 ガス置換の進行に応 じて、 段階的に適正な設定流量を定めるようにしてもよい。  Here, the flow rate of the sample gas controlled to be constant by the mass flow controller 21 is preset according to the characteristics of the concentration sensor 12. This set flow rate can be determined by a test using a calibration gas having a predetermined oxygen concentration. When measuring the concentration of a substance (here, oxygen concentration) contained in the exhaust gas from the space 11 to be replaced with gas, the oxygen concentration is measured between immediately after the start of the gas replacement and when the gas replacement is completed. The difference may be relatively large. For this reason, an appropriate set flow rate may be determined stepwise according to the progress of gas replacement.
すなわち、 サンプルガスの流量を、 常に略一定に設定してもよいが、 任意の時 間の間だけ、 サンプルガスの流量を略一定に設定してもよい。 例えば、 ガス置換 の開始前後における所定時間の間は、 サンプルガスの流量が略一定の第一流量に なるように、 マスフローコントローラ 2 1によって、 サンプルガスの流量を第一 流量に対応する値に設定するとともに、 ガス置換の完了前後における所定時間の 間は、 サンプルガスの流量が第一流量より少ない略一定の第二流量になるように、 マスフローコントローラ 2 1によって、 サンプルガスの流量を第二流量に対応す る値に設定してもよい。 この場合、 ガス置換の開始前後における所定時間と、 ガ ス置換の完了前後における所定時間とは、 同一の時間であっても異なっていても よい。 また、 ガス置換の完了前後か否かは、 ガス置換の開始直後から所定時間経 過したか否かで判断してもよいし、 あるいは、 濃度センサ 1 2の計測結果に基づ き判断してもよい。 さらに、 ガス置換の開始前後とガス置換の完了前後とで、 サ ンプルガスの流量を互いに異なる値とする以外にも、 サンプルガスの流量が、 例 えばガス.置換の開始前後とガス置換の完了前後との間で略一定、 あるいはこれら の間で段階的に異なるように、 マスフローコントロ一ラ 2 1 dの値を設定しても よい。 また、 本実施様態では、 ガスが排出される空間 1 1が陽圧である場合に、 その 圧力を利用してサンプルガスを濃度センサ 1 2に移送する。 そのため、 マスフ口 一コントローラ 2 1としては、 1次側 (上流側) と 2次側 (下流側) との圧力差 が比較的小さい場合にも確実に流量設定可能な低差圧タイプのものを用いるのが 好ましく、 さらに、 ガス置換される空間 1 1の圧力にある程度の変動が見込まれ るため、 1次側の圧力が多少変動しても 2次側の設定流量を維持可能な構成のも のを用いるのが好ましい。 That is, the flow rate of the sample gas may be set to be substantially constant at all times, or the flow rate of the sample gas may be set to be substantially constant during an arbitrary time. For example, during a predetermined time before and after the start of gas replacement, the mass flow controller 21 sets the flow rate of the sample gas to a value corresponding to the first flow rate so that the flow rate of the sample gas becomes a substantially constant first flow rate. During a predetermined period of time before and after the completion of the gas replacement, the mass flow controller 21 adjusts the flow rate of the sample gas to the second flow rate so that the flow rate of the sample gas becomes a substantially constant second flow rate smaller than the first flow rate. May be set to a value corresponding to. In this case, the predetermined time before and after the start of the gas replacement and the predetermined time before and after the completion of the gas replacement may be the same time or different. Whether or not the gas replacement is completed may be determined based on whether a predetermined time has elapsed from immediately after the gas replacement is started, or may be determined based on the measurement result of the concentration sensor 12. Is also good. Furthermore, in addition to setting the sample gas flow rates to different values before and after the start of gas replacement and before and after the completion of gas replacement, the flow rate of the sample gas is also, for example, before and after the start of gas replacement and before and after the completion of gas replacement. The value of the mass flow controller 21 d may be set so as to be substantially constant between and, or to vary step by step between them. Further, in this embodiment, when the space 11 from which the gas is discharged has a positive pressure, the sample gas is transferred to the concentration sensor 12 using the pressure. For this reason, a low differential pressure type that can reliably set the flow rate even when the pressure difference between the primary side (upstream side) and the secondary side (downstream side) is relatively small, is used as the controller unit 21. It is preferable to use it.Moreover, since the pressure in the space 11 to be replaced with gas is expected to fluctuate to some extent, even if the pressure on the primary side fluctuates slightly, a configuration that can maintain the set flow rate on the secondary side may be used. It is preferred to use
また、 本実施様態では、 マスフローコン トローラ 2 1によって、 サンプルガス の流量を一定に制御しているが、 必ずしも厳密に一定である必要はない。 すなわ ち、 濃度センサ 1 2の応答特性に応じた、 ある程度の変動は許容される。  Further, in the present embodiment, the mass flow controller 21 controls the flow rate of the sample gas to be constant. However, the flow rate of the sample gas is not necessarily strictly constant. That is, a certain degree of variation according to the response characteristics of the concentration sensor 12 is allowed.
清浄ガス供給装置 1 4は、 濃度センサ 1 2で計測する物質 (ここでは酸素) や 濃度センサ 1 2に悪影響を与える不純物が十分に少ない清浄ガスを濃度センサ 1 2に供給するものであり、 清浄ガスを収容した清浄ガス収容部 3 0と、 清浄ガス 収容部 3 0から濃度センサ 1 2 (酸素センサ) に清浄ガスを導くための配管 3 1 とを含んで構成されている。 清浄ガスは、 主として濃度センサ 1 2をクリ一ニン グするために用いられる。 そのため、 清浄ガスとしては、 ガス置換用に空間 1 1 に供給されるガス (置換ガス) と同じガスを用いるとよい。 本実施様態では、 清 浄ガスとして、 置換ガスと同じヘリ ウムガスが用いられ、 清浄ガス収容部 3 0 The clean gas supply device 14 supplies the concentration sensor 12 with a clean gas containing a substance (oxygen in this case) measured by the concentration sensor 12 and an impurity having a sufficient adverse effect on the concentration sensor 12. It is configured to include a clean gas storage section 30 containing gas, and a pipe 31 for guiding the clean gas from the clean gas storage section 30 to the concentration sensor 12 (oxygen sensor). The clean gas is mainly used for cleaning the concentration sensor 12. Therefore, the same gas as the gas (replacement gas) supplied to the space 11 for gas replacement may be used as the clean gas. In the present embodiment, the same helium gas as the replacement gas is used as the cleaning gas.
(ボンべ) 内には、 ヘリ ウムガスが高純度の状態で圧縮又は液化されて貯蔵され ている。 なお、 清浄ガス収容部 3 0の排出口に、 清浄ガスの圧力を所定の圧力Helium gas is compressed or liquefied and stored in a high purity state. In addition, the pressure of the clean gas is supplied to the outlet of the clean gas storage unit 30 at a predetermined pressure.
(例えば空間 1 1内の圧力と同程度の圧力) に減圧調整可能な減圧弁 3 2を取り 付けるとよい。 (For example, a pressure approximately equal to the pressure in the space 11), a pressure reducing valve 32 that can be adjusted to reduce the pressure may be attached.
切替装置 1 5は、 サンプルガスと清浄ガスのうち濃度センサ 1 2に供給するガ スを.切り替えるために用いられる。 したがって、 切替装置 1 5としては、 例えば 3方電磁弁が用いられ、 制御装置 1 6の指令により切り替え動作を行うように構 成される。 サンプルガスを濃度センサ 1 2に供給するタイミングとしては、 例え ば濃度センサ 1 2によって酸素濃度を計測する直前に実施する。 これにより、 ク リーニングされた濃度センサ 1 2によって正確な濃度計測が可能となる。 また、 濃度センサ 1 2に対してサンプルガスの供給と清浄ガスの供給とを交互に行うこ とにより、 ガス置換の進行に伴って濃度センサ 1 2が随時クリーニングされ、 1 回のクリーニング時間の短縮化と計測精度の安定化を図ることが可能となる。 上記構成の濃度計測装置 1 0を用いた酸素濃度計測にあたっては、 予め、 濃度 センサ 1 2の校正と、 濃度センサ 1 2に供給する際のサンプルガスの流量設定と を行う。 濃度センサ 1 2の校正は、 大気を用いてもよいし所定の酸素濃度を有す る校正ガスを用いてもよい。 校正ガスを用いる場合、 ガス置換完了と判断すると きの数 p p mレベル程度以下の低い酸素濃度を有する校正ガスだけを用いてもよ いし、 あるいは、 広いレンジにわたって計測精度を高めるために、 大気 (空気) に近い酸素濃度を有する校正ガスや数 p p mレベルの低酸素濃度を有する校正ガ スなど、 異なる酸素濃度を有する複数の校正ガスを用いるようにしてもよい。 サ ンプルガスの流量を定める方法としては、 例えば、 所定の酸素濃度を有する校正 ガスを、 マスフローコン トローラ 2 1 (校正ガス用に新たにマスフローコント口 ーラを設けてもよい) を介して濃度センサ 1 2に供給するとともに、 流量を変化 させながら濃度センサ 1 2からの出力電圧 (あるいは電流) の変動を計測する。 そして、 流量変化に対して濃度センサ 1 2の出力電圧が安定してほぼ一定に推移 するときの流量を、 濃度センサ 1 2に供給する際のサンプルガスの流量として設 定する。 The switching device 15 is used to switch the gas supplied to the concentration sensor 12 between the sample gas and the clean gas. Therefore, for example, a three-way solenoid valve is used as the switching device 15, and the switching device 15 is configured to perform a switching operation according to a command from the control device 16. The timing of supplying the sample gas to the concentration sensor 12 is, for example, immediately before the oxygen concentration is measured by the concentration sensor 12. This enables accurate density measurement by the cleaned density sensor 12. Also, the supply of sample gas and the supply of clean gas to the concentration sensor 12 are alternately performed. Thus, the concentration sensor 12 is cleaned as needed as the gas replacement progresses, and it is possible to reduce the time for one cleaning and stabilize the measurement accuracy. When measuring the oxygen concentration using the concentration measuring device 10 having the above configuration, the calibration of the concentration sensor 12 and the setting of the flow rate of the sample gas to be supplied to the concentration sensor 12 are performed in advance. The calibration of the concentration sensor 12 may be performed using the air or a calibration gas having a predetermined oxygen concentration. When a calibration gas is used, only a calibration gas having a low oxygen concentration of about several ppm level or less when judging that gas replacement is completed may be used, or air (air) may be used to improve measurement accuracy over a wide range. A plurality of calibration gases having different oxygen concentrations may be used, such as a calibration gas having an oxygen concentration close to the above and a calibration gas having a low oxygen concentration of several ppm level. As a method of determining the flow rate of the sample gas, for example, a calibration gas having a predetermined oxygen concentration is supplied to the concentration sensor via the mass flow controller 21 (a new mass flow controller may be provided for the calibration gas). While supplying to 12, the fluctuation of the output voltage (or current) from the concentration sensor 12 is measured while changing the flow rate. Then, the flow rate at which the output voltage of the concentration sensor 12 stabilizes and keeps substantially constant with respect to the flow rate change is set as the flow rate of the sample gas when supplied to the concentration sensor 12.
酸素濃度計測時、 この濃度計測装置 1 0では、 ガス置換される空間 1 1から排 出されたサンプルガスの流量を、 マスフ口一コントローラ 2 1によって上記所定 の設定流量に一定に制御する。 濃度センサ 1 2に供給されるガスの流量が一定に 制御されることにより、 濃度センサ 1 2における計測環境の乱れが抑制される。 したがって、 濃度センサ 1 2の理想的な応答特性に基づいて、 精度よく酸素濃度 を計測することが可能となる。  At the time of measuring the oxygen concentration, the concentration measuring device 10 controls the flow rate of the sample gas discharged from the space 11 to be replaced with the gas to a predetermined set flow rate by the mass flow controller 21. By controlling the flow rate of the gas supplied to the concentration sensor 12 to be constant, disturbance in the measurement environment of the concentration sensor 12 is suppressed. Therefore, it is possible to accurately measure the oxygen concentration based on the ideal response characteristics of the concentration sensor 12.
この場合、 ガス置換の進行に伴って空間 1 1から排出されるガスに含まれる酸 素の濃度が大きく変化すると考えられるため、 ガス置換中のすべての段階でサン プルガスを同じ流量に一定に制御するのではなく、 ガス置換中の複数の段階ごと に分けてサンプルガスの流量を段階的に制御することにより、 ガス置換の開始直 後からガス置換の完了前後までの間にわたり、 酸素濃度の計測精度の向上を図る ことが可能となる。 そして、 こう して精度よく酸素濃度の計測を行うことにより、 ガス置換の進行 状態やガス置換が完了したか否か、 あるいはガス置換された状態が維持されてい るか否かを正確に検出することが可能となる。 In this case, it is considered that the concentration of oxygen contained in the gas discharged from the space 11 changes greatly with the progress of gas replacement, so the sample gas is controlled to the same flow rate at all stages during gas replacement. By controlling the sample gas flow rate step by step at multiple stages during gas replacement, the oxygen concentration can be measured immediately after the start of gas replacement and before and after the completion of gas replacement. Accuracy can be improved. By accurately measuring the oxygen concentration in this way, it is possible to accurately detect whether the gas replacement is in progress, whether the gas replacement has been completed, or whether the gas replaced state is maintained. It becomes possible.
上述した本発明の濃度計測方法及びその装置は、 図 2に示すような半導体デバ イス製造用の縮小投影型露光装置に好適に使用することができる。 この露光装置 は、 マスクとしてのレチクル Rと基板としてのウェハ Wとを同期移動させつつ、 レチクル Rに形成された回路パターンを、 ウェハ W上の各ショッ ト領域に転写す る、 ステップ ' アンド ' スキャン方式の走査型露光装置、 いわゆるスキャニング - ステツパである。 以下、 この露光装置の構成例について説明する。  The above-described density measuring method and apparatus of the present invention can be suitably used for a reduced projection type exposure apparatus for manufacturing a semiconductor device as shown in FIG. This exposure apparatus transfers the circuit pattern formed on the reticle R to each shot area on the wafer W while synchronously moving the reticle R as a mask and the wafer W as a substrate. This is a scanning type scanning exposure apparatus, so-called scanning-stepper. Hereinafter, a configuration example of the exposure apparatus will be described.
この露光装置は、 光源 4 0、 光源 4 0からのエネルギービーム (露光ビーム I L ) によりレチクル Rを照明する照明系 4 1、 レチクル Rを収容するレチクル室 4 2、 レチクル Rから射出される露光ビーム I Lをウェハ W上に投射する投影光 学系 P L、 ウェハ Wを収容するウェハ室 4 3、 及び装置全体を統括的に制御する 主制御系 4 4等を含んで構成されている。  This exposure apparatus includes a light source 40, an illumination system 41 for illuminating the reticle R with an energy beam (exposure beam IL) from the light source 40, a reticle chamber 42 for accommodating the reticle R, and an exposure beam emitted from the reticle R. It comprises a projection optical system PL for projecting the IL onto the wafer W, a wafer chamber 43 for accommodating the wafer W, and a main control system 44 for overall control of the entire apparatus.
光源 4 0としては、 ここでは、 波長約 1 2 0 n m〜約 1 8 0 n mの真空紫外光 域に属する光を発する光源、 例えば発振波長 1 5 7 n mのフッ素レーザ (F レー ザ) 、 発振波長 1 4 6 n mのクリプトンダイマーレーザ (K r レーザ) 、 発振波 長 1 2 6 n mのアルゴンダイマーレーザ (A r レ一ザ) などが用いられている。 なお、 光源として発振波長 1 9 3 n mの A r Fエキシマレーザ等を用いてもよい。 照明系 4 1は、 光源 4 0から射出された光束 (レーザビーム) I Lを所定の方 向に折り曲げるミラ 5 0、 該ミラー 5 0によって導かれた光束 I Lをほぼ均一 な照度分布の光束に調整するォプチカルインテグレータ 5 1、 露光ビーム I Lの 大部分 (例えば 9 7 %) を透過するとともに残りの部分 (例えば 3 %) をインテ グレータセンサ 5 2に導く ビ一ムスプリ ッタ 5 3、 該ビームスプリ ッタ 5 3を透 過しミラー 5 4及びリ レ一レンズ 5 5等で導かれた露光ビーム I Lを所定の照明 範囲に規定するレチクルブラインド 5 6、 該レチクルブラインド 5 6の開口を透 過した露光ビーム I Lをレチクル室 5 2に導く リ レ一レンズ 5 7及びミラ一5 8 等を含んで構成されている。  As the light source 40, here, a light source that emits light belonging to the vacuum ultraviolet light region with a wavelength of about 120 nm to about 180 nm, such as a fluorine laser (F laser) with an oscillation wavelength of 157 nm, A krypton dimer laser (Kr laser) with a wavelength of 146 nm and an argon dimer laser (Ar laser) with an oscillation wavelength of 126 nm are used. Note that an ArF excimer laser having an oscillation wavelength of 193 nm may be used as a light source. The illumination system 41 includes a mirror 50 that bends a light beam (laser beam) IL emitted from the light source 40 in a predetermined direction, and adjusts the light beam IL guided by the mirror 50 to a light beam having a substantially uniform illuminance distribution. Optical integrator 51, beam splitter 53 that transmits most (eg, 97%) of exposure beam IL and guides the remaining portion (eg, 3%) to integrator sensor 52, and beam splitter 53 A reticle blind 56 that passes through the splitter 53 and regulates the exposure beam IL guided by the mirror 54 and the relay lens 55 to a predetermined illumination range, and passes through an opening of the reticle blind 56. It is configured to include a relay lens 57, a mirror 58, and the like for guiding the exposure beam IL to the reticle chamber 52.
インテグレータセンサ 5 2は光電変換素子等からなり、 ビームスプリ ッタ 5 3 によって導かれる露光ビーム I Lの一部分を光電変換し、 その光電変換信号を主 制御系 5 4に供給する。 主制御系 5 4はインテグレータセンサ 5 2からの情報に 基づいて光源 4 0を駆動 ·停止させるようになっており、 これによつてウェハ W に対する露光量 (露光ビームの照射量) が制御される。 なお、 インテグレータセ ンサ 5 2の出力信号は、 露光動作前に、 後述するウェハステージ W S Tに取り付 けられた照射量モニタで、 投影光学系を通過してきた露光ビーム I Lを受光して 得られる出力信号と関係付けられている。 The integrator sensor 52 includes a photoelectric conversion element and the like, and the beam splitter 53 A part of the exposure beam IL guided by the photoelectric conversion is photoelectrically converted, and the photoelectric conversion signal is supplied to the main control system 54. The main control system 54 drives and stops the light source 40 based on information from the integrator sensor 52, whereby the exposure amount (irradiation amount of the exposure beam) to the wafer W is controlled. . The output signal of the integrator sensor 52 is, before the exposure operation, an output obtained by receiving the exposure beam IL that has passed through the projection optical system with a radiation amount monitor attached to the wafer stage WST described later. Associated with the signal.
また、 レチクルブラインド 5 6は、 例えば、 平面 L字状に屈曲し露光ビーム I Lの光軸と直交する面内で組み合わせられることによって矩形状の開口を形成す る一対のブレード (不図示) と、 これらブレードを主制御系 4 4の指示に基づい て光軸と直交する面内で変位させる遮光部変位装置 (不図示) とを備えている。 このとき、 ブレードはレチクル Rのパターン面と共役な面に配置される。 また、 レチクルブラインド 5 6の開口の大きさはブレードの変位に伴って変化し、 この 開口により規定された露光ビーム I Lは、 リ レ一レンズ 5 7を介してレチクル室 4 2に配されたレチクル Rの特定領域をほぼ均一な照度で照明する。  The reticle blind 56 includes, for example, a pair of blades (not shown) that are bent into a plane L shape and are combined in a plane orthogonal to the optical axis of the exposure beam IL to form a rectangular opening. A light-shielding unit displacement device (not shown) for displacing these blades in a plane orthogonal to the optical axis based on an instruction from the main control system 44 is provided. At this time, the blade is arranged on a plane conjugate with the pattern plane of reticle R. In addition, the size of the opening of the reticle blind 56 changes with the displacement of the blade, and the exposure beam IL defined by this opening transmits the reticle placed in the reticle chamber 42 via the relay lens 57. A specific area of R is illuminated with substantially uniform illuminance.
レチクル室 4 2は、 照明系 4 1のハウジング及び投影光学系 P Lのハウジング と隙間無く接合された隔壁 6 0によって形成されており、 その内部空間において、 レチクル Rを吸着保持するレチクルステージ R S Tを備えている。 レチクルステ ージ R S Tは、 不図示のレチクルベース上に配置されており、 不図示のステージ 駆動系により、 レチクルべ一ス上で Y方向 (スキャン方向) に所定のス トローク で移動するとともに、 X方向、 Y方向、 及び Θ方向 (回転方向) にそれぞれ微小 移動するように構成されている。 ステージ駆動系は、 例えば、 レチクルステージ R S Tを Y方向に案内するために Y軸に平行に配設されるリニアガイ ド、 走査用 リニアモータ (ボイスコイルモータ) 等を含んで構成される。 また、 レチクルス テージ R S Tの位置及び回転角は不図示のレーザ干渉システムによって高精度に 計測され、 この計測値及び装置全体の動作を統括制御するコンピュータよりなる 主制御系 4 4からの制御情報に基づいてレチクルステージ R S Tが駆動される。 投影光学系 P Lは、 蛍石、 フッ化リチウム等のフッ化物結晶からなるレンズや 反射鏡などの複数の光学部材をハウジング (鏡筒) 内に収容し、 かつ、 その密閉 度を高めたものである。 本実施様態では、 この投影光学系 P Lとして、 投影倍率 が例えば 1 4あるいは 1 5の縮小光学系が用いられている。 照明系 4 1から の露光ビーム I Lにより レチクル Rが照明されると、 レチクル Rに形成されたパ ターンが投影光学系 P Lによりウェハ W上の特定領域 (ショ ッ ト領域) に縮小投 影される。 The reticle chamber 42 is formed by a partition wall 60 bonded to the housing of the illumination system 41 and the housing of the projection optical system PL without any gap, and has a reticle stage RST for adsorbing and holding the reticle R in its internal space. ing. The reticle stage RST is arranged on a reticle base (not shown). The RST is moved by a predetermined stroke in the Y direction (scan direction) on the reticle base by a stage drive system (not shown), and is moved in the X direction. , Y direction, and Θ direction (rotation direction). The stage drive system includes, for example, a linear guide disposed parallel to the Y axis to guide the reticle stage RST in the Y direction, a scanning linear motor (voice coil motor), and the like. The position and rotation angle of the reticle stage RST are measured with high precision by a laser interference system (not shown), and based on the measured values and control information from a main control system 44 composed of a computer that controls the overall operation of the entire device. The reticle stage RST is driven. The projection optical system PL accommodates a plurality of optical members such as lenses and reflectors made of fluoride crystals such as fluorite and lithium fluoride in a housing (barrel) and hermetically seals them. It is a higher degree. In the present embodiment, a reduction optical system having a projection magnification of, for example, 14 or 15 is used as the projection optical system PL. When the reticle R is illuminated by the exposure beam IL from the illumination system 41, the pattern formed on the reticle R is reduced and projected onto a specific area (shot area) on the wafer W by the projection optical system PL. .
ウェハ室 4 3は、 投影光学系 P Lのハウジングと隙間無く接合された隔壁 6 7 によって形成されており、 その内部空間において、 ウェハ Wを真空吸着によって 保持するウェハホルダ 6 8と、 該ウェハホルダ 6 8を支持するウェハステージ W S Tとを備えている。 '  The wafer chamber 43 is formed by a partition wall 67 bonded to the housing of the projection optical system PL without any gap. In the internal space, a wafer holder 68 for holding the wafer W by vacuum suction, and a wafer holder 68 are provided. And a wafer stage WST to be supported. '
ウェハステージ W S Tは、 例えば磁気浮上型の 2次元リニァァクチユエータ (平面モータ) 等からなる不図示の駆動系により、 X Y平面 (投影光学系 P Lの 光軸に垂直な方向) に沿った水平方向に自在に駆動されるように構成されている。 また、 ウェハステージ W S Tの位置は、 レーザ光源やプリズム等の光学部材及び ディテクタなどからなるレーザ干渉システムによって調整される。 このレーザ干 渉システムを構成する部材は、 該部材から発生する異物によって露光に対して悪 影響が生じるのを防止するために、 ウェハ室 4 3の外部に配置されている。 なお、 各レーザ干渉システムを'構成する各部品から吸光物質の発生が十分に抑制されて いる場合は、 これら各部品をウェハ室 4 3に配置してもよレ、。  The wafer stage WST is moved along the XY plane (in the direction perpendicular to the optical axis of the projection optical system PL) by a drive system (not shown) including, for example, a magnetic levitation type two-dimensional linear actuator (plane motor). It is configured to be driven freely in the horizontal direction. The position of the wafer stage WST is adjusted by a laser interference system including an optical member such as a laser light source and a prism and a detector. The members constituting this laser interference system are arranged outside the wafer chamber 43 in order to prevent foreign matter generated from the members from adversely affecting exposure. If the generation of the light-absorbing substance from each component constituting each laser interference system is sufficiently suppressed, these components may be arranged in the wafer chamber 43.
また、 ウェハ室 4 3では、 ウェハステ一ジ W S Tの X Y面内の移動により、 ゥ ェハ W上の任意のショ ッ ト領域をレチクル Rのパターンの投影位置 (露光位置) に位置決めするようになっている。 これにより、 この露光装置では、 主制御系 4 4により、 ウェハ W上の各ショッ ト領域を露光開始位置に順次位置決めするよう にウェハステージ W S Tを移動するショッ ト間ステツビング動作と、 レチクル R とウェハ Wとを X Y平面に沿った水平方向に同期移動させつつ、 レチクル Rのパ ターンをウェハ Wのショ ッ ト領域に転写するスキャン露光動作とが繰り返し行わ れるようになっている。  In the wafer chamber 43, an arbitrary shot area on the wafer W is positioned at the projection position (exposure position) of the reticle R pattern by moving the wafer stage WST in the XY plane. ing. Thus, in this exposure apparatus, the main control system 44 moves the wafer stage WST so as to sequentially position each shot area on the wafer W to the exposure start position, and a shot-to-shot stepping operation; The scan exposure operation of transferring the pattern of the reticle R to the shot area of the wafer W while synchronizing the movement of W with the horizontal direction along the XY plane is repeatedly performed.
主制御系 4 4は、 C P U (中央処理装置) 、 R OM (リード 'オンリ ' メモリ) 、 R A M (ランダム ' アクセス ' メモリ) 等を含むマイクロコンピュータ (又はミ 二コンピュータ) から構成される。 また、 主制御系 4 4は、 前述したようにレチ クルステージ R S Tやウェハステージ WS Tをレーザ干渉システムを介してモニ タしつつ、 各ステージの位置制御を行なう。 なお、 上述した濃度計測装置 1 0に おける制御装置 1 6は、 この主制御系 44に含まれる。 The main control system 44 includes a microcomputer (or a microcomputer) including a CPU (central processing unit), a ROM (read “only” memory), a RAM (random “access” memory), and the like. Also, the main control system 4 4 The position of each stage is controlled while monitoring the wafer stage RST and wafer stage WST via a laser interference system. The control device 16 in the concentration measuring device 10 described above is included in the main control system 44.
さて、 この露光装置のように、 真空紫外域の波長のビームを露光ビームとする 場合には、 係る波長帯域の光に対し強い吸収特性を有する物質 (以下、 吸光物質 と称する) を光路から排除する必要がある。 真空紫外域のビームに対する吸光物 質としては、 酸素 (02) 、 水 (水蒸気: H20) 、 炭酸ガス (二酸化炭素: CO 、 有機物、 及びハロゲン化物等がある。 一方、 露光ビーム I Lが透過する気体 (エネルギ吸収がほとんど無い物質) としては、 窒素ガス (N2) の他に、 へリ ウ ム (H e) 、 ネオン (N e) 、 アルゴン (A r ) 、 ク リプトン (K r) 、 キセノ ン (X e ) 、 ラ ドン (Rn) よりなる希ガスがある。 以降、 この窒素ガス及び希 ガスをまとめて 「透過ガス」 と呼ぶことにする。 In the case where a beam having a wavelength in the vacuum ultraviolet region is used as an exposure beam as in this exposure apparatus, a substance having a strong absorption characteristic for light in this wavelength band (hereinafter, referred to as a light absorbing substance) is excluded from the optical path. There is a need to. The absorption substance on the beam in the vacuum ultraviolet region, oxygen (0 2), water (water vapor: H 2 0), carbon dioxide (carbon dioxide:. CO, some organic matter, and halide etc. Meanwhile, exposure beam IL is Permeable gases (substances with little energy absorption) include nitrogen (N 2 ), helium (He), neon (Ne), argon (Ar), krypton (Kr). ), Xenon (X e), and radon (Rn), which are referred to hereinafter as “permeated gas”.
ここで、 窒素ガスは波長が 1 50 nm程度以下の光に対しては吸光物質として 作用し、 ヘリ ゥムガスは波長 1 00 nm程度まで透過性の気体として作用する。 また、 ヘリウムガスは熱伝導率が窒素ガスの約 6倍であり、 気圧変化に対する屈 折率の変動量が窒素ガスの約 1 /8であるため、 特に高透過率と光学系の結像特 性の安定性や冷却性とで優れている。 なお、 ヘリウムガスは高価であるため、 露 光ビームの波長が F 2レーザのように 1 50 nm以上であれば、 運転コス トを低減 させるためにその透過性の気体として窒素ガスを使用するようにしてもよい。 本 例では、 結像特性の安定性や冷却性等の観点より、 その露光ビーム I Lが透過す る気体としてヘリ ゥムガスを使用するものとする。 Here, nitrogen gas acts as a light-absorbing substance with respect to light having a wavelength of about 150 nm or less, and helium gas acts as a transparent gas up to a wavelength of about 100 nm. In addition, helium gas has a thermal conductivity that is about six times that of nitrogen gas, and the amount of change in the refractive index with respect to changes in atmospheric pressure is about 1/8 that of nitrogen gas. Excellent in stability and cooling performance. Since helium gas is expensive, if 1 50 nm or more as the wavelength of the exposure light beam is an F 2 laser, to use nitrogen gas as its gas permeability in order to reduce the operating costs It may be. In this example, from the viewpoints of the stability of the imaging characteristics and the cooling property, it is assumed that a gas that allows the exposure beam IL to pass therethrough is a Helium gas.
本実施様態の照明系 4 1、 レチクル室 42、 投影光学系 P L、 及びウェハ室 2 3の各内部空間には、 配管 70等を介して内部の吸光物質を含む気体を排気する ための真空ポンプ 7 1 A, 7 1 B、 7 1 C及び 7 1 Dが接続されている。 また、 例えば本実施様態の露光装置の全体が収納されているチャンバ (不図示) の外部 に設置されたガス供給装置 7 2内のボンベに、 透過ガスとしてのヘリゥムガスが 高純度の状態で圧縮又は液化されて貯蔵されている。 そして、 必要に応じてその ボンベから取り出されたヘリウムガスが、 バルブ 7 3 A, 7 3 B, 7 3 C, 7 3 D及び配管 74 A, 74 B , 74 C , 74 Dを介して照明系 4 1、 レチクル室 4 2、 投影光学系 P L、 及びウェハ室 4 3の各内部空間に供給される。 なお、 ボン ベか各空間への配管途中には、 H E P Aフィノレタ ( High Efficiency Particulate Air Filter ) あるレ、は U L P Aフィノレタ ( Ultra Low Penetration Air Filter ) 等の塵 Vacuum pumps for exhausting gas containing light-absorbing substances inside through piping 70 and the like are provided in the internal spaces of the illumination system 41, the reticle chamber 42, the projection optical system PL, and the wafer chamber 23 according to the present embodiment. 71 A, 71 B, 71 C and 71 D are connected. Also, for example, a gas in a gas supply device 72 installed outside a chamber (not shown) in which the entire exposure apparatus of the present embodiment is housed is compressed or pumped in a high-purity state by a high-purity helium gas. Liquefied and stored. The helium gas extracted from the cylinder as needed is supplied to the lighting system via valves 73A, 73B, 73C, 73D and piping 74A, 74B, 74C, 74D. 4 1, reticle room 4 2. It is supplied to each internal space of the projection optical system PL and the wafer chamber 43. There is a HEPA finoleta (High Efficiency Particulate Air Filter) in the cylinder or in the middle of the piping to each space, and a dust such as ULPA finoleta (Ultra Low Penetration Air Filter).
(パーティクル) を除去する不図示のエアフィルタと、 酸素等の吸光物質を除去 する不図示のケミカルフィルタとが配設される。  An air filter (not shown) that removes (particles) and a chemical filter (not shown) that removes light-absorbing substances such as oxygen are provided.
さらに、 照明系 4 1、 レチクル室 4 2、 投影光学系 P L、 及びウェハ室 4 3の 各内部空間には、 吸光物質の濃度を計測するために、 先の図 1に示した濃度計測 装置 1 0がそれぞれ接続されている。 図 1に示したように、 濃度計測装置 1 0は、 ガス中の酸素濃度を計測可能な濃度センサ 1 2 (酸素センサ) を備えており、 濃 度センサ 1 2の計測結果は主制御系 4 4 (制御装置 1 6 ) に供給される。  Further, in each of the internal spaces of the illumination system 41, the reticle chamber 42, the projection optical system PL, and the wafer chamber 43, the concentration measuring device 1 shown in FIG. 0 is connected to each. As shown in Fig. 1, the concentration measuring device 10 is equipped with a concentration sensor 12 (oxygen sensor) that can measure the oxygen concentration in the gas. 4 (control device 16).
照明系 4 1、 レチクル室 4 2、 投影光学系 P L、 及びウェハ室 4 3の各内部空 間は、 主制御系 4 4の制御のもとで、 空気を含むガス雰囲気からヘリウムガスに ガス置換される。 具体的には、 ガス置換時において、 主制御系 4 4は、 真空ボン プ 7 1 A , 7 1 B , 7 1 C又は 7 1 Dを動作させて照明系 4 1、 レチクル室 4 2、 投影光学系 P L又はウェハ室 4 3の内部の気体及び吸光物質を排気するとともに、 バルブ 7 3 A , 7 3 B , 7 3 C又は 7 3 Dを開いて、 ガス供給装置 7 2を動作さ せて配管 7 4 A〜 7 4 Dを介して照明系 4 1、 レチクル室 4 2、 投影光学系 P L 又はウェハ室 4 3の内部空間に、 高純度の所定温度のヘリ ゥムガスを供給する。 このとき、 ガス置換の進行状態は、 濃度計測装置 1 0の計測結果、 すなわち濃 度センサ 1 2で計測される酸素濃度により確認することができる。 そして、 主制 御系 4 4は、 濃度センサ 1 2で計測される酸素濃度が予め設定されている許容濃 度以下になると、 真空ポンプ 7 1 A , 7 1 B , 7 1 C又は 7 1 Dを停止させる。 これによつて、 照明系 4 1、 レチクル室 4 2、 投影光学系 P L又はウェハ室 4 3 の内部に、 真空紫外域のビームに対して吸光物質よりもエネルギー吸収の少ない ヘリウムガスが満たされ、 その気圧が大気圧と同程度かもしくはより高い (例え ば大気圧に対し 1〜 1 0 %程度高い) 陽圧状態となり、 ガス置換が完了する。 ガ ス置換が完了すると、 主制御系 4 4は、 濃度センサ 1 2で計測される酸素濃度が 予め設定されている許容濃度を超えないように、 ガス供給装置 7 2から継続的に 所定流量のヘリ ゥムガスを供給する。 ガス置換時及びガス置換完了後において、 主制御系 4 4は、 濃度センサ 1 2に よる酸素濃度の計測結果を用いて、 上記各空間における残留空気やリークのモニ タリ ングを行う。 前述したように、 濃度計測装置 1 0では、 ガス置換される空間 1 1から排出されたサンプルガスの流量を、 マスフローコントローラ 2 1 (図 1 参照) によって所定の設定流量に制御することにより、 計測環境の乱れが抑制さ れ、 精度よく酸素濃度が計測される。 したがって、 この露光装置では、 精度よく 計測された酸素濃度に基づいて、 ガス置換の進行状態やガス置換が完了したか否 力 、 あるいはガス置換された状態が維持されているか否かを正確に検出すること ができる。 Under the control of the main control system 44, the gas atmosphere in the illumination system 41, reticle chamber 42, projection optical system PL, and wafer chamber 43 is replaced with helium gas under the control of the main control system 44. Is done. Specifically, at the time of gas replacement, the main control system 44 operates the vacuum pumps 71A, 71B, 71C or 71D to operate the illumination system 41, the reticle chamber 42, and the projection system. Exhaust the gas and light-absorbing substance in the optical system PL or the wafer chamber 43, and open the valve 73A, 73B, 73C or 73D to operate the gas supply device 72. A high-purity, high-temperature, hemi-gas is supplied to the illumination system 41, the reticle chamber 42, the projection optical system PL, or the internal space of the wafer chamber 43 via the pipes 74A to 74D. At this time, the progress of the gas replacement can be confirmed by the measurement result of the concentration measuring device 10, that is, the oxygen concentration measured by the concentration sensor 12. When the oxygen concentration measured by the concentration sensor 12 becomes equal to or less than a preset allowable concentration, the main control system 44 causes the vacuum pumps 71A, 71B, 71C or 71D. To stop. As a result, the interior of the illumination system 41, the reticle chamber 42, the projection optical system PL, or the wafer chamber 43 is filled with a helium gas, which has less energy absorption than a light-absorbing substance with respect to a vacuum ultraviolet beam, The pressure is equal to or higher than the atmospheric pressure (for example, about 1 to 10% higher than the atmospheric pressure). When the gas replacement is completed, the main control system 44 continuously outputs a predetermined flow rate from the gas supply device 72 so that the oxygen concentration measured by the concentration sensor 12 does not exceed the preset allowable concentration. Supply Helium gas. At the time of gas replacement and after completion of the gas replacement, the main control system 44 monitors residual air and leaks in each of the above-mentioned spaces using the measurement result of the oxygen concentration by the concentration sensor 12. As described above, the concentration measuring device 10 measures the flow rate of the sample gas discharged from the gas replacement space 11 by controlling the flow rate of the sample gas to a predetermined set flow rate by the mass flow controller 21 (see FIG. 1). The disturbance of the environment is suppressed, and the oxygen concentration is accurately measured. Therefore, this exposure apparatus accurately detects the progress of gas replacement, whether or not the gas replacement has been completed, or whether or not the gas replacement state is maintained, based on the accurately measured oxygen concentration. can do.
また、 照明系 4 1、 レチクル室 4 2、 投影光学系 P L、 及びウェハ室 4 3の各 内部空間である露光ビーム I Lを含む各空間は、 濃度計測装置 1 0を用いて内部 の酸素濃度がモニタリングされ、 吸光物質が排除された状態が安定的に維持され る。 したがって、 この露光装置では、 光源 4 0からの露光ビーム I Lのエネルギ 一がこれらの空間で大きく吸収されることなく ウェハ Wまで十分な照度で到達し、 レチクル Rのパターン像がウェハ W上に精度よく転写される。  In addition, in the illumination system 41, the reticle chamber 42, the projection optical system PL, and the space including the exposure beam IL, which is the internal space of each of the wafer chambers 43, the internal oxygen concentration is measured using the concentration measurement device 10. The condition where the light-absorbing substances are monitored and removed is stably maintained. Therefore, in this exposure apparatus, the energy of the exposure beam IL from the light source 40 reaches the wafer W with sufficient illuminance without being largely absorbed in these spaces, and the pattern image of the reticle R is accurately displayed on the wafer W. Transcribed well.
なお、 上述した実施様態において示した動作手順、 あるいは各構成部材の諸形 状や組み合わせ等は一例であって、 本発明の主旨から逸脱しない範囲においてプ ロセス条件や設計要求等に基づき種々変更可能である。 本発明は、 例えば以下の ような変更をも含むものとする。  The operation procedure described in the above embodiment, or the various shapes and combinations of the constituent members are merely examples, and various changes can be made based on process conditions and design requirements without departing from the gist of the present invention. It is. The present invention includes, for example, the following changes.
上記実施様態では、 サンプル用のガスが排出される空間が陽圧であることから、 その圧力を利用してサンプルガスを濃度センサに移送しているが、 サンプルガス を濃度センサに移送する方法はこれに限定されない。 すなわち、 図 3に示すよう に、 濃度計測装置に、 サンプルガスを昇圧する昇圧機器 (例えば真空ポンプなど) 8 0を設けてもよレ、。 昇圧機器 8 0は、 ガス置換される空間とマスフローコント ローラ 8 1 との間、 すなわち濃度センサ 8 2の上流に配するとよい。 昇圧機器 8 0としては、 例えば、 汚染物質の発生が少ないダイアフラム弁を用いたダイァフ ラムポンプを用いるとよい。 濃度計測装置では、 昇圧機器 8 0を有する構成とす ることにより、 ガス置換される空間の圧力が低い場合にも、 濃度センサ 8 2への サンプルガスの供給を確実に行うことができる。 特に、 濃度センサ 8 2によって は、 供給されるサンプルガスの圧力が低下すると、 応答特性が不安定になる場合 がある。 そう した場合にも昇圧機器 8 0により濃度センサ 8 2に供給されるガス の圧力が安定的に確保されるので、 圧力低下に伴う濃度センサ 8 2の計測精度の 低下を抑制することができる。 なお、 濃度センサに供給されるサンプルガスの圧 力を高める機器としては、 昇圧機器に限定されず、 濃度センサの下流側に吸引器 を設ける構成としてもよい。 In the above embodiment, since the space from which the gas for the sample is discharged has a positive pressure, the sample gas is transferred to the concentration sensor by using the pressure. However, the method of transferring the sample gas to the concentration sensor is as follows. It is not limited to this. That is, as shown in FIG. 3, the concentration measuring device may be provided with a pressure-increasing device (for example, a vacuum pump) 80 for increasing the pressure of the sample gas. The booster 80 may be disposed between the space in which the gas is replaced and the mass flow controller 81, that is, upstream of the concentration sensor 82. As the booster 80, for example, a diaphragm pump using a diaphragm valve that generates less pollutants may be used. The configuration of the concentration measuring device including the pressure-increasing device 80 ensures that the sample gas is supplied to the concentration sensor 82 even when the pressure of the space to be replaced with gas is low. In particular, the concentration sensor 82 When the pressure of the supplied sample gas decreases, the response characteristics may become unstable. Even in such a case, the pressure of the gas supplied to the concentration sensor 82 is stably ensured by the booster 80, so that a decrease in the measurement accuracy of the concentration sensor 82 due to the pressure decrease can be suppressed. The device for increasing the pressure of the sample gas supplied to the concentration sensor is not limited to the pressure increasing device, but may be configured to include a suction device on the downstream side of the concentration sensor.
また、 このような昇圧機器を用いる場合には、 ガス置換される空間、 あるいは この空間と昇圧機器との間の配管の途中に圧力センサを設け、 圧力センサの検出 結果に基づいて、 昇圧機器の動作、 すなわちサンプルガスの圧力を制御してもよ い。 さらに、 サンプルガスの圧力を制御する場合には、 サンプルガスの流量を制 御する場合と同様に、 ガス置換の開始前後における所定時間の間は、 サンプルガ スの圧力が略一定の第一圧力になるように、 昇圧機器を、 第一圧力に対応する値 に設定するとともに、 ガス置換の完了前後における所定時間の間は、 サンプルガ スの圧力が、 第一圧力よりも小さい略一定の第二圧力になるように、 昇圧機器を、 第二圧力に対応する値に設定してもよい。  When such a booster is used, a pressure sensor is provided in the space to be replaced with gas or in the middle of the pipe between this space and the booster, and based on the detection result of the pressure sensor, the pressure sensor is used. The operation, that is, the pressure of the sample gas may be controlled. Furthermore, when controlling the pressure of the sample gas, similarly to the case of controlling the flow rate of the sample gas, the pressure of the sample gas is substantially constant for a predetermined time before and after the start of gas replacement. The pressure of the sample gas is set to a value corresponding to the first pressure so that the pressure of the sample gas is smaller than the first pressure for a predetermined time before and after the completion of the gas replacement. The booster may be set to a value corresponding to the second pressure so that the pressure is two.
また、 上記実施様態では、 ガスの流量を制御するために、 マスフローコント口 ーラ (M F C ) を用いているが、 ガスの流量を制御する手段はこれに限定されな い。 例えば、 流量コントロール用にニードルバルブ、 流量測定用に流量計 (例え ば接点付フロート式流量計) を用い、 制御装置により流量計からの信号に基づい てニードルバルブを制御するように構成してもよい。  In the above embodiment, the mass flow controller (MFC) is used to control the gas flow rate, but the means for controlling the gas flow rate is not limited to this. For example, it is possible to use a needle valve for flow control and a flow meter for flow measurement (for example, a float flow meter with contacts), and control the needle valve based on a signal from the flow meter by a controller. Good.
また、 上記実施様態では、 計測環境の乱れを抑制するために、 ガスの流量を一 定に制御しているが、 流量を制御する代わりに、 圧力を一定に制御してもよい。 この場合、 濃度計測装置は、 例えば、 昇圧機器及び圧力計を有し、 濃度センサに 供給されるガスが一定の圧力になるように昇圧機器を制御する構成とするとよい また、 この場合、 マスフローコントローラが 2次側 (下流側) の圧力を制御する 機能を有している場合は、 昇圧機器を省いた構成とすることもできる。 さらに、 流量あるいは圧力の一方だけを一定に制御するのではなく、 双方を所定の値に制 御するように構成してもよレ、。  In the above embodiment, the gas flow rate is controlled to be constant in order to suppress the disturbance of the measurement environment. However, instead of controlling the flow rate, the pressure may be controlled to be constant. In this case, the concentration measuring device may include, for example, a pressure increasing device and a pressure gauge, and may be configured to control the pressure increasing device so that the gas supplied to the concentration sensor has a constant pressure. If the device has a function to control the pressure on the secondary side (downstream side), a configuration without the booster can be adopted. Furthermore, instead of controlling only one of the flow rate and the pressure, both may be controlled to a predetermined value.
また、 サンプルガスが加圧されたり温度変化を伴ったりする場合など、 配管内 で水蒸気発生の恐れがある場合には、 濃度センサの上流に除湿器を設け、 液体に よる濃度センサの計測精度の低下を防ぐ構成とするとよい。 さらに、 ガス置換さ れる空間から排出されるガスに不純物が混入しその不純物が濃度センサに悪影響 を与える恐れがある場合には、 濃度センサの上流にその不純物に応じたフィルタ を設ける構成とするとよレ、。 Also, when the sample gas is pressurized or changes in temperature, If there is a risk of generating water vapor in the above, a dehumidifier should be provided upstream of the concentration sensor to prevent the liquid from lowering the measurement accuracy of the concentration sensor. Furthermore, if impurities are mixed in the gas discharged from the gas replacement space and the impurities may adversely affect the concentration sensor, a filter corresponding to the impurities may be provided upstream of the concentration sensor. Les ,.
また、 上記実施様態では、 酸素を計測対象としているが、 本発明の計測対象は これに限らないのは言うまでもない。 例えば、 上述した吸光物質である、 水 (水 蒸気) や炭酸ガス (二酸化炭素) 、 有機物やハロゲン化物など、 他の物質の計測 にも本発明は適用可能である。 この場合には、 それぞれの物質を計測するセンサ が用いられる。  Further, in the above embodiment, oxygen is a measurement target, but it goes without saying that the measurement target of the present invention is not limited to this. For example, the present invention is applicable to the measurement of other substances such as water (water vapor), carbon dioxide (carbon dioxide), organic substances and halides, which are the above-mentioned light-absorbing substances. In this case, sensors that measure each substance are used.
また、 上記実施様態では、 透過ガスとしてヘリウム (H e ) を想定している力;、 窒素 (N 2 ) 、 又は希ガス (アルゴン (A r ) 等) などの不活性ガスはいずれも真 空紫外域の光の吸収量が小さく、 特に F 2レーザ光に対する吸収量はほとんど無視 できるほど小さレ、。 したがって、 いずれの不活性ガスを用いてもよい。 Further, in the above-described embodiment, the inert gas such as helium (H e) as a permeated gas; nitrogen (N 2), or a rare gas (argon (Ar), etc.) is a vacuum. small amount of absorption of light in the ultraviolet region, small enough in particular almost negligible absorption amount with respect to the F 2 laser beam Le. Therefore, any inert gas may be used.
また、 上述した露光装置において、 例えば照明系、 レチクル室、 投影光学系、 ウェハ室の各内部空間においては、 吸光物質の濃度管理をそれぞれ異なる値で行 つてもよレヽ。  In the above-described exposure apparatus, for example, in each of the internal spaces of the illumination system, the reticle chamber, the projection optical system, and the wafer chamber, the concentration of the light absorbing substance may be controlled with different values.
また、 照明光学系及び投影光学系を構成する光学素子の空間ごとに、 透過ガス の供給管及び排気管を設けてパージを実施してもよい。 さらに、 照明系や投影光 学系を構成する光学素子の空間毎に吸光物質の濃度管理を行ってもよい。  Further, a purge pipe may be provided by providing a permeated gas supply pipe and an exhaust pipe for each space of the optical elements constituting the illumination optical system and the projection optical system. Furthermore, the concentration of the light-absorbing substance may be controlled for each space of the optical element constituting the illumination system or the projection optical system.
また、 照明系からウェハ室の各ハウジング (筒状体等も含む) や、 ヘリウムガ ス等を供給する配管は、 不純物ガス (脱ガス) の少ない材料、 例えばステンレス 鋼、 四フッ化工チレン、 テ トラフノレォロエチレン一テノレフノレオ口 (アルキルビニ ルエーテル) 、 又はテ トラフルォロエチレン一へキサフルォロプロペン共重合体 等の各種ポリマーで形成することが望ましい。  In addition, each housing (including the cylindrical body etc.) of the wafer chamber from the illumination system, and the piping for supplying helium gas, etc., are made of a material with low impurity gas (degassing), such as stainless steel, tetrafluoroethylene, tetrafluoroethylene. It is desirable to form with various polymers such as norroethylene-tenorefnoleo mouth (alkyl vinyl ether) or tetrafluoroethylene-hexafluoropropene copolymer.
また、 レチクル室の隔壁、 ウェハ室の隔壁、 照明系のハウジング、 投影光学系 のハウジング (鏡筒) 、 サンプルガス (透過ガス) や清浄ガスの供給配管等は、 研磨などの処理によって、 表面粗さが低減されたステンレス (S U S ) 等の材質 を用いることにより、 脱ガスの発生を抑制することが可能となる。 また、 光路上から吸光物質を排除するには、 予め構造材料表面からの脱ガス量 を低減する処置を施しておくことが好ましい。 例えば、 ( 1 ) 構造材料の表面積 を小さくする、 (2 ) 構造材料表面を機械研磨、 電解研磨、 バル研磨、 化学研磨、 又は G B B ( Glass Beads Blasting ) といった方法によって研磨し、 構造材料の表 面粗さを低減しておく、 (3 ) 超音波洗浄、 クリーンドライエア等の流体の吹き 付け、 真空加熱脱ガス (ベーキング) などの手法によって、 構造材料表面を洗浄 する、 (4 ) 炭化水素やハロゲン化物を含む電線被膜物質やシール部材 (O リ ン グ等) 、 接着剤等を光路空間に可能な限り設置しない、 等の方法がある。 The reticle chamber partition, wafer chamber partition, illumination system housing, projection optical system housing (barrel), sample gas (permeate gas) and clean gas supply piping, etc. are processed by polishing, etc. to obtain a rough surface. By using a material such as stainless steel (SUS) with reduced strength, it is possible to suppress the generation of degassing. Further, in order to remove the light absorbing substance from the optical path, it is preferable to perform a treatment for reducing the amount of outgas from the surface of the structural material in advance. For example, (1) the surface area of the structural material is reduced, (2) the surface of the structural material is polished by a method such as mechanical polishing, electrolytic polishing, ball polishing, chemical polishing, or GBB (Glass Beads Blasting). (3) Clean the surface of structural materials by techniques such as ultrasonic cleaning, spraying a fluid such as clean dry air, and vacuum degassing (baking). (4) Hydrocarbons and halogens Wire coating materials containing oxides, sealing members (such as O-rings), adhesives, etc., should not be installed in the optical path space as much as possible.
また、 本発明が適用される露光装置は、 露光用照明ビームに対してマスク (レ チクル) と基板 (ウェハ) とをそれぞれ相対移動する走査露光方式 (例えば、 ス テツプ · アン ド · スキャン方式など) に限られるものではなく、 マスクと基板と をほぼ静止させた状態でマスクのパターンを基板上に転写する静止露光方式、 例 えばステップ · アンド · リ ピート方式などでもよい。 さらに、 基板上で周辺部が 重なる複数のショッ ト領域にそれぞれパターンを転写するステップ ' アン ド ·ス ティツチ方式の露光装置などに対しても本発明を適用することができる。 また、 投影光学系 P Lは縮小系、 等倍系、 及び拡大系のいずれでもよいし、 屈折系、 反 射屈折系、 及び反射系のいずれでもよい。 さらに、 投影光学系を用いない、 例え ばプロキシミティ方式の露光装置などに対しても本発明を適用できる。  The exposure apparatus to which the present invention is applied is a scanning exposure method (for example, a step-and-scan method) in which a mask (reticle) and a substrate (wafer) are relatively moved with respect to an exposure illumination beam. However, the present invention is not limited to this, and a static exposure method in which a mask pattern is transferred onto a substrate while the mask and the substrate are almost stationary, for example, a step-and-repeat method may be used. Further, the present invention can be applied to a step-and-stitch type exposure apparatus that transfers a pattern to a plurality of shot areas whose peripheral portions overlap each other on a substrate. Further, the projection optical system PL may be any one of a reduction system, an equal magnification system, and an enlargement system, and may be any one of a refraction system, a reflection refraction system, and a reflection system. Further, the present invention can be applied to an exposure apparatus that does not use a projection optical system, for example, a proximity type exposure apparatus.
また、 本発明が適用される露光装置は、 露光用照明光として g線、 i線、 K r Fエキシマレーザ光、 A r Fエキシマレ一ザ光、 F 2レーザ光、 及び A r 2レーザ 光などの紫外光だけでなく、 例えば E U V光、 X線、 あるいは電子線やイオンビ ームなどの荷電粒子線などを用いてもよい。 さらに、 露光用光源は水銀ランプや エキシマレーザだけでなく、 Y A Gレーザ又は半導体レーザなどの高調波発生装 置、 S O R、 レーザプラズマ光源、 電子銃などでもよい。 The exposure apparatus to which the present invention is applied, g-ray as the exposure illumination light, i line, K r F excimer laser light, A r F excimer one laser light, F 2 laser beam, and A r 2 laser beam such as Not only ultraviolet light but also EUV light, X-ray, or charged particle beam such as electron beam or ion beam may be used. Furthermore, the light source for exposure is not limited to a mercury lamp or excimer laser, but may be a harmonic generation device such as a YAG laser or a semiconductor laser, an SOR, a laser plasma light source, an electron gun, or the like.
また、 本発明が適用される露光装置は、 半導体デバイス製造用に限られるもの ではなく、 液晶表示素子、 ディスプレイ装置、 薄膜磁気ヘッ ド、 撮像素子 (C C Dなど) 、 マイクロマシン、 及び D N Aチップなどのマイクロデバイス (電子デ バイス) 製造用、 露光装置で用いられるフォ トマスクゃレチクルの製造用などで もよい。 また、 本発明は露光装置だけでなく、 デバイス製造工程で使用される他の製造 装置 (検査装置などを含む) に対しても適用することができる。 Also, the exposure apparatus to which the present invention is applied is not limited to semiconductor device manufacturing, but may be a liquid crystal display device, a display device, a thin-film magnetic head, an imaging device (such as a CCD), a micromachine such as a micromachine, and a DNA chip. It may be used for manufacturing a device (electronic device) or for manufacturing a photomask / reticle used in an exposure apparatus. Further, the present invention can be applied not only to an exposure apparatus, but also to another manufacturing apparatus (including an inspection apparatus) used in a device manufacturing process.
また、 上述したウェハステージゃレチクルステージにリニアモータを用いる場 合は、 エアベアリングを用いたエア浮上型およびローレンツ力またはリァクタン スカを用いた磁気浮上型のどちらを用いてもよい。 また、 ステージは、 ガイ ドに 沿って移動するタイプでもいいし、 ガイ ドを設けないガイ ドレスタイプでもよい。 さらに、 ステージの駆動系として平面モータを用いる場合、 磁石ユニッ ト (永久 磁石) と電機子ユニッ トのいずれか一方をステージに接続し、 磁石ユニッ トと電 機子ユニッ トの他方をステージの移動面側 (定盤、 ベース) に設ければよい。 また、 ウェハステージの移動により発生する反力は、 特開平 8— 1 6 6 4 7 5 号公報に記載されているように、 フレーム部材を用いて機械的に床 (大地) に逃 がしてもよい。 本発明は、 このような構造を備えた露光装置においても適用可能 である。  When a linear motor is used for the wafer stage / reticle stage described above, either an air levitation type using an air bearing or a magnetic levitation type using a Lorentz force or a reactor tanker may be used. Also, the stage may be of a type that moves along a guide or a guideless type that does not have a guide. Furthermore, when a planar motor is used as the stage drive system, one of the magnet unit (permanent magnet) and the armature unit is connected to the stage, and the other of the magnet unit and the armature unit moves the stage. It may be provided on the surface side (surface plate, base). Also, the reaction force generated by the movement of the wafer stage is mechanically released to the floor (ground) using a frame member as described in JP-A-8-166475. Is also good. The present invention is also applicable to an exposure apparatus having such a structure.
また、 レチクルステージの移動により発生する反力は、 特開平 8— 3 3 0 2 2 4号公報に記載されているように、 フレーム部材を用いて機械的に床 (大地) に 逃がしてもよい。 本発明は、 このような構造を備えた露光装置においても適用可 能である。  Further, the reaction force generated by the movement of the reticle stage may be mechanically released to the floor (ground) using a frame member as described in JP-A-8-330224. . The present invention is also applicable to an exposure apparatus having such a structure.
また、 本発明が適用される露光装置は、 本願特許請求の範囲に挙げられた各構 成要素を含む各種サブシステムを、 所定の機械的精度、 電気的精度、 光学的精度 を保つように、 組み立てることで製造される。 これら各種精度を確保するために、 この組み立ての前後には、 各種光学系については光学的精度を達成するための調 整、 各種機械系については機械的精度を達成するための調整、 各種電気系につい ては電気的精度を達成するための調整が行われる。 各種サブシステムから露光装 置への組み立て工程は、 各種サブシステム相互の、 機械的接続、 電気回路の配線 接続、 気圧回路の配管接続等が含まれる。 この各種サブシステムから露光装置へ の組み立て工程の前に、 各サブシステム個々の組み立て工程があることはいうま でもない。 各種サブシステムの露光装置への組み立て工程が終了すると、 総合調 整が行われ、 露光装置全体としての各種精度が確保される。 なお、 露光装置の製 造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。 また、 半導体デバイスは、 図 4に示すように、 デバイスの機能 ·性能設計を行 う工程 2 0 1、 この設計ステップに基づいたマスク (レチクル) を製作する工程 2 0 2、 シリ コン材料からウェハを製造する工程 2 0 3、 前述した露光装置によ り レチクルのパターンをウェハに露光するウェハ処理工程 2 0 4、 デバイス組み 立て工程 2 0 5 (ダイシング工程、 ボンディング工程、 パッケージ工程を含む) , 検査工程 2 0 6等を経て製造される。 Further, the exposure apparatus to which the present invention is applied is configured such that various subsystems including the respective constituent elements recited in the claims of the present application maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. It is manufactured by assembling. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical For, adjustments are made to achieve electrical accuracy. The process of assembling the exposure apparatus from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, a comprehensive adjustment is performed to ensure various precisions of the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room where the temperature, cleanliness, etc. are controlled. For semiconductor devices, as shown in Fig. 4, a process 201 for designing the function and performance of the device, a process 202 for manufacturing a mask (reticle) based on the design steps, and a wafer made of silicon material are used. , A wafer processing step of exposing a reticle pattern to a wafer by the above-described exposure apparatus, a device assembling step 205 (including a dicing step, a bonding step, and a package step). It is manufactured through an inspection process 206 and the like.

Claims

請求の範囲 The scope of the claims
1 - ガス置換される空間から排出されたガスに含まれる任意の物質の濃度を計 測する濃度計測方法において、  1-In a concentration measurement method for measuring the concentration of any substance contained in a gas discharged from a space to be replaced with a gas,
前記空間から排出されたガスの流量及び圧力のうちの少なく とも一方を略一定 に制御し、 前記ガスに含まれる前記任意の物質の濃度を計測する濃度計測方法。 A concentration measuring method for controlling at least one of a flow rate and a pressure of a gas discharged from the space to be substantially constant, and measuring a concentration of the arbitrary substance contained in the gas.
2 . 前記空間が、 酸素を含むガス雰囲気から窒素ガスやヘリウムガスなどの不 活性ガスにガス置換される空間であり、 前記任意の物質が、 酸素である請求項 1 に記載の濃度計測方法。 2. The concentration measuring method according to claim 1, wherein the space is a space in which a gas atmosphere containing oxygen is replaced with an inert gas such as a nitrogen gas or a helium gas, and the arbitrary substance is oxygen.
3 . 前記ガスの流量及び圧力のうちの少なく とも一方が、 前記ガス置換の開始 前後における第一の所定時間の間、 及び前記ガス置換の完了前後における第二の 所定時間の間、 略一定に制御される請求項 1に記載の濃度計測方法。  3. At least one of the flow rate and the pressure of the gas is substantially constant for a first predetermined time before and after the start of the gas replacement, and for a second predetermined time before and after the completion of the gas replacement. 2. The concentration measuring method according to claim 1, which is controlled.
4 . 前記ガス置換の開始前後における前記ガスの流量及び圧力のうちの少なく とも一方と、 前記ガス置換の完了前後における前記ガスの流量及び圧力のうちの 少なく とも一方とが、 互いに異なる値に制御される請求項 3に記載の濃度計測方 法。  4. At least one of the flow rate and the pressure of the gas before and after the start of the gas replacement and at least one of the flow rate and the pressure of the gas before and after the completion of the gas replacement are controlled to values different from each other. 4. The method according to claim 3, wherein the concentration is measured.
5 . 前記ガス置換の開始前後における前記ガスの流量及び圧力のうちの少なく とも一方が、 前記ガス置換の完了前後における前記ガスの流量及び圧力のうちの 少なく とも一方より小さくなるよう制御される請求項 4に記載の濃度計測方法。 5. At least one of the flow rate and the pressure of the gas before and after the start of the gas replacement is controlled to be smaller than at least one of the flow rate and the pressure of the gas before and after the completion of the gas replacement. The concentration measurement method described in Item 4.
6 . ガス置換される空間から排出されたガスに含まれる任意の物質の濃度を計 測する計測部を備える濃度計測装置において、 6. In a concentration measuring device provided with a measuring unit for measuring the concentration of an arbitrary substance contained in a gas discharged from a space to be replaced with a gas,
前記計測部の上流に配され、 前記空間から排出されたガスの流量及び圧力のう ちの少なく とも一方を略一定に制御するガス制御装置を備える濃度計測装置。 A concentration measuring device provided upstream of the measuring unit and comprising a gas control device for controlling at least one of a flow rate and a pressure of a gas discharged from the space to be substantially constant.
7 . 前記ガス制御装置が、 前記ガスの流量及び圧力のうちの少なく とも一方を、 前記ガス置換の開始前後における第一の所定時間の間、 及び前記ガス置換の完了 前後における第二の所定時間の間、 略一定に制御する請求項 6に記載の濃度計測 装置。 7. The gas control device controls at least one of the flow rate and the pressure of the gas during a first predetermined time before and after the start of the gas replacement, and a second predetermined time before and after the completion of the gas replacement. 7. The concentration measuring apparatus according to claim 6, wherein the apparatus is controlled to be substantially constant during the period.
8 . 前記ガス制御装置が、 前記ガス置換の開始前後における前記ガスの流量及 び圧力のうちの少なく とも一方と、 前記ガス置換の完了前後における前記ガスの 流量及び圧力のうちの少なくとも一方とを、 互いに異なるよう制御する請求項 7 に記載の濃度計測装置。 8. The gas control device determines at least one of the flow rate and the pressure of the gas before and after the start of the gas replacement and at least one of the flow rate and the pressure of the gas before and after the completion of the gas replacement. Claim 7 which is controlled to be different from each other The concentration measuring device according to 1.
9 . 前記ガス制御装置が、 前記ガス置換の開始前後における前記ガスの流量及 び圧力のうちの少なく とも一方を、 前記ガス置換の完了前後における前記ガスの 流量及び圧力のうちの少なくとも一方より小さくなるよう制御する請求項 8に記 載の濃度計測装置。  9. The gas control device sets at least one of the flow rate and the pressure of the gas before and after the start of the gas replacement to be smaller than at least one of the flow rate and the pressure of the gas before and after the completion of the gas replacement. 9. The concentration measurement device according to claim 8, wherein the concentration measurement device performs control.
1 0 . ビームによりマスクのパターンを基板に転写する露光方法において、 前記ビームを吸収す.る吸光物質に対して前記ビームの吸収が低減された特定ガ スを前記ビームの光路を含む空間に供給し、 前記空間から排出されたガスの流量 及び圧力のうちの少なく とも一方を略一定に制御し、 前記ガスに含まれる前記吸 光物質の濃度を計測し、 この計測結果に応じて前記転写処理を行う露光方法。 10. An exposure method for transferring a pattern of a mask onto a substrate by a beam, comprising: supplying a specific gas having a reduced absorption of the beam to a space including an optical path of the beam; At least one of the flow rate and the pressure of the gas discharged from the space is controlled to be substantially constant, and the concentration of the light absorbing substance contained in the gas is measured. Exposure method.
1 1 . ビームによりマスクのパターンを基板に転写する露光装置において、 前記ビームを吸収する吸光物質に対して前記ビームの吸収が低減された特定ガ スを前記ビームの光路を含む空間に供給する特定ガス供給装置と、 11. An exposure apparatus for transferring a mask pattern onto a substrate by a beam, wherein a specific gas having a reduced absorption of the beam with respect to a light absorbing material absorbing the beam is supplied to a space including an optical path of the beam. A gas supply device;
前記ガスに含まれる前記吸光物質の濃度を計測する計測部と、  A measuring unit for measuring the concentration of the light absorbing substance contained in the gas,
この計測部の上流側に配され、 前記空間から排出されたガスの流量及び圧力の うちの少なく とも一方を略一定に制御するガス制御装置とを備える露光装置。 An exposure apparatus, comprising: a gas control device disposed upstream of the measurement unit and configured to control at least one of a flow rate and a pressure of the gas discharged from the space to be substantially constant.
1 2 . リソグラフイエ程を含むデバイスの製造方法であって、 1 2. A method for manufacturing a device including a lithographic process,
前記リ ソグラフイエ程では請求項 1 0に記載の露光方法を用いてデバイスを製 スの製造方法。  A method for producing a device using the exposure method according to claim 10 in the lithographic process.
PCT/JP2002/011044 2001-10-24 2002-10-24 Method and instrument for measuring concentration, method and unit for exposure to light, and method for manufacturing device WO2003036696A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003539086A JPWO2003036696A1 (en) 2001-10-24 2002-10-24 Density measuring method and apparatus, exposure method and apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001326609 2001-10-24
JP2001-326609 2001-10-24

Publications (1)

Publication Number Publication Date
WO2003036696A1 true WO2003036696A1 (en) 2003-05-01

Family

ID=19142964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011044 WO2003036696A1 (en) 2001-10-24 2002-10-24 Method and instrument for measuring concentration, method and unit for exposure to light, and method for manufacturing device

Country Status (2)

Country Link
JP (1) JPWO2003036696A1 (en)
WO (1) WO2003036696A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022147316A (en) * 2021-03-23 2022-10-06 株式会社東芝 Gas concentration device, gas detection system, gas concentration method, and gas detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073336A (en) * 1983-09-30 1985-04-25 Hitachi Ltd Sampling gas introducing apparatus
JPH05144707A (en) * 1991-11-18 1993-06-11 Toshiba Corp X-ray aligner
WO2000041225A1 (en) * 1998-12-28 2000-07-13 Nikon Corporation Method for cleaning optical device, exposure apparatus and exposure method, method for manufacturing device, and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073336A (en) * 1983-09-30 1985-04-25 Hitachi Ltd Sampling gas introducing apparatus
JPH05144707A (en) * 1991-11-18 1993-06-11 Toshiba Corp X-ray aligner
WO2000041225A1 (en) * 1998-12-28 2000-07-13 Nikon Corporation Method for cleaning optical device, exposure apparatus and exposure method, method for manufacturing device, and device

Also Published As

Publication number Publication date
JPWO2003036696A1 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
EP1494267A1 (en) Exposure method, exposure device, and device manufacturing method
WO2001006548A1 (en) Exposure method and system
JP2001345263A (en) Aligner, exposure method, and device-manufacturing method
US9004459B2 (en) Humidifying apparatus, lithographic apparatus and humidifying method
KR20170016532A (en) Exposure system and device production method
JP4608876B2 (en) Exposure apparatus and device manufacturing method
US20030047692A1 (en) Measuring method and measuring apparatus, exposure method and exposure apparatus
WO2002039491A1 (en) Optical device, exposure device and device manufacturing method
JP4479269B2 (en) Exposure apparatus and device manufacturing method
JP2005064210A (en) Method for exposure, and method of manufacturing electronic device and exposure device utilizing the method
JP2001068400A (en) Light absorbing substance detecting method, and exposure method and apparatus
WO2003036696A1 (en) Method and instrument for measuring concentration, method and unit for exposure to light, and method for manufacturing device
JP2003257826A (en) Optical device and aligner
JP2002164267A (en) Aligner and method of manufacturing device
JP2003257821A (en) Optical device and aligner
JP2003257822A (en) Optical device and aligner
WO2001008204A1 (en) Exposing method and apparatus
JP2001102290A (en) Exposure method and aligner thereof
JP2005136263A (en) Aligner and gas supply method therefor
TW571345B (en) Exposure device and manufacturing method for the same
JP2003163159A (en) Method of supplying purge gas, exposure apparatus, and method of manufacturing devices
JPWO2002075795A1 (en) Exposure method and apparatus, and device manufacturing method
WO2004081999A1 (en) Optical device, exposure apparatus and method for manufacturing device
JP2005166922A (en) Backing device, optical device, aligner and method for manufacturing device
JP2003257820A (en) Gas feed system, aligner, and filter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003539086

Country of ref document: JP

122 Ep: pct application non-entry in european phase