WO2003035306A1 - Procede et dispositif pour optimiser la capacite de refroidissement d'une coquille de coulee continue pour metaux liquides, notamment acier liquide - Google Patents

Procede et dispositif pour optimiser la capacite de refroidissement d'une coquille de coulee continue pour metaux liquides, notamment acier liquide Download PDF

Info

Publication number
WO2003035306A1
WO2003035306A1 PCT/EP2002/011481 EP0211481W WO03035306A1 WO 2003035306 A1 WO2003035306 A1 WO 2003035306A1 EP 0211481 W EP0211481 W EP 0211481W WO 03035306 A1 WO03035306 A1 WO 03035306A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
coolant
continuous casting
cross
sectional area
Prior art date
Application number
PCT/EP2002/011481
Other languages
German (de)
English (en)
Other versions
WO2003035306A8 (fr
Inventor
Werner Rahmfeld
Erwin Wosch
Fritz-Peter Pleschiutschnigg
Stephan Feldhaus
Lothar Parschat
Uwe Kopfstedt
Wolfgang Mossner
Original Assignee
Sms Demag Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10201502A external-priority patent/DE10201502C1/de
Application filed by Sms Demag Aktiengesellschaft filed Critical Sms Demag Aktiengesellschaft
Priority to EP02801890A priority Critical patent/EP1436106A2/fr
Priority to US10/493,080 priority patent/US20040256080A1/en
Publication of WO2003035306A1 publication Critical patent/WO2003035306A1/fr
Publication of WO2003035306A8 publication Critical patent/WO2003035306A8/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds

Definitions

  • the invention relates to a method and a device for optimizing the cooling capacity of a continuous casting mold for liquid metals, in particular for liquid steel, by comparing the thermal load over the height of the continuous casting mold, in which the coolant in each case through a cross-sectional area of a large number of coolant channels or Coolant bores, which run approximately parallel to the casting strand, is guided, the coolant cross-sectional areas between the mold inlet and the mold outlet being designed differently.
  • the continuous casting mold referred to at the beginning as a device is known from DE 41 27 333 C2.
  • molten steel is poured into a continuous casting mold, the mold walls of which are provided with continuously cylindrical cooling bores extending from top to bottom and connected to a cooling water circuit, the flow cross-sectional areas of which are partially reduced by displacement rods.
  • the cooling water is guided through the coolant holes at maximum speed in the area of the highest temperature load.
  • the coolant is only directed from the bottom to the top.
  • the object of the invention is to control the copper plate skin temperatures on the hot side and the cold side so that both the recrystallization temperature of the cold-rolled copper on the hot side with the greatest possible cooling intensity and with uniform cooling at the height ranges of the continuous casting mold is not exceeded and a possible evaporation of the coolant on the cold side is avoided.
  • the object is achieved according to the invention in that the flow rate of the coolant, which is passed from top to bottom in the continuous casting mold, is set higher in the coolant channel or in the coolant bore in the upper region of the continuous casting mold by a smaller cross-sectional area than in the lower region of the continuous casting mold, in which the flow velocity is set lower by a larger cross-sectional area and / or in that the covering with coolant is set by a cross-sectional shape which can vary from top to bottom.
  • the advantage is a greater coverage by coolant in the hot area and a lower heat dissipation below the hot area.
  • the inlet cross-sectional shape of the coolant channel can be square or rectangular and the continuation in each case from an elongated rectangle up to a square, or the circular inlet cross-sectional shape can be designed analogously.
  • a heat flow load of the continuous casting mold of at most 8 MW / m 2 and coolant speeds of 4 m / s to 30 m / s are maintained.
  • a maximum thermal load on the mold plates on their hot side is less than 550 ° C. and that the heat transfer coefficient is set up to a maximum of 250,000 W / m 2 K.
  • Another measure influencing the thermal values is that the continuous casting mold is oscillated.
  • the casting strand is lubricated with casting powder slag in the continuous casting mold.
  • Another measure that supports the heat transfer is that the surface of the coolant channels is provided with an increasing roughness from the mold inlet to the mold outlet.
  • the object is achieved according to the invention in that the coolant channels or the coolant holes each have a relatively small coolant channel input cross-sectional area and a larger one -Exit- cross-sectional area from the mold inlet to the mold outlet are formed with the greatest coverage by the coolant at the mold entrance (here under "cover” the ratio is s Coolant channel width / coolant channel distance, ie the effective phase boundary layer copper / coolant understood).
  • the casting speed can be adjusted in the continuous casting direction up to approximately 12 m / min.
  • the invention is also improved in that a thermal load on the continuous casting mold of at most 8 MW / m 2 , a coolant speed of 4 to 30 m / s and a maximum local thermal load on the copper plates on the side facing the liquid metal with a heat transfer coefficient • by Max. 250,000 W / m 2 • K are provided.
  • a further embodiment provides that the coolant channels with a rectangular cross section are designed to increase in their channel depth and / or channel width from the mold inlet to the mold outlet.
  • An improvement also provides that the cross-sectional area of the coolant channels can be changed by means of baffles via a control or regulation. As a result, the flow of the coolant in the rigid form of the coolant channels can be supplemented by a further function.
  • the roughness is formed from dimples of 0.5 to 3 mm in diameter and 0.2 to 2 mm in depth.
  • the distribution or the number of dimples from the mold exit to the mold entrance is provided to increase.
  • the heat transfer is intensified according to further features in that the roughness can be changed by chemical or mechanical measures.
  • the roughness can be changed during the casting process.
  • Fig. 1 A (each from left to right) a vertical section through the current continuous casting mold, in the upper part two horizontal partial sections for coolant channels and coolant holes in the upper mold area, in the lower area two horizontal partial sections for coolant channels and coolant holes in the lower mold area, the far right Temperature curve in the copper plates,
  • Fig. 1 B analogous to Fig. 1A (each from left to right) a vertical section through the continuous casting mold, in the upper part three horizontal partial sections for coolant channels and coolant holes in the upper mold area, in the lower part three horizontal partial sections for coolant channels and coolant holes in the lower mold area , on the far right is a comparison of the previous surface temperature curve between the previous surface temperature curve and the new surface temperature curve,
  • FIG. 2A shows a diagram of the heat transfer coefficient •, the maximum thermal load and the pressure loss in the coolant
  • Fig. 2B is a diagram of the heat transfer coefficient •, the pressure loss • P over the coolant speed
  • 2C shows a diagram for the decrease in the maximum thermal load with increasing coolant speed.
  • a continuous casting mold 1 which consists of copper plates 2 each with a large number of coolant channels 3 or coolant bores 4 with or without displacement rods 4.1 through which the coolant passes 5 is directed.
  • the thermal load in the mold level 8 or the maximum heat flow 10 ("J") can now be up to 8 MW / m2, especially at high casting speeds of about 12 m / min and therefore requires special cooling measures to keep the copper plate skin temperatures on the hot side 11.1 and the cold side 1 1.2 in such a way that the recrystallization temperature of the cold-rolled copper on the hot side 11.1 is not exceeded and a possible evaporation of the coolant 5 on the cold side 11.2 is avoided.
  • the cooling capacity or the cooling effect is determined by mechanical engineering elements, such as the copper plate thickness 12, the coolant channels 3 or the coolant bores 4 with or without displacement rods 4.1, the distance 13 (A) of the coolant channels 3 or the coolant bores 4 from one another, the cross-sectional area 14 (F ) the coolant channels 3 or the coolant holes 4 and the length of the coolant channels 3 or the coolant bores 4, which corresponds to the mold length 15 (L).
  • the cooling channel cross-sectional areas 14 between the mold inlet 6 and the mold outlet 7 can currently be regarded as constant.
  • the process-related influencing variables for the cooling capacity of the continuous casting mold 1 are the coolant speed 16, which is an essential measure of the heat transfer coefficient 17 (•), measured in W / im 2 • K.
  • FIGS. 2A, 2B and 2C The relationships are shown in FIGS. 2A, 2B and 2C in diagrams.
  • the aim of the invention is to minimize the pressure loss 19 (P) during the control of the maximum thermal load 11 (T cu-m a x) both on the hot side 11.1 and the cold side 11.2 and to make the thermal mold load 22 and to achieve the thermal profile 23 over the mold length 15.
  • P pressure loss
  • T cu-m a x maximum thermal load 11
  • the heat transfer coefficient 17 (•) and the maximum thermal load 11 of the copper plate 2 are dependent on the mechanical engineering and process engineering factors, such as
  • the casting strand 9 is cast according to FIG. 1B at a casting speed 9.1 of approximately 12 m / min, for example in the casting format of a thin slab with a thickness between 40 mm and 100 mm.
  • Casting powder 1.2 and an oscillation 1.1 can be used for casting.
  • the casting process loads the continuous casting mold 1 with a maximum heat flow 10 (“J”) in the casting level 8 of 2 to 8 MW / m 2 and leads to a maximum thermal load 11 in the casting level 8 both on the hot side 11.1, which faces the molten steel , as well as on the cold side 11.2, which faces the coolant 5.
  • J maximum heat flow 10
  • the process leads to a thermal mold load 22 and a heat flow profile 23 over the mold length 15 (L).
  • the coolant channel cross-sectional areas 14 (F) in the coolant channels 3 or coolant bores 4 with or without displacement rod 4.1 are constant in the prior art (FIG. 1A) over the mold length 15 and thus lead to a constant coolant speed 16 (V) and a defined coolant pressure drop 19 (• P), which is assumed to be "1".
  • FIG. 1B shows the temperature profile of the surface temperature that has changed compared to FIG. 1A, the total amount of heat removed remaining the same.
  • the roughness 21 (R) can also optionally be raised functionally from the mold outlet 7 to the mold inlet 6 over the mold length 15.
  • the roughness 21 can also be produced by dimples 24 of a maximum of 1-3 mm in diameter and 1-2 mm in depth, which lead to cavitation effects of the flowing coolant 5 (for example the water) at the phase boundary copper (cold side 11.2) and coolant 5 and thus lead to an increased heat transfer coefficient 17 (•), caused by forced convection in the area of the laminar "Nusselt" boundary layer, in which the energy transport takes place via heat conduction.
  • the cross-sectional area 14 of the coolant channels 3 or the coolant bores 4 can be enlarged over the mold length 15 in the case of the coolant channels 3 via the channel depth 3.1 and / or the channel width 3.2.
  • the cross-sectional enlargement can be realized by increasing the diameter of the coolant bore 4 and / or reducing the diameter of the displacement rod 4.1.
  • guide plates 3.3 of the coolant channels 3 are mechanically or manually, for example on a changed cross-sectional area 14 of the coolant channels 3 via the mold height 15, e.g. online, process-controlled by means of a control or regulation 3.3.1 of the position of the guide plates 3.3.
  • the thermal mold load 22 can be reduced over the mold length 15 by means of a uniform thermal profile 22.1, as shown in a diagram in the right part of FIG. 1B.
  • the diagram 2A shows the heat transfer coefficient 17 (•) measured in W / m 2 K, the pressure loss 19 (• P) and the local maximum thermal load 11 of the copper plate 2 in the mold level 8 as a function of the roughness 21 of the surface of the coolant channels 3 or the coolant bores 4 with a constant copper plate thickness 12, coolant speed 16 (V in m / s), heat flow 10 (J), cross-sectional area 14 of the coolant channel 3 or the coolant bore 4, the mold length 15 and a distance 13 of the coolant channels 3 or coolant bores 4 from one another.
  • Diagram 2B shows the heat transfer coefficient 17 (•) and the pressure loss 19 (• P) over the coolant speed 16 (V) or the coolant quantity 20 (Q) with increasing roughness 21 with constant cross section 14 (F), mold length 15 and distance 13 (A).
  • 2C shows the decrease in the maximum thermal load 11 in the casting level 8 of the copper plate 2 with increasing coolant speed 16 (V), coolant quantity 20 (Q) and roughness 21 (R) with constant heat flow 10 (“J”), in the heat flow Profile 23 over the mold length 15, the copper plate thickness 12, the coolant channel cross-sectional area 14 (F) and the distance 13 (A) of the coolant channels 3 or the coolant holes 4 are shown.
  • the partial image in FIG. 2C makes it clear that the local maximum thermal load 11 in the mold level 8 decreases sharply with increasing roughness 21 (R), the coolant speed 16 (V) or the coolant quantity 20 (Q).
  • the principle of the invention can also be applied to strip casting devices which are operated at a casting speed of up to 100 m / min. All the measures applied to the level of the continuous casting mold 1 are transferred to the scope of the twin rollers.
  • Coolant hole 4.1 Displacement tube, rod, round body

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

L'invention concerne un procédé permettant d'optimiser la capacité de refroidissement d'une coquille de coulée continue (1) pour métaux liquides, notamment pour acier liquide, par homogénéisation de la sollicitation thermique (22) sur la hauteur de la coquille de coulée continue (1). Selon ce procédé, l'agent de refroidissement (5) est guidé à travers une surface de section transversale d'un grand nombre de canaux d'agent de refroidissement (3) ou de trous pour agent de refroidissement (4), approximativement parallèles à la barre de coulée (9). Les surfaces de section transversale pour agent de refroidissement sont conçues de manière différente entre l'entrée de la coquille (6) et la sortie de la coquille (7). La sollicitation thermique (22) est homogénéisée, du fait que la vitesse d'écoulement de l'agent de refroidissement (5) guidé du haut vers le bas dans la coquille de coulée continue, est ajusté plus haut, par une surface de section transversale plus petite, dans le canal pour agent de refroidissement (3) ou dans l'alésage pour agent de refroidissement (4), que dans la zone inférieure de la coquille de coulée continue (1), dans laquelle la vitesse d'écoulement est ajustée plus bas, par une surface de section transversale plus grande et/ou du fait que la couverture de l'agent de refroidissement est ajustée dans chaque cas par une forme de section transversale variant de haut en bas.
PCT/EP2002/011481 2001-10-18 2002-10-15 Procede et dispositif pour optimiser la capacite de refroidissement d'une coquille de coulee continue pour metaux liquides, notamment acier liquide WO2003035306A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02801890A EP1436106A2 (fr) 2001-10-18 2002-10-15 Procede et dispositif pour optimiser la capacite de refroidissement d'une coquille de coulee continue pour metaux liquides, notamment acier liquide
US10/493,080 US20040256080A1 (en) 2001-10-18 2002-10-15 Method and device for optimizing the cooling capacity of a continuous casting mold for liquid metals, particularly for liquid steel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10150919.7 2001-10-18
DE10150919 2001-10-18
DE10201502.3 2002-01-17
DE10201502A DE10201502C1 (de) 2001-10-18 2002-01-17 Verfahren und Vorrichtung zum Optimieren der Kühlkapazität einer Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl

Publications (2)

Publication Number Publication Date
WO2003035306A1 true WO2003035306A1 (fr) 2003-05-01
WO2003035306A8 WO2003035306A8 (fr) 2003-10-09

Family

ID=26010383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/011481 WO2003035306A1 (fr) 2001-10-18 2002-10-15 Procede et dispositif pour optimiser la capacite de refroidissement d'une coquille de coulee continue pour metaux liquides, notamment acier liquide

Country Status (3)

Country Link
US (1) US20040256080A1 (fr)
EP (1) EP1436106A2 (fr)
WO (1) WO2003035306A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010015399A1 (fr) * 2008-08-06 2010-02-11 Sms Siemag Ag Lingotière de coulée continue pour métal en fusion, en particulier pour acier en fusion
WO2017186702A1 (fr) * 2016-04-27 2017-11-02 Primetals Technologies Austria GmbH Implantation de guides optiques dans une paroi latérale d'une lingotière de coulée continue

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093562A1 (fr) * 2010-01-29 2011-08-04 주식회사 풍산 Plaque de lingotière pour la coulée, ensemble de plaque de lingotière et moule
IT1403036B1 (it) * 2010-11-25 2013-09-27 Danieli Off Mecc Cristallizzatore per colata continua
JP6274226B2 (ja) * 2014-01-31 2018-02-07 新日鐵住金株式会社 連続鋳造における鋳造状態の判定方法、装置及びプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133940A (ja) * 1983-01-21 1984-08-01 Mishima Kosan Co Ltd 連続鋳造用鋳型
GB2177331A (en) * 1985-06-24 1987-01-21 Outokumpu Oy Continuous casting mould
JPH0342144A (ja) * 1989-07-06 1991-02-22 Kawasaki Steel Corp 連続鋳造用鋳型の冷却方法およびその鋳型
FR2661120A3 (fr) * 1990-04-20 1991-10-25 Siderurgie Fse Inst Rech Lingotiere de coulee continue de metal liquide equipee de moyens de controle de la solidification du metal liquide.
US5117895A (en) * 1987-12-23 1992-06-02 Voest-Alpine Industrieanlagenbau Gesellschaft M.B.H. Continuous casting mold arrangement
DE4127333A1 (de) * 1991-08-19 1993-02-25 Schloemann Siemag Ag Stahlstranggiesskokille
EP0730923A1 (fr) * 1995-03-08 1996-09-11 KM Europa Metal Aktiengesellschaft Coquille pour la coulée continue de métaux
EP1103323A2 (fr) * 1999-11-29 2001-05-30 SMS Demag AG Procédé et dispositif pour la coulée continue d'acier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2131307A (en) * 1935-10-25 1938-09-27 Behrendt Gerhard Chill for continuous string casting
ATE195449T1 (de) * 1994-06-06 2000-09-15 Danieli Off Mecc Verfahren zum kontrollieren der verformung von seitenwänden einer kokille sowie stranggiesskokille
DE19831998A1 (de) * 1998-07-16 2000-01-20 Schloemann Siemag Ag Stranggießkokille
US6374903B1 (en) * 2000-09-11 2002-04-23 Ag Industries, Inc. System and process for optimizing cooling in continuous casting mold

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133940A (ja) * 1983-01-21 1984-08-01 Mishima Kosan Co Ltd 連続鋳造用鋳型
GB2177331A (en) * 1985-06-24 1987-01-21 Outokumpu Oy Continuous casting mould
US5117895A (en) * 1987-12-23 1992-06-02 Voest-Alpine Industrieanlagenbau Gesellschaft M.B.H. Continuous casting mold arrangement
JPH0342144A (ja) * 1989-07-06 1991-02-22 Kawasaki Steel Corp 連続鋳造用鋳型の冷却方法およびその鋳型
FR2661120A3 (fr) * 1990-04-20 1991-10-25 Siderurgie Fse Inst Rech Lingotiere de coulee continue de metal liquide equipee de moyens de controle de la solidification du metal liquide.
DE4127333A1 (de) * 1991-08-19 1993-02-25 Schloemann Siemag Ag Stahlstranggiesskokille
EP0730923A1 (fr) * 1995-03-08 1996-09-11 KM Europa Metal Aktiengesellschaft Coquille pour la coulée continue de métaux
EP1103323A2 (fr) * 1999-11-29 2001-05-30 SMS Demag AG Procédé et dispositif pour la coulée continue d'acier

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 262 (M - 341) 30 November 1984 (1984-11-30) *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 178 (M - 1110) 8 May 1991 (1991-05-08) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010015399A1 (fr) * 2008-08-06 2010-02-11 Sms Siemag Ag Lingotière de coulée continue pour métal en fusion, en particulier pour acier en fusion
WO2017186702A1 (fr) * 2016-04-27 2017-11-02 Primetals Technologies Austria GmbH Implantation de guides optiques dans une paroi latérale d'une lingotière de coulée continue

Also Published As

Publication number Publication date
US20040256080A1 (en) 2004-12-23
WO2003035306A8 (fr) 2003-10-09
EP1436106A2 (fr) 2004-07-14

Similar Documents

Publication Publication Date Title
EP1937429A1 (fr) Procede et dispositif de coulee continue
EP3074150B1 (fr) Procédé de traitement thermique et dispositif de trempe pour refroidir une tôle métallique en forme de plaque ou de bande
WO2001003867A1 (fr) Procede et dispositif de fabrication d'un brin metallique
DE19649073C2 (de) Vorrichtung zur Abkühlung von Strangpreßprofilen
AT412194B (de) Verbesserte kokille für eine stranggiessanlage sowie verfahren
DE19722877C2 (de) Flüssigkeitsgekühlte Stranggießkokille
EP1436106A2 (fr) Procede et dispositif pour optimiser la capacite de refroidissement d'une coquille de coulee continue pour metaux liquides, notamment acier liquide
WO2003092931A1 (fr) Adaptation du transfert de chaleur sur des coquilles pour coulee continue, en particulier au niveau de la surface du bain
EP2025432A1 (fr) Procédé destiné à la production de produits allongés en acier par coulage en continu et laminage
EP1103323A2 (fr) Procédé et dispositif pour la coulée continue d'acier
DE10201502C1 (de) Verfahren und Vorrichtung zum Optimieren der Kühlkapazität einer Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl
WO2002016061A1 (fr) Coquille refroidie pour coulee continue permettant la coulee de metal
EP1827735B1 (fr) Procede et dispositif de coulee en bande de metaux
DE19903929A1 (de) Kokillenplatte einer Kokille mit trichterförmigem Eingießbereich zum Stranggießen von Metall
DE19831998A1 (de) Stranggießkokille
DE102008015323A1 (de) Verteilervorrichtung für Strangguss
EP0875304B1 (fr) Procédé et agrégat de refroidissement pour refroidir des produits de laminage chauds, notamment des bandes larges laminées à chaud
DE10138988C2 (de) Gekühlte Stranggießkokille zum Gießen von Metall
DE10304543B3 (de) Verfahren und Einrichtung zum Stranggießen von flüssigen Metallen, insbesondere von flüssigen Stahlwerkstoffen
DE10119354B4 (de) Verfahren und Vorrichtung zur Vergleichmäßigung der Kokillenhauttemperatur über die Stranggießkokillenhöhe
DE3141269A1 (de) "kuehlverfahren und kuehlvorrichtung fuer langgestrecktes, heisses metallgut, insbesondere fuer stranggegossene knueppel- bzw. bloomstraenge"
DE10253735A1 (de) Intensivierung des Wärmeüberganges bei Stranggießkokillen
DE4234939A1 (de) Kanal zum Transport und zur Kühlung von Schmelzen
DE2240795C3 (de) Verfahren und Vorrichtung zum Stranggießen von Bändern aus Kupfer, Kupferlegierungen oder Zinkaluminiumlegierungen
DE19838331A1 (de) Verfahren zum Messen und Regeln von Temperatur und Menge von Kühlwasser für wasserkühlbare Kokillenwände einer Stranggießkokille

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002801890

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10493080

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002801890

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2002801890

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP