WO2003032566A1 - Procede de communication, systeme de communication et appareil de communication - Google Patents

Procede de communication, systeme de communication et appareil de communication Download PDF

Info

Publication number
WO2003032566A1
WO2003032566A1 PCT/JP2001/008741 JP0108741W WO03032566A1 WO 2003032566 A1 WO2003032566 A1 WO 2003032566A1 JP 0108741 W JP0108741 W JP 0108741W WO 03032566 A1 WO03032566 A1 WO 03032566A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
receiving
retransmission
station
frame
Prior art date
Application number
PCT/JP2001/008741
Other languages
English (en)
French (fr)
Inventor
Noriyuki Fukui
Ryouichi Fujie
Masaaki Kusano
Akihiro Shibuya
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US10/486,785 priority Critical patent/US7096027B2/en
Priority to EP01974678A priority patent/EP1434379A1/en
Priority to JP2003535404A priority patent/JPWO2003032566A1/ja
Priority to PCT/JP2001/008741 priority patent/WO2003032566A1/ja
Publication of WO2003032566A1 publication Critical patent/WO2003032566A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1809Selective-repeat protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining

Definitions

  • the present invention relates to a communication method, a communication system, and a communication device employing an ARQ (Automatic Repeat request) technology. More specifically, the present invention relates to an optimal channel allocation in 1 (transmitting side) to n (receiving side) communication. The present invention relates to a communication method, a communication system and a communication device for realizing (scheduling method).
  • ARQ Automatic Repeat request
  • Fig. 11 shows a communication system for realizing the conventional communication method, where 101 is a base station, 102-1, 102-2, 102-3, ..., 102-n are mobile stations. is there.
  • 101 is a base station
  • 102-1, 102-2, 102-3, ..., 102-n are mobile stations. is there.
  • the scheduler is a function (scheduling) that assigns n pairs of communications to m channels.
  • channels (1), (2) and (3) are assigned to mobile stations 102-1, 102-2 and 102-3, respectively.
  • the mobile stations 102-4, 102-5, and 102-6 are assigned channel (1), channel (2), and channel (3), respectively. I guess.
  • time t (3) and time t (4) the same assignment as at time t (1) and t (2) is performed, respectively. That is, in FIG. 12 (a), channels are sequentially allocated to each mobile station regardless of the transmission request data amount (traffic amount) for each mobile station. However, channels are not allocated to mobile stations that have no data to transmit.
  • Fig. 12 (b) at time t (1) and time t (2), priority is given to the mobile station 102-2 and mobile station 102-4 that have a large amount of traffic.
  • time t (3) and time t (4) channels are allocated not only to mobile stations 102-2, 102-4, but also to other mobile stations with a small traffic volume.
  • the traffic volume for each mobile station changes between times t (1) and t (4), scheduling is performed again according to the traffic volume.
  • the quality of a communication line may be degraded due to noise or interference from communication with other stations. For example, the quality may not be improved even when error correction technology is used.
  • retransmission is performed by using ARQ technology to retransmit data units (hereinafter, referred to as frames) that could not be recovered by error correction.
  • the ARQ includes SR (Selective Repeat), GBN (Go Back N), and SAW (Stop and Wait).
  • FIG. 13 is a diagram for explaining SR-ARQ of one-to-one communication.
  • the receiving station that detects the error of frame "2" transmits a retransmission request for frame "2", and stores frames "3" to "7" that were correctly received in the buffer. Then, when the retransmitted frame "2" is correctly received, it is transmitted to the upper layer in order.
  • the receiving station reports the reception status periodically. Here, the latest number of consecutively received frames is reported. In the following, this report will be referred to as “reception notification”, and the dotted arrow in FIG. 13 indicates this.
  • reception notification In the first reception notification, frame number "1" is reported because frame “2" is waiting for retransmission.
  • frame number "8” In the second acknowledgment, frame number "8" is reported because retransmitted frame “2" and frames "3" to "7" were correctly received, and new frame "8” was also correctly received. I do.
  • FIG. 14 is a diagram for explaining BGN-ARQ of one-to-one communication.
  • everything after the frame where the transmission error occurred is retransmitted.
  • the receiving station After transmitting the retransmission request for frame "2", the receiving station discards all received frames until the retransmitted frame "2" can be received correctly. On the other hand, the transmitting station retransmits all frames after the error frame "2".
  • the receiving station performs acknowledgment in the same way as the above SR-ARQ, and reports the frame number "1" in the first acknowledgment and the frame number "3" in the second acknowledgment.
  • FIG. 15 is a diagram for explaining SAW-ARQ of one-to-one communication.
  • transmission is performed one frame at a time, and the next frame is transmitted after receiving notification of success (ACK) or failure (NAK) of reception for that frame.
  • NAK is synonymous with retransmission request.
  • FIG. 16 is a diagram showing the configuration of the base station shown in FIG. 11, where 1 1 1—1, 1 1 1—2,... .., 1 12—n is a transmission buffer, and 1 13 is a scheduler.
  • Each transmission control unit and the corresponding transmission buffer exist independently for each mobile station (102_ :! to 102-n) that performs communication.
  • the base station 101 transmits data sent from the upper layer. Store in buffer.
  • each transmission control unit notifies the scheduler of the transmission request and the amount of data to be transmitted.
  • the scheduler 113 preferentially assigns a channel to a mobile station in a high-quality line state based on the transmission request notified from each transmission control unit, the amount of data to be transmitted, and the line quality data of each communication. Assign. At this time, the line quality data to be referred It is the average value of the results of measurements performed multiple times by the mobile station.
  • each mobile station when each mobile station receives a reception notification or an ACK notification from the mobile station, it is necessary to retransmit data corresponding to the frame number described in the notification and data before that frame number in the future. Erase from transmission buffer.
  • the conventional transmission control unit may adopt general SR, BGN, and SAW as ARQ technology, or use S AW as in 3GPP HSDPA (High Speed Data Packet Access) technology.
  • Nch (N channel) parallel with N units — even adopting S AW.
  • the transmission efficiency is poor due to the time when the line is not used. Therefore, in the Nch-S AW, the same communication is divided into N channels and each transmission is independent. I do. For example, in Fig. 1-0, frame "0" is transmitted using the first channel, and in 3-1, frame "0" is transmitted using the third channel.
  • FIG. 18 is a diagram for explaining a problem of the conventional technology.
  • GBN-one ARQ is adopted.
  • SR-ARQ, S AW-ARQ, or Nch-SAW-ARQ are the same as SR-ARQ, and therefore description thereof is omitted.
  • the transmitting station is transmitting data to receiving station A.
  • the receiving station A measures the line quality several times and repeatedly reports the average value at a predetermined timing.
  • the dashed line arrow indicates the line quality from the receiving station A.
  • the line quality deteriorates after receiving frame "A6”, and a "bad quality” notification is given in the second notification in the figure.
  • the transmitting station receives the NAK for the frame "A6". After that, the channel is allocated to the receiving station A, and then "A 6", "A7", Retransmit "A8" to receiving station A. And from receiving station A At the stage of receiving the notification of “bad quality”, the channel assignment to the receiving station A is stopped, the channel is assigned to the receiving station B, and then the frames “BO” and “B 1” are transmitted.
  • the receiving station A notifies the transmitting station of the averaging result of the channel quality measurement value, so a time difference occurs until the transmitting station receives the averaging result. I do. In other words, there is a difference in the line quality between the time when the receiving station A performs the measurement and the time when the transmitting station receives the notification. Regardless, there was a problem that channel assignment to receiving station A was continued.
  • the present invention has been made in view of the above, and it is an object of the present invention to reduce the useless communication channel allocation due to the time difference of the line quality notification, and to assign a channel to a receiving station having a good line quality. It is an object of the present invention to provide a communication method, a communication system, and a communication device that improve the overall throughput. Disclosure of the invention
  • 1 (transmitting station) to n (receiving station) communication employing ARQ (Automatic Repeat request) technology is performed, and at least one of the transmitting stations is connected to the transmitting station.
  • ARQ Automatic Repeat request
  • S AW Start and Wait
  • a communication channel is allocated to another receiving station by utilizing the fact that the transmission frame is reduced by the SAW, and a channel assignment step of giving priority to communication with the other receiving station; and Special
  • the communication with the receiving station of the retransmission request source is returned to the continuous transmission, and the second switching is performed again to give priority to the communication with the receiving station.
  • the transmitting station when the transmitting station receives a retransmission request due to line quality deterioration from the receiving station, it changes the operation mode to the SAW mode and retransmits one frame with poor line quality. It was decided to. As a result, the transmitting station preferentially allocates channels to receiving stations with good channel quality without monitoring the channel quality data from the receiving station. Also, upon receiving the retransmission request, the channel assignment to the communication is immediately stopped. This avoids the "state in which channels are unnecessarily allocated despite poor line quality" that occurred in the prior art.
  • the transmitting station when the reception of a retransmission frame fails and there is no error in the frame after packet combining, the transmitting station receives the ACK for notifying the reception success even if the ACK is received. If the S AW mode is continued and the reception of a single retransmission frame succeeds, the mode is switched from the S AW mode to the continuous transmission mode when an ACK is received. As a result, many channels are allocated to communication with a truly good line condition.
  • the first switching step includes: The communication established with the receiving station is switched to GBN (Go Back N) which is one of the ARQ techniques.
  • the transmitting station decides to continue the continuous transmission of frames. This avoids the situation where no receiving station is using the channel and makes the best use of the channel.
  • the first switching step includes: The communication established with the receiving station is switched to GBN (Go Back N), which is one of the ARQ techniques.
  • GBN Go Back N
  • the transmitting station continues continuous transmission of frames even when a retransmission request is received. .
  • the frame is immediately transmitted continuously to maintain the transmission delay.
  • 1 (transmitting station) to ⁇ (receiving station) communication is performed, and the transmitting station allocates a communication channel to at least one of the receiving stations, and transmits a frame ( Stopping a communication established with the receiving station of the retransmission request source when a retransmission request is received from one of the communicating receiving stations in a state where continuous transmission (data unit) is performed.
  • the transmitting station when a retransmission request is received, the transmitting station completely stops the transmission request to the receiving station in which the receiving error has occurred, and uses the channel for transmission to another receiving station. did. In addition, the transmitting station checks the notification of the line quality transmitted using the control channel, and decides whether to resume the continuous transmission of frames. This prevents useless channel allocation when the line quality deteriorates to the point where a reception error occurs even if packet combining is used.
  • the communication system adopts the ARQ technology.
  • Station and n (receiver) communication can be established.
  • the transmitter assigns a communication channel to at least one of the receivers, and performs continuous transmission of frames (data units).
  • frames data units.
  • the communication with the other receiving station is prioritized, and when the first response signal indicating the normal reception of the specific frame after retransmission can be confirmed, the communication with the receiving station of the retransmission request source is returned to the continuous transmission. Again with the receiving station Is given priority.
  • the transmitting station when the transmitting station receives a retransmission request due to line quality deterioration from the receiving station, it changes the operation mode to the SAW mode, and retransmits one frame with poor line quality. Configuration.
  • the transmitting station preferentially allocates channels to receiving stations with good channel quality without monitoring the channel quality data from the receiving station. Also, the channel assignment to the communication is immediately stopped upon receiving the retransmission request. This avoids the "state in which channels are unnecessarily allocated despite poor line quality" that occurred in the prior art.
  • ⁇ information indicating normal reception of the retransmission frame '' is added.
  • the first response signal is transmitted, and the specific frame after the retransmission again becomes a reception error and there is no error in the frame after the bucket combination, ⁇ information indicating a reception error of the retransmission frame '' is transmitted.
  • the second response signal added is transmitted, and when the transmitting station receives the second response signal as a response to the retransmission, the communication by the SAW is continued.
  • the configuration is such that the mode is changed from the Saw mode to the continuous transmission mode when the ACK is received. As a result, many channels are allocated to communication with a truly good line condition.
  • the transmitting station receives the retransmission request, and if the number of receiving stations requesting channel use is smaller than a specific reference value, the transmitting station includes:
  • the communication established between the ARQ technology is switched to GBN (Go Back N), which is one of the ARQ techniques.
  • the transmitting station when the number of receiving stations requesting the use of the line is smaller than the reference value, and the receiving station receives the retransmission request, the transmitting station continues to continuously transmit frames. This avoids the situation where no receiving station is using the channel and makes the best use of the channel.
  • the transmitting station in the case where the transmitting station receives the retransmission request, and there is a request for maintaining a transmission delay as a service quality from an upper layer, the transmitting station communicates with the receiving station of the retransmission request source.
  • the communication established between the ARQ technology is switched to GBN (Go Back N), which is one of the ARQ techniques.
  • the transmitting station continues to continuously transmit frames even when a retransmission request is received.
  • the frame is immediately transmitted continuously to maintain the transmission delay.
  • the communication system can establish 1 (transmitting station) to n (receiving station) communication, and the transmitting station establishes a communication channel with at least one of the receiving stations. If a retransmission request is received from one of the communicating receiving stations while allocation and continuous transmission of frames (data units) are being performed, the communication established with the receiving station from which the retransmission request originated is sent. On the other hand, a communication channel is allocated to another receiving station, communication with the other receiving station is prioritized, and ⁇ ⁇ information on line quality notified from the receiving station is checked. Upon recovery, communication with the receiving station that requested retransmission is resumed, and communication with the receiving station is prioritized again. I do.
  • a transmitting station when a retransmission request is received, a transmitting station completely stops a transmission request to a receiving station in which a reception error has occurred, and uses the channel for transmission to another receiving station. did. In addition, the transmitting station checks the notification of the line quality transmitted using the control channel, and determines whether to resume the continuous transmission of frames. This prevents useless channel allocation when the line quality deteriorates to the point where a reception error occurs even if packet combining is used.
  • the transmitting communication device it is possible to establish communication employing a ARQ technique with a plurality of receiving communication devices, assign a communication channel to at least one of the receiving communication devices, If a request for retransmission of a specific frame is received from one of the communicating communication devices in the state of continuous transmission of frames (data units), it is established with the receiving communication device of the retransmission request source. Is switched from the continuous transmission to S AW, which is one of the ARQ techniques, and then the specific frame is retransmitted by the SAW, while utilizing the fact that the number of transmission frames is reduced by the S AW.
  • S AW which is one of the ARQ techniques
  • the operation mode is shifted to the SAW mode, and one frame whose line quality is degraded is retransmitted.
  • a channel is preferentially allocated to a receiving station having good channel quality without monitoring the channel quality data from the receiving station.
  • the channel assignment to the communication is immediately stopped upon receiving the retransmission request. This avoids the "state in which channels are wasted unnecessarily despite the poor line quality" that occurred in the prior art.
  • the communication device on the transmitting side As a response to the retransmission, when the first response signal added with "information indicating normal reception of the retransmission frame" is received, the communication with the receiving side communication device of the retransmission request source is returned to the continuous transmission, and the response to the retransmission is returned.
  • the communication by the SAW when receiving a second response signal to which “information indicating a reception error of a retransmission frame” is added, the communication by the SAW is continued. If it failed and there was no error in the frame after packet combining, even if it received an ACK to notify the success of reception, it continued in S AW mode and succeeded in receiving the retransmitted frame alone.
  • the configuration is such that the mode is changed from the SAW mode to the continuous transmission mode when the ACK is received.
  • many channels are allocated for communication with a truly good line condition.
  • the receiving side of the retransmission request source receives the retransmission request and the number of receiving communication apparatuses requesting the use of the line is smaller than a specific reference value.
  • the communication established with the communication device is switched to GBN (Go Back N) which is one of the ARQ technologies.
  • the present invention when the number of receiving stations requesting the use of the line is smaller than the reference value, and a retransmission request is received, continuous transmission of frames is continued. This avoids the situation where no receiving station is using the channel and maximizes the use of the channel.
  • the transmission-side communication device when the retransmission request is received, and when there is a request for maintaining transmission delay as a service quality from an upper layer, the transmission-reception request communication device and the reception-side communication device of the retransmission request source The communication established between them is switched to GBN (Go Back N) which is one of the ARQ technologies.
  • GBN Go Back N
  • a plurality of receiving communication devices and A Establishes communication using RQ technology, allocates communication channels to at least one of the receiving communication devices, and performs continuous transmission of frames (data units). If a retransmission request is received from one of the above, the communication established with the receiving communication device of the retransmission request source is stopped, while a communication channel is allocated to another receiving communication device, and the other Priority is given to communication with the receiving communication device, and the "line quality information" notified from the receiving communication device is checked. The communication is restarted, and the communication with the receiving communication device is prioritized again.
  • a transmission request to a receiving station in which a reception error has occurred is completely stopped, and the channel is used for transmission to another receiving station.
  • it is configured to check the notification of the line quality transmitted using the control channel and determine whether to resume the continuous transmission of frames. This prevents useless channel assignment when the line quality is poor enough to cause a reception error even when using bucket combining.
  • the communication using the ARQ technology is performed with the transmitting communication device, and the retransmission frame sent from the transmitting communication device can be normally received.
  • the reception error occurs again in the retransmission frame, and there is no error in the frame after the bucket combining.
  • transmitting a second response signal to which "information indicating a retransmission frame reception error" has been added.
  • the transmitting station determines whether to continue the S AW mode or shift from the S AW mode to the continuous transmission mode based on the ACK for notifying the reception success.
  • FIG. 1 is a diagram showing a configuration of a communication device (transmitting station) according to a first embodiment of the present invention
  • FIG. 2 is a diagram showing a communication method of the first embodiment
  • FIG. 4 is a diagram illustrating a configuration of a communication device (receiving station) according to a second embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a configuration of the communication device (receiving station) according to the second embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a communication method according to the second embodiment.
  • FIG. 6 is a diagram illustrating a configuration of a communication device (transmitting station) according to the third embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a communication device (transmitting station) according to a first embodiment of the present invention
  • FIG. 2 is a diagram showing a communication method of the first embodiment
  • FIG. 4 is a diagram illustrating
  • FIG. 8 is a diagram illustrating a communication method according to a third embodiment
  • FIG. 8 is a diagram illustrating a configuration of a communication device (transmitting station) according to a fourth embodiment of the present invention
  • FIG. FIG. 10 is a diagram illustrating a configuration of a fifth embodiment of such a communication device (transmitting station).
  • FIG. 10 is a diagram illustrating a communication method of the fifth embodiment.
  • FIG. 11 is a diagram illustrating a conventional communication method.
  • Fig. 12 shows an example of a scheduling method when data is sent from the base station to each mobile station.
  • FIG. 13 is a diagram for explaining SR-ARQ of one-to-one communication
  • FIG. 14 is a diagram for explaining BGN-ARQ of one-to-one communication.
  • FIG. 15 is a diagram for explaining SAW-ARQ of one-to-one communication
  • FIG. 16 is a diagram showing a configuration of the base station of FIG. 11, and
  • FIG. 18 is a diagram showing NchS AW in the case of FIG. 18; BEST MODE FOR CARRYING OUT THE INVENTION
  • the transmitting communication apparatus normally operates in the continuous transmission mode, shifts the operation mode to the SAW mode when a retransmission request or NAK is received, and receives a retransmission frame by a reception notification or ACK. At the stage of receiving the notification, the mode shifts to continuous transmission mode again.
  • FIG. 1 is a diagram showing a configuration of a communication apparatus according to a first embodiment of the present invention.
  • 1, 1, 1 2,..., 1—n are transmission control units
  • 2—1, 2—2,. 1, 3-2,..., 3—n are mode switching units provided in each transmission control unit
  • 4 is a scheduler.
  • the mode switcher is added to the configuration shown in Fig. 16.
  • the scheduler 4 does not need the line quality from the receiving station.
  • one base station performs independent wireless communication with n mobile stations, and a limited number of m communication channels To establish n pairs of communications.
  • Each transmission control unit and the corresponding transmission buffer exist independently for each mobile station (102-1 to 102-n) that performs communication.
  • the transmission buffer is sent from the upper layer.
  • the incoming data is stored in the transmission buffer.
  • Each transmission control unit notifies the scheduler of a transmission request when receiving data from an upper layer or when receiving a retransmission request or NAK from a mobile station.
  • the scheduler 4 allocates a channel to the mobile station based on the transmission request notified from each transmission control unit.
  • each transmission control unit upon receiving a reception notification or an ACK notification from the mobile station, deletes the data corresponding to the frame number described therefrom and the data before that frame number from the transmission buffer.
  • each mode switching unit shifts the operation mode from continuous transmission mode (normal operation mode) to SAW mode when a retransmission request or NAK is received from the mobile station. If a reception notification or ACK is received during operation in the SAW mode, the operation mode is shifted to the continuous transmission mode. That is, if a reception error occurs on the mobile station side due to the deterioration of the line quality and the retransmission request is recognized by the transmitting station, the transmission control unit that receives the retransmission request changes the operation mode to the SAW mode, , Only the transmission request corresponding to the retransmission frame is transmitted.
  • FIG. 2 is a diagram illustrating a communication method according to the first embodiment.
  • a base station is a transmitting station and a mobile station is a receiving station.
  • the transmitting station allocates a channel to the receiving station A (one of the mobile stations 102-1-1 to 102-n) as in Fig. 18 described above, and switches to the continuous transmission mode. Send the frame. Then, when a reception error of the frame “A 6” occurs, the receiving station A requests retransmission of the frame “A 6” (NAK transmission).
  • the transmitting station that has received the retransmission request for frame "A 6" retransmits frame "A 6". And switches the operation mode of the communication established with the receiving station A to the SAW mode.
  • the scheduler 4 allocates a channel to the receiving station B by utilizing the reduction in transmission requests to the receiving station A, and then gives priority to communication with the receiving station B.
  • the transmitting station retransmits frame "A6”
  • it transmits frames "BO", "B1",..., “B4" to receiving station B.
  • the NAK of the frame “A6” is received again, the frame “A6” is retransmitted, and then the frames “B5”, “B6”... To the receiving station B are transmitted.
  • the transmission control unit that has received the ACK switches the operation mode to the continuous transmission mode, and transmits the continuous transmission to the scheduler 4. Submit the request.
  • the scheduler 4 receives the continuous transmission request to the receiving station A, and allocates a channel for communication with the receiving station A again.
  • the priority is given to the continuous transmission to the receiving station A in the initial state.
  • the scheduler 4 allocates the channels equally to the receiving stations A and B.
  • each transmission control unit when each transmission control unit receives a retransmission request or NAK due to poor line quality from the receiving station, it shifts the operation mode to SAW mode, and the line quality deteriorates.
  • the retransmission of one frame is requested to the scheduler.
  • the scheduler can preferentially allocate more channels to receiving stations with good line quality without monitoring the line quality data from the receiving station.
  • channel assignment to the communication is immediately stopped upon a retransmission request or NAK reception.
  • the receiving station performs packet synthesis.
  • the packet combining process the frame data that failed in the first reception and the frame data that failed in the retransmission are combined, and error correction and error detection are performed after the combining. If there is no error, the frame data can be received correctly. And sends an ACK to the transmitting station.
  • Embodiment 2 if unreceivable frame data cannot be correctly received by the retransmission frame alone and uncomplicated frame data can be synthesized by packet synthesis, information of “failure in single reception” is added to the ACK and transmitted.
  • the transmitting station receives the ACK, it checks the added information. If “single reception failed”, the transmitting station continues the SAW mode, and if “single reception successful”, returns to the continuous transmission mode.
  • FIG. 3 is a diagram showing a configuration of a communication apparatus (transmitting station) according to a second embodiment of the present invention.
  • la-l, la-2, ..., la-n are transmission control units
  • 3a-1, 3, 3a-2, ..., 3a-n are transmission control units.
  • This is a mode switching unit provided in the unit.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. Hereinafter, only the operation different from the first embodiment will be described.
  • FIG. 4 is a diagram showing a configuration of a communication apparatus (receiving station) according to a second embodiment of the present invention.
  • 11 is a receiving unit
  • 12 is an error correcting unit
  • 13 is an error detecting unit
  • 14 is a receiving buffer
  • 15 is a packet combining unit
  • 16 is a NAKZACK type determining unit.
  • 17 is a transmission unit.
  • the receiving station of the present embodiment demodulates the signal from the transmitting unit 11 and the transmitting station, and the error correcting unit 12 performs error correction on the demodulated data. Then, error detection The unit 13 determines the presence or absence of an error, and if there is an error in the new frame, stores the data in the reception buffer 14. On the other hand, if there is an error in the retransmitted frame, the retransmitted frame data and the frame data stored in the reception buffer 14 are combined by the packet combining unit 15. The combined frame data is again subjected to error correction processing and error detection processing.
  • the NAKZACK type determination unit 16 Upon receiving the error detection result, the NAKZACK type determination unit 16 provides an error in the NAK when there is an error in the new frame, an error in the AC and ⁇ Single reception failure '' when there is no error in the combined frame data, and an error in the retransmission frame alone. If there is no, ACK and “Single reception successful” are transmitted respectively.
  • the transmitting unit 17 modulates the information received from the NAKZACK type determining unit 16 with a predetermined modulation method and transmits the modulated information.
  • FIG. 5 is a diagram illustrating a communication method according to the second embodiment. Here, only operations different from those of the first embodiment will be described.
  • receiving station A transmits a NAK in response to a reception error of frame “A2”. Then, the transmitting station that has received the NAK also retransmits the frame “A2” and sets the operation mode to the SAW mode, as in the first embodiment.
  • the receiving station A transmits “ACK” with “Single reception failure” added to the ACK.
  • the transmitting station that has received “Single reception failure” continues the SAW mode according to this ACK and transmits the next frame, frame “A3”. Then, in the receiving station A, for example, when the frame “A3” has been successfully received by itself, the ACK is appended with “Single reception successful” and transmitted.
  • the base station that has received “Single reception success” switches the operation mode to the continuous transmission mode according to this ACK, and then transmits frames “A4”, “A5”, “A6”... in continuous transmission.
  • the transmitting station if reception of a retransmission frame fails and there is no error in the frame after packet combining, the transmitting station notifies the reception success.
  • the S AW mode is continued even if an ACK is received, and if the retransmission frame alone is successfully received, the system switches from the S AW mode to the continuous transmission mode when AC # is received. As a result, a large number of channels can be allocated only to communications with a truly good line condition.
  • FIG. 6 is a diagram showing a configuration of a communication apparatus (transmitting station) according to a third embodiment of the present invention. Here, it corresponds to the case where the number of receiving stations requesting channel use is small.
  • lb-1, lb-2, ..., 1b-n are transmission control units
  • 3b-1, 3, bb-2, ..., 3b-1n are included in each transmission control unit.
  • the provided mode switching unit, and 4b is a scheduler.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • only operations different from the first embodiment will be described.
  • the scheduler 4b notifies each mode switching unit of the line use status.
  • Each mode switching unit refers to this line usage status, and even if a retransmission request or NAK is received from the receiving station, the number of other receiving stations using the line is less than the predetermined reference value. In this case, retransmission and continuous transmission requests are continued in GBN mode without transition to SAW mode.
  • FIG. 7 is a diagram illustrating a communication method according to the third embodiment.
  • receiving station A transmits a NAK when a receiving error of frame "A6" occurs.
  • the transmitting station that receives the NAK corresponding to frame "A6" determines whether to switch to the SAW mode and retransmit, or to switch to the GBN mode and retransmit, by referring to the above line usage status. .
  • the mode switching unit shifts to the GBN mode and continues the request for continuous transmission.
  • the mode switching unit in the transmitting station when the number of receiving stations requesting the use of the line is smaller than the reference value and a retransmission request or NAK is received, the mode switching unit in the transmitting station performs continuous frame transmission. Was continued. This allows any receiving Since the station can avoid situations where the channel is not used, the channel can be used to the maximum extent.
  • FIG. 8 is a diagram showing a configuration of a communication apparatus (transmitting station) according to a fourth embodiment of the present invention.
  • “quality of service” includes “communication requiring maintenance of transmission delay”.
  • lc-l, 1c-2,..., 1c-n are transmission control units, and 3c-l, 3c-2,.
  • This is a mode switching unit provided in the control unit.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • Each transmission control unit is notified of information on required service quality from the upper layer.
  • Each mode switching unit refers to the required quality of service information, and even if a retransmission request or NAC is received from the receiving station, if this communication requires a transmission delay to be maintained, the S AW Continue retransmission and continuous transmission in GBN mode without switching to mode.
  • the procedure of the communication method is the same as in FIG. 7 described above.
  • the mode switching unit continues the continuous transmission of frames. Configuration. As a result, when the communication line in which the receiving error has occurred is recovered, the frame can be received correctly immediately, so that the transmission delay can be maintained.
  • Embodiments 1 to 4 described above even when the transmitting station receives ⁇ , the transmission of frames is continued at a low transmission rate. As a result, even if the communication quality deteriorates, a small number of communication lines are provided, so that the state of recovery of the communication quality can always be checked, and the situation can be promptly dealt with when the communication quality recovers. In particular, when packet combining is employed as in Embodiment 2, communication can be continued even at a low transmission speed, and thus a minimum service can be provided.
  • FIG. 9 is a diagram showing a configuration of a communication apparatus (transmitting station) according to a fifth embodiment of the present invention.
  • Id-1, Id-2, ..., Id-n are transmission control units
  • 3d-1, 3d-2, ..., 3d-n are transmission units.
  • This is a mode switching unit provided in the control unit.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the operation different from the first embodiment will be described.
  • the corresponding transmission control unit upon receiving a retransmission request or NAK, the corresponding transmission control unit stops the transmission request and checks the recovery status based on the line quality information received from the receiving station. If it is determined that the line quality has been recovered, the corresponding transmission control unit sends a transmission request to the scheduler 4 with the data to be retransmitted at the top.
  • FIG. 10 is a diagram showing a communication method according to the fifth embodiment.
  • the transmitting station allocates a channel for communication with the receiving station A, and transmits a frame in the continuous transmission mode. For example, if a reception error of frame “A 6” occurs at receiving station A, receiving station A issues a retransmission request (NAK) for frame “A 6”.
  • NAK retransmission request
  • the transmitting station does not transmit the frame to the receiving station A, but checks the “information about the channel quality” notified from the receiving station A using the control channel. For example, if the line quality remains poor, transmission suspension is continued, and if the line quality recovers, the continuous transmission of frames to receiving station A is immediately resumed.
  • the receiving station measures the communication quality of the signal on the channel that the transmitting station transmits periodically and that can be received by all the receiving stations within the area.
  • the transmission control unit when a NAK is received, the transmission control unit Has completely stopped the transmission request to the receiving station where the receiving error occurred, and used the channel for transmission to other receiving stations. In addition, the transmission control unit checks whether the receiving station that has received the reception error reports the line quality to be transmitted using the control channel, and determines whether to resume the request for continuous transmission. . As a result, useless channel assignment can be prevented when the line quality is degraded to the point where a reception error occurs even if bucket combining is used. Industrial applicability
  • the communication method according to the present invention is useful for a communication system employing an ARQ (Automatic Repeat at request) technique, and in particular, the quality is degraded due to noise or interference from communication with other stations. Suitable for communication systems that communicate in a possible environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Communication Control (AREA)

Description

明 細 書 通信方法、 通信システムおよび通信装置 技術分野
この発明は、 ARQ (Automatic Repeat request) 技術を採用した通信方法、 通信システムおよび通信装置に関するものであり、 詳細には、 1 (送信側) 対 n (受信側) の通信において、 最適なチヤネノレ割当て (スケジューリング方式) を 実現するための通信方法、 通信システムおよび通信装置に関するものである。 背景技術
以下、 従来の通信方法について説明する。 第 1 1図は、 従来の通信方法を実現 するための通信システムであり、 101は基地局であり、 102— 1, 102- 2, 102-3, ···, 102— nは移動局である。 たとえば、 1台の基地局が n 台の移動局とそれぞれ独立した無線通信を行う場合、 通常、 限られた m個の通信 チャネルで n対の通信を成立させる必要があるため、 基地局 101には、 スケジ ユーラが必要となる。 スケジューラとは、 m個のチャネルに n対の通信を割り当 てる機能 (スケジューリング) である。
第 12図は、 基地局 101から各移動局にデータを送る場合のスケジユーリン グ方式の一例を示す図である。 具体的にいうと、 第 12図 (a) は、 各移動局宛 に均等にチャネルを割り当てる場合を示しており、 第 12図 (b) は、 トラヒッ ク量に応じてチャネルを割り当てる方式を示している。 いずれも、 基地局数 n = 6、 チャネル数 m= 3である。
第 12図 (a) においては、 時間 t (1) のときに、 移動局 102— 1, 10 2— 2, 102— 3にそれぞれチャネル (1) , チャネル (2) , チャネル (3 ) を割り当て、 つぎの時間 t (2) のときに、 移動局 102— 4, 102-5, 102— 6にそれぞれチャネル (1) , チャネル (2) , チャネル (3) を割り 当てている。 また、 時間 t (3) , 時間 t (4) では、 それぞれ時間 t (1) , t (2) のときと同様の割り当てを行っている。 すなわち、 第 12図 (a) では 、 各移動局に対する送信要求データ量 (トラヒック量) にかかわらず、 各移動局 に対して順番にチャネルを割り当てていく。 ただし、 送信するデータがない移動 局についてはチャネルを割り当てない。
—方、 第 12図 (b) においては、 時間 t (1) , 時間 t (2) のときに、 ト ラヒック量の多い移動局 102— 2, 移動局 102— 4に対して優先的にチヤネ ルを割り当て、 時間 t (3) , 時間 t (4) のときに、 移動局 102— 2, 10 2-4だけでなく、 トラヒック量の少ないその他の移動局に对してもチャネルを 割り当てる。 ただし、 時間 t (1) 〜t (4) までの間に、 各移動局に対するト ラヒック量が変化した場合には、 その量に応じて再度スケジューリングを行う。 また、 通信回線においては、 雑音や他局通信の干渉などにより品質が劣化する 場合があり、 たとえば、 誤り訂正技術を使用した場合であっても品質を改善でき ないことがある。 このような場合には、 ARQ技術を使甩し、 誤り訂正によって 回復できなかったデータ単位 (以下、 フレームと呼ぶ) をもう一度送りなおす 「 再送」 という処理を行う。 この ARQには、 SR (Selective Repeat) , GBN (Go Back N) , SAW (Stop and Wait) などがある。
ここで、 上記各 ARQ技術について説明する。 第 13図は、 1対 1通信の SR — ARQを説明するための図である。 この方式では、 伝送エラーが発生したフレ ームのみを再送する。 フレーム "2" のエラーを検出した受信局では、 フレーム "2" の再送要求を送信し、 正しく受信できたフレーム "3" 〜 "7" をバッフ ァに保存する。 そして、 再送されたフレーム "2" を正しく受信できた段階で、 順番通りに上位層に対して送信する。
また、 受信局では、 周期的に受信状態を報告する。 ここでは、 連続して正しく 受信しているフレームの最新番号を報告する。 なお、 以降、 この報告は 「受信通 知」 と呼ぶこととし、 第 13図における点線矢印がそれを示す。 1回目の受信通 知では、 フレーム "2" の再送待ちであるためフレーム番号 "1" を報告し、 2 回目の受信通知では、 再送されたフレーム "2" およびフレーム "3" 〜 "7" を正しく受信し、 さらに新規にフレーム "8" も正しく受信できているのでフレ ーム番号 "8" を報告する。
第 14図は、 1対 1通信の BGN— ARQを説明するための図である。 この方 式では、 伝送エラーが発生したフレーム以降のすべてを再送する。 受信局では、 フレーム "2" の再送要求を送信後、 再送されるフレーム " 2" が正しく受信で きるまで、 すべての受信フレームを廃棄する。 一方、 送信局では、 エラーが発生 したフレーム "2" 以降のすべてのフレームを再送する。 また、 受信局では、 上 記 SR— ARQと同様に受信通知を行い、 1回目の受信通知ではフレーム番号 " 1" を、 2回目の受信通知ではフレーム番号 " 3" を、 それぞれ報告する。
第 15図は、 1対 1通信の SAW— ARQを説明するための図である。 この方 式では、 1フレームずつ送信を実行し、 そのフレームに対する受信の成功 (ACK ) または失敗 (NAK) の通知を受け取つてから、 つぎのフレームを送信する。 な お、 NAKは再送要求と同義である。
つぎに、 第 3世代移動体通信の標準化団体の一つである 3 GPP (3rd Generat ion Partnership Project) で規格化が進められている従来のスケジューラにつ いて説明する。 第 16図は、 第 1 1図の基地局の構成を示す図であり、 1 1 1— 1, 1 1 1— 2, …, 1 1 1一 nは送信制御部であり、 112— 1, 112— 2 , ···, 1 12— nは送信バッファであり、 1 13はスケジューラである。
各送信制御部およびそれに対応する送信バッファは、 通信を行う移動局 (10 2_:!〜 102— n) 毎に独立して存在し、 基地局 101では、 上位層から送ら れてくるデータを送信バッファに格納する。 各送信制御部では、 上位層からデー タを受信した場合、 または、 移動局から再送要求あるいは NAKを受信した場合 、 スケジューラに対して送信要求と送信するデータ量とを通知する。 スケジユー ラ 113では、 各送信制御部から通知された送信要求と送信するデータ量、 およ び各通信の回線品質データに基づいて、 品質の良い回線状態にある移動局に対し て優先的にチャネルを割り当てる。 このとき、 参照する回線品質データは、 各移 動局による複数回にわたる測定結果の平均値とする。
また、 各送信制御部では、 移動局から受信通知または ACKの通知があると、 それに記されたフレーム番号に相当するデータとそのフレーム番号以前のデータ とを、 今後再送する必要がなレ、ので送信バッファから消去する。
なお、 従来の送信制御部は、 ARQ技術として、 一般的な SR, BGN, S A Wを採用することとしてもよいし、 または、 3GPPの HSDPA (High Speed Data Packet Access) 技術のように、 S AWを N個にわたって並列にならべた Nc h (N channel) — S AWを採用することとしてもよレヽ。 第 17図は'、 N = 3の場合の Nc h— SAWを示す図である。 l c hの SAWでは、 第 15図に示 すように、 回線を使用していない時間が生じて伝送効率が悪いため、 Nc h— S AWでは、 同一通信を Nチャネルに分割し、 それぞれ独立した伝送を行う。 たと えば、 図中 1—0では第 1チャネルを用いてフレーム "0" を送信し、 3—1で は第 3,チャネルを用いてフレーム "0" を送信する。
しかしながら、 前述した文献に記載された従来の通信方法においては、 以下に 示すような問題があつた。
第 18図は、 従来技術の問題点を説明するための図である。 ここでは、 GBN 一 ARQを採用した場合について説明する。 なお、 SR— ARQ, S AW-AR Q, または Nc h— SAW— ARQについては、 S R— ARQと同様であるため 説明を省略する。
まず、 送信局が受信局 Aに対してデータを送信している場合を想定する。 この とき、 受信局 Aでは、 回線品質の測定を数回にわたって実行し、 その平均化値を 所定のタイミングで繰り返し通知する。 第 18図においては、 一点鎖線の矢印が 受信局 Aからの回線品質を表す。 ここでは、 フレーム "A6" の受信から回線品 質が劣化し、 図中 2回目の通知で 「品質悪」 の通知を行っている。
—方、 送信局では、 フレーム "Al 1" を送信後、 フレーム "A6" に対する NAKを受信し、 その後も受信局 Aに対してチャネルを割り当てた状態で、 "A 6" , "A7" , "A8" を受信局 Aに対して再送する。 そして、 受信局 Aから 「品質悪」 の通知を受けた段喈で、 受信局 Aに対するチャネルの割り当てを止め 、 受信局 Bに对してチャネルを割り当て、 その後、 フレーム " B O " , " B 1 " を送信する。
このように、 従来の通信方法においては、 受信局 Aが回線品質測定値の平均化 結果を送信局に対して通知するため、 送信局が当該平均化結果を受信するまでの 間に時差が発生する。 すなわち、 受信局 Aが測定を行った時間帯と、 送信局が通 知を受け取った時間帯と、 の間で、 回線品質に違いが生じるため、 送信局では、 回線品質が悪い時間帯にもかかわらず、 受信局 Aに対してチャネルの割り当てを ,継続してしまう、 という問題があった。
本発明は、 上記に鑑みてなされたものであって、 回線品質通知の時差による無 駄な通信チャネルの割り当てを削減し、 回線品質の良好な受信局に対してチヤネ ルを割り当てることによって、 システム全体のスループットの向上を実現する通 信方法、 通信システム、 および通信装置を提供することを目的としている。 発明の開示
本発明にかかる通信方法にあっては、 AR Q (Automatic Repeat request) 技 術を採用した 1 (送信局) 対 n (受信局) の通信を行い、 前記送信局が、 少なく ともいずれか 1つの受信局に対して通信チャネルを割り当て、 フレーム (データ 単位) の連続送信を行っている状態で、 通信中の受信局の 1つから特定フレーム の再送要求を受信した場合、 前記再送要求元の受信局との間で確立された通信を 前記連続送信から前記 A R Q技術の 1つである S AW (Stop and Wait) に切り 替える第 1の切り替えステップと、 前記 S AWにより前記特定フレームを再送す る再送ステップと、 前記 S AWによって送信フレームが減少することを利用して 他の受信局に対して通信チャネルを割り当て、 当該他の受信局との通信を優先す るチヤネノレ割当てステップと、 再送後の特定フレームの正常受信を示す第 1の応 答信号を確認できた時点で、 再送要求元の受信局との通信を前記連続送信に戻し 、 再度、 当該受信局との通信を優先する第 2の切り替えステップと、 を含むこと を特徴とする。
この発明によれば、 送信局が、 受信局から回線品質劣化による再送要求を受け 取った場合に、 動作モードを S AWモードに移行し、 回線品質が劣ィヒした 1フレ 一ム分を再送することとした。 これにより、 送信局では、 受信局からの回線品質 データをモニタすることなく、 回線品質の良好な受信局に対して優先的にチヤネ ノレを割り当てる。 また、 再送要求受信で直ちにその通信へのチャネル割当てが停 止されることとした。 これにより、 従来技術で発生していた 「回線品質が悪いに もかかわらず無駄にチャネルが割り当てられる状態」 を回避する。
つぎの発明にかかる通信方法にあっては、 前記再送要求元の受信局が、 前記再 送後の特定フレームを正常に受信できた場合に、 「再送フレームの正常受信を示 す情報」 を付加した前記第 1の応答信号を送信する第 1の応答ステップと、 前記 再送後の特定フレームが再度受信エラーとなり、 かつバケツト合成後のフレーム に誤りがなかった場合に、 「再送フレームの受信エラーを示す情報」 を付加した 第 2の応答信号を送信する第 2の応答ステップと、 を含み、 前記第 2の切り替え ステップでは、 前記第 2の応答信号を受信した場合、 前記 S AWによる通信を継 続することを特徴とする。
この発明によれば、 再送フレームの受信に失敗し、 かつパケット合成後のフレ —ムに誤りがなかった場合、 送信局では、 受信成功を通知するための A C Kを受 信した場合であっても S AWモードを継続し、 再送フレーム単体で受信に成功し た場合、 A C Kを受信した段階で S AWモードから連続送信モードに移行するこ ととした。 これにより、 真に回線状態が良好な通信に対して多くのチャネルを割 り当てる。
つぎの発明にかかる通信方法において、 前記送信局が前記再送要求を受信し、 かつ回線使用を要求する受信局が特定の基準値より少ない場合、 前記第 1の切り 替えステップでは、 前記再送要求元の受信局との間で確立された通信を前記 AR Q技術の 1つである G B N (Go Back N) に切り替えることを特徴とする。
この発明によれば、 回線使用を要求する受信局が基準値よりも少ない状況で、 再送要求を受信した場合、 送信局が、 フレームの連続送信を継続することとした 。 これにより、 どの受信局もチャネルを使用していないという状況を回避し、 チ ャネルを最大限に利用する。
つぎの発明にかかる通信方法において、 前記送信局が前記再送要求を受信し、 カゝっ上位層からサービス品質として伝送遅延の維持要求がある場合、 前記第 1の 切り替えステップでは、 前記再送要求元の受信局との間で確立された通信を前記 A R Q技術の 1つである G B N (Go Back N) に切り替えることを特徴とする。 この発明によれば、 サービス品質にぉレ、て伝送遅延の維持を要求された通信に ついては、 再送要求を受信した場合であっても、 送信局が、 フレームの連続送信 を継続することとした。 これにより、 受信エラー中の通信回線が回復した場合に 、 直ちにフレームを連続送信して伝送遅延を維持する。
つぎの発明にかかる通信方法にあっては、 1 (送信局) 対 η (受信局) の通信 を行い、 前記送信局が、 少なくともいずれか 1つの受信局に対して通信チャネル を割り当て、 フレーム (データ単位) の連続送信を行っている状態で、 通信中の 受信局の 1つから再送要求を受信した場合、 前記再送要求元の受信局との間で確 立された通信を停止するステップと、 他の受信局に対して通信チャネルを割り当 て、 当該他の受俱局との通信を優先するチャネル割当てステップと、 受信局から 通知される 「回線品質に関する情報」 をチェックし、 回線状況が回復した時点で 、 再送要求元の受信局との通信を再開し、 再度、 当該受信局との通信を優先する 再開ステップと、 を含むことを特 ί敫とする。
この発明によれば、 再送要求を受信した場合に、 送信局が、 受信エラーの発生 した受信局への送信要求を完全に停止し、 そのチャネルを他の受信局への送信に 使用することとした。 また、 送信局にて、 制御チャネルを使用して送信される回 線品質の通知をチェックし、 フレームの連続送信を再開するかどうかを判断する こととした。 これにより、 パケット合成を使用しても受信エラーとなる位に回線 品質が劣化した場合の、 無駄なチャネル割当てを防止する。
つぎの発明にかかる通信システムにあっては、 A R Q技術を採用した 1 (送信 局) 対 n (受信局) の通信を確立可能な構成とし、 前記送信局が、 少なくともい ずれか 1つの受信局に対して通信チャネルを割り当て、 フレーム (データ単位) の連続送憎を行っている状態で、 通信中の受信局の 1つから特定フレームの再送 要求を受信した場合、 前記再送要求元の受信局との間で確立された通信を前記連 続送信から前記 AR Q技術の 1つである S AWに切り替え、 その後、 当該 S AW により前記特定フレームを再送し、 一方で、 前記 S AWによって送信フレームが 減少することを利用して他の受信局に対して通信チャネルを割り当て、 当該他の 受信局との通信を優先し、 再送後の特定フレームの正常受信を示す第 1の応答信 号を確認できた時点で、 再送要求元の受信局との通信を前記連続送信に戻し、 再 度、 当該受信局との通信を優先することを特徴とする。
この発明によれば、 送信局が、 受信局から回線品質劣化による再送要求を受け 取った場合に、 動作モードを S AWモードに移行し、 回線品質が劣ィ匕した 1フレ 一ム分を再送する構成とした。 これにより、 送信局では、 受信局からの回線品質 データをモニタすることなく、 回線品質の良好な受信局に対して優先的にチヤネ ルを割り当てる。 また、 再送要求受信で直ちにその通信へのチャネル割当てが停 止される構成とした。 これにより、 従来技術で発生していた 「回線品質が悪いに もかかわらず無駄にチャネルが割り当てられる状態」 を回避する。
つぎの発明にかかる通信システムにあっては、 前記再送要求元の受信局が、 前 記再送後の特定フレームを正常に受信できた場合に、 「再送フレームの正常受信 を示す情報」 を付加した前記第 1の応答信号を送信し、 前記再送後の特定フレー ムが再度受信エラーとなり、 力つバケツト合成後のフレームに誤りがなかった場 合に、 「再送フレームの受信エラーを示す情報」 を付加した第 2の応答信号を送 信し、 前記送信局では、 再送に対する応答として前記第 2の応答信号を受信した 場合、 前記 S AWによる通信を継続することを特徴とする。
この発明によれば、 再送フレームの受信に失敗し、 かつパケット合成後のフレ ームに誤りがなかった場合、 送信局では、 受信成功を通知するための A C Kを受 信した場合であっても S AWモードを継続し、 再送フレーム単体で受信に成功し た場合、 A C Kを受信した段階で S AWモ一ドから連続送信モ一ドに移行する構 成とした。 これにより、 真に回線状態が良好な通信に対して多くのチャネルを割 り当てる。
つぎの発明にかかる通信システムにおいて、 前記送信局が前記再送要求を受信 し、 かつ回線使用を要求する受信局が特定の基準値より少ない場合、 前記送信局 では、 前記再送要求元の受信局との間で確立された通信を前記 A R Q技術の 1つ である G B N (Go Back N) に切り替える :とを特徴とする。
この発明によれば、 回線使用を要求する受信局が基準値よりも少ない状況で、 再送要求を受信した場合、 送信局が、 フレームの連続送信を継続する構成とした 。 これにより、 どの受信局もチャネルを使用していないという状況を回避し、 チ ャネルを最大限に利用する。
つぎの発明にかかる通信システムにおいて、 前記送信局が前記再送要求を受信 し、 かつ上位層からサービス品質として伝送遅延の維持要求がある場合、 前記送 信局では、 前記再送要求元の受信局との間で確立された通信を前記 A R Q技術の 1つである G B N (Go Back N) に切り替えることを特徴とする。
この発明によれば、 サービス品質において伝送遅延の維持を要求された通信に ついては、 再送要求を受信した場合であっても、 送信局が、 フレームの連続送信 を継続する構成とした。 これにより、 受信エラー中の通信回線が回復した場合に 、 直ちにフレームを連続送信して伝送遅延を維持する。
つぎの発明にかかる通信システムにあっては、 1 (送信局) 対 n (受信局) の 通信を確立可能な構成とし、 前記送信局が、 少なくともいずれか 1つの受信局に 対して通信チャネルを割り当て、 フレ ム (データ単位) の連続送信を行ってい る状態で、 通信中の受信局の 1つから再送要求を受信した場合、 前記再送要求元 の受信局との間で確立された通信を停止し、 一方で、 他の受信局に対して通信チ ャネルを割り当て、 当該他の受信局との通信を優先し、 受信局から通知される Γ 回線品質に関する情報」 をチェックし、 回線状況が回復した時点で、 再送要求元 の受信局との通信を再開し、 再度、 当該受信局との通信を優先することを特徴と する。
この発明によれば、 再送要求を受信した場合に、 送信局が、 受信エラーの発生 した受信局への送信要求を完全に停止し、 そのチャネルを他の受信局への送信に 使用する構成とした。 また、 送信局にて、 制御チャネルを使用して送信される回 線品質の通知をチェックし、 フレームの連続送信を再開するかどうかを判断する 構成どした。 これにより、 パケット合成を使用しても受信エラーとなる位に回線 品質が劣化した場合の、 無駄なチャネル割当てを防止する。
つぎの発明にかかる送信側の通信装置にあっては、 複数の受信側通信装置と A R Q技術を採用した通信を確立可能とし、 少なくともいずれか 1つの受信側通信 装置に対して通信チャネルを割り当て、 フレーム (データ単位) の連続送信を行 つている状態で、 通信中の受信側通信装置の 1つから特定フレームの再送要求を 受信した場合、 前記再送要求元の受信側通信装置との間で確立された通信を前記 連続送信から前記 AR Q技術の 1つである S AWに切り替え、 その後、 当該 S A Wにより前記特定フレームを再送し、 一方で、 前記 S AWによって送信フレーム が減少することを利用して他の受信側通信装置に対して通信チャネルを割り当て 、 当該他の受信側通信装置との通信を優先し、 再送後の特定フレームの正常受信 を示す第 1の応答信号を確認できた時点で、 再送要求元の受信側通信装置との通 信を前記連続送信に戻し、 再度、 当該受信側通信装置との通信を優先することを 特徴とする。
この発明によれば、 受信局から回線品質劣化による再送要求を受け取つた場合 に、 動作モードを S AWモードに移行し、 回線品質が劣化した 1フレーム分を再 送する構成とした。 これにより、 受信局からの回線品質データをモニタすること なく、 回線品質の良好な受信局に対して優先的にチャネルを割り当てる。 また、 再送要求受信で直ちにその通信へのチャネル割当てを停止する構成とした。 これ により、 従来技術で発生していた 「回線品質が悪いにもかかわらず無駄にチヤネ ルが割り当てられる状態」 を回避する。
つぎの発明にかかる送信側の通信装置にあっては、 再送に対する応答として、 「再送フレームの正常受信を示す情報」 を付カ卩した前記第 1の応答信号を受信し た場合に、 再送要求元の受信側通信装置との通信を前記連続送信に戻し、 再送に 対する応答として、 「再送フレームの受信エラーを示す情報」 を付加した第 2の 応答信号を受信した場合に、 前記 S AWによる通信を継続することを特徴とする この発明によれば、 再送フレームの受信に失敗し、 かつパケット合成後のフレ ームに誤りがなかつた場合、 受信成功を通知するための A C Kを受信した場合で あっても S AWモードを,継続し、 再送フレーム単体で受信に成功した場合、 A C Kを受信した段階で S AWモードから連続送信モードに する構成とした。 こ れにより、 真に回線状態が良好な通信に対して多くのチャネルを割り当てる。 . つぎの発明にかかる送信側の通信装置にあっては、 前記再送要求を受信し、 か つ回線使用を要求する受信側通信装置が特定の基準値より少ない場合、 前記再送 要求元の受信側通信装置との間で確立された通信を前記 AR Q技術の 1つである G B N (Go Back N) に切り替えることを特徴とする。
この発明によれば、 回線使用を要求する受信局が基準値よりも少ない状況で、 再送要求を受信した場合、 フレームの連続送信を継続する構成とした。 これによ り、 どの受信局もチャネルを使用していないという状況を回避し、 チャネルを最 大限に利用する。
つぎの発明にかかる送信側の通信装置にあっては、 前記再送要求を受信し、 か つ上位層からサービス品質として伝送遅延の維持要求がある場合、 前記再送要求 元の受信側通信装置との間で確立された通信を前記 AR Q技術の 1つである G B N (Go Back N) に切り替えることを特徴とする。
この発明によれば、 サービス品質において伝送遅延の維持を要求された通信に ついては、 再送要求を受信した場合であっても、 フレームの連続送信を継続する 構成とした。 これにより、 受信エラー中の通信回線が回復した場合に、 直ちにフ レームを連続送信して伝送遅延を維持する。
つぎの発明にかかる送信側の通信装置にあっては、 複数の受信側通信装置と A R Q技術を採用した通信を確立可能とし、 少なくともいずれか 1つの受信側通信 装置に対して通信チャネルを割り当て、 フレーム (データ単位) の連続送信を行 つている状態で、 通信中の受信側通信装置の 1つから再送要求を受信した場合、 前記再送要求元の受信側通信装置との間で確立した通信を停止し、 一方で、 他の 受信側通信装置に対して通信チャネルを割り当て、 当該他の受信側通信装置との 通信を優先し、 受信側通信装置から通知される 「回線品質に関する情報」 をチェ ックし、 回線状況が回復した時点で、 再送要求元の受信側通信装置との通信を再 開し、 再度、 当該受信側通信装置との通信を優先することを特徴とする。
この発明によれば、 再送要求を受信した場合に、 受信エラーの発生した受信局 への送信要求を完全に停止し、 そのチャネルを他の受信局への送信に使用する構 成とした。 また、 制御チャネルを使用して送信される回線品質の通知をチェック し、 フレームの連続送信を再開するかどうかを判断する構成とした。 これにより 、 バケツト合成を使用しても受信エラーとなる位に回線品質が劣ィヒした場合の、 無駄なチヤネル割当てを防止する。
つぎの発明にかかる受信側の通信装置にあっては、 送信側通信装置と A R Q技 術を採用した通信を行うこととし、 送信側通信装置から送られてくる再送フレー ムを正常に受信できた場合に、 「再送フレームの正常受信を示す情報」 を付加し た前記第 1の応答信号を送信し、 前記再送フレームが再度受信エラーとなり、 か つバケツト合成後のフレームに誤りがなかった場合に、 「再送フレームの受信ェ ラーを示す情報」 を付加した第 2の応答信号を送信することを特徴とする。 この発明によれば、 送信局が、 受信成功を通知するための A C Kに基づいて、 S AWモードを継続するか、 S AWモードから連続送信モードに移行するか、 を 判断することとした。 図面の簡単な説明
第 1図は、 本発明にかかる通信装置 (送信局) の実施の形態 1の構成を示す図 であり、 第 2図は、 実施の形態 1の通信方法を示す図であり、 第 3図は、 本発明 にかかる通信装置 (送信局) の実施の形態 2の構成を示す図であり、 第 4図は、 本発明にかかる通信装置 (受信局) の実施の形態 2の構成を示す図であり、 第 5 図は、 実施の形態 2の通信方法を示す図であり、 第 6図は、 本発明にかかる通信 装置 (送信局) の実施の形態 3の構成を示す図であり、 第 7図は、 実施の形態 3 の通信方法を示す図であり、 第 8図は、 本発明にかかる通信装置 (送信局) の実 施の形態 4の構成を示す図であり、 第 9図は、 本発明にかかる通信装置 (送信局 ) の実施の形態 5の構成を示す図であり、 第 10図は、 実施の形態 5の通信方法 を示す図であり、 第 1 1図は、 従来の通信方法を実現するための通信システムで あり、 第 12図は、 基地局から各移動局にデータを送る場合のスケジューリング 方式の一例を示す図であり、 第 13図は、 1対 1通信の SR— ARQを説明する ための図であり、 第 14図は、 1対 1通信の BGN— ARQを説明するための図 であり、 第 15図は、 1対 1通信の SAW— ARQを説明するための図であり、 第 16図は、 第 11図の基地局の構成を示す図であり、 第 17図は、 N=3の場 合の N c h-S AWを示す図であり、 第 18図は、 従来技術の問題点を説明する ための図である。 発明を実施するための最良の形態
本発明をより詳細に説術するために、 添付の図面に従ってこれを説明する。 実施の形態 1では、 送信側の通信装置が、 通常、 連続送信モードで動作し、 再 送要求または NAKを受信した段階で動作モードを SAWモードに移行し、 受信 通知または AC Kによって再送フレーム受信の通知を受信した段階で、 再び連続 送信モードに移行する。 '
ここで、 実施の形態 1の動作について説明する。 第 1図は、 本発明にかかる通 信装置の実施の形態 1の構成を示す図である。 第 1図において、 1一 1, 1一 2 , ···, 1— nは送信制御部であり、 2— 1, 2— 2, ···, 2— nは送信バッファ であり、 3— 1, 3-2, ···, 3— nは各送信制御部内に備えられたモード切替 部であり、 4はスケジューラである。 ここでは、 第 16図の構成にモード切替機 能を追加し、 さらに、 スケジューラ 4が受信局側からの回線品質を必要としない 構成とした。 なお、 実施の形態 1では、 先に説明した第 1 1図のように、 1台の 基地局が n台の移動局とそれぞれ独立した無線通信を行レ、、 限られた m個の通信 チャネルで n対の通信を成立させる。
各送信制御部およびそれに対応する送信バッファは、 通信を行う移動局 (1 0 2— 1〜1 0 2— n ) 毎に独立して存在し、 基地局 1 0 1では、 上位層から送ら れてくるデータを送信バッファに格納する。 各送信制御部では、 上位層からデー タを受信した場合、 または、 移動局から再送要求あるいは NA Kを受信した場合 、 スケジューラに対して送信要求を通知する。 スケジューラ 4では、 各送信制御 部から通知された送信要求に基づいて、 移動局に対してチャネルを割り当てる。 また、 各送信制御部では、 移動局から受信通知または A C Kの通知があると、 そ れに記されたフレーム番号に相当するデータとそのフレーム番号以前のデータと を、 送信バッファから消去する。
また、 各モード切替部では、 移動局から再送要求または NAKを受信した場合 に、 動作モードを連続送信モード (通常時の動作モード) から S AWモードに移 行する。 また、 S AWモードで動作中に受信通知または A C Kを受信した場合に は、 動作モードを連続送信モードに移行する。 すなわち、 回線品質劣化により移 動局側で受信エラーが発生し、 再送要求が送信局で認識された場合、 再送要求を 受信した送信制御部では、 動作モードを S AWモードに移行し、 スケジューラ 4 に対して再送フレームに対応する送信要求のみを送信することとした。
第 2図は、 実施の形態 1の通信方法を示す図である。 なお、 以降の説明では、 説明の便宜上、 基地局を送信局とし、 移動局を受信局とする。
送信局では、 先に説明した第 1 8図と同様に、 受信局 A (移動局 1 0 2— 1〜 1 0 2— nのいずれか 1つ) にチャネルの割り当てを行い、 連続送信モードにて フレームを送信する。 そして、 フレーム "A 6 " の受信エラーが発生した場合、 受信局 Aでは、 フレーム "A 6 " の再送要求 (NAK送信) を行う。
フレーム "A 6 " の再送要求を受信した送信局では、 フレーム "A 6 " の再送 を行うとともに、 受信局 Aとの間で確立した通信の動作モードを SAWモードに 切り替える。 これにより、 再送要求を受信した送信制御部 (送信制御部 1一 1〜 1—nのいずれか 1つ) 力 スケジューラ 4に対する送信要求は減少することと なる。 スケジューラ 4では、 受信局 Aに対する送信要求が減ることを利用して、 受信局 Bに対してチャネルを割り当て、 その後、 受信局 Bとの間の通信を優先さ せる。 図中では、 送信局がフレーム "A6" の再送を行った後、 受信局 Bに対し てフレーム "BO" , "B 1" , ···, "B 4" を送信する。 そして、 再びフレー ム "A6" の NAKを受信した段階で、 フレーム "A6" を再送し、 その後、 受 信局 Bに対するフレーム "B 5" , "B 6" …を送信する。
また、 送信局では、 フレーム "A6" に対応する AC Kを受信した段階で、 A CKを受信した送信制御部が、 動作モードを連続送信モードに切り替え、 スケジ ユーラ 4に対して連続送信の送信要求を送信する。 このとき、 スケジューラ 4で は、 受信局 Aへの連続送信要求を受信し、 再度、 受信局 Aとの通信にチャネルを 割り当てる。
なお、 第 2図では、 連続送信モードと SAWモードの切り替えをわかりやすく するために、 初期状態で受信局 Aへの連続送信を優先させているが、 これに限ら ず、 たとえば、 受信局 Bとの間で確立された通信が受信局 Aと同様に連続送信モ ードで行われる場合には、 スケジューラ 4が、 受信局 Aと受信局 Bに対して均等 にチャネルを割り当てる。
のように、 本実施の形態においては、 各送信制御部が、 受信局から回線品質 劣ィ匕による再送要求または NAKを受け取った場合に、 動作モードを SAWモー ドに移行し、 回線品質が劣化した 1フレーム分の再送をスケジューラに対して要 求する構成とした。 これにより、 スケジューラでは、 受信局からの回線品質デー タをモニタすることなく、 回線品質の良好な受信局に対して優先的に多くのチヤ ネルを割り当てることができる。
また、 本実施の形態においては、 再送要求または NAK受信で直ちにその通信 へのチャネル割当てが停止される構成とした。 これにより、 従来技術で発生して いた 「回線品質が悪いにもかかわらず無駄にチャネルが割り当てられる状態」 を 回避することができる。 また、 上記状態の回避によって、 チャネルを効率良く使 用できるようになるため、 システム全体のスループットを向上させることもでき る。
つぎに、 実施の形態 2の特徴について説明する。 従来技術にて説明した HSD PAでは、 受信局でパケット合成を行う。 パケット合成処理では、 1回目の受信 で失敗したフレームデータと再送で失敗したフレームデータとを合成する技術で 、 合成後に誤り訂正と誤り検出を行い、 誤りがなければそのフレームデータを正 しく受信できたデータとし、 送信局に対して ACKを送信する。 一方、 実施の形 態 2では、 再送フレーム単体では正しく受信できず、 パケット合成によって り のないフレームデータが合成できた場合には、 ACKに 「単体受信失敗」 の情報 を付加して送信する。 また、 再送フレーム単体で正しく受信できた場合には、 A CKに 「単体受信成功」 の情報を付加する。 そして、 送信局では、 ACKを受信 した場合に、 付加された情報を確認し、 「単体受信失敗」 の場合、 SAWモード を継続し、 「単体受信成功」 の場合、 連続送信モードに戻る。
第 3図は、 本発明にかかる通信装置 (送信局) の実施の形態 2の構成を示す図 である。 第 3図において、 l a— l, l a— 2, ···, l a— nは送信制御部であ り、 3 a— 1, 3 a— 2, ···, 3 a— nは各送信制御部内に備えられたモード切 替部である。 なお、 前述の実施の形態 1と同様の構成については、 同一の符号を 付してその説明を省略する。 以降では、 実施の形態 1と異なる動作についてのみ 説明する。
また、 第 4図は、 本発明にかかる通信装置 (受信局) の実施の形態 2の構成を 示す図である。 第 4図において、 1 1は受信部であり、 12は誤り訂正部であり 、 13は誤り検出部であり、 14は受信バッファであり、 15はパケット合成部 であり、 16は NAKZACK種別判断部であり、 17は送信部である。
上記本実施の形態の受信局では、 受信部 11力 S、 送信局からの信号を復調し、 誤り訂正部 12力 S、 復調後のデータに対して誤り訂正を行う。 その後、 誤り検出 部 13では、 誤りの有無を判定し、 新規フレームにて誤りがある場合に、 受信バ ッファ 14にそのデータを格納する。 一方、 再送フレームに誤りがある場合には 、 その再送フレームデータと受信バッファ 14に格納しているフレームデータと をパケット合成部 15にて合成する。 合成したフレームデータは、 再び誤り訂正 処理および誤り検出処理が施される。 誤り検出結果を受け取った NAKZACK 種別判断部 16では、 新規フレームに誤りがあった場合に NAKを、 合成フレー ムデータに誤りがなかった場合に AC と 「単体受信失敗」 とを、 再送フレーム 単体に誤りがなかった場合に ACKと 「単体受信成功」 とを、 それぞれ送信する 。 送信部 17では、 NAKZACK種別判断部 16から受け取った情報を所定の 変調方式で変調後、 送信する。
第 5図は、 実施の形態 2の通信方法を示す図である。 ここでは、 前述の実施の 形態 1と異なる動作についてのみ説明する。 まず、 受信局 Aでは、 実施の形態 1 と同様に、 フレーム "A2" の受信エラーに対応して NAKを送信する。 そして 、 NAKを受け取った送信局でも、 実施の形態 1と同様に、 フレーム "A2" の 再送を行うとともに、 動作モードを S AWモードに樹亍する。
そして、 再送フレーム "A2" が単体で再度受信エラーとなり、 パケット合成 後のフレームに誤りがなかった場合、 受信局 Aでは、 ACKに 「単体受信失敗」 を付加して送信する。
「単体受信失敗」 を受け取った送信局では、 この AC Kにしたがって SAWモ ードを,継続し、 次フレームであるフレーム "A3" を送信する。 そして、 受信局 Aでは、 たとえば、 フレーム "A3" が単体受信に成功した場合、 ACKに 「単 体受信成功」 を付カ卩して送信する。
「単体受信成功」 を受け取った基地局では、 この ACKにしたがって動作モー ドを連続送信モードに切り替え、 その後、 連続送信でフレーム "A4" , "A5 " , "A6" …を送信する。
このように、 本実施の形態においては、 再送フレームの受信に失敗し、 かつパ ケット合成後のフレームに誤りがなかった場合、 送信局では、 受信成功を通知す るための A C Kを受信した場合であっても S AWモードを継続し、 再送フレーム 単体で受信に成功した場合、 A C Κを受信した段階で S AWモードから連続送信 モードに移行する構成とした。 これにより、 真に回線状態が良好な通信に対して のみ、 多くのチャネルを割り当てることができる。
つぎに、 実施の形態 3の特徴について説明する。 第 6図は、 本発明にかかる通 信装置 (送信局) の実施の形態 3の構成を示す図である。 ここでは、 チャネル使 用を要求する受信局数が少ない場合に対応している。 第 6図において、 l b— 1 , l b— 2 , …, 1 b— nは送信制御部であり、 3 b— 1, 3 b— 2, · ··, 3 b 一 nは各送信制御部内に備えられたモード切替部であり、 4 bはスケジューラで ある。 なお、 前述の実施の形態 1と同様の構成については、 同一の符号を付して その説明を省略する。 以降では、 実施の形態 1と異なる動作についてのみ説明す る。
上記スケジューラ 4 bでは、 各モード切替部に対して線使用状況を通知する。 各モード切替部では、 この回線使用状況を参照し、 受信局から再送要求または N AKを受信した場合であっても、 その他に回線を使用している受信局が所定の基 準値よりも少ない場合には、 S AWモードに移行せずに G B Nモードで再送およ び連続送信の要求を継続する。
第 7図は、 実施の形態 3の通信方法を示す図である。 まず、 受信局 Aでは、 フ レーム "A 6 " の受信エラーが発生した場合、 NAKを送信する。 フレーム "A 6 " に対応した NAKを受信した送信局では、 上記回線使用状況を参照して、 S AWモードに移行して再送する力、 または G B Nモードに移行して再送するか、 を判断する。 ここでは、 説明の便宜上、 他に回線を使用する受信局がない場合を 示す。 この場合、 モード切替部では、 G B Nモードに移行して、 連続送信の要求 を継続する。
このように、 本実施の形態においては、 回線使用を要求する受信局が基準値よ りも少ない状況で、 再送要求または N A Kを受信した場合、 送信局におけるモー ド切替部が、 フレームの連続送信を継続する構成とした。 これにより、 どの受信 局もチヤネルを使用していなレ、状況を避けることができるため、 チャネルを最大 限に利用することができる。
つぎに、 実施の形態 4の特徴について説明する。 第 8図は、 本発明にかかる通 信装置 (送信局) の実施の形態 4の構成を示す図である。 ここでは、 サービス品 質において 「伝送遅延の維持を要求する通信」 を含む場合に対応している。 第 8 図において、 l c— l, 1 c - 2 , ·· ·, 1 c一 nは送信制御部であり、 3 c— l , 3 c— 2 , ···, 3 c— nは各送信制御部内に備えられたモード切替部である。 なお、 前述の実施の形態 1と同様の構成については、 同一の符号を付してその説 明を省略する。 以降では、 実施の形態 1と異なる動作についてのみ説明する。 上記各送信制御部には、 上位層から所要サービス品質に関する情報が通知され る。 各モード切替部では、 この所要サービス品質情報を参照して、 受信局から再 送要求または N A Cを受信した場合であつても、 この通信が伝送遅延の維持を要 求する場合には、 S AWモードに移行せずに G B Nモードで再送および連続送信 を ϋ&続する。 なお、 通信方法の手順については前述の第 7図と同様である。 このように、 本実施の形態においては、 サービス品質において伝送遅延の維持 を要求された通信については、 再送要求または ΝΑΚを受信した場合であっても 、 モード切替部が、 フレームの連続送信を継続する構成とした。 これにより、 受 信エラー中の通信回線が回復した場合に、 直ちに、 フレームを正しく受信できる ため、 伝送遅延を維持することができる。
つぎに、 実施の形態 5の特徴について説明する。 先に説明した実施の形態 1〜 4では、 送信局が ΝΑΚを受信した場合であっても、 低伝送速度でフレームの送 信を継続していた。 これにより、 通信品質が劣化した場合であってもわずかの通 信回線を提供されるため、 常に通信品質の回復状況をチェックし、 回復したとき にいち早く対応することができた。 特に、 実施の形態 2のようにパケット合成を 採用する場合は、 低伝送速度ながらも通信を継続できるため、 最低限のサービス を提供することができた。 これに対し、 実施の形態 5では、 通信品質が劣化した 場合、 その通信に対応した送信制御部にて送信要求を行わず、 すなわち、 対象と なる受信局に対して通信回線を与えず、 受信局から制御チャネルを用いて通信品 質が回復した旨を通知された段階で、 再び送信制御部が連続送信の要求を行う。 第 9図は、 本発明にかかる通信装置 (送信局) の実施の形態 5の構成を示す図 である。 第 9図において、 I d— 1, I d— 2, …, I d— nは送信制御部であ り、 3 d— 1, 3 d— 2, ···, 3 d— nは各送信制御部内に備えられたモード切 替部である。 なお、 前述の実施の形態 1と同様の構成については、 同一の符号を 付してその説明を省略する。 以降では、 実施の形態 1と異なる動作についてのみ 説明する。
上記各再送制御部では、 再送要求または NAKを受けると、 対応する送信制御 部が、 送信要求を停止し、 受信局から受け取る回線品質情報に基づいて回復状況 をチェックする。 そして、 回線品質が回復したと判断した場合、 対応する送信制 御部では、 再送すべきデータを先頭として、 スケジューラ 4に対して送信要求を 行う。
第 1 0図は、 実施の形態 5の通信方法を示す図である。 まず、 送信局では、 受 信局 Aとの通信にチャネルを割り当て、 フレームを連続送信モードにて送信する 。 たとえば、 受信局 Aにおいてフレーム "A 6 " の受信エラーが発生した場合、 受信局 Aでは、 フレーム "A 6 " の再送要求 (NAK) を行う。 フレーム "A 6 " の NAKを受け取った送信局では、 受信局 Aへの送信を完全に停止し、 たとえ ば、 受信局 Bに対してチャネルを割り当て、 フレームの連続送信を行う。
このとき、 送信局では、 受信局 Aに対してフレームの送信を行わずに、 受信局 Aから制御チャネルを用いて通知される 「回線品質に関する情報」 をチヱックす る。 たとえば、 回線品質の悪い状態が続いている場合には、 送信停止を継続し、 回線品質が良好な状態に回復した場合には、 直ちに受信局 Aへのフレームの連続 送信を再開する。 なお、 受信局では、 送信局が定期的に送信し、 力つそのエリア 内に存在するすべての受信局が受信可能な、 チャネル上の信号の通信品質を測定 する。
このように、 本実施の形態においては、 NAKを受信した場合に、 送信制御部 が受信エラーの発生した受信局への送信要求を完全に停止し、 そのチャネルを他 の受信局への送信に使用する構成とした。 また、 送信制御部にて、 受信エラーを 発生した受信局が制御チャネルを使用して送信する回線品質の通知をチェックす ることによって、 連続送信の要求を再開するかどうかを判断する構成とした。 こ れにより、 バケツト合成を使用しても受信エラーとなる位に回線品質が劣化した 場合の、 無駄なチャネル割当てを防止できる。 産業上の利用可能性
以上のように、 本発明にかかる通信方法にあっては、 AR Q (Automatic Repe at request) 技術を採用した通信システムに有用であり、 特に、 雑音や他局通信 の干渉などにより品質が劣化する可能性がある環境で通信を行う通信システムに 適している。

Claims

請 求 の 範 囲
1 . A R Q (Automatic Repeat request) 技術を採用した 1 (送信局) 対 n (受 信局) の通信で、 送信局が受信局に対して最適なチャネル割当てを行うための通 信方法において、
前記送信局が、 少なくともいずれか 1つの受信局に对して通信チャネルを割り 当て、 フレーム (データ単位) の連続送信を行っている状態で、 通信中の受信局 の 1つから特定フレームの再送要求を受信した場合、
前記再送要求元の受信局との間で確立された通信を前記連続送信から前記 A R Q技術の 1つである S AW (Stop and Wait) に切り替える第 1の切り替えステ ップと、
前記 S AWにより前記特定フレームを再送する再送ステップと、
前記 S AWによって送信フレームが減少することを利用して他の受信局に対し て通信チャネルを割り当て、 当該他の受信局との通信を優先するチャネル割当て ステップと、
再送後の特定フレームの正常受信を示す第 1の応答信号を確認できた時点で、 再送要求元の受信局との通信を前記連続送信に戻し、 再度、 当該受信局との通信 を優先する第 2の切り替えステップと、
を含むことを特徴とする通信方法。
2 . 前記再送要求元の受信局が、
前記再送後の特定フレームを正常に受信できた場合に、 「再送フレームの正常 受信を示す情報」 を付加した前記第 1の応答信号を送信する第 1の応答ステップ と、
前記再送後の特定フレームが再度受信エラーとなり、 力、つパケット合成後のフ レームに誤りがなかった場合に、 「再送フレームの受信エラーを示す情報」 を付 加した第 2の応答信号を送信する第 2の応答ステップと、 を含み、
前記第 2の切り替えステップでは、 前記第 2の応答信号を受信した場合、 前記 S AWによる通信を,継続することを特徴とする請求の範囲第 1項に記載の通信方 法。
3 . 前記送信局が前記再送要求を受信し、 かつ回線使用を要求する受信局が特定 の基準値より少ない場合、
前記第 1の切り替えステップでは、 前記再送要求元の受信局との間で確立され た通信を前記 AR Q技術の 1つである G B N (Go Back N) に切り替えることを 特徴とする請求の範囲第 1項に記載の通信方法。
4 . 前記送信局が前記再送要求を受信し、 かつ上位層からサービス品質として伝 送遅延の維持要求がある場合、
前記第 1の切り替えステップでは、 前記再送要求元の受信局との間で確立され た通信を前記 A R Q技術の 1つである G B N (Go Back N) に切り替えることを 特徴とする請求の範囲第 1項に記載の通信方法。
5 . 1 (送信局) 対 n (受信局) の通信で、 送信局が受信局に対して最適なチヤ ネル割当てを行うための通信方法において、
前記送信局が、 少なくともいずれか 1つの受信局に対して通信チャネルを割り 当て、 フレーム (データ単位) の連続送信を行っている状態で、 通信中の受信局 の 1つから再送要求を受信した場合、
前記再送要求元の受信局との間で確立された通信を停止するステップと、 他の受信局に対して通信チャネルを割り当て、 当該他の受信局との通信を優先 するチャネル割当てステップと、
受信局から通知される 「回線品質に関する情報」 をチェックし、 回線状況が回 復した時点で、 再送要求元の受信局との通信を再開し、 再度、 当該受信局との通 信を優先する再開ステップと、
を含むことを特徴とする通信方法。
6 . A R Q技術を採用した 1 (送信局) 対 n (受信局) の通信を確立可能な通 システムにおいて、
'己送信局が、 少なくともいずれか 1つの受信局に対して通信チャネルを割り 当て、 フレーム (データ単位) の連続送信を行っている状態で、 通信中の受信局 の 1つから特定フレームの再送要求を受信した場合、
前記再送要求元の受信局との間で確立された通信を前記連続送信から前記 A R Q技術の 1つである S AWに切り替え、 その後、 当該 S AWにより前記特定フレ ームを再送し、
一方で、 前記 S AWによつて送信フレームが減少することを利用して他の受信 局に対して通信チャネルを割り当て、 当該他の受信局との通信を優先し、 再送後の特定フレームの正常受信を示す第 1の応答信号を確認できた時点で、 再送要求元の受信局との通信を前記連続送信に戻し、 再度、 当該受信局との通信 を優先することを特徴とする通信システム。
7 . 前記再送要求元の受信局が、
前記再送後の特定フレームを正常に受信できた場合に、 「再送フレームの正常 受信を示す情報」 を付加した前記第 1の応答信号を送信し、
前記再送後の特定フレームが再度受信エラーとなり、 かつバケツト合成後のフ レームに誤りがなかった場合に、 「再送フレームの受信エラーを示す情報」 を付 加した第 2の応答信号を送信し、
前記送信局では、 S送に対する応答として前記第 2の応答信号を受信した場合 、 前記 S AWによる通信を継続することを特徴とする請求範囲第 6項に記載の通 信システム。
8 . 前記送信局が前記再送要求を受信し、 かつ回線使用を要求する受信局が特定 の基準値より少ない場合、
前記送信局では、 前記再送要求元の受信局との間で確立された通信を前記 A R Q技術の 1つである G B N (Go Back N) に切り替えることを特徴とする請求の 範囲第 6項に記載の通信システム。
9 . 前記送信局が前記再送要求を受信し、 かつ上位層からサービス品質として伝 送遅延の維持要求がある場合、
前記送信局では、 前記再送要求元の受信局との間で確立された通信を前記 A R Q技術の 1つである G B N (Go Back N) に切り替えることを特徴とする請求の 範囲第 6項に記載の通信システム。
1 0 . 1 (送信局) 対 n (受信局) の通信を確立可能な通信システムにおいて、 前記送信局が、 少なくともいずれか 1つの受信局に対して通信チャネルを割り 当て、 フレーム (データ単位) の連続送信を行っている状態で、 通信中の受信局 の 1つから再送要求を受信した場合、
前記再送要求元の受信局との間で確立された通信を停止し、
一方で、 他の受信局に対して通信チャネルを割り当て、 当該他の受信局との通 信を優先し、
受信局から通知される 「回線品質に関する情報」 をチェックし、 回線状況が回 復した時点で、 再送要求元の受信局との通信を再開し、 再度、 当該受信局との通 信を優先することを特徴とする通信システム。
1 1 . 複数の受信側通信装置と A R Q技術を採用した通信を確立する送信側の通 信装置において、
少なくともいずれか 1つの受信側通信装置に対して通信チャネルを割り当て、 フレーム (データ単位) の連続送信を行っている状態で、 通信中の受信側通信装 置の 1つから特定フレームの再送要求を受信した場合、
前記再送要求元の受信側通信装置との間で確立された通信を前記連続送信から 前記 A R Q技術の 1つである S AWに切り替え、 その後、 当該 S AWにより前記 特定フレームを再送し、
一方で、 前記 S AWによって送信フレームが減少することを利用して他の受信 側通信装置に对して通信チャネルを割り当て、 当該他の受信側通信装置との通信 を優先し、
再送後の特定フレームの正常受信を示す第 1の応答信号を確認できた時点で、 再送要求元の受信側通信装置との通信を前記連続送信に戻し、 再度、 当該受信側 通信装置との通信を優先することを特徴とする送信側の通信装置。
1 2 . 再送に対する応答として、 「再送フレームの正常受信を示す情報」 を付カロ した前記第 1の応答信号を受信した場合に、 再送要求元の受信側通信装置との通 信を前記連続送信に戻し、
再送に対する応答として、 「再送フレームの受信エラーを示す情報」 を付加し た第 2の応答信号を受信した場合に、 前記 S AWによる通信を継続することを特 徴とする請求の範囲第 1 1項に記載の送信側の通信装置。
1 3 . 前記再送要求を受信し、 力つ回線使用を要求する受信側通信装置が特定の 基準値より少ない場合、
前記再送要求元の受信側通信装置との間で確立された通信を前記 A R Q技術の 1つである G B N (Go Back N) に切り替えることを特徴とする請求の範囲第 1 1項に記載の送信側の通信装置。
1 4 . 前記再送要求を受信し、 かつ上位層からサービス品質として伝送遅延の維 持要求がある場合、
前記再送要求元の受信側通信装置との間で確立された通信を前記 A R Q技術の 1つである G B N (Go Back N) に切り替えることを特徴とする請求の範囲第 1 1項に記載の送信側の通信装置。
1 5 . 複数の受信側通信装置と A R Q技術を採用した通信を確立する送信側の通 信装置において、
少なくともレ、ずれか 1つの受信側通信装置に対して通信チャネルを割り当て、 フレーム (データ単位) の連続送信を行っている状態で、 通信中の受信側通信装 置の 1つから再送要求を受信した場合、
前記再送要求元の受信側通信装置との間で確立した通信を停止し、
一方で、 他の受信側通信装置に対して通信チャネルを割り当て、 当該他の受信 側通信装置との通信を優先し、
受信側通信装置から通知される 「回線品質に関する情報」 をチェックし、 回線 状況が回復した時点で、 再送要求元の受信側通信装置との通信を再開し、 再度: 当該受信側通信装置との通信を優先することを特徴とする送信側の通信装置。
1 6 . 送信側通信装置と AR Q技術を採用した通信を行う受信側の通信装置にお レ、て、
送信側通信装置から送られてくる再送フレームを正常に受信できた場合に、 「 再送フレームの正常受信を示す情報」 を付加した前記第 1の応答信号を送信し、 前記再送フレームが再度受信エラーとなり、 力つパケット合成後のフレームに 誤りがなかった場合に、 「再送フレ^ "ムの受信エラーを示す情報」 を付加した第 2の応答信号を送信することを特徴とする受信側の通信装置。
PCT/JP2001/008741 2001-10-04 2001-10-04 Procede de communication, systeme de communication et appareil de communication WO2003032566A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/486,785 US7096027B2 (en) 2001-10-04 2001-10-04 Communication method, communication system and communication apparatus
EP01974678A EP1434379A1 (en) 2001-10-04 2001-10-04 COMMUNICATION METHOD, COMMUNICATION SYSTEM AND COMMUNICATION APPARATUS
JP2003535404A JPWO2003032566A1 (ja) 2001-10-04 2001-10-04 通信方法、通信システムおよび通信装置
PCT/JP2001/008741 WO2003032566A1 (fr) 2001-10-04 2001-10-04 Procede de communication, systeme de communication et appareil de communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/008741 WO2003032566A1 (fr) 2001-10-04 2001-10-04 Procede de communication, systeme de communication et appareil de communication

Publications (1)

Publication Number Publication Date
WO2003032566A1 true WO2003032566A1 (fr) 2003-04-17

Family

ID=11737805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008741 WO2003032566A1 (fr) 2001-10-04 2001-10-04 Procede de communication, systeme de communication et appareil de communication

Country Status (4)

Country Link
US (1) US7096027B2 (ja)
EP (1) EP1434379A1 (ja)
JP (1) JPWO2003032566A1 (ja)
WO (1) WO2003032566A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014286A (ja) * 2004-05-19 2006-01-12 Mitsubishi Electric Information Technology Centre Europa Bv ネットワークにおいて資源を割り当てるための方法および装置
JP2007036759A (ja) * 2005-07-27 2007-02-08 Yamaha Corp ワイヤレスオーディオ伝送システム、ワイヤレスオーディオ受信装置およびワイヤレスオーディオ送信装置
JP2008543167A (ja) * 2005-05-23 2008-11-27 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 複数の補完的なフィードバックメカニズムを有する自動再送要求(arq)プロトコル
JP2010516188A (ja) * 2007-01-08 2010-05-13 インターデイジタル テクノロジー コーポレーション フィードバック情報をマルチキャストする方法および機器
US8032144B2 (en) 2003-07-03 2011-10-04 Panasonic Corporation Multi-carrier communication device and feedback information communication method
JPWO2011096009A1 (ja) * 2010-02-02 2013-06-06 株式会社東芝 無線機器及び無線システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7013157B1 (en) * 2002-06-03 2006-03-14 Cisco Technology, Inc. Method for multicast delivery with designated acknowledgment
JP4048094B2 (ja) * 2002-10-04 2008-02-13 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、移動通信方法、及びこれらに用いて好適な移動局
CN1843002B (zh) * 2003-08-26 2016-05-11 皇家飞利浦电子股份有限公司 点到多点传输
US20080081651A1 (en) * 2004-08-10 2008-04-03 Nahoko Kuroda Communication Control Method, Radio Communication System, Base Station, and Mobile Station
DE602005022502D1 (de) * 2005-08-22 2010-09-02 Ericsson Telefon Ab L M Kommunikationssystem und verfahren zum übertragen von daten zwischen einem endgerät und netzbetriebsmitteln
JP4419023B2 (ja) * 2006-03-23 2010-02-24 株式会社カシオ日立モバイルコミュニケーションズ 移動体通信端末、および、プログラム
JP2008136075A (ja) * 2006-11-29 2008-06-12 Nec Electronics Corp スケジューリング装置およびスケジューリング方法ならびにホスト装置
US8559323B2 (en) 2010-03-10 2013-10-15 Cisco Technology, Inc. Downlink OFDMA for service sets with mixed client types
US9154264B2 (en) * 2011-03-30 2015-10-06 Intel Corporation Device, system and method of wireless communication between circuits

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123079A (ja) * 1993-09-01 1995-05-12 Toshiba Corp データ伝送装置
JPH08172425A (ja) * 1994-12-19 1996-07-02 Nippon Telegr & Teleph Corp <Ntt> キャリア切替型自動再送方法および装置
JPH10135935A (ja) * 1996-10-31 1998-05-22 Sharp Corp データ通信装置
JPH10164031A (ja) * 1996-11-27 1998-06-19 Yazaki Corp 無線パケット通信装置
JP2001516177A (ja) * 1997-08-19 2001-09-25 テレフオンアクチーボラゲット エル エム エリクソン(パブル) マルチチャネル自動再送信照会(arq)方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020065072A1 (en) * 1998-11-19 2002-05-30 Annika Lindh Method and apparatus for resuming re-transmission after interruption
WO2001091357A1 (fr) 2000-05-22 2001-11-29 Mitsubishi Denki Kabushiki Kaisha Systeme de transmission de donnees

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123079A (ja) * 1993-09-01 1995-05-12 Toshiba Corp データ伝送装置
JPH08172425A (ja) * 1994-12-19 1996-07-02 Nippon Telegr & Teleph Corp <Ntt> キャリア切替型自動再送方法および装置
JPH10135935A (ja) * 1996-10-31 1998-05-22 Sharp Corp データ通信装置
JPH10164031A (ja) * 1996-11-27 1998-06-19 Yazaki Corp 無線パケット通信装置
JP2001516177A (ja) * 1997-08-19 2001-09-25 テレフオンアクチーボラゲット エル エム エリクソン(パブル) マルチチャネル自動再送信照会(arq)方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8032144B2 (en) 2003-07-03 2011-10-04 Panasonic Corporation Multi-carrier communication device and feedback information communication method
US8170571B2 (en) 2003-07-03 2012-05-01 Panasonic Corporation Base station and mobile station communicating with OFDM system using a plurality of subcarriers and communication method with OFDM system using a plurality of subcarriers
US8369861B2 (en) 2003-07-03 2013-02-05 Panasonic Corporation Base station and mobile station communicating with OFDM system using a plurality of subcarriers and communication method with OFDM system using a plurality of subcarriers
JP2006014286A (ja) * 2004-05-19 2006-01-12 Mitsubishi Electric Information Technology Centre Europa Bv ネットワークにおいて資源を割り当てるための方法および装置
JP2008543167A (ja) * 2005-05-23 2008-11-27 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 複数の補完的なフィードバックメカニズムを有する自動再送要求(arq)プロトコル
JP2007036759A (ja) * 2005-07-27 2007-02-08 Yamaha Corp ワイヤレスオーディオ伝送システム、ワイヤレスオーディオ受信装置およびワイヤレスオーディオ送信装置
JP2010516188A (ja) * 2007-01-08 2010-05-13 インターデイジタル テクノロジー コーポレーション フィードバック情報をマルチキャストする方法および機器
JPWO2011096009A1 (ja) * 2010-02-02 2013-06-06 株式会社東芝 無線機器及び無線システム
JP5460743B2 (ja) * 2010-02-02 2014-04-02 株式会社東芝 無線機器
US9252924B2 (en) 2010-02-02 2016-02-02 Kabushiki Kaisha Toshiba Wireless apparatus and wireless system

Also Published As

Publication number Publication date
US20040248579A1 (en) 2004-12-09
JPWO2003032566A1 (ja) 2005-01-27
EP1434379A1 (en) 2004-06-30
US7096027B2 (en) 2006-08-22

Similar Documents

Publication Publication Date Title
US11265788B2 (en) Method and apparatus for transmitting data via a plurality of cells
US10869247B1 (en) Supporting uplink transmissions
US7430206B2 (en) Wireless communication method and apparatus for detecting and correcting transmission errors
JP6466994B2 (ja) 持続性リソース・アロケーションのための誤り訂正
US9507669B2 (en) Method of transmitting data using HARQ
JP3908693B2 (ja) 移動通信システムにおけるデータ再伝送装置及び方法
US8201044B2 (en) Apparatus and method for transmitting control message in a wireless communication system using relaying
EP1307990B1 (en) Flexible arq for packet data transmission
US7124350B2 (en) Wireless communication method and system for detecting and correcting transmission errors
US9461784B2 (en) RRC message transmission method in wireless communication system
WO2003032566A1 (fr) Procede de communication, systeme de communication et appareil de communication
EP2165449A1 (en) Semi-persistent resource allocation method for uplink transmission in wireless packet data systems
US20130028189A1 (en) Method and apparatus for using physical layer error control to direct media access layer error control
JP4051338B2 (ja) 無線通信システムにおけるデータパケットの伝送方法
US20230208573A1 (en) Radio device, method to operate a radio device
KR20090014933A (ko) 복합 자동 재전송을 지원하는 이동통신 시스템에서 패킷데이터 송/수신 장치 및 방법
KR20080053161A (ko) 이동통신시스템의 하이브리드 자동 재전송 요구 지원 방법,그리고 이를 이용한 자동 재전송 요구 지원 방법 및 그시스템
KR101279694B1 (ko) 통신 시스템에서 하이브리드 자동 재전송 요구 방법 및 그 시스템
KR20070113090A (ko) 이동통신 시스템에서 제어 메시지를 재전송하는 방법 및장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003535404

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10486785

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001974678

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001974678

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001974678

Country of ref document: EP