WO2004081999A1 - Optical device, exposure apparatus and method for manufacturing device - Google Patents

Optical device, exposure apparatus and method for manufacturing device Download PDF

Info

Publication number
WO2004081999A1
WO2004081999A1 PCT/JP2004/003190 JP2004003190W WO2004081999A1 WO 2004081999 A1 WO2004081999 A1 WO 2004081999A1 JP 2004003190 W JP2004003190 W JP 2004003190W WO 2004081999 A1 WO2004081999 A1 WO 2004081999A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
space
optical member
gas
magnetic fluid
Prior art date
Application number
PCT/JP2004/003190
Other languages
French (fr)
Japanese (ja)
Inventor
Jin Nishikawa
Takashi Aoki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2005503568A priority Critical patent/JPWO2004081999A1/en
Publication of WO2004081999A1 publication Critical patent/WO2004081999A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/006Filter holders
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/007Pressure-resistant sight glasses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports

Definitions

  • the present invention relates to an optical device formed on an optical path of an energy beam and having a space to which a predetermined gas is supplied, and particularly relates to a semiconductor device, a liquid crystal display device, and an image pickup device (C
  • the present invention relates to a technique used in a vice manufacturing method.
  • a pattern image of a mask or a reticle (hereinafter, referred to as a reticle) having a pattern formed thereon is exposed to a photosensitive material (resist) through a projection optical system.
  • a projection exposure apparatus is used for projecting each projection (shot) area on a substrate coated with a substrate.
  • the circuit of the electronic device is transferred by exposing a circuit pattern on a substrate to be exposed by the projection exposure apparatus, and is formed by post-processing.
  • the wavelength of the exposure illumination beam (exposure light) in the projection exposure apparatus tends to be shorter.
  • a KrF excimer laser (wavelength: 248 nm) and a short-wavelength light source will be used instead of the mainstream mercury lamp until now, and even shorter-wavelength ArF excimer lasers will be used.
  • Exposure equipment using (193 nm) is also entering the final stage.
  • Exposure equipment using an F 2 laser (157 nm) is being developed with the aim of achieving even higher density integration.
  • Beams with a wavelength of less than about 190 nm belong to the vacuum ultraviolet region, and these beams do not pass through air. This is because the energy of the beam is absorbed by substances such as oxygen molecules, water molecules, and carbon dioxide molecules (hereinafter referred to as light absorbing substances) contained in the air. Because.
  • a space on the optical path is surrounded by a housing, and the exposure light is exposed.
  • the space inside the housing is filled with a gas that is permeable to air. In this case, for example, if the total optical path length is 100 mm, it is considered practical that the concentration of the light absorbing substance in the space on the optical path is about 1 ppm or less.
  • an optical apparatus such as the above-described exposure apparatus, which includes a lens barrel having a space on the optical path to which a predetermined gas is supplied
  • gas leakage is prevented by adopting a seal structure.
  • a seal structure a technique of closing a gap by deforming a solid seal member such as a ring is common.
  • the optical member is disposed at the boundary between the space to which the predetermined gas is supplied, the external space, and the boundary, the optical member is deformed by the force (or the reaction force) to deform the seal member. May be deformed, leading to a decrease in optical performance. Disclosure of the invention
  • the present invention has been made in view of the above-described circumstances, and is intended to reduce the optical performance of an optical member between a space to which a predetermined gas is supplied and an external space without causing a decrease in the optical performance of the optical member. It is an object of the present invention to provide an optical device that can prevent intrusion and leakage of a liquid or the like. It is another object of the present invention to provide an exposure apparatus capable of improving exposure accuracy.
  • Another object of the present invention is to provide a device in which the accuracy of a formed pattern is improved.
  • a first aspect of the present invention is an optical device, comprising: a space (11) formed on an optical path of an energy beam (IL) and supplied with a predetermined gas.
  • An optical member (14) disposed at a boundary between the space (11) and another space; and an opposing surface (20a) opposing a peripheral portion of the optical member (14).
  • the light A support portion (20) for supporting the peripheral portion of the optical member (14); and a fluid disposed between the peripheral portion of the optical member (14) and the facing surface (20a) of the support portion (20).
  • the fluid sealing mechanism includes a magnetic fluid layer (25) provided between a peripheral portion of the optical member (14) and the facing surface (20a), and a magnetic fluid layer (25). And a magnet (26) for holding in position.
  • the optical member is supported in a state where a gap is formed between the peripheral portion of the optical member and the support portion, and a magnetic fluid layer is provided between the peripheral portion of the optical member and the support portion.
  • the magnetic fluid is a suspension in which a fine powder of a ferromagnetic material is dispersed in a medium such as a liquid, and aggregates when a magnetic field is applied.
  • a force acting on an optical member due to the seal is smaller than a structure using a solid seal member such as a ring. Therefore, in this optical device, when the optical member is arranged at the boundary of the plurality of spaces, the deformation of the optical member is suppressed. Further, in the seal structure using the magnetic fluid layer, the restrictions on the posture of the optical member are small, and the arrangement of the optical member can be easily adjusted.
  • the use of a fluorine-based base liquid as the magnetic fluid layer (25) improves the degree of chemical cleanliness.
  • the optical member (14) may include, for example, an optical surface (14a) having an optically effective area, and a peripheral surface (14c) in the same plane as the optical surface (14a). ), And a side surface (14 e) of the optical member, wherein the magnetic fluid layer (25) has at least a peripheral surface (14 c) of the optical member and a side surface (14 e) of the optical member. Both are arranged so as to be in contact with one.
  • the magnetic fluid layer (25) is arranged so as to be in contact with a peripheral surface (14c) in a peripheral portion of the optical member, and the peripheral surface (14c) is disposed on the magnetic fluid layer (14).
  • the part in contact with 25) should have been treated to a different surface property than the other parts.
  • the magnetic fluid layer (41) is disposed so as to be in contact with the side surface (14e) of the optical member, and the side surface (14e) is in contact with the magnetic fluid layer (41). It is preferred that one part has a different surface property than the other part.
  • a magnetic force circuit via the magnet is reliably formed, and the retention and sealing properties of the magnetic fluid layer can be improved.
  • the peripheral portion of the optical member (14) has planes (14c, 14d) parallel to each other, and the support section (20) is one of the planes parallel to each other. 14 c), and three seats (27) that support the periphery of the optical member (14) at substantially equal intervals; and three seats (27) are disposed at positions corresponding to the three seats (27), respectively.
  • the magnetic fluid layer having three pressing members (28) that are in contact with the other of the parallel surfaces (14d) and that sandwich the peripheral edge of the optical member (14) together with the three seats (27). (25) is preferably in contact with at least one (14c) of the parallel surfaces.
  • the three seats and the three pressing members act so that the force for holding the optical member presses the optical member therebetween. Therefore, the occurrence of bending moment inside the optical member is suppressed, and the occurrence of distortion of the optical member is suppressed.
  • the magnet (26) is embedded in a part of the facing surface (20a), so that the magnetic fluid layer is held at the embedded position.
  • the magnet (26) may be arranged in a convex shape on the facing surface (20a).
  • a magnetic circuit is preferably formed, and the retention of the magnetic fluid layer is improved.
  • a gas different from the predetermined gas may be supplied to the other space.
  • a second aspect of the present invention is an exposure apparatus, comprising: an illumination system (121) for illuminating a mask (R) on which a pattern is formed with an energy beam (IL); At least one of the projection optical system (PL) for transferring the pattern onto the substrate (W) is constituted by the above optical device.
  • the optical member is an optical element (351) facing the substrate (W) among a plurality of optical elements constituting the projection optical system (PL);
  • the space (301) in the projection optical system (PL), and the other space is a space (303) between the optical element (351) and the substrate (W).
  • a first gas supply mechanism (310) for supplying a first gas to the space (301) in the projection optical system (PL), the optical element (351) and the substrate (W)
  • a second gas supply mechanism (31 1) for supplying a second gas different in type from the first gas in the space (303) between the first space and the second space (303). Different types of gases are supplied to the space 301 between the optical element and the substrate, and leakage of gas through the boundary between the spaces is prevented.
  • the optical member is an optical element (350) arranged on the mask (R) side among a plurality of optical elements constituting the projection optical system (PL).
  • the space is a space (301) in the projection optical system (PL), and the other space is a space (302) between the optical element (350) and the mask (R). is there.
  • a first gas supply mechanism (310) for supplying a first gas to a space (301) in the projection optical system (PL), the optical element (350) and the mask (R)
  • a second gas supply mechanism (31 1) for supplying a second gas different in type from the first gas in a space (302) between the first optical system and the projection optical system (PL).
  • Different types of gases are supplied to the space (301) and the space (302) between the optical element and the mask, and gas leakage through the boundary between the spaces is prevented.
  • a third aspect of the present invention is a device manufacturing method, which includes a step of transferring a device pattern formed on a mask (R) onto a substrate (W) using the above exposure apparatus.
  • FIG. 1 is a diagram schematically showing a first embodiment of the optical device according to the present invention.
  • FIG. 2 is a partially enlarged view showing a seal structure using a magnetic fluid.
  • FIG. 3 is a cross-sectional view taken along the line AA shown in FIG.
  • FIG. 4 is a diagram illustrating an example in which a portion of the optical member that is in contact with the magnetic fluid layer is processed to have a different surface characteristic from other portions.
  • FIG. 5 is a diagram showing another example in which a portion of the optical member that contacts the magnetic fluid layer is processed to have a different surface characteristic from other portions.
  • FIG. 6 is a diagram illustrating an example in which magnets are arranged in a convex shape on a surface.
  • FIG. 7 is a view showing an optical device according to a second embodiment of the present invention.
  • FIG. 8 is a diagram showing a third embodiment of the optical device according to the present invention.
  • FIG. 9 is a diagram showing an embodiment in which the optical device of the present invention is applied to an exposure apparatus.
  • FIG. 10 is a diagram showing an example of the configuration of a gas supply system that supplies gas to each space on the optical path of exposure light.
  • FIG. 1 is a diagram schematically showing a first embodiment of the optical device according to the present invention.
  • the optical device 10 includes a space 11 formed on the optical path of the energy beam IL and supplied with a predetermined gas.
  • This space 11 is an internal space of a cylindrical housing 12 constituting the optical device 10.
  • the boundary between this space 11 and the external space 13 is Lumber 14 is arranged. That is, an opening 15 through which the energy beam IL passes is formed in the housing 12, and the optical member 14 is arranged so as to close the opening 15.
  • the optical member 14 is formed of a parallel flat plate (parallel flat plate) having surfaces parallel to each other, and has optical surfaces 14 a and 14 b having an optically effective area. It includes peripheral surfaces 14 c and 14 d and a side surface 14 e in the same plane.
  • the optical surface 14a and the optical surface 14b are parallel to each other, and the peripheral surface 14c and the peripheral surface 14d are also parallel to each other.
  • a fluid seal mechanism is provided between the optical member 14 and the housing 12, and the fluid seal mechanism seals the space between the optical member 14 and the housing 12. I have.
  • a magnetic fluid is used as a fluid seal mechanism
  • Figure 2 shows a partially enlarged seal structure using a magnetic fluid.
  • a support portion 20 that supports the optical member 14 is provided at an axial end of the housing 12.
  • the supporting portion 20 has an opposing surface 20 a facing one peripheral surface 14 c of the optical member 14, and the opposing surface 20 a and the peripheral surface 14 c of the optical member 14 are provided.
  • the optical member 14 is supported with a gap formed therebetween.
  • a magnetic fluid layer 25 made of a magnetic fluid is provided between the peripheral surface 14 c of the optical member 14 and the facing surface 20 a of the support portion 20.
  • the magnetic fluid layer 25 is held at a predetermined position by a magnet 26 (permanent magnet) disposed on the facing surface 20a.
  • FIG. 3 is a cross-sectional view taken along the line AA shown in FIG.
  • the support portion 20 comes into contact with one of the peripheral surfaces 14 c at the peripheral portion of the optical member 14, and the peripheral portions of the optical member 14 are substantially equally spaced (in this example, It has three seats 27 that are supported at intervals of 120 ° in the circumferential direction. These seats 27 are formed so as to protrude from the facing surface 20 a of the support portion 20, and have a small contact area with the optical member 1.
  • the support portion 20 is disposed at a position corresponding to each of the three seats 27, contacts the other peripheral surface 14d of the optical member 14, and fixes the peripheral portion of the optical member 14 to the above. It has three lens pressing members 28 sandwiched together with the three seats 27. These three lens pressing members 28 include a portion that contacts the optical member 14 (the lens pressing portion). 2 9) is formed so as to protrude, and the contact area with the optical member 14 is small.
  • the lens pressing portion 29 of the lens pressing member 28 is disposed so as to have a positional relationship facing the seat 27 with the optical member 14 interposed therebetween (a relationship in which the two are located on the same axis L1). You.
  • the respective lens pressing portions 29 of the lens pressing member 28 are substantially equidistant from each other in the circumferential direction so as to face the seat 27 on the facing surface 20a (in this example, 1 in the circumferential direction). 20 ° intervals).
  • the three lens pressing members 28 are individually fixed to the housing 12, but may be integrally fixed to the housing 12. That is, the lens pressing member may have a structure in which, for example, three protruding portions (lens pressing portions) are provided in one member.
  • the magnet 26 is embedded in a part of the facing surface 20a of the support portion 20. Further, the magnet 26 has an N-pole portion and an S-pole portion, and the N-pole portion and the S-pole portion are arranged side by side along the peripheral surface 14 c of the optical member 14. I have.
  • the magnetic flux generated from the magnet 26 circulates by forming a magnetic circuit 26a as shown by a dashed line in FIG.
  • the magnetic fluid layer 25 is aggregated and restrained by the magnetic flux of the magnet 26, and is held at the position where the magnet 26 is embedded on the facing surface 20a. Note that, in the magnet 26, the N pole and the S pole may be arranged in reverse to those shown in FIG.
  • a magnetic fluid is a suspension in which fine powder of a ferromagnetic material (eg, iron powder) is dispersed in a medium such as a liquid (base liquid, base oil), and aggregates when a magnetic field is applied.
  • a ferromagnetic material eg, iron powder
  • base liquid those having a low vapor pressure and low degassing are preferable.
  • alkylnaphthylene, perfluoropolyether and the like are used.
  • the magnetic fluid may include an activator for promoting the dispersion of the fine powder of the magnetic material.
  • the inner space 11 and the outer space 13 of the housing 12 are formed by the magnetic fluid layer 25 provided between the peripheral portion of the optical member 14 and the support portion 20. Gas leaks at the boundary with are prevented.
  • the magnetic fluid layer 25 is in contact with the optical member 14 and the support portion 20 over the entire periphery of the optical member 14, and the magnetic fluid layer 25 is formed by the wall.
  • the gas flow between the inner space 11 and the outer space 13 is reliably shut off.
  • magnetic current Deterioration of the body over time is small, and the change over time of the sealing performance is extremely small. Therefore, in the optical device 10, it is possible to stably fill the inside of the housing 12 with a predetermined gas with high purity due to high sealing performance.
  • a force acting on the optical member 14 due to the seal can be reduced as compared with a structure using a solid seal member such as an O-ring. That is, since the magnetic fluid layer 25 is held by the magnetic force of the magnet 26 and the viscosity of the magnetic fluid, the force acting on the optical member 14 with the holding is small. Therefore, in the optical device 10, the deformation of the optical member 14 due to the holding is suppressed, and the optical performance is improved. Moreover, in the seal structure using the magnetic fluid, the frictional resistance between the magnetic fluid as the seal member and the object is smaller than that of the O-ring, and the shape of the magnetic fluid layer 25 is easily changed. Therefore, restrictions on the posture of the optical member 14 are small, and adjustment of the arrangement of the optical member 14 is easy.
  • the optical device 10 three seats 27 of the support portion 20 are in contact with one peripheral surface 14 c of the optical member 14, and three peripheral surfaces 14 d of the optical member 14 are three.
  • the lens pressing portion 29 of the lens pressing member 28 comes into contact with the lens pressing portion 29, and the seat 27 and the lens pressing portion 29 are arranged to face each other with the optical member 14 interposed therebetween. Therefore, the force of the pressing force of the lens pressing member 28 acts so as to press on the same axis L1 with the optical member 14 interposed therebetween, and the bending moment occurs inside the optical member 14 due to the holding. Is suppressed. Therefore, in the optical device 10, the occurrence of distortion of the optical member 14 is suppressed, and optical performance is improved.
  • the magnetic fluid layer 25 is disposed between the peripheral surface 14 c of the optical member 14 and the facing surface 20 a of the support portion 20,
  • the gap in which the member 25 is arranged that is, the distance between one peripheral portion 14 c of the optical member 14 and the facing surface 20 a of the support portion 20 is defined by the seat 27.
  • a change in the shape of the magnetic fluid layer 25 such as the thickness of the magnetic fluid layer 25 is less likely to occur, and a decrease in sealing performance is unlikely to occur.
  • a portion in contact with the magnetic fluid layer 25 is preferably processed to have a different surface characteristic from other portions. This makes it possible to improve the retention and sealing properties of the magnetic fluid layer 25.
  • a film 30 of a substance having magnetic properties such as a metal
  • a magnetic circuit having the magnetic film 30 as a part of the magnetic flux path is stably formed, and the holding and sealing properties of the magnetic fluid layer 25 are improved.
  • a metal film may be formed on the peripheral surface 14 c of the optical member 14 to be magnetized, or a magnet (permanent magnet) may be provided.
  • a portion of the peripheral surface 14c that is in contact with the magnetic fluid layer 25 is subjected to a surface treatment so as to have lyophilicity for the magnetic fluid (base liquid, base oil). Is also good. Thereby, the wettability of the magnetic fluid layer 25 with respect to the optical member 14 is improved, and the retention and sealing properties of the magnetic fluid layer 25 are improved.
  • the other part of the peripheral surface 14 c of the optical member 14 is treated to be lyophobic with respect to the magnetic fluid layer 25, so that the magnetic fluid layer 25 can be further retained.
  • a similar surface treatment may be applied to the support portion 20.
  • a film that is lyophilic to a magnetic fluid may be formed on the surface of the optical member.
  • the liquid-repellent surface treatment for example, it is preferable to form a film that is lyophilic to the magnetic fluid on the surface of the optical member.
  • the magnet 26 may be arranged in a convex shape on the facing surface 20a of the support portion 20. That is, in FIG. 6, the magnet 26 is disposed so as to protrude from other portions on the facing surface 20a. In this case, compared to the case where the magnet 26 shown in FIG. 2 is embedded in the object, the object is less around the magnet 26 and the magnetic circuit is formed well. That is, the magnetic flux of the magnet 26 is easily characterized as a magnetic circuit. Therefore, the retention of the magnetic fluid layer 25 is improved.
  • FIG. 7 is a view showing a second embodiment of the optical device according to the present invention, and shows a partially enlarged seal structure using a magnetic fluid.
  • components having the same functions as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof will be omitted or simplified.
  • the space between the optical member 14 and the housing 12 is sealed using a magnetic fluid, as in the first embodiment.
  • the magnetic fluid layer 41 made of a magnetic fluid is arranged so as to be in contact with the side surface 14 e at the peripheral portion of the optical member 14. That is, a support portion 42 that supports the optical member 14 is provided at an axial end of the housing 12. As in the first embodiment, the support portion 42 comes into contact with one of the peripheral surfaces 14 c on the peripheral portion of the optical member 14, and the peripheral portions of the optical member 14 are substantially equally spaced (in the circumferential direction).
  • the support part 42 has an opposing surface 42 a opposing one peripheral surface 14 c of the optical member 14 and an opposing surface 42 b opposing the side surface 14 e of the optical member 14. In this state, gaps are formed between the facing surface 42 a and the peripheral surface 14 c of the optical member 14, and between the facing surface 42 b and the side surface 14 e of the optical member 14. Supports the optical member 14.
  • the magnetic fluid layer 41 is provided between the side surface 14 e of the optical member 14 and the opposing surface 42 b of the support portion 42.
  • the magnetic fluid layer 41 is held at a predetermined position by a magnet 46 (permanent magnet) embedded in the facing surface 42b.
  • the magnetic fluid layer 41 provided between the side surface 14 e of the optical member 14 and the opposing surface 42 b of the support portion 42 is provided. This prevents gas leakage at the boundary between the inner space 11 and the outer space 13 of the housing 12. Further, in this example, since the magnetic fluid layer 41 is disposed so as to be in contact with the side surface 14 e of the optical member 14, the optical member 14 slightly moves in the optical axis direction or the optical member 14 is The shape change of the magnetic fluid layer 41 is small even if it rotates around. Therefore, position adjustment of the optical member 14 in the optical axis direction and adjustment of the rotation angle of the optical member 14 can be easily performed.
  • FIG. 8 is a view showing a third embodiment of the optical device according to the present invention, and shows a partially enlarged seal structure using a magnetic fluid.
  • components having the same functions as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof will be omitted or omitted.
  • the optical members 14 and A magnetic fluid is sealed between the housing 12 and the magnetic fluid layer 51, and a magnetic fluid layer 51 made of a magnetic fluid is disposed on the side surface 14 e at the periphery of the optical member 14.
  • a support portion 52 that supports the optical member 14 is provided at an axial end of the housing 12.
  • the supporting portion 52 comes into contact with one of the peripheral surfaces 14 c of the peripheral portion of the optical member 14, and the peripheral portions of the optical member 14 are substantially equally spaced (in the circumferential direction). 1 2 0 ° ⁇ spacing) and are arranged at positions corresponding to the three seats 5 3 and the three seats 5 3, respectively, and contact the other peripheral surface 14 d of the optical member 14, and It has three lens pressing members 54 that sandwich the peripheral portion of the optical member 14 together with the three seats 53.
  • the support portion 52 has an opposing surface 52 a opposing the one peripheral surface 14 c of the optical member 14 and an opposing surface 52 b opposing the side surface 14 e of the optical member 14. In this state, gaps are formed between the facing surface 52 a and the peripheral surface 14 c of the optical member 14, and between the facing surface 52 b and the side surface 14 e of the optical member 14. Supports the optical member 14.
  • a magnetic fluid (magnetic fluid layer 51) is arranged between the side surface 14 e of the optical member 14 and the facing surface 52 b of the support portion 52.
  • the magnetic fluid layer 51 includes a housing (a first housing 55, a second housing 5 6) disposed on the side surface 14 e of the optical member 14 and the opposing surface 52 b. ).
  • the first housing 55 is formed in an annular shape, and is disposed on the side surface 14 e of the optical member 14 by interference fit or adhesive fixing.
  • a concave portion 55a is formed in the outer peripheral surface of the first housing 55, and a magnetic fluid is accommodated in the concave portion 55a (magnetic fluid layer 51).
  • the second housing 56 is formed in an annular shape, and is disposed on the facing surface 52 b of the support portion 52 by, for example, bonding and fixing.
  • a concave portion 56a is formed on the inner peripheral surface of the second housing 56, and a magnetic fluid is accommodated in the concave portion 56a (magnetic fluid layer 51).
  • the first housing 55 and the second housing 56 are arranged such that the respective recesses 55a and 56a face each other with a gap therebetween.
  • adhesive fixing it is preferable to use a door seal or a fluorine-based adhesive in order to improve the chemical cleanliness.
  • a magnet 57 (permanent) is provided between the first housing 55 and the second housing 56. Is located.
  • the magnet 57 is formed in an annular shape, and is supported by, for example, a seating surface provided on one of the housings 55 and 56.
  • a part of the inner periphery of the magnet 57 is inserted into the recess 55 a of the first housing 5.5, and a part of the outer periphery of the magnet 57 is recessed 5 6 of the second housing 56. Inserted in a.
  • the magnet 57 holds the magnetic fluid in the recesses 55a, 56a of the housings 55, 56.
  • the magnetic fluid layer 51 provided between the side surface 14 e of the optical member 14 and the opposing surface 52 b of the support portion 52 is provided. This prevents gas leakage at the boundary between the inner space 11 and the outer space 13 of the housing 12.
  • the magnetic fluid layer 51 is disposed on the side surface 14 e of the optical member 14, the optical member 14 slightly moves in the optical axis direction or the optical member 14 rotates around the axis.
  • the shape of the magnetic fluid layer 51 is small. Therefore, the position adjustment of the optical member 14 in the optical axis direction and the adjustment of the rotation angle of the optical member 14 can be easily performed.
  • the magnetic fluid layer 51 is disposed in the concave portions 55a and 56a of the housings 55 and 56, and the vertical downward movement of the magnetic fluid (movement due to gravity) is stopped.
  • the magnetic fluid layer 51 is securely held at a predetermined position.
  • FIG. 9 shows an embodiment in which the optical device of the present invention is applied to an exposure apparatus.
  • FIG. 9 uses an XYZ rectangular coordinate system.
  • the X axis and the Y axis are set so as to be parallel to the wafer stage WS that holds the wafer W as a substrate (photosensitive substrate), and the Z axis is orthogonal to the wafer stage WS.
  • the direction is set to Actually, in the XYZ rectangular coordinate system in the figure, the XY plane is set to a plane parallel to the horizontal plane, and the Z axis is set to the vertical direction.
  • Exposure apparatus uses an F 2 laser light source as the exposure light source. Also, by synchronously scanning the reticle R and the wafer W in a predetermined direction relative to an illumination area of a predetermined shape on the reticle R as a mask (projection master), one shot area on the wafer W is obtained. In addition, a step-and-scan method in which the pattern image of the reticle R is sequentially transferred is adopted. In such a step-and-scan-type exposure apparatus, the pattern of the reticle R can be exposed on an area on the substrate (wafer W) wider than the exposure field of the projection optical system. In FIG.
  • an exposure apparatus 100 includes a laser light source 120, an illumination optical system 122 that illuminates a reticle R with an exposure light IL as an energy beam from the laser light source 120, and a reticle R.
  • the laser light source 120 has an F 2 laser that outputs pulsed ultraviolet light having an oscillation wavelength of 157 nm.
  • the laser light source 120 is also provided with a light source control device (not shown).
  • the light source control device responds to an instruction from the main control device, and the oscillation center wavelength and the wavelength of the emitted pulse ultraviolet light are controlled. Controls the half width of the vector, triggers the pulse oscillation, and controls the gas in the laser chamber.
  • the pulse laser light (illumination light) from the laser light source 120 is deflected by the deflecting mirror 130 and is incident on the variable dimmer 131 as an optical attenuator.
  • the dimming rate can be adjusted stepwise or continuously to control the amount of exposure to the photoresist on the wafer.
  • the illumination light emitted from the variable attenuator 13 1 is deflected by the optical path deflection mirror 13 2, and then the first fly-eye lens 13 3, zoom lens 13 4, vibrating mirror 13 5, etc.
  • the second fly-eye lens 1 36 reaches through the order.
  • a switching revolver 13 7 for the aperture stop of the illumination optical system for setting the size and shape of the effective light source as desired is arranged on the exit side of the second fly-eye lens 13 6, a switching revolver 13 7 for the aperture stop of the illumination optical system for setting the size and shape of the effective light source as desired is arranged.
  • the magnitude of the light beam to the second fly-eye lens 1336 by the zoom lens 134 is made variable in order to reduce the light amount loss at the aperture stop of the illumination optical system.
  • the light beam emitted from the aperture of the illumination optical system aperture stop illuminates the illumination field stop (reticle blind) 141 via the condenser lens group 140.
  • the illumination field stop 1441 is disclosed in Japanese Patent Application Laid-Open No. Hei 4-19613 and US Patent Nos. 5,473,410 corresponding thereto.
  • an illumination field stop imaging optical system (reticle blind imaging system) consisting of deflection mirrors 144 2 and 1 45 and lens groups 144 3, 144 4 and 1 46.
  • an illumination field stop imaging optical system reticle blind imaging system
  • the illumination field stop 1 4 1 aperture An illumination area, which is an image of the part, is formed.
  • Light from the illumination area on the reticle R is guided to the wafer W via the projection optical system PL, and a reduced image of the pattern in the illumination area of the reticle R is formed on the wafer "W.
  • the reticle stage RS for holding the wafer W can be moved two-dimensionally in the XY plane, and its position coordinates are measured and controlled by the interferometer 150.
  • the wafer stage WS for holding the wafer W is also XY It can be moved two-dimensionally in a plane, and its position coordinates are measured and controlled by the interferometer 151. These make it possible to synchronously scan the reticle R and the wafer W with high accuracy.
  • the illumination optical system 121 is configured by the above-described laser light source 120 to the illumination field stop imaging optical system and the like.
  • the optical glass material (optical element) having a good transmittance is fluorite. (CaF 2 crystal), quartz glass doped with fluorine or hydrogen, magnesium fluoride (MgF 2 ), etc.
  • the projection optical system PL it is difficult to obtain desired imaging characteristics (such as chromatic aberration characteristics) by using only the refractive optical member.
  • a refraction system may be used.
  • gases that transmit light in the vacuum ultraviolet region include nitrogen gas (N 2 ), hydrogen (H 2 ), helium (He), neon (Ne), and argon. (Ar), krypton (Kr), xenon (Xe) and radon (Rn).
  • N 2 nitrogen gas
  • H 2 hydrogen
  • He helium
  • Ne neon
  • argon argon
  • Ar krypton
  • Kr krypton
  • Xe xenon
  • Rn radon
  • the illumination optical path (the optical path from the laser light source 120 to the reticle R) and the projection optical path (the optical path from the reticle R to the wafer W) are cut off from the external atmosphere, and those optical paths are shielded from light in the vacuum ultraviolet region. It is filled with a gas such as nitrogen, helium, argon, neon, krypton, xenon, radon, or a mixture of these as a permeable gas with low absorption characteristics.
  • a gas such as nitrogen, helium, argon, neon, krypton, xenon, radon, or a mixture of these as a permeable gas with low absorption characteristics.
  • the optical path from the laser light source 120 to the variable attenuator 131 is cut off from the external atmosphere by a casing 160, and the illumination field stop 14 is provided from the variable attenuator 131.
  • the optical path up to 1 is cut off from the outside atmosphere by casing 161, the illumination field stop, the imaging optical system is cut off from the outside atmosphere by the casing 162, and these light paths are filled with the above permeable gas.
  • the casing 16 1 and the casing 16 2 are connected by the casing 16 3.
  • the projection optical system PL itself has a lens barrel 169 as a casing, and its internal optical path is filled with the above-mentioned permeable gas.
  • the casing 164 shields the space between the casing 162 containing the illumination field stop imaging optical system and the projection optical system PL from the external atmosphere, and a reticle is provided inside.
  • a reticle stage RS that holds R is housed.
  • the casing 1 64 is provided with a door 170 for loading / unloading the reticle R. Outside the door 170, the casing 1 is provided for loading / unloading the reticle R.
  • a gas replacement chamber 165 is provided to prevent contamination of the atmosphere in 64.
  • This gas exchange chamber 16 5 is also provided with a door 17 1, and reticle delivery to and from the reticle storage force 16 6 that stores multiple types of reticles is performed via the door 17 1.
  • the casing 167 shields the space between the projection optical system PL and the wafer W from the outside atmosphere, and the wafer stage WS holding the wafer W via the wafer holder 180 inside the casing 167.
  • the oblique incidence type autofocus sensor 181 for detecting the Z direction position (focus position) and tilt angle on the surface of the wafer W, the off-axis type alignment sensor 182, and the wafer stage WS are mounted.
  • the surface plate 1 8 3 etc. are stored.
  • the casing 167 is provided with a door 172 for loading / unloading the wafer W.
  • the outside of the door 172 is contaminated with the atmosphere inside the casing 167.
  • a gas replacement chamber 168 is provided to prevent this.
  • the gas replacement chamber 168 is provided with a door 173, through which the wafer W is loaded into the apparatus and the wafer W is unloaded outside the apparatus.
  • the permeable gas (purge gas) filled in the space on each optical path it is preferable to use nitrogen or a helium.
  • Nitrogen acts as a light absorbing substance for light having a wavelength of about 150 nm or less, and helium can be used as a transparent gas for light having a wavelength of about 100 nm or less.
  • the hemisphere has a thermal conductivity about 6 times that of nitrogen, and the amount of change in the refractive index due to a change in atmospheric pressure is about 1 Z8 of nitrogen.
  • the optical system is excellent in stability of imaging characteristics and cooling performance.
  • helium may be used as a transmissive gas for the lens barrel of the projection optical system PL, and nitrogen may be used as a transmissive gas for other optical paths (for example, an illumination optical path from the laser light source 120 to the reticle R).
  • each of the casings 161, 162, 164, 167 is provided with an air supply valve 200, 201, 202, 203, and these air supply valves 200 to 203 are provided with a gas supply system (not shown). Is connected to the air supply line. Further, each of the casings 161, 162, 164, 167 is provided with an exhaust valve 210, 211, 212, 213. These exhaust valves 210 to 213 are respectively provided with exhaust gas in the gas supply system. Connected to pipeline.
  • the gas replacement chambers 165 and 168 are also provided with exhaust valves 204 and 205 and exhaust valves 214 and 215, respectively, and the lens barrel 169 of the projection optical system PL is also provided with an air supply valve 206 and an exhaust valve 216. These are connected to the supply line or exhaust line in the gas supply system.
  • the door 171 when replacing the reticle, the door 171 is opened, the reticle is carried into the gas replacement chamber 165 from the reticle storage force 166, the door 171 is closed, and the gas replacement chamber 165 is filled with the permeable gas. Open and place the reticle on reticle stage RS.
  • the door 173 When replacing the wafer, the door 173 is opened, the wafer is carried into the gas replacement chamber 168, and the door 173 is closed to fill the gas replacement chamber 168 with the permeable gas. Thereafter, the door 172 is opened and the wafer is placed on the wafer holder 180.
  • the procedure is reversed.
  • the permeable gas may be supplied from the air supply valve after the pressure in the gas replacement chamber is reduced.
  • the gas which has undergone gas replacement in the gas replacement chambers 165 and 168 may be mixed in, and a considerable amount of gas is contained in the gas in the gas replacement chambers 165 and 168. It is highly possible that light-absorbing substances such as oxygen are mixed. Therefore, it is desirable to perform gas replacement at the same timing as gas replacement in the gas replacement chambers 165 and 168.
  • FIG. 10 shows an example of a configuration of a gas supply system 300 that supplies the above-mentioned transparent gas as a purge gas to each space on the optical path of the above-mentioned exposure light.
  • the space 301 inside the lens barrel 169 in the projection optical system PL and the space 302 inside the casing 164 for accommodating the reticle stage RS are shown as supply destinations of the permeable gas.
  • the space 303 inside the casing 167 that houses the wafer stage WS is representatively shown.
  • the space 301 is supplied with helium gas (He), and the spaces 302 and 303 are supplied with nitrogen gas (N 2 ).
  • He helium gas
  • N 2 nitrogen gas
  • the gas supply system 300 includes a first gas supply mechanism 310 for helium gas and a second gas supply mechanism 311 for nitrogen gas.
  • the first gas supply mechanism 310 and the second gas supply mechanism 311 are respectively provided with gas supply sources 320 and 321 such as gas cylinders containing helium gas or nitrogen gas, and gas from the gas supply sources 320 and 321 to each space on the optical path.
  • Gas supply devices 322, 323, and 324 that supply gas, and exhaust devices 325 and 326 that discharge gas containing gas from each space on the optical path.
  • the gas supply system 300 may appropriately include a filter, a temperature controller for controlling the temperature of the gas, and a concentration meter for measuring the concentration of the light absorbing substance in each space on the optical path.
  • the gas supply devices 322, 323, and 324 pressurize the gas sent from the gas supply sources 320 and 321 and send the gas to the spaces 301, 302, and 303 via the air supply lines 330, 331, and 332. Supply. Note that when the gas discharged from the gas supply sources 320 and 321 has a sufficient pressure, the gas supply device can be omitted.
  • the piping used for the air supply lines 330, 331, and 332 may be, for example, metal such as washed stainless steel, or washed tetraethylene, tetrafluoroethylene-terefluoro (alkyl vinyl ether), or the like. Various chemicals such as tetrafluoroethylene-hexafluoro-probe copolymer and other chemical-clean materials are used.Piping fittings are, for example, oil-free stainless steel. Made of metal or various polymers It is.
  • the exhaust devices 3 2 5 and 3 2 6 are, for example, by generating a vacuum pressure, so that the space 3 0 1, 3 0 2 and 3 0 3 Exhaust gas.
  • the gas discharged from each space 301, 302, 303 is discharged, for example, to a space outside the device.
  • the gas discharged from each of the spaces 301, 302, and 303 may be purified and reused as a purge gas. By reusing the gas, the consumption of the purge gas (helium gas in this example) can be reduced.
  • helium gas He
  • the supply mechanism 311 supplies a nitrogen gas (N 2 ) to the space 302 where the reticle R is arranged and the space 303 where the wafer W is arranged. That is, different types of gases are supplied to the space 302 in the projection optical system PL and the spaces 303 and 304 adjacent to the space 302.
  • the optical element 350 disposed at the uppermost stage on the reticle R side and the optical element disposed at the lowermost stage on the wafer W side
  • the seal structure using the above-described magnetic fluid is used for each of the above-mentioned structures. That is, the optical element 350 is arranged at the boundary between the space 301 inside the projection optical system PL and the space 302 where the reticle R is arranged, and the seal structure shown in FIGS. It is supported by the support portion 35 having the following.
  • the optical element 351 is also arranged at the boundary between the space 301 inside the projection optical system PL and the space 303 where the wafer W is arranged, and is shown in FIGS. It is supported by a support portion 355 having a sealing structure using a magnetic fluid.
  • the boundary between the space 301 in the projection optical system PL and the space 302 in which the reticle R is arranged, and the space 301 in the projection optical system PL and the wafer W are arranged. Since each of the boundaries with the space 303 is sealed using a magnetic fluid, gas leakage through those boundaries is prevented. Therefore, due to the high sealing performance, each space 301, 302, 303 on the optical path of the exposure light is stably filled with a high-purity and high-purity nitrogen gas or a nitrogen gas. In addition, the deformation of the optical elements 350 and 351 due to the seal is small, and the optical characteristics are improved.
  • the optical elements 350 and 351 are formed of parallel flat plates (parallel plane plates) having surfaces parallel to each other.
  • the posture and position of the optical elements 350 and 351 it is possible to correct local aberration (such as distortion that is not rotationally symmetric) of the exposure light.
  • the seal structure using a magnetic fluid is used in the support portion 355 of the optical elements 350 and 351, the magnetic fluid as the seal member and the object are not used. The frictional resistance between them is small, and the shape of the magnetic fluid layer changes easily. Therefore, restrictions on the postures of the optical elements 350 and 351 are small, and the positions and postures of the optical elements 350 and 351 can be easily adjusted. From this point, the optical characteristics can be improved.
  • gas leakage in the space on the optical path of the exposure light is prevented and the optical performance is improved, so that the exposure accuracy is improved. be able to.
  • a sealing structure using a magnetic fluid was used for the optical members disposed at the entrance and exit of the exposure light in the projection optical system PL.
  • a seal using a magnetic fluid is used for optical members placed at the entrance or exit of the exposure light for casing.
  • a structure may be used. Also in this case, gas leakage in the space inside each casing is prevented, and the optical characteristics are improved.
  • the optical members supported by the seal structure using a magnetic fluid are not limited to parallel flat plates, but various optical members used in optical devices, such as curved lenses, beam splitters, and dichroic mirrors, can be applied. It is.
  • the support structure is not limited to the structure shown in the above-described embodiment, and is appropriately determined according to the installation space of the optical member and the accuracy of requesting the characteristics of the optical member.
  • the magnetic fluid layer is provided on one surface of the optical member.
  • a step may be provided at a portion in contact with the magnetic fluid layer.
  • a configuration may be adopted in which a yoke is arranged for a magnet for holding the magnetic fluid layer to improve the magnetic force.
  • a resin or a metal member which has been subjected to a chemical clean measure is preferably used as a material of a portion in contact with the optical member in the supporting portion.
  • a resin or a metal member which has been subjected to a chemical clean measure is preferably used as a material of a portion in contact with the optical member in the supporting portion.
  • a material that does not easily generate thermal distortion such as invar, it is possible to prevent the pedestal from being deformed due to the generation of heat, and to suppress the occurrence of distortion in the optical element and disturbance of the attitude of the optical element. it can.
  • the surface of the structural material is reduced, (2) the surface of the structural material is polished by a method such as mechanical polishing, electrolytic polishing, puff polishing, chemical polishing, or GBB (Glass Beads Blasting). (3) Clean the surface of the structural material by means such as ultrasonic cleaning, spraying a fluid such as clean dry air, or vacuum degassing (baking). ) There are methods such as minimizing the installation of electric wire coating materials containing hydrocarbons and halides, sealing members (such as o-rings), and adhesives in the optical path space as much as possible.
  • the casing that forms the cover of the wafer operation section from the illumination system chamber (a cylindrical body or the like is also possible), and the pipe that supplies the permeable gas is made of a material with low impurity gas (degassing), such as stainless steel. It is desirable to form with various polymers such as titanium alloy, ceramics, tetrafluoroethylene, tetrafluoroethylene-terfluoro (alkyl vinyl ether), or tetrafluoroethylene-hexafluoropropene copolymer.
  • various polymers such as titanium alloy, ceramics, tetrafluoroethylene, tetrafluoroethylene-terfluoro (alkyl vinyl ether), or tetrafluoroethylene-hexafluoropropene copolymer.
  • the cables for supplying electric power to the drive mechanisms (reticle blinds, stages, etc.) in each housing are also covered with the above-mentioned material having a small amount of impurity gas (degassing).
  • the present invention can be applied not only to a scanning exposure type projection exposure apparatus, but also to a batch exposure type (stepper type) projection exposure apparatus.
  • the projection optical system may be not only a catadioptric system but also a dioptric system or a reflective system.
  • the magnification of the projection optical system may be not only a reduction magnification but also an equal magnification or an enlargement.
  • a r F or when using the excimer laser beam (wavelength 1 9 3 nm), K r 2 laser beam (wavelength 1 4 6 nm), A r 2 laser beam (wavelength: 1 2 6 nm), and can be applied to vacuum ultraviolet light having a wavelength of about 200 nm to 100 nm, such as a harmonic of a YAG laser or a harmonic of a semiconductor laser.
  • an exposure apparatus using an immersion method has been proposed to secure a wide depth of focus.
  • the space between the lower surface of the projection optical system and the substrate surface is filled with a predetermined liquid (water, organic solvent, etc.) as a fluid to form an immersion area, and the wavelength of the exposure light in the liquid is adjusted.
  • a predetermined liquid water, organic solvent, etc.
  • the above-mentioned liquid immersion area supplies and recovers liquid using a nozzle member having a liquid supply port and a liquid recovery port.
  • a gap between the nozzle member and the projection optical system and a projection optical system are provided. If a liquid enters the system, the housing (barrel) that holds the optical members that make up the projection optical system may crack. Therefore, the fluid seal mechanism described in the present embodiment may be provided in the gap between the nozzle member and the projection optical system.
  • a liquid is supplied between the lower surface of the projection optical system and the wafer W. That is, the external space 13 of the optical device described in each embodiment becomes a liquid atmosphere.
  • the fluid seal mechanism is provided between the optical member 14 and the housing 12.
  • the F 2 laser beam is not transmitted through water, as the liquid, that can transmit the 2, single laser light, for example perfluorinated capo Rie one ether (PFPE) or a fluorinated fluid such as a fluorinated oil may be used.
  • PFPE perfluorinated capo Rie one ether
  • a fluorinated fluid such as a fluorinated oil
  • a portion of the housing of the projection optical system that comes into contact with the liquid is subjected to lyophilic treatment by forming a thin film of a substance having a molecular structure with a small polarity, such as fluorine.
  • a liquid it has the transparency to the exposure light EL and refracts as much as possible.
  • a material that has a high efficiency and is stable against the photoresist applied to the projection optical system PL and the surface of the substrate P for example, cedar oil).
  • the laser light source 120 oscillates an ArF excimer laser light (wavelength: 193 nm)
  • pure water (water) can be used.
  • the refractive index n of pure water (water) is said to be about 1.44, and in the case of ArF excimer laser light, it is as short as 1Zn on the substrate P, that is, about 134 nm.
  • High resolution is obtained by wavelength conversion.
  • the depth of focus is expanded to about n times, that is, about 1.44 times as compared to that in the air, when it is sufficient to secure the same depth of focus as when using it in the air, projection The numerical aperture of the optical PL can be further increased, and the resolution is also improved in this regard.
  • the numerical aperture NA of the projection optical system may be 0.9 to 1.3.
  • the numerical aperture NA of the projection optical system is increased as described above, the imaging effect may be degraded by the polarization effect of the randomly polarized light conventionally used as the exposure light. It is desirable to use. In that case, linearly polarized illumination is performed according to the longitudinal direction of the line pattern of the mask (reticle) line 'and' space pattern. From the mask (reticle) pattern, the S-polarized component (TE polarized component), That is, it is preferable that a large amount of diffracted light of the polarization component along the longitudinal direction of the line pattern is emitted.
  • the space between the projection optical system PL and the resist applied to the surface of the substrate P is filled with liquid, the space between the projection optical system PL and the resist applied to the surface of the substrate P is air (gas). Since the transmittance of the S-polarized light component (TE-polarized light component), which contributes to the improvement of the contrast, on the resist surface is higher than that in the case where it is satisfied, the numerical aperture NA of the projection optical system is set to 1.0. Even in such cases, high imaging performance can be obtained.
  • a phase shift mask, an oblique incidence illumination method (particularly, a dipole illumination method) adapted to the longitudinal direction of a line pattern as disclosed in Japanese Patent Application Laid-Open No. 6-188169, etc. may be appropriately combined. More effective.
  • a fine line 'and' space pattern for example, a line of about 25 to 50 nm and '
  • the Wave guide Due to this effect, the mask acts as a polarizing plate, and more S-polarized component (TE polarized component) diffracted light is emitted from the mask than P-polarized component (TE polarized component) diffracted light, which lowers contrast.
  • the linearly polarized illumination described above even if the mask is illuminated with randomly polarized light, high resolution performance can be obtained even when the numerical aperture NA of the projection optical system is as large as 0.9 to 1.3. be able to.
  • the P-polarized component TM-polarized component
  • the S-polarized component TE-polarized component
  • an ArF excimer laser is used as the exposure light, and a line-and-space pattern larger than 25 nm is formed on the wafer using a projection optical system with a reduction ratio of about 1Z4.
  • the diffracted light of the S-polarized component (TE-polarized component) is emitted from the mask M more than the diffracted light of the P-polarized component (TM-polarized component), so the numerical aperture of the projection optical system PL Even when NA is as large as 0.9 to 1.3, high resolution performance can be obtained.
  • the optical axis is adjusted. It is also effective to use a combination of a polarized illumination method that linearly polarizes light in the tangential (circumferential) direction of the center circle and an oblique illumination method.
  • a mask (reticle) pattern includes not only a line pattern extending in a predetermined direction but also line patterns extending in a plurality of different directions, the same applies to Japanese Patent Application Laid-Open No. 6-53120.
  • the combined use of the polarized illumination method and the annular illumination method which linearly polarizes in the tangential direction of a circle centered on the optical axis, makes it possible to achieve high resolution even when the numerical aperture NA of the projection optical system is large. ⁇ Imaging performance can be obtained.
  • an optical element is attached to the tip of the projection optical system PL, and this lens can be used to adjust the optical characteristics of the projection optical system PL, for example, aberrations (such as spherical aberration and coma aberration).
  • an exposure apparatus using the immersion method for example, use a projection optical system as a refraction system with a magnification of 1/8 and at least two patterns on the wafer W.
  • a step-and-stitch method of transferring images with partial overlap may be used.
  • the application of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing,
  • the present invention can be widely applied to an exposure apparatus for a liquid crystal for exposing a liquid crystal display element pattern to a square glass plate and an exposure apparatus for manufacturing a thin film magnetic head.
  • the stage may be a type that moves along a guide or a guideless type that does not have a guide.
  • one of the magnet unit (permanent magnet) and the armature unit is connected to the stage, and the other of the magnet unit and the armature unit is connected to the stage moving surface (base). ).
  • the reaction force generated by the movement of the wafer stage is mechanically released to the floor (ground) using a frame member, as described in JP-A-8-166475. Is also good.
  • the present invention is also applicable to an exposure apparatus having such a structure.
  • reaction force generated by the movement of the reticle stage may be mechanically released to the floor (ground) using a frame member as described in JP-A-8-330224.
  • the present invention is also applicable to an exposure apparatus having such a structure.
  • the exposure apparatus of the embodiment of the present invention performs various subsystems including each component listed in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
  • Manufactured by assembling Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical The system will be adjusted to achieve electrical accuracy.
  • the process of assembling the exposure apparatus from the various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure various precisions of the entire exposure apparatus. It is desirable to manufacture the exposure equipment in a clean room where temperature and cleanliness are controlled. Good.
  • the wafer exposed as described above undergoes a developing step, a pattern forming step, a bonding step, packaging, and the like, whereby an electronic device such as a semiconductor element is manufactured.
  • the present invention relates to an optical device, comprising: a space formed on an optical path of an energy beam and supplied with a predetermined gas; an optical member arranged at a boundary between the space and another space; A supporting portion that has a facing surface facing the peripheral portion of the optical member, and that supports the peripheral portion of the optical member in a state where a gap is formed between the facing surface and the peripheral portion of the optical member; Since a fluid seal mechanism is provided between the peripheral portion of the member and the facing surface of the support portion, the space to which a predetermined gas is supplied and the external space can be provided without deteriorating the optical characteristics of the optical member. With this, fluid (gas or liquid) can be prevented from entering or leaking.

Abstract

An optical device comprises a space formed on the optical path of an energy beam to which space a certain gas is supplied, an optical member placed on the boundary between the above-mentioned space and another space, a supporting member which has an opposing surface which faces the peripheral portion of the optical member and supports the peripheral portion of the optical member while leaving a gap between the opposing surface and the peripheral portion of the optical member, and a fluid sealing mechanism arranged between the peripheral portion of the optical member and the opposing surface of the supporting member. The fluid sealing mechanism comprises a magnetic fluid layer arranged between the peripheral portion of the optical member and the opposing surface, and a magnet for holding the magnetic fluid layer at a certain position.

Description

光学装置、 露光装置、 並びにデバイス製造方法 技術分野  Optical apparatus, exposure apparatus, and device manufacturing method
本発明は、 エネルギービームの光路上に形成され、 かつ所定の気体が供給され る空間を備える光学装置に関し、特に、半導体素子、液晶表示素子、撮像素子(C The present invention relates to an optical device formed on an optical path of an energy beam and having a space to which a predetermined gas is supplied, and particularly relates to a semiconductor device, a liquid crystal display device, and an image pickup device (C
C D等)、薄膜磁気へッド等の電子デバイスを製造するための露光装置、並びにデ 明 Exposure equipment for manufacturing electronic devices such as CDs), thin-film magnetic heads, etc.
バイス製造方法に用いられる技術に関する。 The present invention relates to a technique used in a vice manufacturing method.
本願は、 2 0 0 3年 3月 1 2日に出願された特願 2 0 0 3 - 6 7 1 4 3号に対 書  This application is based on Japanese Patent Application No. 2003-6771, filed on March 12, 2003.
し優先権を主張し、 その内容をここに援用する。 背景技術 Claim the priority, and the contents are incorporated herein. Background art
半導体素子や液晶表示素子等の電子デバィスをフォトリソグラフィ工程で製造 する際に、 パターンが形成されたマスクあるいはレチクル (以下、 レチクルと称 する) のパターン像を投影光学系を介して感光材 (レジス卜) が塗布された基板 上の各投影 (ショット) 領域に投影する投影露光装置が使用されている。 電子デ バイスの回路は、 上記投影露光装置で被露光基板上に回路パターンを露光するこ とにより転写され、 後処理によって形成される。  When an electronic device such as a semiconductor device or a liquid crystal display device is manufactured by a photolithography process, a pattern image of a mask or a reticle (hereinafter, referred to as a reticle) having a pattern formed thereon is exposed to a photosensitive material (resist) through a projection optical system. A projection exposure apparatus is used for projecting each projection (shot) area on a substrate coated with a substrate. The circuit of the electronic device is transferred by exposing a circuit pattern on a substrate to be exposed by the projection exposure apparatus, and is formed by post-processing.
近年、 集積回路の高密度集積化、 すなわち、 回路パターンの微細化が進められ ている。 そのため、 投影露光装置における露光用照明ビーム (露光光) が短波長 化される傾向にある。 すなわち、 これまで主流だった水銀ランプに代わって、 K r Fエキシマレ一ザ (波長: 2 4 8 n m) といつた短波長の光源が用いられる ようになり、 さらに短波長の A r Fエキシマレーザ (1 9 3 n m) を用いた露光 装置の実用化も最終段階に入りつつある。 また、 さらなる高密度集積化をめざし て、 F 2レーザ (1 5 7 n m) を用いた露光装置の開発が進められている。 In recent years, high-density integration of integrated circuits, that is, miniaturization of circuit patterns has been promoted. Therefore, the wavelength of the exposure illumination beam (exposure light) in the projection exposure apparatus tends to be shorter. In other words, a KrF excimer laser (wavelength: 248 nm) and a short-wavelength light source will be used instead of the mainstream mercury lamp until now, and even shorter-wavelength ArF excimer lasers will be used. Exposure equipment using (193 nm) is also entering the final stage. Exposure equipment using an F 2 laser (157 nm) is being developed with the aim of achieving even higher density integration.
波長約 1 9 0 n m以下のビームは真空紫外域に属し、 これらのビームは、 空気 を透過しない。 これは、 空気中に含まれる酸素分子 ·水分子 '二酸化炭素分子な どの物質 (以下、 吸光物質と称する) によってビームのエネルギーが吸収される からである。 Beams with a wavelength of less than about 190 nm belong to the vacuum ultraviolet region, and these beams do not pass through air. This is because the energy of the beam is absorbed by substances such as oxygen molecules, water molecules, and carbon dioxide molecules (hereinafter referred to as light absorbing substances) contained in the air. Because.
真空紫外域の露光光を用いた露光装置において、 被露光基板上に露光光を十分 な照度で到達させるには、 露光光の光路上の空間から吸光物質を低減もしくは排 除する必要がある。 そのため、 露光装置では、 例えば、 特開平 6— 2 6 0 3 8 5 号公報 (対応 U S P 5, 5 5 9 , 5 8 4 ) に示すように、 光路上の空間を筐体で 囲い、 露光光を透過する透過性のガスでその筐体内の空間を充填している場合が 多い。 この場合、 例えば全光路長を 1 0 0 0 mmとすると、 光路上の空間内の吸 光物質濃度は、 1 p p m程度以下が実用的とされている。  In an exposure apparatus using exposure light in a vacuum ultraviolet region, it is necessary to reduce or eliminate the light-absorbing substance from the space on the optical path of the exposure light in order for the exposure light to reach the substrate to be exposed with sufficient illuminance. Therefore, in the exposure apparatus, for example, as shown in Japanese Patent Application Laid-Open No. Hei 6-260385 (corresponding to USP 5,559,584), a space on the optical path is surrounded by a housing, and the exposure light is exposed. In many cases, the space inside the housing is filled with a gas that is permeable to air. In this case, for example, if the total optical path length is 100 mm, it is considered practical that the concentration of the light absorbing substance in the space on the optical path is about 1 ppm or less.
上記露光装置のように、 光路上に所定の気体が供給される空間が形成された鏡 筒を備える光学装置では、 シール構造の採用により気体のリークが防止される。 シール構造としては、 〇リングなどの固体のシ一ル部材を変形させて隙間を塞ぐ 技術が一般的である。 しかしながら、 上記技術では、 所定の気体が供給される空 間と外部空間と境界に光学部材が配置される場合において、 シール部材を変形さ せるための力 (もしくはその反力) によつて光学部材が変形し、 光学的な性能の 低下を招くおそれがある。 発明の開示  In an optical apparatus such as the above-described exposure apparatus, which includes a lens barrel having a space on the optical path to which a predetermined gas is supplied, gas leakage is prevented by adopting a seal structure. As a seal structure, a technique of closing a gap by deforming a solid seal member such as a ring is common. However, in the above technique, when the optical member is disposed at the boundary between the space to which the predetermined gas is supplied, the external space, and the boundary, the optical member is deformed by the force (or the reaction force) to deform the seal member. May be deformed, leading to a decrease in optical performance. Disclosure of the invention
本発明は、 上述した事情に鑑みてなされたものであり、. 光学部材の光学性能を 低下させることなく、所定の気体が供給される空間と外部空間との間で -.流体(気 体や液体等)の侵入やリ一クを防止できる光学装匱を提供することを目的とする。 また、 本発明の他の目的は、 露光精度の向上を図ることができる露光装置を提 供することにある。  The present invention has been made in view of the above-described circumstances, and is intended to reduce the optical performance of an optical member between a space to which a predetermined gas is supplied and an external space without causing a decrease in the optical performance of the optical member. It is an object of the present invention to provide an optical device that can prevent intrusion and leakage of a liquid or the like. It is another object of the present invention to provide an exposure apparatus capable of improving exposure accuracy.
また、 本発明の別の目的は、 形成されるパターンの精度が向上したデバイスを 提供することにある。  Another object of the present invention is to provide a device in which the accuracy of a formed pattern is improved.
上記課題を解決するために、 本発明の第 1の態様は、 光学装置であって、 エネ ルギービーム( I L )の光路上に形成され、かつ所定のガスが供給される空間(1 1 ) と、 前記空間(1 1 ) と他の空間との境界に配置される光学部材(1 4 ) と、 前記光学部材(1 4 ) の周縁部に対向する対向面(2 0 a ) を有し、該対向面(2 0 a ) と前記光学部材 (1 4 ) の周縁部との間に隙間を形成した状態で、 前記光 学部材 (14) の周縁部を支持する支持部 (20) と、 前記光学部材 (14) の 周縁部と前記支持部 (20) が有する対向面 (20 a) との間に配置される流体 シール機構とを有する。 In order to solve the above problem, a first aspect of the present invention is an optical device, comprising: a space (11) formed on an optical path of an energy beam (IL) and supplied with a predetermined gas. An optical member (14) disposed at a boundary between the space (11) and another space; and an opposing surface (20a) opposing a peripheral portion of the optical member (14). In a state where a gap is formed between the facing surface (20a) and the peripheral edge of the optical member (14), the light A support portion (20) for supporting the peripheral portion of the optical member (14); and a fluid disposed between the peripheral portion of the optical member (14) and the facing surface (20a) of the support portion (20). A sealing mechanism.
この場合、 前記流体シール機構は、 前記光学部材 (14) の周縁部と前記対向 面 (20 a) との間に設けられる磁性流体層 (25) と、 前記磁性流体層 (25) を所定の位置に保持するための磁石 (26) とを備えることが望ましい。  In this case, the fluid sealing mechanism includes a magnetic fluid layer (25) provided between a peripheral portion of the optical member (14) and the facing surface (20a), and a magnetic fluid layer (25). And a magnet (26) for holding in position.
この光学装置では、 光学部材の周縁部と支持部との間に隙間を形成した状態で 光学部材が支持され、 その光学部材の周縁部と支持部との間に磁性流体層が設け られる。 磁性流体は、 強磁性材料の微粉体を液体等の媒体に分散させた懸濁液で あり、 磁界を作用させると凝集する。 磁石によって所定の位置に磁性流体層を保 持させることにより、 複数の空間の境界を介した気体のリークを防止することが できる。  In this optical device, the optical member is supported in a state where a gap is formed between the peripheral portion of the optical member and the support portion, and a magnetic fluid layer is provided between the peripheral portion of the optical member and the support portion. The magnetic fluid is a suspension in which a fine powder of a ferromagnetic material is dispersed in a medium such as a liquid, and aggregates when a magnetic field is applied. By holding the magnetic fluid layer at a predetermined position by the magnet, it is possible to prevent gas from leaking through boundaries of a plurality of spaces.
また、 磁性流体層を用いたシール構造では、 〇リングなどの固体のシール部材 を用いた構造に比べて、 シールに伴って光学部材に作用する力が少ない。 そのた め、この光学装置では、複数の空間の境界に光学部材が配置される場合において、 光学部材の変形が抑制される。 また、 磁性流体層を用いたシ一ル構造では、 光学 部材の姿勢に対する制約が小さく、 光学部材の配置の調整が容易となる。  Also, in a seal structure using a magnetic fluid layer, a force acting on an optical member due to the seal is smaller than a structure using a solid seal member such as a ring. Therefore, in this optical device, when the optical member is arranged at the boundary of the plurality of spaces, the deformation of the optical member is suppressed. Further, in the seal structure using the magnetic fluid layer, the restrictions on the posture of the optical member are small, and the arrangement of the optical member can be easily adjusted.
上記の光学装置において 前記磁性流体層 (25) として、 フッ素系のベース 液が用いられることにより、 ケミカルクリーン度の向上が図られる。  In the above optical device, the use of a fluorine-based base liquid as the magnetic fluid layer (25) improves the degree of chemical cleanliness.
また、 上記の光学装置において、 前記光学部材 (14) は、 例えば、 光学的な 有効領域を有する光学面 (14 a) と、 該光学面 (14 a) と同一面内の周縁面 (14 c) と、 前記光学部材の側面 (14 e) とを含み、 前記磁性流体層 (25) は、 前記光学部材の周縁面 (14 c) と、 前記光学部材の側面 (14 e) との少 なくとも一方に接するように配置される。  In the above optical device, the optical member (14) may include, for example, an optical surface (14a) having an optically effective area, and a peripheral surface (14c) in the same plane as the optical surface (14a). ), And a side surface (14 e) of the optical member, wherein the magnetic fluid layer (25) has at least a peripheral surface (14 c) of the optical member and a side surface (14 e) of the optical member. Both are arranged so as to be in contact with one.
この場合において、 前記磁性流体層 (25) が、 前記光学部材の周縁部におけ る周縁面 (14 c) に接するように配置され、 前記周縁面 (14 c) が、 前記磁 性流体層 (25) と接する部分が他の部分と異なる表面特性に処理されていると よい。 あるいは、 前記磁性流体層 (41) が、 前記光学部材の側面 (14 e) に 接するように配置され、 前記側面 (14 e) が、 前記磁性流体層 (41) と接す る部分が他の部分と異なる表面特性に処理されているとよい。 In this case, the magnetic fluid layer (25) is arranged so as to be in contact with a peripheral surface (14c) in a peripheral portion of the optical member, and the peripheral surface (14c) is disposed on the magnetic fluid layer (14). The part in contact with 25) should have been treated to a different surface property than the other parts. Alternatively, the magnetic fluid layer (41) is disposed so as to be in contact with the side surface (14e) of the optical member, and the side surface (14e) is in contact with the magnetic fluid layer (41). It is preferred that one part has a different surface property than the other part.
磁性流体層が接する部分の表面特性が他の部分と異なることにより、 磁性流体 層の保持性やシール性を向上させることが可能となる。  Since the surface characteristics of the portion in contact with the magnetic fluid layer are different from those of the other portions, it is possible to improve the retention and sealing properties of the magnetic fluid layer.
例えば、磁性流体層が接する部分に磁性を有する金属膜を形成することにより、 前記磁石を介した磁力回路が確実に形成され、 磁性流体層の保持性やシール性を 向上させることが可能となる。  For example, by forming a magnetic metal film in a portion where the magnetic fluid layer is in contact, a magnetic force circuit via the magnet is reliably formed, and the retention and sealing properties of the magnetic fluid layer can be improved. .
また、 例えば、 磁性流体層が接する部分の磁性流体層に対する濡れ性を向上さ せることにより、磁性流体層の保持性やシール性を向上させることが可能となる。 また、 上記の光学装置において、 前記光学部材 (14) の周縁部は、 互いに平 行な面 (14 c, 14d) を有し、 前記支持部 (20) は、 前記互いに平行な面 の一方 (14 c) に接触し、 前記光学部材 (14) の周縁部をほぼ等間隔で支持 する 3つの座 (27) と、 前記 3つの座 (27) のそれぞれに対応する位置に配 置され、 前記互いに平行な面の他方 (14d) と接触し、 かつ前記光学部材 (1 4) の周縁部を前記 3つの座(27) とともに挟み込む 3つの押さえ部材 (28) とを有し、前記磁性流体層(25) は、前記互いに平行な面の少なくとも一方 (1 4 c) に接するとよい。  In addition, for example, by improving the wettability of the portion where the magnetic fluid layer is in contact with the magnetic fluid layer, it is possible to improve the retention and sealing properties of the magnetic fluid layer. Further, in the above optical device, the peripheral portion of the optical member (14) has planes (14c, 14d) parallel to each other, and the support section (20) is one of the planes parallel to each other. 14 c), and three seats (27) that support the periphery of the optical member (14) at substantially equal intervals; and three seats (27) are disposed at positions corresponding to the three seats (27), respectively. The magnetic fluid layer having three pressing members (28) that are in contact with the other of the parallel surfaces (14d) and that sandwich the peripheral edge of the optical member (14) together with the three seats (27). (25) is preferably in contact with at least one (14c) of the parallel surfaces.
この光学装置では、 3つの座、 及び 3つの押さえ部材によって、 光学部材の保 持のための力が光学部材を挾んで押し合うように作用する。 そのため、 光学部材 内部での曲げモーメン卜の発生が抑制され、光学部材の歪みの発生が抑制される。 また、 上記の光学装置において、 前記磁石 (26) が、 前記対向面 (20 a) の一部に埋め込まれることにより、 その埋め込まれた位置に磁性流体層が保持さ れる。  In this optical device, the three seats and the three pressing members act so that the force for holding the optical member presses the optical member therebetween. Therefore, the occurrence of bending moment inside the optical member is suppressed, and the occurrence of distortion of the optical member is suppressed. In the above optical device, the magnet (26) is embedded in a part of the facing surface (20a), so that the magnetic fluid layer is held at the embedded position.
また、 上記の光学装置において、 前記磁石 (26) は、 前記対向面 (20 a) 上に凸状に配置されていてもよい。  Further, in the above optical device, the magnet (26) may be arranged in a convex shape on the facing surface (20a).
磁石が前記対向面上に凸状に配置されることにより、 磁力回路が良好に形成さ れ、 磁性流体層の保持性の向上が図られる。  By arranging the magnets on the opposing surface in a convex shape, a magnetic circuit is preferably formed, and the retention of the magnetic fluid layer is improved.
前記他の空間には、 前記所定の気体とは異なる気体を供給してもよい。  A gas different from the predetermined gas may be supplied to the other space.
本 明の第 2の態様は、 露光装置であって、パターンが形成されたマスク (R) をエネルギービーム(I L)により照明する照明系(121) と、前記マスク(R) のパターンを基板(W)上に転写する投影光学系(PL) との少なくとも一方を、 上記の光学装置で構成する。 A second aspect of the present invention is an exposure apparatus, comprising: an illumination system (121) for illuminating a mask (R) on which a pattern is formed with an energy beam (IL); At least one of the projection optical system (PL) for transferring the pattern onto the substrate (W) is constituted by the above optical device.
この露光装置では、 光学装置における気体のリークが防止されるとともに、 光 学的な性能の向上が図られることから、 露光精度の向上が図られる。  In this exposure apparatus, gas leakage in the optical apparatus is prevented, and optical performance is improved, so that exposure accuracy is improved.
上記の露光装置において、 例えば、 前記光学部材は、 前記投影光学系 (PL) を構成する複数の光学素子のうち、 前記基板(W) に対向する光学素子(351) であり、 前記空間は、 前記投影光学系 (PL) 内の空間 (301) であり、 前記 他の空間は、 前記光学素子 (351) と前記基板 (W) との間の空間 (303) である。  In the above-described exposure apparatus, for example, the optical member is an optical element (351) facing the substrate (W) among a plurality of optical elements constituting the projection optical system (PL); The space (301) in the projection optical system (PL), and the other space is a space (303) between the optical element (351) and the substrate (W).
この場合において、 前記投影光学系 (PL) 内の空間 (301) に第 1のガス を供給する第 1のガス供給機構 (310) と、 前記光学素子 (351) と前記基 板 (W) との間の空間 (303) に、 前記第 1のガスとは種類が異なる第 2のガ スを供給する第 2のガス供給機構 (31 1) とを有することにより、 投影光学系 内の空間 (301) と、 光学素子と基板との間の空間 (303) とに互いに異な る種類のガスが供給されるとともに、 それらの空間の境界を介した気体のリーク が防止される。  In this case, a first gas supply mechanism (310) for supplying a first gas to the space (301) in the projection optical system (PL), the optical element (351) and the substrate (W) A second gas supply mechanism (31 1) for supplying a second gas different in type from the first gas in the space (303) between the first space and the second space (303). Different types of gases are supplied to the space 301 between the optical element and the substrate, and leakage of gas through the boundary between the spaces is prevented.
また、上記の露光装置において、例えば、前記光学部材は、前記投影光学系(P L) を構成する複数の光学素子のうち、 前記マスク (R). 側に配置される光学素 子 (350) であり-. 前記空間は、 前記投影光学系 (PL) 内の空間 (301) であり、 前記他の空間は、 前記光学素子 (350) と前記マスク (R) との間の 空間 (302) である。  In the above exposure apparatus, for example, the optical member is an optical element (350) arranged on the mask (R) side among a plurality of optical elements constituting the projection optical system (PL). Yes. The space is a space (301) in the projection optical system (PL), and the other space is a space (302) between the optical element (350) and the mask (R). is there.
この場合において、 前記投影光学系 (PL) 内の空間 (301) に第 1のガス を供給する第 1のガス供給機構 (310) と、 前記光学素子 (350) と前記マ スク (R) との間の空間 (302) に、 前記第 1のガスとは種類が異なる第 2の 'ガスを供給する第 2のガス供給機構 (31 1) とを有することにより、 投影光学 系 (PL) 内の空間 (301) と、 光学素子とマスクとの間の空間 (302) と に互いに異なる種類のガスが供給されるとともに、 それらの空間の境界を介した 気体のリークが防止される。  In this case, a first gas supply mechanism (310) for supplying a first gas to a space (301) in the projection optical system (PL), the optical element (350) and the mask (R) A second gas supply mechanism (31 1) for supplying a second gas different in type from the first gas in a space (302) between the first optical system and the projection optical system (PL). Different types of gases are supplied to the space (301) and the space (302) between the optical element and the mask, and gas leakage through the boundary between the spaces is prevented.
また、 前記他の空間は、 液体雰囲気であってもよい。 本発明の第 3の態様は、デバイス製造方法であって、上記の露光装置を用いて、 マスク (R) 上に形成されたデバイスパターンを基板 (W) 上に転写する工程を 含む。 Further, the other space may be a liquid atmosphere. A third aspect of the present invention is a device manufacturing method, which includes a step of transferring a device pattern formed on a mask (R) onto a substrate (W) using the above exposure apparatus.
このデバイス製造方法によれば、 露光精度の向上により、 形成されるパターン の精度が向上したデバイスを提供することができる。 図面の簡単な説明  According to this device manufacturing method, it is possible to provide a device in which the accuracy of a formed pattern is improved by improving the exposure accuracy. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る光学装置の第 1実施形態例を模式的に示す図である。 図 2は、 磁性流体を用いたシール構造を部分的に拡大して示す図である。 図 3は、 図 1に示す A— A矢視断面図である。  FIG. 1 is a diagram schematically showing a first embodiment of the optical device according to the present invention. FIG. 2 is a partially enlarged view showing a seal structure using a magnetic fluid. FIG. 3 is a cross-sectional view taken along the line AA shown in FIG.
図 4は、 光学部材の磁性流体層と接する部分が他の部分と異なる表面特性に処 理された例を示す図である。  FIG. 4 is a diagram illustrating an example in which a portion of the optical member that is in contact with the magnetic fluid layer is processed to have a different surface characteristic from other portions.
図 5は、 光学部材の磁性流体層と接する部分が他の部分と異なる表面特性に処 理された他の例を示す図である。  FIG. 5 is a diagram showing another example in which a portion of the optical member that contacts the magnetic fluid layer is processed to have a different surface characteristic from other portions.
図 6は、 磁石が面上に凸状に配置された例を示す図である。  FIG. 6 is a diagram illustrating an example in which magnets are arranged in a convex shape on a surface.
図 7は、 本発明に係る光学装置の第 2実施形態例を示す図である。  FIG. 7 is a view showing an optical device according to a second embodiment of the present invention.
図 8は、 本発明に係る光学装置の第 3実施形態例を示す図である。  FIG. 8 is a diagram showing a third embodiment of the optical device according to the present invention.
図 9は、 本発明の光学装置を露光装置に適用した実施形態例を示す図である。 図 1 0は、 露光光の光路上の各空間にガスを供給するガス供給システムの構成 の一例を示す図である。 発明を実施するための最良の形態  FIG. 9 is a diagram showing an embodiment in which the optical device of the present invention is applied to an exposure apparatus. FIG. 10 is a diagram showing an example of the configuration of a gas supply system that supplies gas to each space on the optical path of exposure light. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の光学装置の実施の形態例について図面を参照して説明する。 た だし、 本発明は以下の各実施例に限定されるものではなく、 例えば、 これら実施 例の構成要素同士を適宜組み合わせてもよい。  Hereinafter, embodiments of an optical device according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and for example, the components of these embodiments may be appropriately combined.
図 1は、 本発明に係る光学装置の第 1実施形態例を模式的に示す図である。 光学装置 1 0は、 エネルギービーム I Lの光路上に形成され、 かつ所定の気体 が供給される空間 1 1を備える。 この空間 1 1は光学装置 1 0を構成する筒状の 筐体 1 2の内部空間である。 この空間 1 1と外部空間 1 3との境界には、 光学部 材 1 4が配置されている。 すなわち、 筐体 1 2には、 エネルギービーム I Lが通 過する開口 1 5が形成されており、 その開口 1 5を塞ぐように上記光学部材 1 4 が配置されている。 また、 本例では、 光学部材 1 4は、 互いに平行な面を有する 平行平板 (平行平面板) からなり、 光学的な有効領域を有する光学面 1 4 a , 1 4 bと、 この光学面と同一面内の周縁面 1 4 c , 1 4 dと、側面 1 4 eとを含む。 光学面 1 4 aと光学面 1 4 bとは互いに平行であり、 周縁面 1 4 cと周縁面 1 4 dとも互いに平行である。 FIG. 1 is a diagram schematically showing a first embodiment of the optical device according to the present invention. The optical device 10 includes a space 11 formed on the optical path of the energy beam IL and supplied with a predetermined gas. This space 11 is an internal space of a cylindrical housing 12 constituting the optical device 10. The boundary between this space 11 and the external space 13 is Lumber 14 is arranged. That is, an opening 15 through which the energy beam IL passes is formed in the housing 12, and the optical member 14 is arranged so as to close the opening 15. Further, in this example, the optical member 14 is formed of a parallel flat plate (parallel flat plate) having surfaces parallel to each other, and has optical surfaces 14 a and 14 b having an optically effective area. It includes peripheral surfaces 14 c and 14 d and a side surface 14 e in the same plane. The optical surface 14a and the optical surface 14b are parallel to each other, and the peripheral surface 14c and the peripheral surface 14d are also parallel to each other.
この光学装置 1 0では、 光学部材 1 4と筐体 1 2との間に流体シール機構が設 けられ、 この流体シール機構によって、 光学部材 1 4と筐体 1 2との間がシール されている。 本実施形態では、 流体シール機構として磁性流体を用いた例につい て説明する。  In the optical device 10, a fluid seal mechanism is provided between the optical member 14 and the housing 12, and the fluid seal mechanism seals the space between the optical member 14 and the housing 12. I have. In the present embodiment, an example in which a magnetic fluid is used as a fluid seal mechanism will be described.
図 2に、 磁性流体を用いたシール構造を、 部分的に拡大して示す。  Figure 2 shows a partially enlarged seal structure using a magnetic fluid.
図 2において、 筐体 1 2の軸方向の端部には、 光学部材 1 4を支持する支持部 2 0が設けられている。 この支持部 2 0は、 光学部材 1 4の一方の周縁面 1 4 c に対向する対向面 2 0 aを有し、 その対向面 2 0 aと光学部材 1 4の上記周縁面 1 4 cとの間に隙間を形成した状態で、 光学部材 1 4を支持している。 そして、 光学部材 1 4の周縁面 1 4 cと支持部 2 0における対向面 2 0 aとの間に、 磁性 流体からなる磁性流体層 2 5が設けられている。 この磁性流体層 2 5は、 対向面 2 0 aに配置された磁石 2 6 (永久磁石)によつて所定の位置に保持されている。 図 3は、 図 1に示す A— A矢視断面図である。  In FIG. 2, a support portion 20 that supports the optical member 14 is provided at an axial end of the housing 12. The supporting portion 20 has an opposing surface 20 a facing one peripheral surface 14 c of the optical member 14, and the opposing surface 20 a and the peripheral surface 14 c of the optical member 14 are provided. The optical member 14 is supported with a gap formed therebetween. Further, a magnetic fluid layer 25 made of a magnetic fluid is provided between the peripheral surface 14 c of the optical member 14 and the facing surface 20 a of the support portion 20. The magnetic fluid layer 25 is held at a predetermined position by a magnet 26 (permanent magnet) disposed on the facing surface 20a. FIG. 3 is a cross-sectional view taken along the line AA shown in FIG.
図 3及び先の図 2において、 支持部 2 0は、 光学部材 1 4の周縁部における一 方の周縁面 1 4 cに接触し、 光学部材 1 4の周縁部をほぼ等間隔 (本例では、 周 方向に 1 2 0 ° 間隔)で支持する 3つの座 2 7を有している。これらの座 2 7は、 支持部 2 0における上記対向面 2 0 aから突出して形成されており、 光学部材 1 との接触面積は小さい。  In FIG. 3 and FIG. 2 described above, the support portion 20 comes into contact with one of the peripheral surfaces 14 c at the peripheral portion of the optical member 14, and the peripheral portions of the optical member 14 are substantially equally spaced (in this example, It has three seats 27 that are supported at intervals of 120 ° in the circumferential direction. These seats 27 are formed so as to protrude from the facing surface 20 a of the support portion 20, and have a small contact area with the optical member 1.
また、支持部 2 0は、上記 3つの座 2 7のそれぞれに対応する位置に配置され、 光学部材 1 4の他方の周縁面 1 4 dに接触し、 かつ光学部材 1 4の周縁部を上記 3つの座 2 7とともに挟み込む 3つのレンズ押さえ部材 2 8を有している。 これ ら 3つのレンズ押さえ部材 2 8には、 光学部材 1 4と接する部分 (レンズ押圧部 2 9 ) が突出して形成されており、 光学部材 1 4との接触面積は小さい。 レンズ 押さえ部材 2 8のレンズ押圧部 2 9は、 光学部材 1 4を挟んで上記座 2 7と互い に向かい合う位置関係 (両者が同一軸線 L 1上に位置する関係) になるように配 置される。 つまり、 レンズ押さえ部材 2 8のそれぞれのレンズ押圧部 2 9は、 対 向面 2 0 a上の座 2 7に対向するように、周方向に互いにほぼ等間隔 (本例では、 周方向に 1 2 0 ° 間隔) で配される。 なお、 本例では、 3つのレンズ押さえ部材 2 8は、 個々に筐体 1 2に固定されるが、 一体的に筐体 1 2に固定される構造で あってもよい。 すなわち、 レンズ押さえ部材は、 例えば、 一の部材に、 3つの突 出部 (レンズ押圧部) を設けた構造であってもよい。 Further, the support portion 20 is disposed at a position corresponding to each of the three seats 27, contacts the other peripheral surface 14d of the optical member 14, and fixes the peripheral portion of the optical member 14 to the above. It has three lens pressing members 28 sandwiched together with the three seats 27. These three lens pressing members 28 include a portion that contacts the optical member 14 (the lens pressing portion). 2 9) is formed so as to protrude, and the contact area with the optical member 14 is small. The lens pressing portion 29 of the lens pressing member 28 is disposed so as to have a positional relationship facing the seat 27 with the optical member 14 interposed therebetween (a relationship in which the two are located on the same axis L1). You. That is, the respective lens pressing portions 29 of the lens pressing member 28 are substantially equidistant from each other in the circumferential direction so as to face the seat 27 on the facing surface 20a (in this example, 1 in the circumferential direction). 20 ° intervals). In the present example, the three lens pressing members 28 are individually fixed to the housing 12, but may be integrally fixed to the housing 12. That is, the lens pressing member may have a structure in which, for example, three protruding portions (lens pressing portions) are provided in one member.
磁石 2 6は、 支持部 2 0における対向面 2 0 aの一部に埋め込まれている。 ま た、 磁石 2 6は、 N極部と S極部とを有しており、 光学部材 1 4の周縁面 1 4 c に沿うように、 N極部と S極部とが並べて配されている。 磁石 2 6から生じる磁 束は、 図 2に一点鎖線で示すように磁気回路 2 6 aを作って循環する。 磁性流体 層 2 5は、 磁石 2 6の磁束によって凝集しかつ拘束され、 対向面 2 0 a上の磁石 2 6が埋め込まれた位置に保持される。 なお、 磁石 2 6において、 N極と S極と は図 2に示したものの逆の配置であってもよい。  The magnet 26 is embedded in a part of the facing surface 20a of the support portion 20. Further, the magnet 26 has an N-pole portion and an S-pole portion, and the N-pole portion and the S-pole portion are arranged side by side along the peripheral surface 14 c of the optical member 14. I have. The magnetic flux generated from the magnet 26 circulates by forming a magnetic circuit 26a as shown by a dashed line in FIG. The magnetic fluid layer 25 is aggregated and restrained by the magnetic flux of the magnet 26, and is held at the position where the magnet 26 is embedded on the facing surface 20a. Note that, in the magnet 26, the N pole and the S pole may be arranged in reverse to those shown in FIG.
磁性流体は、 強磁性材料の微粉体 (鉄粉など) を液体等の媒体 (ベース液、 ベ —スオイル) に分散させた懸濁液であり、 磁界を作用させると凝集する。 ベース 液としては、 低蒸気圧で脱ガスが少ないものが好ましく、 例えば、 アルキルナフ 夕レン、 パーフルォロポリエーテルなどが用いられる。 ベース液として、 パ一フ ルォロポリエーテルなどのフッ素系を用いることにより、 ケミカルクリーン度の 向上が図られる。 なお、 磁性流体は、 磁性材料の微粉体の分散を促進するための 活性剤を含んでもよい。  A magnetic fluid is a suspension in which fine powder of a ferromagnetic material (eg, iron powder) is dispersed in a medium such as a liquid (base liquid, base oil), and aggregates when a magnetic field is applied. As the base liquid, those having a low vapor pressure and low degassing are preferable. For example, alkylnaphthylene, perfluoropolyether and the like are used. By using a fluorine-based material such as perfluoropolyether as the base liquid, the degree of chemical cleanliness can be improved. The magnetic fluid may include an activator for promoting the dispersion of the fine powder of the magnetic material.
上記構成の光学装置 1 0では、 光学部材 1 4の周縁部と支持部 2 0との間に設 けられた磁性流体層 2 5によって、 筐体 1 2の内部空間 1 1と外部空間 1 3との 境界における気体のリークが防止される。 つまり、 磁性流体を用いたシール構造 では、 磁性流体層 2 5が光学部材 1 4及び支持部 2 0のそれぞれに対して周縁部 の周 向全体にわたって接触しており、 磁性流体層 2 5が壁となって、 内部空間 1 1と外部空間 1 3との間での気体の流れが確実に遮断される。 しかも、 磁性流 体の経時的な劣化は少なく、 シール性能の経時変化も極めて少ない。 そのため、 この光学装置 1 0では、 高いシール性能により、 筐体 1 2内を、 所定のガスで高 純度かつ安定的に満たすことが可能となる。 In the optical device 10 having the above configuration, the inner space 11 and the outer space 13 of the housing 12 are formed by the magnetic fluid layer 25 provided between the peripheral portion of the optical member 14 and the support portion 20. Gas leaks at the boundary with are prevented. In other words, in the seal structure using the magnetic fluid, the magnetic fluid layer 25 is in contact with the optical member 14 and the support portion 20 over the entire periphery of the optical member 14, and the magnetic fluid layer 25 is formed by the wall. As a result, the gas flow between the inner space 11 and the outer space 13 is reliably shut off. And magnetic current Deterioration of the body over time is small, and the change over time of the sealing performance is extremely small. Therefore, in the optical device 10, it is possible to stably fill the inside of the housing 12 with a predetermined gas with high purity due to high sealing performance.
また、 磁性流体を用いたシール構造では、 Oリングなどの固体のシール部材を 用いた構造に比べて、シールに伴って光学部材 1 4に作用する力が少なくて済む。 つまり、 磁性流体層 2 5は、 磁石 2 6の磁力及び磁性流体の粘性等によって保持 されるために、その保持に伴って光学部材 1 4に作用する力が小さい。そのため、 この光学装置 1 0では、 保持に伴う光学部材 1 4の変形が抑制され、 光学的な性 能の向上が図られる。 しかも、 磁性流体を用いたシール構造では、 0リングに比 ベて、 シール部材である磁性流体と物体との間の摩擦抵抗が小さく、 また、 磁性 流体層 2 5の形が容易に変化する。 そのため、 光学部材 1 4の姿勢に対する制約 が小さく、 光学部材 1 4の配置の調整が容易である。  Further, in a seal structure using a magnetic fluid, a force acting on the optical member 14 due to the seal can be reduced as compared with a structure using a solid seal member such as an O-ring. That is, since the magnetic fluid layer 25 is held by the magnetic force of the magnet 26 and the viscosity of the magnetic fluid, the force acting on the optical member 14 with the holding is small. Therefore, in the optical device 10, the deformation of the optical member 14 due to the holding is suppressed, and the optical performance is improved. Moreover, in the seal structure using the magnetic fluid, the frictional resistance between the magnetic fluid as the seal member and the object is smaller than that of the O-ring, and the shape of the magnetic fluid layer 25 is easily changed. Therefore, restrictions on the posture of the optical member 14 are small, and adjustment of the arrangement of the optical member 14 is easy.
また、 この光学装置 1 0では、 光学部材 1 4の一方の周縁面 1 4 cに支持部 2 0の 3つの座 2 7が接し、 光学部材 1 4の他方の周緣面 1 4 dに 3つのレンズ押 さえ部材 2 8のレンズ押圧部 2 9が接し、 座 2 7とレンズ押圧部 2 9とは光学部 材 1 4を挟んで向かい合って配置される。 そのため、 レンズ押さえ部材 2 8の押 圧の力は、 光学部材 1 4を挟んで同一軸線 L 1上で押し合うように作用し、 保持 に伴う光学部材 1 4内部での曲げモ一メントの発生が抑制される。 したがって この光学装置 1 0では、 光学部材 1 4の歪みの発生が抑制され、 光学的な性能の 向上が図られる。  In the optical device 10, three seats 27 of the support portion 20 are in contact with one peripheral surface 14 c of the optical member 14, and three peripheral surfaces 14 d of the optical member 14 are three. The lens pressing portion 29 of the lens pressing member 28 comes into contact with the lens pressing portion 29, and the seat 27 and the lens pressing portion 29 are arranged to face each other with the optical member 14 interposed therebetween. Therefore, the force of the pressing force of the lens pressing member 28 acts so as to press on the same axis L1 with the optical member 14 interposed therebetween, and the bending moment occurs inside the optical member 14 due to the holding. Is suppressed. Therefore, in the optical device 10, the occurrence of distortion of the optical member 14 is suppressed, and optical performance is improved.
また、 この光学装置 1 0では、 光学部材 1 4の周縁面 1 4 cと支持部 2 0にお ける対向面 2 0 aとの間に磁性流体層 2 5が配置されており、 磁性流体層 2 5が 配置される隙間、 すなわち、 光学部材 1 4の一方の周縁部 1 4 cと、 支持部 2 0 の対向面 2 0 aとの間隔は、 座 2 7によって規定されている。 この場合、 磁性流 体層 2 5の厚みなど、 磁性流体層 2 5の形状に変化が生じることが少なく、 シ一 ル性能の低下が起こりにくい。  In the optical device 10, the magnetic fluid layer 25 is disposed between the peripheral surface 14 c of the optical member 14 and the facing surface 20 a of the support portion 20, The gap in which the member 25 is arranged, that is, the distance between one peripheral portion 14 c of the optical member 14 and the facing surface 20 a of the support portion 20 is defined by the seat 27. In this case, a change in the shape of the magnetic fluid layer 25 such as the thickness of the magnetic fluid layer 25 is less likely to occur, and a decrease in sealing performance is unlikely to occur.
ここで、 光学部材 1 4の周縁面 1 4 cのうち、 磁性流体層 2 5に接する部分は 他の部分と異なる表面特性に処理されるのが好ましい。 これにより、 磁性流体層 2 5の保持性やシール性を向上させることが可能となる。 例えば、 図 4に示すように、 周縁面 1 4 cの磁性流体層 2 5と接する部分に、 磁性を有する物質.(金属など) の膜 3 0を形成するとよい。 これにより、 その磁 性膜 3 0を磁束の経路の一部とする磁気回路が安定して形成され、 磁性流体層 2 5の保持性やシール性が向上する。 また、 光学部材 1 4の周縁面 1 4 cに金属膜 を形成して磁化するか、 磁石 (永久磁石) を配設してもよい。 Here, of the peripheral surface 14 c of the optical member 14, a portion in contact with the magnetic fluid layer 25 is preferably processed to have a different surface characteristic from other portions. This makes it possible to improve the retention and sealing properties of the magnetic fluid layer 25. For example, as shown in FIG. 4, a film 30 of a substance having magnetic properties (such as a metal) may be formed on a portion of the peripheral surface 14 c in contact with the magnetic fluid layer 25. As a result, a magnetic circuit having the magnetic film 30 as a part of the magnetic flux path is stably formed, and the holding and sealing properties of the magnetic fluid layer 25 are improved. Further, a metal film may be formed on the peripheral surface 14 c of the optical member 14 to be magnetized, or a magnet (permanent magnet) may be provided.
また、 例えば、 図 5に示すように、 周縁面 1 4 cの磁性流体層 2 5と接する部 分を、 磁性流体 (ベース液、 ベースオイル) に対して親液性を有するように表面 処理してもよい。 これにより、 光学部材 1 4に対する磁性流体層 2 5の濡れ性が 向上し、 磁性流体層 2 5の保持性やシール性が向上する。 この場合、 光学部材 1 4の周縁面 1 4 cの他の部分を磁性流体層 2 5に対して撥液性に処理することに より、磁性流体層 2 5の保持性がさらに向上する。なお、光学部材 1 4に限らず、 支持部 2 0に対して同様の表面処理を施してもよい。 親液性の表面処理は、 例え ば、光学部材の表面に磁性流体に対して親液性を示す膜を形成するとよい。また、 撥液性の表面処理も同様に、 例えば、 光学部材の表面に磁性流体に対して親液性 を示す膜を形成するとよい。  Also, for example, as shown in FIG. 5, a portion of the peripheral surface 14c that is in contact with the magnetic fluid layer 25 is subjected to a surface treatment so as to have lyophilicity for the magnetic fluid (base liquid, base oil). Is also good. Thereby, the wettability of the magnetic fluid layer 25 with respect to the optical member 14 is improved, and the retention and sealing properties of the magnetic fluid layer 25 are improved. In this case, the other part of the peripheral surface 14 c of the optical member 14 is treated to be lyophobic with respect to the magnetic fluid layer 25, so that the magnetic fluid layer 25 can be further retained. In addition, not only the optical member 14 but also a similar surface treatment may be applied to the support portion 20. In the lyophilic surface treatment, for example, a film that is lyophilic to a magnetic fluid may be formed on the surface of the optical member. Similarly, for the liquid-repellent surface treatment, for example, it is preferable to form a film that is lyophilic to the magnetic fluid on the surface of the optical member.
また、 磁石 2 6は、 図 6に示すように、 支持部 2 0における対向面 2 0 a上に 凸状に配置されてもよい。 すなわち、 図 6において、 磁石 2 6は、 対向面 2 0 a 上の他の部分に対して突出した状態に配設される。 この場合、 先の図 2に示した 磁石 2 6が物体に埋め込まれる場合に比べて、 磁石 2 6の周囲に物体が少なく、 磁力回路が良好に形成される。 すなわち、 磁石 2 6の磁束が磁力回路として特徴 付けられやすい。 そのため、 磁性流体層 2 5の保持性の向上が図られる。  Further, as shown in FIG. 6, the magnet 26 may be arranged in a convex shape on the facing surface 20a of the support portion 20. That is, in FIG. 6, the magnet 26 is disposed so as to protrude from other portions on the facing surface 20a. In this case, compared to the case where the magnet 26 shown in FIG. 2 is embedded in the object, the object is less around the magnet 26 and the magnetic circuit is formed well. That is, the magnetic flux of the magnet 26 is easily characterized as a magnetic circuit. Therefore, the retention of the magnetic fluid layer 25 is improved.
図 7は、 本発明に係る光学装置の第 2実施形態例を示す図であり、 磁性流体を 用いたシール構造を部分的に拡大して示している。 なお、 本例において、 上述し た実施形態例と同一の機能を有するものは同一の符号を付し、 その説明を省略ま たは簡略化する。  FIG. 7 is a view showing a second embodiment of the optical device according to the present invention, and shows a partially enlarged seal structure using a magnetic fluid. In the present embodiment, components having the same functions as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof will be omitted or simplified.
図 7において、 光学装置 4 0では、 第 1実施形態例と同様に、 光学部材 1 4と 筐体 1 2との間が磁性流体を用いてシールされている。 本実施形態例では、 磁性 流体からなる磁性流体層 4 1が光^部材 1 4の周縁部における側面 1 4 eに接す るように配置されている。 すなわち、 筐体 1 2の軸方向の端部には、 光学部材 1 4を支持する支持部 4 2 が設けられている。 この支持部 4 2は、 第 1実施形態例と同様に、 光学部材 1 4 の周縁部における一方の周縁面 1 4 cに接触し、 光学部材 1 4の周縁部をほぼ等 間隔 (周方向に 1 2 0 ° 間隔) で支持する 3つの座 4 3と、 上記 3つの座 4 3の それぞれに対応する位置に配置され、 光学部材 1 4の他方の周縁面 1 4 dに接触 し、 かつ光学部材 1 4の周縁部を上記 3つの座 4 3とともに挟み込む 3つのレン ズ押さえ部材 4 4とを有している。 また、 支持部 4 2は、 光学部材 1 4の一方の 周縁面 1 4 cに対向する対向面 4 2 aと、 光学部材 1 4の側面 1 4 eに対向する 対向面 4 2 bとを有し、対向面 4 2 aと光学部材 1 4の上記周縁面 1 4 cとの間、 及び対向面 4 2 bと光学部材 1 4の上記側面 1 4 eとの間にそれぞれ隙間を形成 した状態で光学部材 1 4を支持している。 そして、 本実施形態例では、 光学部材 1 4の側面 1 4 eと支持部 4 2における対向面 4 2 bとの間に、 磁性流体層 4 1 が設けられている。 この磁性流体層 4 1は、 対向面 4 2 bに埋め込まれた磁石 4 6 (永久磁石) によつて所定の位置に保持されている。 In FIG. 7, in the optical device 40, the space between the optical member 14 and the housing 12 is sealed using a magnetic fluid, as in the first embodiment. In the present embodiment, the magnetic fluid layer 41 made of a magnetic fluid is arranged so as to be in contact with the side surface 14 e at the peripheral portion of the optical member 14. That is, a support portion 42 that supports the optical member 14 is provided at an axial end of the housing 12. As in the first embodiment, the support portion 42 comes into contact with one of the peripheral surfaces 14 c on the peripheral portion of the optical member 14, and the peripheral portions of the optical member 14 are substantially equally spaced (in the circumferential direction). (At an interval of 120 °) and three seats 4 3, which are arranged at positions corresponding to the three seats 4 3, respectively, and are in contact with the other peripheral surface 14 d of the optical member 14, and It has three lens pressing members 44 that sandwich the peripheral edge of the member 14 together with the three seats 43. In addition, the support part 42 has an opposing surface 42 a opposing one peripheral surface 14 c of the optical member 14 and an opposing surface 42 b opposing the side surface 14 e of the optical member 14. In this state, gaps are formed between the facing surface 42 a and the peripheral surface 14 c of the optical member 14, and between the facing surface 42 b and the side surface 14 e of the optical member 14. Supports the optical member 14. In the embodiment, the magnetic fluid layer 41 is provided between the side surface 14 e of the optical member 14 and the opposing surface 42 b of the support portion 42. The magnetic fluid layer 41 is held at a predetermined position by a magnet 46 (permanent magnet) embedded in the facing surface 42b.
本例の光学装置 4 0では、 第 1実施形態例と同様に、 光学部材 1 4の側面 1 4 eと支持部 4 2の対向面 4 2 bとの間に設けられた磁性流体層 4 1によって、 筐 体 1 2の内部空間 1 1と外部空間 1 3との境界における気体のリークが防止され る。 また、 本例では、 光学部材 1 4の側面 1 4 eに接するように磁性流体層 4 1 が配置されることから、 光学部材 1 4が光軸方向に微動したり、 光学部材 1 4が 軸周りに回転したりしても、 磁性流体層 4 1の形状の変化が小さい。 そのため、 光学部材 1 4の光軸方向への位置調整や、 光学部材 1 4の回転角度の調整が容易 に行なえる。 なお、 本例においても、 光学部材 1 4の側面 1 4 eの表面に、 磁性 を有する物質 (金属) の膜を形成したり、 磁性流体に対して親液性を有する表面 処理を施すことにより、 磁性流体層 4 1の保持性やシール性が向上する。  In the optical device 40 of this example, similarly to the first embodiment, the magnetic fluid layer 41 provided between the side surface 14 e of the optical member 14 and the opposing surface 42 b of the support portion 42 is provided. This prevents gas leakage at the boundary between the inner space 11 and the outer space 13 of the housing 12. Further, in this example, since the magnetic fluid layer 41 is disposed so as to be in contact with the side surface 14 e of the optical member 14, the optical member 14 slightly moves in the optical axis direction or the optical member 14 is The shape change of the magnetic fluid layer 41 is small even if it rotates around. Therefore, position adjustment of the optical member 14 in the optical axis direction and adjustment of the rotation angle of the optical member 14 can be easily performed. Also in this example, by forming a film of a magnetic substance (metal) on the surface of the side surface 14 e of the optical member 14, or by applying a surface treatment having lyophilic property to the magnetic fluid. Thus, the retention and sealing properties of the magnetic fluid layer 41 are improved.
図 8は、 本発明に係る光学装置の第 3実施形態例を示す図であり、 磁性流体を 用いたシ一ル構造を部分的に拡大して示している。 なお、 本例において、 上述し た実施形態例と同一の機能を有するものは同一の符号を付し、 その説明を省略ま たは 略化する。  FIG. 8 is a view showing a third embodiment of the optical device according to the present invention, and shows a partially enlarged seal structure using a magnetic fluid. In the present embodiment, components having the same functions as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof will be omitted or omitted.
図 8において、 光学装置 5 0では、 第 2実施形態例と同様に、 光学部材 1 4と 筐体 1 2との間が磁性流体を用いてシ一ルされ、 磁性流体からなる磁性流体層 5 1が光学部材 1 4の周縁部における側面 1 4 eに配置されている。 In FIG. 8, in the optical device 50, the optical members 14 and A magnetic fluid is sealed between the housing 12 and the magnetic fluid layer 51, and a magnetic fluid layer 51 made of a magnetic fluid is disposed on the side surface 14 e at the periphery of the optical member 14.
すなわち、 筐体 1 2の軸方向の端部には、 光学部材 1 4を支持する支持部 5 2 が設けられている。 この支持部 5 2は、 第 2実施形態例と同様に、 光学部材 1 4 の周縁部における一方の周縁面 1 4 cに接触し、 光学部材 1 4の周縁部をほぼ等 間隔 (周方向に 1 2 0 ° ·間隔) で支持する 3つの座 5 3と、 上記 3つの座 5 3の それぞれに対応する位置に配置され、 光学部材 1 4の他方の周縁面 1 4 dに接触 し、 かつ光学部材 1 4の周縁部を上記 3つの座 5 3とともに挟み込む 3つのレン ズ押さえ部材 5 4とを有している。 また、 支持部 5 2は、 光学部材 1 4の一方の 周縁面 1 4 cに対向する対向面 5 2 aと、 光学部材 1 4の側面 1 4 eに対向する 対向面 5 2 bとを有し、対向面 5 2 aと光学部材 1 4の上記周縁面 1 4 cとの間、 及び対向面 5 2 bと光学部材 1 4の上記側面 1 4 eとの間にそれぞれ隙間を形成 した状態で光学部材 1 4を支持している。 そして、 光学部材 1 4の側面 1 4 eと 支持部 5 2における対向面 5 2 bとの間に、 磁性流体 (磁性流体層 5 1 ) が配置 されている。 本実施形態例では、 この磁性流体層 5 1は、 光学部材 1 4の側面 1 4 e及びその対向面 5 2 bに配設されたハウジング (第 1のハウジング 5 5、 第 2のハウジング 5 6 ) の内部に配置されている。  That is, a support portion 52 that supports the optical member 14 is provided at an axial end of the housing 12. As in the second embodiment, the supporting portion 52 comes into contact with one of the peripheral surfaces 14 c of the peripheral portion of the optical member 14, and the peripheral portions of the optical member 14 are substantially equally spaced (in the circumferential direction). 1 2 0 ° · spacing) and are arranged at positions corresponding to the three seats 5 3 and the three seats 5 3, respectively, and contact the other peripheral surface 14 d of the optical member 14, and It has three lens pressing members 54 that sandwich the peripheral portion of the optical member 14 together with the three seats 53. Further, the support portion 52 has an opposing surface 52 a opposing the one peripheral surface 14 c of the optical member 14 and an opposing surface 52 b opposing the side surface 14 e of the optical member 14. In this state, gaps are formed between the facing surface 52 a and the peripheral surface 14 c of the optical member 14, and between the facing surface 52 b and the side surface 14 e of the optical member 14. Supports the optical member 14. A magnetic fluid (magnetic fluid layer 51) is arranged between the side surface 14 e of the optical member 14 and the facing surface 52 b of the support portion 52. In the present embodiment, the magnetic fluid layer 51 includes a housing (a first housing 55, a second housing 5 6) disposed on the side surface 14 e of the optical member 14 and the opposing surface 52 b. ).
第 1のハウジング 5 5は、 環状に形成され、 締まりばめや接着固定などによつ て光学部材 1 4の側面 1 4 eに配設されている。 第 1のハウジング 5 5の外周面 には凹部 5 5 aが形成されており、 この凹部 5 5 aの内部に磁性流体が収容され ている (磁性流体層 5 1 )。 第 2のハウジング 5 6は、 環状に形成され、 接着固定 などによって支持部 5 2の対向面 5 2 bに配設されている。 第 2のハウジング 5 6の内周面には凹部 5 6 aが形成されており、 この凹部 5 6 aの内部に磁性流体 が収容されている (磁性流体層 5 1 )。第 1のハウジング 5 5、及び第 2のハウジ ング 5 6は、 互いの間に隙間を有した状態で、 それぞれの凹部 5 5 a , 5 6 aが 互いに対向するように配されている。 なお、 上記接着固定においては、 ケミカル クリーン度の向上を図る上で、 ト一ルシールやフッ素系の接着剤を用いるのが好 まし 。  The first housing 55 is formed in an annular shape, and is disposed on the side surface 14 e of the optical member 14 by interference fit or adhesive fixing. A concave portion 55a is formed in the outer peripheral surface of the first housing 55, and a magnetic fluid is accommodated in the concave portion 55a (magnetic fluid layer 51). The second housing 56 is formed in an annular shape, and is disposed on the facing surface 52 b of the support portion 52 by, for example, bonding and fixing. A concave portion 56a is formed on the inner peripheral surface of the second housing 56, and a magnetic fluid is accommodated in the concave portion 56a (magnetic fluid layer 51). The first housing 55 and the second housing 56 are arranged such that the respective recesses 55a and 56a face each other with a gap therebetween. In the above-mentioned adhesive fixing, it is preferable to use a door seal or a fluorine-based adhesive in order to improve the chemical cleanliness.
また、第 1のハウジング 5 5と第 2のハウジング 5 6との間には、磁石 5 7 (永 久磁石) が配置されている。 この磁石 5 7は、 環状に形成されており、 例えば、 ハウジング 5 5 , 5 6のいずれか一方に設けられた座面によって支持されている。 また、磁石 5 7の内周側の一部が第 1のハウジング 5. 5の凹部 5 5 aに揷入され、 磁石 5 7の外周側の一部が第 2のハウジング 5 6の凹部 5 6 aに挿入されている。 そして、 この磁石 5 7によって各ハウジング 5 5 , 5 6の凹部 5 5 a , 5 6 aに おける磁性流体の収容状態が保持されている。 A magnet 57 (permanent) is provided between the first housing 55 and the second housing 56. Is located. The magnet 57 is formed in an annular shape, and is supported by, for example, a seating surface provided on one of the housings 55 and 56. In addition, a part of the inner periphery of the magnet 57 is inserted into the recess 55 a of the first housing 5.5, and a part of the outer periphery of the magnet 57 is recessed 5 6 of the second housing 56. Inserted in a. The magnet 57 holds the magnetic fluid in the recesses 55a, 56a of the housings 55, 56.
本例の光学装置 5 0では、 第 2実施形態例と同様に、 光学部材 1 4の側面 1 4 eと支持部 5 2の対向面 5 2 bとの間に設けられた磁性流体層 5 1によって、 筐 体 1 2の内部空間 1 1と外部空間 1 3との境界における気体のリークが防止され る。 また、 本例では、 光学部材 1 4の側面 1 4 eに磁性流体層 5 1が配置される ことから、 光学部材 1 4が光軸方向に微動したり、 光学部材 1 4が軸周りに回転 したりしても、 磁性流体層 5 1の形状の変化が小さい。 そのため、 光学部材 1 4 の光軸方向への位置調整や、 光学部材 1 4の回転角度の調整が容易に行なえる。 さらに、 本例では、 磁性流体層 5 1がハウジング 5 5, 5 6の凹部 5 5 a , 5 6 aに配置され、 鉛直下向きへの磁性流体の移動 (重力に伴う移動) が止められて おり、 磁性流体層 5 1が所定の位置に確実に保持される。  In the optical device 50 of the present example, similarly to the second embodiment, the magnetic fluid layer 51 provided between the side surface 14 e of the optical member 14 and the opposing surface 52 b of the support portion 52 is provided. This prevents gas leakage at the boundary between the inner space 11 and the outer space 13 of the housing 12. In this example, since the magnetic fluid layer 51 is disposed on the side surface 14 e of the optical member 14, the optical member 14 slightly moves in the optical axis direction or the optical member 14 rotates around the axis. The shape of the magnetic fluid layer 51 is small. Therefore, the position adjustment of the optical member 14 in the optical axis direction and the adjustment of the rotation angle of the optical member 14 can be easily performed. Further, in this example, the magnetic fluid layer 51 is disposed in the concave portions 55a and 56a of the housings 55 and 56, and the vertical downward movement of the magnetic fluid (movement due to gravity) is stopped. The magnetic fluid layer 51 is securely held at a predetermined position.
図 9は、 本発明の光学装置を露光装置に適用した実施形態例を示している。 な お、 図 9では X Y Z直交座標系を採用している。 X Y Z直交座標系は、 基板 (感 光性基板) としてのゥェハ Wを保持するウェハステージ W Sに対して平行となる ように X軸及び Y軸が設定され、 Z軸がウェハステージ WSに対して直交する方 向に設定される。 実際には、 図中の X Y Z直交座標系は、 X Y平面が水平面に平 行な面に設定され、 Z軸が鉛直方向に設定される。  FIG. 9 shows an embodiment in which the optical device of the present invention is applied to an exposure apparatus. Note that FIG. 9 uses an XYZ rectangular coordinate system. In the XYZ orthogonal coordinate system, the X axis and the Y axis are set so as to be parallel to the wafer stage WS that holds the wafer W as a substrate (photosensitive substrate), and the Z axis is orthogonal to the wafer stage WS. The direction is set to Actually, in the XYZ rectangular coordinate system in the figure, the XY plane is set to a plane parallel to the horizontal plane, and the Z axis is set to the vertical direction.
本実施形態に係る露光装置は、 露光光源として F 2レーザ光源を使用している。 また、 マスク (投影原版) としてのレチクル R上の所定形状の照明領域に対して 相対的に所定の方向へレチクル R及びウェハ Wを同期して走査することにより、 ウェハ W上の 1つのショット領域に、 レチクル Rのパターン像を逐次的に転写す るステップ'アンド ·スキャン方式を採用している。 このようなステップ'アン ド ·ス.キヤン型の露光装置では、投影光学系の露光フィ一ルドよりも広い基板(ゥ ェハ W) 上の領域にレチクル Rのパターンを露光できる。 図 9において、 露光装置 1 0 0は、 レーザ光源 1 2 0、 このレ一ザ光源 1 2 0 からのエネルギービームとしての露光光 I Lによりレチクル Rを照明する照明光 学系 1 2 1、 レチクル Rから射出される露光光 I Lをウェハ W上に投射する投影 光学系 P L、 及び装置全体を統括的に制御する不図示の主制御装置等を備えてい る。 さらに、 露光装置 1 0 0は全体としてチャンバ (不図示) の内部に収納され ている。 Exposure apparatus according to this embodiment uses an F 2 laser light source as the exposure light source. Also, by synchronously scanning the reticle R and the wafer W in a predetermined direction relative to an illumination area of a predetermined shape on the reticle R as a mask (projection master), one shot area on the wafer W is obtained. In addition, a step-and-scan method in which the pattern image of the reticle R is sequentially transferred is adopted. In such a step-and-scan-type exposure apparatus, the pattern of the reticle R can be exposed on an area on the substrate (wafer W) wider than the exposure field of the projection optical system. In FIG. 9, an exposure apparatus 100 includes a laser light source 120, an illumination optical system 122 that illuminates a reticle R with an exposure light IL as an energy beam from the laser light source 120, and a reticle R. A projection optical system PL for projecting the exposure light IL emitted from the wafer onto the wafer W, and a main controller (not shown) for controlling the entire apparatus in its entirety. Further, the exposure apparatus 100 is housed in a chamber (not shown) as a whole.
レーザ光源 1 2 0は、 発振波長 1 5 7 n mのパルス紫外光を出力する F 2レー ザを有する。 また、 レーザ光源 1 2 0には、 図示しない光源制御装置が併設され ており、 この光源制御装置は、 主制御装置からの指示に応じて、 射出されるパル ス紫外光の発振中心波長及びスぺクトル半値幅の制御、パルス発振のトリガ制御、 レーザチヤンバ内のガスの制御等を行う。 The laser light source 120 has an F 2 laser that outputs pulsed ultraviolet light having an oscillation wavelength of 157 nm. The laser light source 120 is also provided with a light source control device (not shown). The light source control device responds to an instruction from the main control device, and the oscillation center wavelength and the wavelength of the emitted pulse ultraviolet light are controlled. Controls the half width of the vector, triggers the pulse oscillation, and controls the gas in the laser chamber.
レーザ光源 1 2 0からのパルスレーザ光 (照明光) は、 偏向ミラ一 1 3 0にて 偏向されて、 光アツテネ一夕としての可変減光器 1 3 1に入射する。 可変減光器 1 3 1は、 ウェハ上のフォトレジストに対する露光量を制御するために、 減光率 が段階的又は連続的に調整可能である。 可変減光器 1 3 1から射出される照明光 は、 光路偏向ミラ一 1 3 2にて偏向された後に、 第 1フライアイレンズ 1 3 3、 ズームレンズ 1 3 4、 振動ミラー 1 3 5等を順に介して第 2フライアイレンズ 1 3 6に達する。 第 2フライアイレンズ 1 3 6の射出側には 有効光源のサイズ ' 形状を所望に設定するための照明光学系開口絞り用の切り替えレボルバ 1 3 7が 配置されている。 本実施形態では、 照明光学系開口絞りでの光量損失を低減させ るために、 ズームレンズ 1 3 4による第 2フライアイレンズ 1 3 6への光束の大 きさを可変としている。  The pulse laser light (illumination light) from the laser light source 120 is deflected by the deflecting mirror 130 and is incident on the variable dimmer 131 as an optical attenuator. In the variable dimmer 131, the dimming rate can be adjusted stepwise or continuously to control the amount of exposure to the photoresist on the wafer. The illumination light emitted from the variable attenuator 13 1 is deflected by the optical path deflection mirror 13 2, and then the first fly-eye lens 13 3, zoom lens 13 4, vibrating mirror 13 5, etc. The second fly-eye lens 1 36 reaches through the order. On the exit side of the second fly-eye lens 13 6, a switching revolver 13 7 for the aperture stop of the illumination optical system for setting the size and shape of the effective light source as desired is arranged. In the present embodiment, the magnitude of the light beam to the second fly-eye lens 1336 by the zoom lens 134 is made variable in order to reduce the light amount loss at the aperture stop of the illumination optical system.
照明光学系開口絞りの開口から射出した光束は、 コンデンサレンズ群 1 4 0を 介して照明視野絞り (レチクルブラインド) 1 4 1を照明する。 なお、 照明視野 絞り 1 4 1については、 特開平 4一 1 9 6 5 1 3号公報及びこれに対応する米国 特許第 5 , 4 7 3 , 4 1 0号公報に開示されている。  The light beam emitted from the aperture of the illumination optical system aperture stop illuminates the illumination field stop (reticle blind) 141 via the condenser lens group 140. The illumination field stop 1441 is disclosed in Japanese Patent Application Laid-Open No. Hei 4-19613 and US Patent Nos. 5,473,410 corresponding thereto.
照明視野絞り 1 4 1からの光は、偏向ミラー 1 4 2, 1 4 5、レンズ群 1 4 3 , 1 4 4 , 1 4 6からなる照明視野絞り結像光学系 (レチクルブラインド結像系) を介してレチクル R上に導かれ、 レチクル R上には、 照明視野絞り 1 4 1の開口 部の像である照明領域が形成される。 レチクル R上の照明領域からの光は、 投影 光学系 PLを介してウェハ W上へ導かれ、 ウェハ" W上には、 レチクル Rの照明領 域内のパターンの縮小像が形成される。 レチクル Rを保持するレチクルステージ RSは XY平面内で二次元的に移動可能であり、 その位置座標は干渉計 1 50に よって計測されかつ位置制御される。 また、 ウェハ Wを保持するウェハステージ WSも XY平面内で二次元的に移動可能であり、 その位置座標は干渉計 1 51に よって計測されかつ位置制御される。 これらにより、 レチクル R及びウェハ Wを 高精度に同期走査することが可能になる。 なお、 上述したレーザ光源 120〜照 明視野絞り結像光学系等により照明光学系 121が構成される。 Light from the illumination field stop 14 1 is applied to an illumination field stop imaging optical system (reticle blind imaging system) consisting of deflection mirrors 144 2 and 1 45 and lens groups 144 3, 144 4 and 1 46. On the reticle R through the reticle R, the illumination field stop 1 4 1 aperture An illumination area, which is an image of the part, is formed. Light from the illumination area on the reticle R is guided to the wafer W via the projection optical system PL, and a reduced image of the pattern in the illumination area of the reticle R is formed on the wafer "W. The reticle stage RS for holding the wafer W can be moved two-dimensionally in the XY plane, and its position coordinates are measured and controlled by the interferometer 150. The wafer stage WS for holding the wafer W is also XY It can be moved two-dimensionally in a plane, and its position coordinates are measured and controlled by the interferometer 151. These make it possible to synchronously scan the reticle R and the wafer W with high accuracy. The illumination optical system 121 is configured by the above-described laser light source 120 to the illumination field stop imaging optical system and the like.
本実施形態で使用する F2レーザ光 (波長: 157 nm) のように、 真空紫外 域の光を露光光とする場合には、透過率の良好な光学硝材(光学素子)としては、 蛍石 (CaF2の結晶)、 フッ素や水素等をド一プした石英ガラス、 及びフッ化マ グネシゥム (MgF2) 等に限られる。 この場合、 投影光学系 PLにおいて、 屈 折光学部材のみで構成して所望の結像特性 (色収差特性等) を得るのは困難であ ることから、 屈折光学部材と反射鏡とを組み合わせた反射屈折系を採用してもよ い。 When the light in the vacuum ultraviolet region is used as the exposure light, such as the F 2 laser light (wavelength: 157 nm) used in the present embodiment, the optical glass material (optical element) having a good transmittance is fluorite. (CaF 2 crystal), quartz glass doped with fluorine or hydrogen, magnesium fluoride (MgF 2 ), etc. In this case, in the projection optical system PL, it is difficult to obtain desired imaging characteristics (such as chromatic aberration characteristics) by using only the refractive optical member. A refraction system may be used.
また、 真空紫外域の光に対する吸光物質としては、 酸素 (02)、 水 (水蒸気: H20)、 一酸化炭素 (CO)、 炭酸ガス (二酸化炭素: C02)、 有機物、 及びハ ロゲン化物等がある。 一方-, 真空紫外域の光が透過する気体 (エネルギ吸収がほ とんど無い物質) としては、 窒素ガス (N2)、 水素 (H2)、 ヘリウム (He), ネオン (Ne)、 アルゴン (Ar)、 クリプトン (Kr)、 キセノン (X e)、 ラド ン(Rn) よりなる希ガスがある。以降、 この窒素ガス及び希ガスをまとめて「透 過性ガス」 と呼ぶことにする。 本実施形態では、 照明光路 (レーザ光源 120〜 レチクル Rへ至る光路) 及び投影光路 (レチクル R〜ゥェハ Wへ至る光路) を外 部雰囲気から遮断し、 それらの光路を真空紫外域の光に対して吸収の少ない特性 を有する透過性ガスとしての窒素、 ヘリウム、 アルゴン、 ネオン、 クリプトン、 キセノン、 ラドンなどのガス、 またはそれらの混合ガスで満たしている。 As the light absorbing material for light in the vacuum ultraviolet region, oxygen (0 2), water (water vapor: H 2 0), carbon monoxide (CO), carbon dioxide (CO: C0 2), organic matter, and c androgenic Compound. On the other hand, gases that transmit light in the vacuum ultraviolet region (substances with little energy absorption) include nitrogen gas (N 2 ), hydrogen (H 2 ), helium (He), neon (Ne), and argon. (Ar), krypton (Kr), xenon (Xe) and radon (Rn). Hereinafter, the nitrogen gas and the rare gas will be collectively referred to as “transparent gas”. In the present embodiment, the illumination optical path (the optical path from the laser light source 120 to the reticle R) and the projection optical path (the optical path from the reticle R to the wafer W) are cut off from the external atmosphere, and those optical paths are shielded from light in the vacuum ultraviolet region. It is filled with a gas such as nitrogen, helium, argon, neon, krypton, xenon, radon, or a mixture of these as a permeable gas with low absorption characteristics.
具伴的には、 レーザ光源 120から可変減光器 131までの光路がケ一シング 160により外部雰囲気より遮断され、 可変減光器 131から照明視野絞り 14 1までの光路がケ一シング 1 6 1により外部雰囲気より遮断され、 照明視野絞り 結像光学系がケーシング 1 6 2により外部雰囲気から遮断され、 それらの光路内 に上記透過性ガスが充填されている。 なお、 ケ一シング 1 6 1とケ一シング 1 6 2はケ一シング 1 6 3により接続されている。 また、 投影光学系 P L自体もその 鏡筒 1 6 9がケ一シングとなっており、 その内部光路に上記透過性ガスが充填さ れている。 Specifically, the optical path from the laser light source 120 to the variable attenuator 131 is cut off from the external atmosphere by a casing 160, and the illumination field stop 14 is provided from the variable attenuator 131. The optical path up to 1 is cut off from the outside atmosphere by casing 161, the illumination field stop, the imaging optical system is cut off from the outside atmosphere by the casing 162, and these light paths are filled with the above permeable gas. I have. The casing 16 1 and the casing 16 2 are connected by the casing 16 3. Also, the projection optical system PL itself has a lens barrel 169 as a casing, and its internal optical path is filled with the above-mentioned permeable gas.
また、 ケ一シング 1 6 4は、 照明視野絞り結像光学系を納めたケ一シング 1 6 2と投影光学系 P Lとの間の空間を外部雰囲気から遮断しており、 その内部にレ チクル Rを保持するレチクルステージ R Sが収納されている。 このケ一シング 1 6 4には、 レチクル Rを搬入 ·搬出するための扉 1 7 0が設けられており、 この 扉 1 7 0の外側には、 レチクル Rを搬入 ·搬出時にケ一シング 1 6 4内の雰囲気 が汚染されるのを防ぐためのガス置換室 1 6 5が設けられている。 このガス置換 室 1 6 5にも扉 1 7 1が設けられており、 複数種のレチクルを保管しているレチ クルストツ力 1 6 6との間のレチクルの受け渡しは扉 1 7 1を介して行われる。 また、 ケーシング 1 6 7は、 投影光学系 P Lとウェハ Wとの間の空間を外部雰 囲気から遮断しており、 その内部に、 ウェハホルダ 1 8 0を介してウェハ Wを保 持するウェハステージ W S、 ウェハ Wの表面の Z方向の位置 (フォーカス位置) や傾斜角を検出するための斜入射形式のオートフォーカスセンサ 1 8 1 , オフ · ァクシス方式のァライメントセンサ 1 8 2、 ゥェハステージ W Sを載置している 定盤 1 8 3等が収納されている。 このケ一シング 1 6 7には、 ウェハ Wを搬入 · 搬出するための扉 1 7 2が設けられており、 この扉 1 7 2の外側にはケ一シング 1 6 7内部の雰囲気が汚染されるのを防ぐためのガス置換室 1 6 8が設けられて いる。 このガス置換室 1 6 8には扉 1 7 3が設けられており、 装置内部へのゥェ ハ Wの搬入、 装置外部へのウェハ Wの搬出はこの扉 1 7 3を介して行われる。 各光路上の空間に充填される透過性ガス (パージガス) としては、 窒素やヘリ ゥムを用いることが好ましい。 窒素は波長が 1 5 0 n m程度以下の光に対しては 吸光物質として作用し、 ヘリウムは波長 1 0 0 n m程度以下の光に対して透過性 ガスとして使用することができる。 ヘリゥムは熱伝導率が窒素の約 6倍であり、 気圧変化に対する屈折率の変動量が窒素の約 1 Z 8であるため、 特に高透過率と 光学系の結像特性の安定性や冷却性とで優れている。 なお、 投影光学系 PLの鏡 筒について透過性ガスとしてヘリウムを用い、 他の光路 (例えばレーザ光源 12 0〜レチクル Rまでの照明光路など) については透過性ガスとして窒素を用いて もよい。 In addition, the casing 164 shields the space between the casing 162 containing the illumination field stop imaging optical system and the projection optical system PL from the external atmosphere, and a reticle is provided inside. A reticle stage RS that holds R is housed. The casing 1 64 is provided with a door 170 for loading / unloading the reticle R. Outside the door 170, the casing 1 is provided for loading / unloading the reticle R. A gas replacement chamber 165 is provided to prevent contamination of the atmosphere in 64. This gas exchange chamber 16 5 is also provided with a door 17 1, and reticle delivery to and from the reticle storage force 16 6 that stores multiple types of reticles is performed via the door 17 1. Is Further, the casing 167 shields the space between the projection optical system PL and the wafer W from the outside atmosphere, and the wafer stage WS holding the wafer W via the wafer holder 180 inside the casing 167. The oblique incidence type autofocus sensor 181 for detecting the Z direction position (focus position) and tilt angle on the surface of the wafer W, the off-axis type alignment sensor 182, and the wafer stage WS are mounted. The surface plate 1 8 3 etc. are stored. The casing 167 is provided with a door 172 for loading / unloading the wafer W. The outside of the door 172 is contaminated with the atmosphere inside the casing 167. A gas replacement chamber 168 is provided to prevent this. The gas replacement chamber 168 is provided with a door 173, through which the wafer W is loaded into the apparatus and the wafer W is unloaded outside the apparatus. As the permeable gas (purge gas) filled in the space on each optical path, it is preferable to use nitrogen or a helium. Nitrogen acts as a light absorbing substance for light having a wavelength of about 150 nm or less, and helium can be used as a transparent gas for light having a wavelength of about 100 nm or less. The hemisphere has a thermal conductivity about 6 times that of nitrogen, and the amount of change in the refractive index due to a change in atmospheric pressure is about 1 Z8 of nitrogen. The optical system is excellent in stability of imaging characteristics and cooling performance. Note that helium may be used as a transmissive gas for the lens barrel of the projection optical system PL, and nitrogen may be used as a transmissive gas for other optical paths (for example, an illumination optical path from the laser light source 120 to the reticle R).
ここで、 ケ一シング 161, 162, 164, 167のそれぞれには、 給気弁 200, 201, 202, 203が設けられており、 これらの給気弁 200〜2 03は不図示のガス供給システムにおける給気管路に接続されている。 また、 ケ 一シング 161, 162, 164, 167のそれぞれには、 排気弁 210, 21 1, 212, 213が設けられており、 これらの排気弁 210〜213は、 それ ぞれガス供給システムにおける排気管路に接続されている。  Here, each of the casings 161, 162, 164, 167 is provided with an air supply valve 200, 201, 202, 203, and these air supply valves 200 to 203 are provided with a gas supply system (not shown). Is connected to the air supply line. Further, each of the casings 161, 162, 164, 167 is provided with an exhaust valve 210, 211, 212, 213. These exhaust valves 210 to 213 are respectively provided with exhaust gas in the gas supply system. Connected to pipeline.
同様に、 ガス置換室 165, 168にも給気弁 204, 205及ぶ排気弁 21 4, 215が設けられ、 投影光学系 PLの鏡筒 169にも給気弁 206及び排気 弁 216が設けられ、 これらはガス供給システムにおける給気管路あるいは排気 管路に接続されている。  Similarly, the gas replacement chambers 165 and 168 are also provided with exhaust valves 204 and 205 and exhaust valves 214 and 215, respectively, and the lens barrel 169 of the projection optical system PL is also provided with an air supply valve 206 and an exhaust valve 216. These are connected to the supply line or exhaust line in the gas supply system.
また、 ガス置換室 165, 168においては、 レチクル交換又はウェハ交時等 の際にガス置換を行う必要がある。 例えば、 レチクル交換の際には、 扉 171を 開いてレチクルストツ力 166からレチクルをガス置換室 165内に搬入し、 扉 171を閉めてガス置換室 165内を透過性ガスで満たし、 その後、 扉 170を 開いて、 レチクルをレチクルステージ R S上に載置する。 また、 ウェハ交換の際 には、 扉 173を開いてウェハをガス置換室 168内に搬入し、 この扉 173を 閉めてガス置換室 168内を透過性ガスで満たす。 その後、 扉 172を開いてゥ ェハをウェハホルダ 180上に載置する。 なお、 レチクル搬出、 ウェハ搬出の場 合はこの逆の手順である。また、ガス置換室 165, 168のガス置換の際には、 ガス置換室内の雰囲気を減圧した後に、給気弁から透過性ガスを供給しても良い。 また、 ケ一シング 164, 167においては、 ガス置換室 165, 168によ るガス置換を行った気体が混入する可能性があり、 このガス置換室 165, 16 8のガス中にはかなりの量の酸素などの吸光物質が混入している可能性が高い。 そのため、 ガス置換室 165, 168のガス置換と同じタイミングでガス置換を 行うことが望ましい。 また、 ケーシング及びガス置換室においては、 外部雰囲気 の圧力よりも高い圧力の透過性ガスを充填しておくことが好ましい。 Further, in the gas replacement chambers 165 and 168, it is necessary to perform gas replacement at the time of reticle exchange or wafer exchange. For example, when replacing the reticle, the door 171 is opened, the reticle is carried into the gas replacement chamber 165 from the reticle storage force 166, the door 171 is closed, and the gas replacement chamber 165 is filled with the permeable gas. Open and place the reticle on reticle stage RS. When replacing the wafer, the door 173 is opened, the wafer is carried into the gas replacement chamber 168, and the door 173 is closed to fill the gas replacement chamber 168 with the permeable gas. Thereafter, the door 172 is opened and the wafer is placed on the wafer holder 180. In the case of unloading the reticle and unloading the wafer, the procedure is reversed. When the gas in the gas replacement chambers 165 and 168 is replaced, the permeable gas may be supplied from the air supply valve after the pressure in the gas replacement chamber is reduced. Further, in the casings 164 and 167, there is a possibility that the gas which has undergone gas replacement in the gas replacement chambers 165 and 168 may be mixed in, and a considerable amount of gas is contained in the gas in the gas replacement chambers 165 and 168. It is highly possible that light-absorbing substances such as oxygen are mixed. Therefore, it is desirable to perform gas replacement at the same timing as gas replacement in the gas replacement chambers 165 and 168. In the casing and gas replacement chamber, It is preferable to fill with a permeable gas having a pressure higher than the pressure of the gas.
図 10は、 上述した露光光の光路上の各空間に、 パージガスとして上述した透 過性ガスを供給するガス供給システム 300の構成の一例を示している。 図 10 では、 透過性ガスの供給先として、 前述した露光光 I Lの光路上の空間のうち、 投影光学系 PLにおける鏡筒 169内部の空間 301、 レチクルステージ RSを 収納するケーシング 164内部の空間 302、 及びウェハステージ WSを収納す るケーシング 167内部の空間 303を代表的に示している。 本例では、 空間 3 01にはヘリウムガス (He) が供給され、 空間 302及び空間 303には窒素 ガス (N2) が供給される。 なお、 露光光の光路上の空間のうち、 その他の空間 にはへリウムガス及び窒素ガスのいずれかが適宜供給される。 FIG. 10 shows an example of a configuration of a gas supply system 300 that supplies the above-mentioned transparent gas as a purge gas to each space on the optical path of the above-mentioned exposure light. In FIG. 10, among the spaces on the optical path of the above-described exposure light IL, the space 301 inside the lens barrel 169 in the projection optical system PL and the space 302 inside the casing 164 for accommodating the reticle stage RS are shown as supply destinations of the permeable gas. The space 303 inside the casing 167 that houses the wafer stage WS is representatively shown. In this example, the space 301 is supplied with helium gas (He), and the spaces 302 and 303 are supplied with nitrogen gas (N 2 ). One of helium gas and nitrogen gas is appropriately supplied to the other spaces among the spaces on the optical path of the exposure light.
ガス供給システム 300は、 ヘリウムガス用の第 1ガス供給機構 310と、 窒 素ガス用の第 2ガス供給機構 311とを備える。 第 1ガス供給機構 310及び第 2ガス供給機構 31 1はそれぞれ、 ヘリウムガスもしくは窒素ガスを収容するガ スボンベなどのガス供給源 320, 321、 ガス供給源 320, 321から光路 上の各空間にガスを供給するガス供給装置 322, 323, 324、 光路上の各 空間からガスを含む気体を排出する排気装置 325, 326等を有している。 な お、 ガス供給システム 300は、 フィルタ、 ガスの温度を制御するための温調装 置 光路上の各空間内の吸光物質の濃度を計測する濃度計などを適宜備えるとよ い。  The gas supply system 300 includes a first gas supply mechanism 310 for helium gas and a second gas supply mechanism 311 for nitrogen gas. The first gas supply mechanism 310 and the second gas supply mechanism 311 are respectively provided with gas supply sources 320 and 321 such as gas cylinders containing helium gas or nitrogen gas, and gas from the gas supply sources 320 and 321 to each space on the optical path. Gas supply devices 322, 323, and 324 that supply gas, and exhaust devices 325 and 326 that discharge gas containing gas from each space on the optical path. Note that the gas supply system 300 may appropriately include a filter, a temperature controller for controlling the temperature of the gas, and a concentration meter for measuring the concentration of the light absorbing substance in each space on the optical path.
ガス供給装置 322, 323, 324は、 ガス供給源 320, 321から送ら れるガスを例えば加圧することにより、 そのガスを給気管路 330, 331, 3 32を介して各空間 301, 302, 303に供給する。 なお、 ガス供給源 32 0, 321から排出されるガスが十分に圧力を有している場合はガス供給装置を 省くことも可能である。 また、 給気管路 330, 331, 332に用いられる配 管としては、 洗浄されたステンレスなどの金属、 あるいは洗浄された四フッ化工 チレン、 テトラフルォロエチレンーテレフルォロ (アルキルビニルエーテル)、 ま たはテトラフルォロエチレン一へキサフルォ口プロべン共重合体等の各種ポリマ 一等、.ケミカルクリーンな素材のものが用いられ、 配管継手としては、 例えば禁 油処理されたステンレスなどの金属製、 あるいは各種ポリマー製のものが用いら れる。 The gas supply devices 322, 323, and 324, for example, pressurize the gas sent from the gas supply sources 320 and 321 and send the gas to the spaces 301, 302, and 303 via the air supply lines 330, 331, and 332. Supply. Note that when the gas discharged from the gas supply sources 320 and 321 has a sufficient pressure, the gas supply device can be omitted. The piping used for the air supply lines 330, 331, and 332 may be, for example, metal such as washed stainless steel, or washed tetraethylene, tetrafluoroethylene-terefluoro (alkyl vinyl ether), or the like. Various chemicals such as tetrafluoroethylene-hexafluoro-probe copolymer and other chemical-clean materials are used.Piping fittings are, for example, oil-free stainless steel. Made of metal or various polymers It is.
排気装置 3 2 5 , 3 2 6は、 例えば真空圧を発生させることにより、 排気管路 3 3 3, 3 3 4 , 3 3 5を介して空間 3 0 1, 3 0 2 , 3 0 3内の気体を排出す る。 各空間 3 0 1, 3 0 2 , 3 0 3から排出した気体は、 例えば装置外部の空間 に排出される。 なお、 各空間 3 0 1 , 3 0 2 , 3 0 3から排出した気体を、 精製 してパージガスとして再利用してもよい。 ガスの再利用により、 パージガス (本 例ではヘリウムガス) の消費量を低減することができる。  The exhaust devices 3 2 5 and 3 2 6 are, for example, by generating a vacuum pressure, so that the space 3 0 1, 3 0 2 and 3 0 3 Exhaust gas. The gas discharged from each space 301, 302, 303 is discharged, for example, to a space outside the device. The gas discharged from each of the spaces 301, 302, and 303 may be purified and reused as a purge gas. By reusing the gas, the consumption of the purge gas (helium gas in this example) can be reduced.
本例の露光装置 1 0 0では、 第 1ガス供給機構 3 1 0により、 投影光学系 P L の鏡筒 1 6 9内部の空間 3 0 1にヘリウムガス (H e ) が供給され、 第 2ガス供 給機構 3 1 1により、 レチクル Rが配置される空間 3 0 2と、 ウェハ Wが配置さ れる空間 3 0 3とに窒素ガス (N 2) が供給される。 すなわち、 投影光学系 P L 内の空間 3 0 2と、 その空間 3 0 2に隣接する空間 3 0 3、 3 0 4とで、 互いに 種類が異なるガスが供給される。 In the exposure apparatus 100 of this example, helium gas (He) is supplied to the space 301 inside the lens barrel 169 of the projection optical system PL by the first gas supply mechanism 310, and the second gas is supplied to the second gas supply mechanism 310. The supply mechanism 311 supplies a nitrogen gas (N 2 ) to the space 302 where the reticle R is arranged and the space 303 where the wafer W is arranged. That is, different types of gases are supplied to the space 302 in the projection optical system PL and the spaces 303 and 304 adjacent to the space 302.
また、 投影光学系 P Lを構成する複数の光学部材 (光学素子) のうち、 レチク ル R側の最上段に配置される光学素子 3 5 0、 及びウェハ W側の最下段に配置さ れる光学素子 3 5 1のそれぞれに対して、 上述した磁性流体を用いたシール構造 が用いられている。 すなわち、 光学素子 3 5 0は、 投影光学系 P Lの内部の空間 3 0 1とレチクル Rが配置される空間 3 0 2との境界に配置され、 先の図 1〜図 3に示したシール構造を有する支持部 3 5 5によって支持されている。 また、 光 学素子 3 5 1も同様に、 投影光学系 P Lの内部の空間 3 0 1とウェハ Wが配置さ れる空間 3 0 3との境界に配置され、 先の図 1〜図 3に示した磁性流体を用いた シール構造を有する支持部 3 5 5によって支持されている。  Further, of the plurality of optical members (optical elements) constituting the projection optical system PL, the optical element 350 disposed at the uppermost stage on the reticle R side and the optical element disposed at the lowermost stage on the wafer W side The seal structure using the above-described magnetic fluid is used for each of the above-mentioned structures. That is, the optical element 350 is arranged at the boundary between the space 301 inside the projection optical system PL and the space 302 where the reticle R is arranged, and the seal structure shown in FIGS. It is supported by the support portion 35 having the following. Similarly, the optical element 351 is also arranged at the boundary between the space 301 inside the projection optical system PL and the space 303 where the wafer W is arranged, and is shown in FIGS. It is supported by a support portion 355 having a sealing structure using a magnetic fluid.
本例の露光装置では、 投影光学系 P L内の空間 3 0 1とレチクル Rが配置され る空間 3 0 2との境界、 及び投影光学系 P L内の空間 3 0 1とウェハ Wが配置さ れる空間 3 0 3との境界のそれぞれが、 磁性流体を用いてシールされていること から、 それらの境界を介した気体のリークが防止される。 そのため、 高いシール 性能により、 露光光の光路上の各空間 3 0 1, 3 0 2 , 3 0 3が、 ヘリゥムガス または.窒素ガスに高純度かつ安定的に満たされる。 また、 シールに伴う光学素子 3 5 0 , 3 5 1の変形が小さく、 光学特性の向上が図られる。 ここで、 光学素子 3 5 0, 3 5 1は、 互いに平行な面を有する平行平板 (平行 平面板) からなる。 また、 光学素子 3 5 0 , 3 5 1の姿勢や位置を調整すること により、 露光光の局所的な収差 (回転対称でないディストーションなど) を補正 することが可能である。 本例では、 光学素子 3 5 0 , 3 5 1の支持部 3 5 5にお いて、 磁性流体を用いたシール構造が用いられていることから、 シ一ル部材であ る磁性流体と物体との間の摩擦抵抗が小さく、 また、 磁性流体層の形が容易に変 化する。 そのため、 光学素子 3 5 0 , 3 5 1の姿勢に対する制約が小さく、 光学 素子 3 5 0 , 3 5 1の位置や姿勢を容易に調整することができる。この点からも、 光学特性の向上が図られる。 In the exposure apparatus of this example, the boundary between the space 301 in the projection optical system PL and the space 302 in which the reticle R is arranged, and the space 301 in the projection optical system PL and the wafer W are arranged. Since each of the boundaries with the space 303 is sealed using a magnetic fluid, gas leakage through those boundaries is prevented. Therefore, due to the high sealing performance, each space 301, 302, 303 on the optical path of the exposure light is stably filled with a high-purity and high-purity nitrogen gas or a nitrogen gas. In addition, the deformation of the optical elements 350 and 351 due to the seal is small, and the optical characteristics are improved. Here, the optical elements 350 and 351 are formed of parallel flat plates (parallel plane plates) having surfaces parallel to each other. In addition, by adjusting the posture and position of the optical elements 350 and 351, it is possible to correct local aberration (such as distortion that is not rotationally symmetric) of the exposure light. In the present example, since the seal structure using a magnetic fluid is used in the support portion 355 of the optical elements 350 and 351, the magnetic fluid as the seal member and the object are not used. The frictional resistance between them is small, and the shape of the magnetic fluid layer changes easily. Therefore, restrictions on the postures of the optical elements 350 and 351 are small, and the positions and postures of the optical elements 350 and 351 can be easily adjusted. From this point, the optical characteristics can be improved.
このように本例の露光装置 1 0 0によれば、 露光光の光路上の空間における気 体のリークが防止されかつ、 光学的な性能の向上が図られることから、 露光精度 の向上を図ることができる。  As described above, according to the exposure apparatus 100 of the present example, gas leakage in the space on the optical path of the exposure light is prevented and the optical performance is improved, so that the exposure accuracy is improved. be able to.
なお、 上記例では、 投影光学系 P Lにおける露光光の入口及び出口に配置され る光学部材に対して、 磁性流体を用いたシール構造が用いられていたが、 照明光 学系 1 2 1における各ケ一シング (例えば、 ケ一シング 1 6 1, 1 6 2。 図 9参 照。)の露光光の入口または出口に配置される光学部材に対しても同様に、磁性流 体を用いたシール構造を用いてもよい。 この場合にも、 各ケーシング内の空間に おける気体のリークが防止されるとともに 光学特性の向上が図られる。  Note that, in the above example, a sealing structure using a magnetic fluid was used for the optical members disposed at the entrance and exit of the exposure light in the projection optical system PL. Similarly, for optical members placed at the entrance or exit of the exposure light for casing (for example, casings 161, 162; see Fig. 9), a seal using a magnetic fluid is used. A structure may be used. Also in this case, gas leakage in the space inside each casing is prevented, and the optical characteristics are improved.
以上、 添付図面を参照しながら本発明に係る好適な実施形態について説明した が、 本発明は係る例に限定されないことは言うまでもない。 当業者であれば、 特 許請求の範囲に記載された技術的思想の範疇内において、 各種の変更例または修 正例に想到し得ることは明らかであり、 それらについても当然に本発明の技術的 範囲に属するものと了解される。  As described above, the preferred embodiments according to the present invention have been described with reference to the accompanying drawings, but it is needless to say that the present invention is not limited to the examples. It is obvious that those skilled in the art can come up with various modified examples or modified examples within the scope of the technical idea described in the patent claims. It is understood that it belongs to the target range.
例えば、 磁性流体を用いたシール構造によって支持する光学部材としては、 平 行平板に限らず、 曲面レンズ、 ビ一ムスプリッタ、 ダイクロイツクミラ一など、 光学装置に用いられる様々な光学部材が適用可能である。また、その支持構造は、 上述した実施例で示した構造に限らず、 光学部材の設置スペースや光学部材の特 性ゃ 求精度に応じて適宜決定される。  For example, the optical members supported by the seal structure using a magnetic fluid are not limited to parallel flat plates, but various optical members used in optical devices, such as curved lenses, beam splitters, and dichroic mirrors, can be applied. It is. Further, the support structure is not limited to the structure shown in the above-described embodiment, and is appropriately determined according to the installation space of the optical member and the accuracy of requesting the characteristics of the optical member.
また、 光学部材と支持部との間に磁性流体層を設ける際、 光学部材の一面にお ける磁性流体層と接する部分に段差を設けてもよい。 この技術は、 光学的な有効 領域を有する光学面が曲面である場合などに光学部材を確実に支持する上で有利 である。 Also, when a magnetic fluid layer is provided between the optical member and the support portion, the magnetic fluid layer is provided on one surface of the optical member. A step may be provided at a portion in contact with the magnetic fluid layer. This technique is advantageous in reliably supporting the optical member when the optical surface having the optically effective area is a curved surface.
また、 磁性流体層を保持するための磁石に対してヨークを配置し、 磁力を向上 させる構成としてもよい。  Further, a configuration may be adopted in which a yoke is arranged for a magnet for holding the magnetic fluid layer to improve the magnetic force.
また、 上述したレンズ押さえ部材など、 支持部における光学部材に接する部分 の材質としては、 ケミカルクリーン対策が施された樹脂あるいは金属部材が好ま しく用いられる。 また、 インバ一材など、 熱歪みが生じにくい材質を用いること により、 熱の発生に伴う台座の変形を防ぎ、 光学素子での歪みの発生や、 光学素 子の姿勢の乱れを抑制することができる。  Further, as a material of a portion in contact with the optical member in the supporting portion, such as the above-described lens pressing member, a resin or a metal member which has been subjected to a chemical clean measure is preferably used. In addition, by using a material that does not easily generate thermal distortion, such as invar, it is possible to prevent the pedestal from being deformed due to the generation of heat, and to suppress the occurrence of distortion in the optical element and disturbance of the attitude of the optical element. it can.
また、 光路上から吸光物質を排除するには、 予め構造材料表面からの脱ガス量 を低減する処置を施しておくことが好ましい。例えば、 (1 )構造材料の表面積を 小さくする、 (2 ) 構造材料表面を機械研磨、 電解研磨、 パフ研磨、 化学研磨、 又 は G B B (Glass Beads Blasting) といった方法によって研磨し、 構造材料の表 面粗さを低減しておく、 ( 3 )超音波洗浄、クリーンドライエア等の流体の吹き付 け、 真空加熱脱ガス (ベ一キング) などの手法によって、 構造材料表面を洗浄す る、 ( 4 )炭化水素やハロゲン化物を含む電線被膜物質やシール部材(〇リング等)、 接着剤等を光路空間に可能な限り設置しない、 等の方法がある。  Further, in order to remove the light absorbing substance from the optical path, it is preferable to perform a treatment for reducing the amount of outgas from the surface of the structural material in advance. For example, (1) the surface area of the structural material is reduced, (2) the surface of the structural material is polished by a method such as mechanical polishing, electrolytic polishing, puff polishing, chemical polishing, or GBB (Glass Beads Blasting). (3) Clean the surface of the structural material by means such as ultrasonic cleaning, spraying a fluid such as clean dry air, or vacuum degassing (baking). ) There are methods such as minimizing the installation of electric wire coating materials containing hydrocarbons and halides, sealing members (such as o-rings), and adhesives in the optical path space as much as possible.
また、 照明系チャンバからウェハ操作部のカバーを構成する筐体 (筒状体等も 可) や、 透過性ガスを供給する配管は、 不純物ガス (脱ガス) の少ない材料、 例 えばステンレス鋼、 チタン合金、 セラミックス、 四フッ化工チレン、 テトラフル ォロエチレン—テルフルォロ (アルキルビニルエーテル)、又はテトラフルォロェ チレン一へキサフルォロプロペン共重合体等の各種ポリマーで形成することが望 ましい。  In addition, the casing that forms the cover of the wafer operation section from the illumination system chamber (a cylindrical body or the like is also possible), and the pipe that supplies the permeable gas is made of a material with low impurity gas (degassing), such as stainless steel. It is desirable to form with various polymers such as titanium alloy, ceramics, tetrafluoroethylene, tetrafluoroethylene-terfluoro (alkyl vinyl ether), or tetrafluoroethylene-hexafluoropropene copolymer.
また、 各筐体内の駆動機構 (レチクルブラインドやステージ等) などに電力を 供給するケーブルなども、 同様に上述した不純物ガス (脱ガス) の少ない材料で 被覆することが望ましい。  Similarly, it is desirable that the cables for supplying electric power to the drive mechanisms (reticle blinds, stages, etc.) in each housing are also covered with the above-mentioned material having a small amount of impurity gas (degassing).
なお、 本発明は走査露光型の投影露光装置のみならず、 一括露光型 (ステツパ 一型) の投影露光装置等にも適用できることは明らかである。 これらに備えられ る投影光学系は、 反射屈折系のみならず、 屈折系や反射系であってもよい。 さら に、 投影光学系の倍率は縮小倍率のみならず、 等倍や拡大であってもよい。 It is apparent that the present invention can be applied not only to a scanning exposure type projection exposure apparatus, but also to a batch exposure type (stepper type) projection exposure apparatus. Be prepared for these The projection optical system may be not only a catadioptric system but also a dioptric system or a reflective system. Further, the magnification of the projection optical system may be not only a reduction magnification but also an equal magnification or an enlargement.
また、 本発明はエネルギービームとして、 A r Fエキシマレーザ光 (波長 1 9 3 n m) を使用する場合や、 K r 2レーザ光 (波長 1 4 6 n m)、 A r 2レーザ光 (波長 1 2 6 n m)、 Y A Gレーザ等の高調波、又は半導体レーザの高調波等の波 長が 2 0 0 n m〜 1 0 0 n m程度の真空紫外光にも適用できる。 Further, as the present invention is an energy beam, A r F or when using the excimer laser beam (wavelength 1 9 3 nm), K r 2 laser beam (wavelength 1 4 6 nm), A r 2 laser beam (wavelength: 1 2 6 nm), and can be applied to vacuum ultraviolet light having a wavelength of about 200 nm to 100 nm, such as a harmonic of a YAG laser or a harmonic of a semiconductor laser.
近年、 焦点深度を広く確保するために液浸法を用いた露光装置が提案されてい る。 この液浸法とは、 投影光学系の下面と基板表面との間を、 流体として所定の 液体 (水や有機溶媒等) で満たして液浸領域を形成し、 液体中での露光光の波長 が空気中の l Z n ( nは液体の屈折率で通常 1 - 2〜1 . 6程度) になることを 利用して解像度を向上すると共に、 焦点深度を約 n倍に拡大するというものであ る。 上述した液浸領域は、 液体供給口及び液体回収口を有するノズル部材を使つ て液体の供給及.び回収を行っているが、ノズル部材と投影光学系との間の隙間や、 投影光学系に液体が侵入すると、 投影光学系を構成する光学部材を保持する筐体 (鏡筒) に鐯びが生じる可能性がある。 そこで、 ノズル部材と投影光学系との間 の隙間に、 本実施形態例で説明した流体シール機構を設けても良い。  In recent years, an exposure apparatus using an immersion method has been proposed to secure a wide depth of focus. In the immersion method, the space between the lower surface of the projection optical system and the substrate surface is filled with a predetermined liquid (water, organic solvent, etc.) as a fluid to form an immersion area, and the wavelength of the exposure light in the liquid is adjusted. Is used to improve the resolution by using lZn in the air (n is the refractive index of the liquid, usually about 1-2 to 1.6), and to increase the depth of focus by about n times. is there. The above-mentioned liquid immersion area supplies and recovers liquid using a nozzle member having a liquid supply port and a liquid recovery port. However, a gap between the nozzle member and the projection optical system and a projection optical system are provided. If a liquid enters the system, the housing (barrel) that holds the optical members that make up the projection optical system may crack. Therefore, the fluid seal mechanism described in the present embodiment may be provided in the gap between the nozzle member and the projection optical system.
液浸法を用いた露光装置では、 投影光学系の下面とウェハ Wとの間に液体が供 給されることになる。 すなわち、 各実施形態で説明した光学装置の外部空間 1 3 が液体雰囲気になる。 このように、 光学装置の外部空間 1 3に液体が供給されて 液体雰囲気になったとしても、 各実施形態で説明したように、 光学部材 1 4と筐 体 1 2との間に流体シール機構を設けることによって、 筐体 1 2内に液体が侵入 したり、 筐体 1 2内から所定の気体がリークし、 リークした所定の気体が液体中 に侵入したりすることを防止することができる。  In the exposure apparatus using the immersion method, a liquid is supplied between the lower surface of the projection optical system and the wafer W. That is, the external space 13 of the optical device described in each embodiment becomes a liquid atmosphere. As described above, even when the liquid is supplied to the external space 13 of the optical device and a liquid atmosphere is formed, as described in each embodiment, the fluid seal mechanism is provided between the optical member 14 and the housing 12. By providing the liquid, it is possible to prevent the liquid from entering the housing 12, prevent a predetermined gas from leaking from the housing 12, and prevent the leaked predetermined gas from entering the liquid. .
なお、 レーザ光源 1 2 0が F 2レーザを発振する場合、 この F 2レーザ光は水を 透過しないので、 液体としては、 2レ一ザ光を透過可能な、 例えば過フッ化ポ リエ一テル (P F P E) やフッ素系オイル等のフッ素系流体を用いればよい。 こ の場合、 投影光学系の筐体のうち、 液体と接触する部分には、 例えばフッ素を含 む極性の小さい分子構造の物質で薄膜を形成することで親液化処理する。 また、 液体としては、 その他にも、 露光光 E Lに対する透過性があってできるだけ屈折 率が高く、 投影光学系 P Lや基板 P表面に塗布されているフォトレジストに対し て安定なもの (例えば、 セダー油) を用いることも可能である。 In the case where the laser light source 1 2 0 oscillates F 2 laser, the F 2 laser beam is not transmitted through water, as the liquid, that can transmit the 2, single laser light, for example perfluorinated capo Rie one ether (PFPE) or a fluorinated fluid such as a fluorinated oil may be used. In this case, a portion of the housing of the projection optical system that comes into contact with the liquid is subjected to lyophilic treatment by forming a thin film of a substance having a molecular structure with a small polarity, such as fluorine. In addition, as a liquid, it has the transparency to the exposure light EL and refracts as much as possible. It is also possible to use a material that has a high efficiency and is stable against the photoresist applied to the projection optical system PL and the surface of the substrate P (for example, cedar oil).
また、 レ一ザ光源 1 2 0が A r Fエキシマレ一ザ光 (波長 1 9 3 n m) を発振 する場合には、 純水 (水) を用いることができる。 純水 (水) の屈折率 nは、 ほ ぼ 1 . 4 4と言われており、 A r Fエキシマレ一ザ光の場合、 基板 P上では 1 Z n、 すなわち、 約 1 3 4 n mに短波長化されて高い解像度が得られる。 さらに、 焦点深度は、空気中に比べて約 n倍、すなわち、約 1 . 4 4倍に拡大されるため、 空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、 投影光 学系 P Lの開口数をより増加させることができ、 この点でも解像度が向上する。 上述したように液浸法を用いた場合には、 投影光学系の開口数 NAが、 0 . 9 〜1 . 3になることもある。 このように投影光学系の開口数 N Aが大きくなる場 合には、 従来から露光光として用いられているランダム偏光光では、 偏光効果に よって結像性能が悪化することもあるので、 偏光照明を用いるのが望ましい。 そ の場合、 マスク (レチクル) のライン 'アンド 'スペースパターンのラインパ夕 —ンの長手方向に合わせた直線偏光照明を行い、 マスク (レチクル) のパターン からは、 S偏光成分 (T E偏光成分)、 すなわち、 ラインパターンの長手方向に沿 つた偏光成分の回折光が多く射出されるようにするとよい。 投影光学系 P Lと基 板 P表面に塗布されたレジス卜との間が液体で満たされている場合、 投影光学系 P Lと基板 P表面に塗布されたレジス卜との間が空気 (気体) で満たされている 場合に比べて、 コントラストの向上に寄与する S偏光成分 (T E偏光成分) の回 折光のレジスト表面での透過率が高くなるため、 投影光学系の開口数 N Aが 1 . 0を超えるような場合でも高い結像性能を得ることができる。 また、 位相シフ卜 マスクや、 特開平 6— 1 8 8 1 6 9公報に開示されているようなラインパターン の長手方向に合わせた斜入射照明法 (特にダイポール照明法) 等を適宜組み合わ せると更に効果的である。  Further, when the laser light source 120 oscillates an ArF excimer laser light (wavelength: 193 nm), pure water (water) can be used. The refractive index n of pure water (water) is said to be about 1.44, and in the case of ArF excimer laser light, it is as short as 1Zn on the substrate P, that is, about 134 nm. High resolution is obtained by wavelength conversion. Furthermore, since the depth of focus is expanded to about n times, that is, about 1.44 times as compared to that in the air, when it is sufficient to secure the same depth of focus as when using it in the air, projection The numerical aperture of the optical PL can be further increased, and the resolution is also improved in this regard. When the liquid immersion method is used as described above, the numerical aperture NA of the projection optical system may be 0.9 to 1.3. When the numerical aperture NA of the projection optical system is increased as described above, the imaging effect may be degraded by the polarization effect of the randomly polarized light conventionally used as the exposure light. It is desirable to use. In that case, linearly polarized illumination is performed according to the longitudinal direction of the line pattern of the mask (reticle) line 'and' space pattern. From the mask (reticle) pattern, the S-polarized component (TE polarized component), That is, it is preferable that a large amount of diffracted light of the polarization component along the longitudinal direction of the line pattern is emitted. When the space between the projection optical system PL and the resist applied to the surface of the substrate P is filled with liquid, the space between the projection optical system PL and the resist applied to the surface of the substrate P is air (gas). Since the transmittance of the S-polarized light component (TE-polarized light component), which contributes to the improvement of the contrast, on the resist surface is higher than that in the case where it is satisfied, the numerical aperture NA of the projection optical system is set to 1.0. Even in such cases, high imaging performance can be obtained. In addition, a phase shift mask, an oblique incidence illumination method (particularly, a dipole illumination method) adapted to the longitudinal direction of a line pattern as disclosed in Japanese Patent Application Laid-Open No. 6-188169, etc. may be appropriately combined. More effective.
また、 例えば A r Fエキシマレーザを露光光とし、 1 / 4程度の縮小倍率の投 影光学系を使って、 微細のライン 'アンド 'スペースパターン (例えば 2 5〜5 0 n m程度のライン 'アンド 'スペース) をウェハ W上に露光するような場合、 マスク構造 (例えばパ夕一ンの微細度やクロムの厚み) によっては、 Wave guide 効果によりマスクが偏光板として作用し、 コントラストを低下させる P偏光成分 (T E偏光成分) の回折光より S偏光成分 (T E偏光成分) の回折光が多くマス クから射出されるようになるので、 上述の直線偏光照明を用いることが望ましい が、 ランダム偏光光でマスクを照明しても、 投影光学系の開口数 N Aが 0 . 9〜 1 . 3のように大きい場合でも高い解像性能を得ることができる。 また、 マスク 上の極微細なライン ·アンド ·スペースパターンをウェハ上に露光するような場 合、 Wire grid効果により P偏光成分 (TM偏光成分) が S偏光成分 (T E偏光 成分) よりも大きくなる可能性もあるが、 例えば、 A r Fエキシマレ一ザを露光 光とし、 1 Z 4程度の縮小倍率の投影光学系を使って、 2 5 n mより大きいライ ン ·アンド 'スペースパターンをウェハ上に露光するような場合には、 S偏光成 分 (T E偏光成分) の回折光が P偏光成分 (TM偏光成分) の回折光よりも多く マスク Mから射出されるので、 投影光学系 P Lの開口数 N Aが 0 . 9〜 1 . 3の ように大きい場合でも高い解像性能を得ることができる。 For example, using an ArF excimer laser as the exposure light, and using a projection optical system with a reduction ratio of about 1/4, a fine line 'and' space pattern (for example, a line of about 25 to 50 nm and ' When exposing the 'space' on the wafer W, depending on the mask structure (eg, fineness of chromium or thickness of chromium), the Wave guide Due to this effect, the mask acts as a polarizing plate, and more S-polarized component (TE polarized component) diffracted light is emitted from the mask than P-polarized component (TE polarized component) diffracted light, which lowers contrast. Although it is desirable to use the linearly polarized illumination described above, even if the mask is illuminated with randomly polarized light, high resolution performance can be obtained even when the numerical aperture NA of the projection optical system is as large as 0.9 to 1.3. be able to. When a very fine line-and-space pattern on a mask is exposed on a wafer, the P-polarized component (TM-polarized component) becomes larger than the S-polarized component (TE-polarized component) due to the Wire grid effect. For example, an ArF excimer laser is used as the exposure light, and a line-and-space pattern larger than 25 nm is formed on the wafer using a projection optical system with a reduction ratio of about 1Z4. In the case of exposure, the diffracted light of the S-polarized component (TE-polarized component) is emitted from the mask M more than the diffracted light of the P-polarized component (TM-polarized component), so the numerical aperture of the projection optical system PL Even when NA is as large as 0.9 to 1.3, high resolution performance can be obtained.
更に、 マスク (レチクル) のラインパターンの長手方向に合わせた直線偏光照 明 (S偏光照明) だけでなく、 特開平 6— 5 3 1 2 0号公報に開示されているよ うに、 光軸を中心とした円の接線 (周) 方向に直線偏光する偏光照明法と斜入射 照明法との組み合わせも効果的である。 特に、 マスク (レチクル) のパターンが 所定の一方向に延びるラインパターンだけでなく、 複数の異なる方向に延びるラ インパターンが混在する場合には、 同じく特開平 6— 5 3 1 2 0号公報に開示さ れているように、 光軸を中心とした円の接線方向に直線偏光する偏光照明法と輪 帯照明法とを併用することによって、 投影光学系の開口数 N Aが大きい場合でも 高レ ^結像性能を得ることができる。  Further, in addition to linearly polarized light (S-polarized light) adapted to the longitudinal direction of the line pattern of the mask (reticle), as described in Japanese Patent Application Laid-Open No. 6-53210, the optical axis is adjusted. It is also effective to use a combination of a polarized illumination method that linearly polarizes light in the tangential (circumferential) direction of the center circle and an oblique illumination method. In particular, when a mask (reticle) pattern includes not only a line pattern extending in a predetermined direction but also line patterns extending in a plurality of different directions, the same applies to Japanese Patent Application Laid-Open No. 6-53120. As disclosed, the combined use of the polarized illumination method and the annular illumination method, which linearly polarizes in the tangential direction of a circle centered on the optical axis, makes it possible to achieve high resolution even when the numerical aperture NA of the projection optical system is large. ^ Imaging performance can be obtained.
本実施形態では、 投影光学系 P Lの先端に光学素子が取り付けられており、 こ のレンズにより投影光学系 P Lの光学特性、例えば収差 (球面収差、 コマ収差等) の調整を行うことができる。  In the present embodiment, an optical element is attached to the tip of the projection optical system PL, and this lens can be used to adjust the optical characteristics of the projection optical system PL, for example, aberrations (such as spherical aberration and coma aberration).
また、 液浸法を用いた露光装置を一括露光型に適用する場合には、 例えば、 投 影光学系として、 倍率 1 / 8の屈折系とし、 ウェハ W上で少なくとも 2つのパタ ーンを.部分的に重ねて転写するステップ'アンド'スティツチ方式にしてもよい。 また、露光装置の用途としては半導体製造用の露光装置に限定されることなく、 例えば、 角型のガラスプレートに液晶表示素子パターンを露光する液晶用の露光 装置や、 薄膜磁気へッドを製造するための露光装置にも広く適当できる。 Also, when applying an exposure apparatus using the immersion method to a batch exposure type, for example, use a projection optical system as a refraction system with a magnification of 1/8 and at least two patterns on the wafer W. A step-and-stitch method of transferring images with partial overlap may be used. Further, the application of the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing, For example, the present invention can be widely applied to an exposure apparatus for a liquid crystal for exposing a liquid crystal display element pattern to a square glass plate and an exposure apparatus for manufacturing a thin film magnetic head.
また、 ウェハステージゃレチクルステージにリニアモータを用いる場合は、 ェ ァベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用 いた磁気浮上型のどちちを用いてもいい。 また、 ステージは、 ガイドに沿って移 動するタイプでもいいし、 ガイドを設けないガイドレスタイプでもよい。  When a linear motor is used for the wafer stage / reticle stage, either an air levitation type using an eye bearing or a magnetic levitation type using Lorentz force or reactance force may be used. The stage may be a type that moves along a guide or a guideless type that does not have a guide.
また、 ステージの駆動装置として平面モータを用いる場合、 磁石ユニット (永 久磁石) と電機子ユニットのいずれか一方をステージに接続し、 磁石ユニットと 電機子ユニットの他方をステージの移動面側 (ベース) に設ければよい。  When a planar motor is used as the stage driving device, one of the magnet unit (permanent magnet) and the armature unit is connected to the stage, and the other of the magnet unit and the armature unit is connected to the stage moving surface (base). ).
また、 ウェハステージの移動により発生する反力は、 特開平 8— 1 6 6 4 7 5 号公報に記載されているように、 フレーム部材を用いて機械的に床 (大地) に逃 がしてもよい。 本発明は、 このような構造を備えた露光装置においても適用可能 Cあ 。  The reaction force generated by the movement of the wafer stage is mechanically released to the floor (ground) using a frame member, as described in JP-A-8-166475. Is also good. The present invention is also applicable to an exposure apparatus having such a structure.
また、 レチクルステージの移動により発生する反力は、 特開平 8 — 3 3 0 2 2 4号公報に記載されているように、 フレーム部材を用いて機械的に床 (大地) に 逃がしてもよい。 本発明は、 このような構造を備えた露光装置においても適用可 能である。  Also, the reaction force generated by the movement of the reticle stage may be mechanically released to the floor (ground) using a frame member as described in JP-A-8-330224. . The present invention is also applicable to an exposure apparatus having such a structure.
以上のように、 本願実施形態の露光装置は、 本願特許請求の範囲に挙げられた 各構成要素を含む各種サブシステムを、 所定の機械的精度、 電気的精度、. 光学的 精度を保つように、 組み立てることで製造される。 これら各種精度を確保するた めに、 この組み立ての前後には、 各種光学系については光学的精度を達成するた めの調整、 各種機械系については機械的精度を達成するための調整、 各種電気系 については電気的精度を達成するための調整が行われる。 各種サブシステムから 露光装置への組み立て工程は、 各種サブシステム相互の、 機械的接続、 電気回路 の配線接続、 気圧回路の配管接続等が含まれる。 この各種サブシステムから露光 装置への組み立て工程の前に、 各サブシステム個々の組み立て工程があることは いうまでもない。 各種サブシステムの露光装置への組み立て工程が終了したら、 総合調整が行われ、 露光装置全体としての各種精度が確保される。 なお、 露光装 置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望 ましい。 As described above, the exposure apparatus of the embodiment of the present invention performs various subsystems including each component listed in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical The system will be adjusted to achieve electrical accuracy. The process of assembling the exposure apparatus from the various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure various precisions of the entire exposure apparatus. It is desirable to manufacture the exposure equipment in a clean room where temperature and cleanliness are controlled. Good.
そして、上記のように露光が行われたウェハが、現像工程、パターン形成工程、 ボンディング工程、 パッケージング等を経ることによって、 半導体素子等の電子 デバイスが製造される。 産業上の利用の可能性  Then, the wafer exposed as described above undergoes a developing step, a pattern forming step, a bonding step, packaging, and the like, whereby an electronic device such as a semiconductor element is manufactured. Industrial potential
本発明は、 光学装置であって、 エネルギービームの光路上に形成され、 かつ所 定のガスが供給される空間と、 前記空間と他の空間との境界に配置される光学部 材と、 前記光学部材の周縁部に対向する対向面を有し、 該対向面と前記光学部材 の周縁部との間に隙間を形成した状態で、 前記光学部材の周縁部を支持する支持 部と、 前記光学部材の周縁部と前記支持部が有する対向面との間に配置される流 体シール機構とを備えるので、 光学部材の光学特性を低下させることなく、 所定 の気体が供給される空間と外部空間との間で、 流体 (気体や液体) の侵入やリー クを防止することができる。  The present invention relates to an optical device, comprising: a space formed on an optical path of an energy beam and supplied with a predetermined gas; an optical member arranged at a boundary between the space and another space; A supporting portion that has a facing surface facing the peripheral portion of the optical member, and that supports the peripheral portion of the optical member in a state where a gap is formed between the facing surface and the peripheral portion of the optical member; Since a fluid seal mechanism is provided between the peripheral portion of the member and the facing surface of the support portion, the space to which a predetermined gas is supplied and the external space can be provided without deteriorating the optical characteristics of the optical member. With this, fluid (gas or liquid) can be prevented from entering or leaking.

Claims

請求の範囲 The scope of the claims
1 . 光学装置であって、 1. An optical device,
エネルギービームの光路上に形成され、 かつ所定の気体が供給される空間と、 前記空間と他の空間との境界に配置される光学部材と、  A space formed on the optical path of the energy beam, and supplied with a predetermined gas; and an optical member disposed at a boundary between the space and another space;
前記光学部材の周縁部に対向する対向面を有し、 該対向面と前記光学部材の周 縁部との間に隙間を形成した状態で、前記光学部材の周縁部を支持する支持部と、 前記光学部材の周縁部と前記支持部が有する対向面との間に配置される流体シ —ル機構と、 を有する。  A support portion that has a facing surface facing the peripheral portion of the optical member, and supports the peripheral portion of the optical member in a state where a gap is formed between the facing surface and the peripheral portion of the optical member; A fluid seal mechanism disposed between a peripheral portion of the optical member and an opposing surface of the support portion.
2 . 請求項 1記載の光学装置であって、 2. The optical device according to claim 1, wherein
前記流体シール機構は、 前記光学部材の周縁部と前記対向面との間に設けられ る磁性流体層と、  The fluid seal mechanism includes: a magnetic fluid layer provided between a peripheral portion of the optical member and the facing surface;
前記磁性流体層を所定の位置に保持する磁石と、 を備える。  And a magnet for holding the magnetic fluid layer at a predetermined position.
3 . 請求項 2記載の光学装置であって、 3. The optical device according to claim 2, wherein
前記磁性流体層は、 フッ素系のベース液が用いられる。  For the magnetic fluid layer, a fluorine-based base liquid is used.
4 . 請求項 2記載の光学装置であって、 4. The optical device according to claim 2, wherein
前記光学部材は、 光学的な有効領域を有する光学面と、 該光学面と同一面内の 周縁面と、 前記光学部材の側面とを含み、  The optical member includes: an optical surface having an optical effective area; a peripheral surface in the same plane as the optical surface; and a side surface of the optical member.
前記磁性流体層は、 前記光学部材の周縁面と、 前記光学部材の側面との少なく とも一方に接するように配置される。  The magnetic fluid layer is disposed so as to contact at least one of a peripheral surface of the optical member and a side surface of the optical member.
5 . 請求項 4記載の光学装置であって、 5. The optical device according to claim 4, wherein
前記磁性流体層は、 前記光学部材の周縁部における周縁面に接するように配置 され、.  The magnetic fluid layer is disposed so as to be in contact with a peripheral surface at a peripheral portion of the optical member.
前記周縁面は、 前記磁性流体層と接する部分が他の部分と異なる表面特性に処 理される。 The peripheral surface has a portion in contact with the magnetic fluid layer has a different surface characteristic from other portions. Is managed.
6 . 請求項 4記載の光学装置であって、 6. The optical device according to claim 4, wherein
前記磁性流体層は、 前記光学部材の側面に接するように配置され、  The magnetic fluid layer is disposed so as to contact a side surface of the optical member,
前記側面は、 前記磁性流体層と接する部分が他の部分と異なる表面特性に処理 される。  The side surface of the side surface is processed to have a surface characteristic different from that of another portion in contact with the magnetic fluid layer.
7 . 請求項 2記載の光学装置であって、 7. The optical device according to claim 2, wherein
前記光学部材の周縁部は、 互いに平行な面を有し、  The periphery of the optical member has surfaces parallel to each other,
前記支持部は、 前記互いに平行な面の一方に接触し、 前記光学部材の周縁部を ほぼ等間隔で支持する 3つの座と、  The support portion is in contact with one of the surfaces parallel to each other, and supports three peripheral portions of the optical member at substantially equal intervals; and
前記 3つの座のそれぞれに対応する位置に配置され、 前記互いに平行な面の他 方と接触し、 かつ前記光学部材の周縁部を前記 3つの座とともに挟み込む 3つの 押さえ部材とを有し、  Three pressing members arranged at positions corresponding to the three seats, respectively, in contact with the other surfaces parallel to each other, and sandwiching a periphery of the optical member together with the three seats,
前記磁性流体層は、 前記互いに平行な面の少なくとも一方に接する。  The magnetic fluid layer contacts at least one of the parallel surfaces.
8 . 請求項 2記載の光学装置であって、 8. The optical device according to claim 2, wherein
前記磁石は 前記対向面の一部に埋め込まれる。  The magnet is embedded in a part of the facing surface.
9 . 請求項 2記載の光学装置であって、 9. The optical device according to claim 2, wherein
前記磁石は、 前記対向面上に凸状に配置されている。  The magnet is arranged in a convex shape on the facing surface.
1 0 . 請求項 1記載の光学装置であって、 10. The optical device according to claim 1, wherein
前記他の空間には、 前記所定の気体とは異なる気体が供給される。  A gas different from the predetermined gas is supplied to the other space.
1 1 . 露光装置であって、 1 1. An exposure apparatus,
パ夕一ンが形成されたマスクをエネルギービームにより照明する照明系と、 前 記マスクのパターンを基板上に転写する投影光学系との少なくとも一方を、 請求 項 1記載の光学装置で構成する。 An optical system according to claim 1, wherein at least one of an illumination system that illuminates the mask on which the pattern is formed with an energy beam and a projection optical system that transfers the pattern of the mask onto a substrate is provided.
1 2 . 請求項 1 1記載の露光装置であって、 12. The exposure apparatus according to claim 11, wherein
前記光学部材は、 前記投影光学系を構成する複数の光学素子のうち、 前記基板 に対向する光学素子であり、  The optical member is an optical element facing the substrate, among a plurality of optical elements constituting the projection optical system,
前記空間は、 前記投影光学系内の空間であり、  The space is a space in the projection optical system,
前記他の空間は、 前記光学素子と前記基板との間の空間である。  The other space is a space between the optical element and the substrate.
1 3 . 請求項 1 2記載の露光装置であって、 13. The exposure apparatus according to claim 12, wherein
前記投影光学系内の空間に第 1のガスを供給する第 1のガス供給機構と、 前記光学素子と前記基板との間の空間に、 前記第 1のガスとは種類が異なる第 2のガスを供給する第 2のガス供給機構と、 を有する。  A first gas supply mechanism for supplying a first gas to a space in the projection optical system; and a second gas different in type from the first gas in a space between the optical element and the substrate. And a second gas supply mechanism for supplying.
1 4. 請求項 1 1記載の露光装置であって、 1 4. The exposure apparatus according to claim 11, wherein
前記光学部材は、 前記投影光学系を構成する複数の光学素子のうち、 前記マス ク側に配置される光学素子であり、  The optical member is an optical element arranged on the mask side among a plurality of optical elements constituting the projection optical system,
前記空間は、 前記投影光学系内の空間であり、  The space is a space in the projection optical system,
前記他の空間は、 前記光学素子と前記マスクとの間の空間である。  The other space is a space between the optical element and the mask.
1 5 . 請求項 1 4記載の露光装置であって、 15. The exposure apparatus according to claim 14, wherein
前記投影光学系内の空間に第 1のガスを供給する第 1のガス供給機構と、 前記光学素子と前記マスクとの間の空間に、 前記第 1のガスとは種類が異なる 第 2のガスを供給する第 2のガス供給機構と、 を有する。  A first gas supply mechanism for supplying a first gas to a space in the projection optical system; and a space between the optical element and the mask, a second gas different in type from the first gas. And a second gas supply mechanism for supplying.
1 6 . 請求項 1 2記載の露光装置であって、 16. The exposure apparatus according to claim 12, wherein
前記他の空間は、 液体雰囲気である。  The other space is a liquid atmosphere.
1 7 . デバイス製造方法であって、 1 7. A device manufacturing method,
請求項 1 1記載の露光装置を用いて、 マスク上に形成されたデバイスパ夕一ン を基板上に転写する工程を含む。 And transferring the device pattern formed on the mask onto the substrate using the exposure apparatus according to claim 11.
18. デバイス製造方法であって、 18. A device manufacturing method,
請求項 16記載の露光装置を用いて、 マスク上に形成されたデバイスパターン を基板上に転写する工程を含む。  And transferring the device pattern formed on the mask onto the substrate by using the exposure apparatus according to claim 16.
PCT/JP2004/003190 2003-03-12 2004-03-11 Optical device, exposure apparatus and method for manufacturing device WO2004081999A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005503568A JPWO2004081999A1 (en) 2003-03-12 2004-03-11 Optical apparatus, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-67143 2003-03-12
JP2003067143 2003-03-12

Publications (1)

Publication Number Publication Date
WO2004081999A1 true WO2004081999A1 (en) 2004-09-23

Family

ID=32984556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003190 WO2004081999A1 (en) 2003-03-12 2004-03-11 Optical device, exposure apparatus and method for manufacturing device

Country Status (3)

Country Link
JP (1) JPWO2004081999A1 (en)
TW (1) TW200500815A (en)
WO (1) WO2004081999A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173295A (en) * 2004-12-15 2006-06-29 Jsr Corp Immersion exposure apparatus and immersion exposure method
JP2007329453A (en) * 2006-04-07 2007-12-20 Carl Zeiss Smt Ag Holding device for optical element
JP2010093298A (en) * 2003-04-11 2010-04-22 Nikon Corp Method of cleaning optical element in immersion lithography
JP2013038420A (en) * 2011-08-10 2013-02-21 Asml Netherlands Bv Substrate table assembly, immersion lithographic apparatus and device manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221074A (en) * 1988-07-07 1990-01-24 Fujitsu Ltd Air tight vibration-proof connection mechanism
JPH06168866A (en) * 1992-11-27 1994-06-14 Canon Inc Projection aligner immersed in liquid
JPH10144602A (en) * 1996-11-14 1998-05-29 Nikon Corp Reflecfing mirror holder and projection aligner
JP2001035773A (en) * 1999-07-19 2001-02-09 Nikon Corp Illumination optical apparatus and aligner
JP2001060506A (en) * 1999-08-24 2001-03-06 Nok Corp Shaft seal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221074A (en) * 1988-07-07 1990-01-24 Fujitsu Ltd Air tight vibration-proof connection mechanism
JPH06168866A (en) * 1992-11-27 1994-06-14 Canon Inc Projection aligner immersed in liquid
JPH10144602A (en) * 1996-11-14 1998-05-29 Nikon Corp Reflecfing mirror holder and projection aligner
JP2001035773A (en) * 1999-07-19 2001-02-09 Nikon Corp Illumination optical apparatus and aligner
JP2001060506A (en) * 1999-08-24 2001-03-06 Nok Corp Shaft seal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093298A (en) * 2003-04-11 2010-04-22 Nikon Corp Method of cleaning optical element in immersion lithography
JP2006173295A (en) * 2004-12-15 2006-06-29 Jsr Corp Immersion exposure apparatus and immersion exposure method
JP2007329453A (en) * 2006-04-07 2007-12-20 Carl Zeiss Smt Ag Holding device for optical element
JP2013038420A (en) * 2011-08-10 2013-02-21 Asml Netherlands Bv Substrate table assembly, immersion lithographic apparatus and device manufacturing method
KR101473280B1 (en) 2011-08-10 2014-12-16 에이에스엠엘 네델란즈 비.브이. A substrate table assembly, an immersion lithographic apparatus and a device manufacturing method
US9280063B2 (en) 2011-08-10 2016-03-08 Asml Netherlands B.V. Substrate table assembly, an immersion lithographic apparatus and a device manufacturing method

Also Published As

Publication number Publication date
TW200500815A (en) 2005-01-01
JPWO2004081999A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
US6970228B1 (en) Exposure method and system
US7098991B2 (en) Exposure method, exposure apparatus, and method for manufacturing device
US20080106718A1 (en) Exposure Apparatus and Device Manufacturing Method
TW544754B (en) Exposure method and apparatus
JP4081813B2 (en) Optical apparatus, exposure apparatus, and device manufacturing method
JP2008160102A (en) Exposure apparatus, exposure method, and device production method
WO2000048237A1 (en) Exposure method and apparatus
JP4265257B2 (en) Exposure apparatus, exposure method, and film structure
WO2004081999A1 (en) Optical device, exposure apparatus and method for manufacturing device
JP4258840B2 (en) Support apparatus, optical apparatus and exposure apparatus, and device manufacturing method
KR20090034736A (en) Exposure apparatus, exposure method, and device manufacturing method
WO2007083686A1 (en) Exposure apparatus
JP2003257826A (en) Optical device and aligner
JP2003257822A (en) Optical device and aligner
JP2003257821A (en) Optical device and aligner
JP2005064045A (en) Optical device, aligner, and method of manufacturing device
JP2004095654A (en) Aligner and device manufacturing method
JP2005166922A (en) Backing device, optical device, aligner and method for manufacturing device
TW571345B (en) Exposure device and manufacturing method for the same
JP4325371B2 (en) Exposure apparatus and device manufacturing method
JP2004241478A (en) Exposure method and apparatus, and device manufacturing method
JP2002260998A (en) Method and system for exposure and method of manufacturing device
JP2004177885A (en) Holding device, optical apparatus, and stepper
JP2005079294A (en) Exposure device, exposure system, and method for manufacturing device
JP2003257820A (en) Gas feed system, aligner, and filter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005503568

Country of ref document: JP

122 Ep: pct application non-entry in european phase