WO2003032383A2 - Procede de fabrication d'une couche mince - Google Patents

Procede de fabrication d'une couche mince Download PDF

Info

Publication number
WO2003032383A2
WO2003032383A2 PCT/FR2002/003408 FR0203408W WO03032383A2 WO 2003032383 A2 WO2003032383 A2 WO 2003032383A2 FR 0203408 W FR0203408 W FR 0203408W WO 03032383 A2 WO03032383 A2 WO 03032383A2
Authority
WO
WIPO (PCT)
Prior art keywords
support
thin layer
layer
joining
component
Prior art date
Application number
PCT/FR2002/003408
Other languages
English (en)
Other versions
WO2003032383A3 (fr
Inventor
Bernard Aspar
Marc Zussy
Jean-Frédéric Clerc
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to AU2002350823A priority Critical patent/AU2002350823A1/en
Publication of WO2003032383A2 publication Critical patent/WO2003032383A2/fr
Publication of WO2003032383A3 publication Critical patent/WO2003032383A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76256Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques using silicon etch back techniques, e.g. BESOI, ELTRAN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate

Definitions

  • the invention relates to a method for manufacturing a thin layer comprising all or part of component (s) and / or circuit (s).
  • This type of technology can also be used for the production of passive components (resistive, inductive or capacitive) or for the production of weakly complex circuits which do not require the use of advanced microelectronic technologies, or even for the production of EMS (for "icro-Electro-Mechanical-Systems") or MOEMS (for "Micro-Opto-Electro-Mechanical-Systems”) or in the sense large systems such as mechanical, optical, chemical, biological sensors ...
  • Another approach consists in producing these components, or even objects, on a glass support and transferring them to the desired final support.
  • the problem which then arises is to find a technique for transferring these components, for example onto a plastic support or onto a support having other components in order to produce three-dimensional structures.
  • One way to obtain the transfer of a thin layer comprising components from an initial substrate to a final support is to use bonding and thinning techniques. Indeed, the initial substrate can be bonded to the media, the thin layer portion of the initial substrate being adjacent to the final substrate and then remove the portion of the substrate the original other than the thin layer. This elimination can be done by mechanical and / or chemical polishing. The problem which then arises is that of obtaining the required thinning. Indeed, the glass thicknesses are not well controlled (in thickness or in homogeneity) and elimination by simple polishing or rectification does not make it possible to obtain a film containing components and which is uniform and homogeneous.
  • These films can serve as active layers for the production of electronic or optical components.
  • the main advantage of these methods is that they make it possible to obtain thin films of substrates, for example monocrystalline, on different supports. In addition, these methods make it possible to recover the rest of the initial substrate for a new use. These films may contain all or part of a component. However, these methods are more difficult to implement for certain substrates such as glass, fused silica or certain amorphous materials. Indeed, to obtain separation, it would be necessary to place oneself in extreme experimental conditions: very high implantation dose, significant mechanical energy of separation ...
  • a method which makes it possible to transfer onto a final support a thin layer which may comprise certain elements, constituted by at least one part of component (s) and / or of object (s). ), the thin layer being a surface layer produced on a glass substrate.
  • the method implements a buried stop layer, located between the glass substrate and the thin layer.
  • stop layer is intended to mean a layer which makes it possible to stop or greatly slow down a thinning step, for example by chemical and / or mechanochemical etching.
  • a barrier layer which can be silicon (amorphous, polycrystalline, monocrystalline).
  • an intermediate layer of a material whose properties (optical and / or chemical and / or mechanical) are similar to those of the base substrate, can be interposed between the thin layer and the barrier layer.
  • This intermediate layer can consist of a deposit of silicon oxide.
  • the subject of the invention is therefore a method of manufacturing a thin layer comprising components or circuits, characterized in that it comprises the following steps: a) the formation on a glass substrate of a barrier layer , b) producing, on the barrier layer, a thin layer comprising all or part of at least one component and / or circuit, c) removing or thinning the glass substrate.
  • the method may further comprise a step of producing an intermediate layer between the barrier layer and the thin layer.
  • This intermediate layer can be made of a material chosen from
  • step b) the production of all or part of component (s) or circuit (s) relates to the production of a liquid crystal screen.
  • step b) the production of all or part of component (s) or circuit (s) relates to the production of all or part of microelectronic circuits, mechanical components and / or components optics.
  • Step c) can use one or more techniques chosen from grinding, chemical mechanical polishing and etching.
  • the barrier layer is made of silicon.
  • the method can further comprise a step of securing a support on said thin layer.
  • Step c) can make it possible to remove the glass substrate, the method further comprising a step of removing the barrier layer.
  • Step b) can be followed by a step of protecting all or part of the component (s) or circuit (s) produced with a view to the joining step.
  • the thin layer being intended to form part of one of the two means for confining a liquid crystal
  • the joining step consists in joining said thin layer on a support intended to form part of the other of the two means confinement of the liquid crystal thus making it possible to constitute a liquid crystal screen.
  • step c) providing a liquid crystal screen of the transmissive type this screen is transformed into a reflective type screen during a later step consisting in successively fixing, on the free face of the thin layer, a polarizer and a reflector.
  • the joining step may also include joining said thin layer on a support treated to present all or part of component (s) or circuit (s).
  • the component (s) or circuit (s) of the support may constitute all or part of microelectronic circuits, mechanical components and / or optical components.
  • the joining step may also include the joining of said layer. thin on a support chosen from a flexible support, a rigid support, a plastic support and the support of a smart card.
  • the joining step and step c) can be carried out so as to transfer only part of the thin layer to the support.
  • the joining step may consist of joining the thin layer on an intermediate support, the method comprising another joining step, subsequent to step c), consisting in fixing a final support on the side of the thinned or eliminated glass substrate.
  • the method can then also have a step consisting in separating the thin layer from the intermediate support.
  • the thin layer is made of semiconductor material.
  • FIGS. 1 to 4 are cross-section views illustrating a first implementation of the method according to the present invention
  • FIG. 5 and 6 are cross-sectional views illustrating a second implementation of the method according to the present invention.
  • FIG. 1 illustrates the step of forming a barrier layer 12 on a glass substrate 11.
  • a layer intermediate 13 based on Si0 2 can be deposited on the barrier layer 12 to constitute a quasi-substrate 10.
  • the substrate 11 is advantageously a glass plate of large dimensions, such as those used for the manufacture of LCD screens. It may, for example, be glass 1737 from Corning or any other glass compatible with carrying out the steps of the method according to the invention.
  • the stop layer 12 is for example obtained by deposition of amorphous silicon. It can be 300 n thick. In certain cases, this layer can be recrystallized, for example using a laser beam so as to obtain polycrystalline silicon also called polysilicon.
  • the barrier layer can also be made of Si 3 N 4 or be a multilayer whose layers are chosen from layers of Si, Si 3 N 4 , Si0 2 , etc. In certain cases, before creating this specific layer allowing the separation, one can deposit on the substrate 11 an additional layer promoting adhesion or necessary following the process. This additional layer can be made of silicon oxide.
  • the intermediate layer 13 is for example constituted by a deposit of silicon oxide of a few hundred nanometers (for example 800 nm). It has a free surface 14 of Si0 2 type, close to the surface of the glass 11. A quasi-substrate is then obtained 10.
  • a thin layer 3 is deposited, by example in silicon, in which all or part of a device 2 is produced (see FIG. 2).
  • a device is meant a set of active or passive elements.
  • a device may include an optical, optoelectronic or electronic component, or a mechanical, chemical and / or biological sensor. It can also be an active matrix with its addressing circuit (in the case of a flat screen) produced in a standard manner. If the thin layer 3 must be transferred to a support, its free face can be treated to make it compatible with the support, in particular in the case of a plastic support.
  • FIG. 3 represents the step of joining the quasi-substrate 10 supporting the thin layer 3 with a final support 4.
  • the joining can be obtained by adding material
  • the process continues with a step of removing the glass substrate.
  • the removal of the substrate 11 can be carried out by various means such as mechanical chemical grinding or polishing or even chemical attack (wet or dry).
  • the chemical attack can only take place on the side of the glass to be eliminated, for example using a "spin etcher". Indeed, if a chemical bath is used, it may be necessary to protect the final support.
  • the glass can be attacked by an HF-based solution.
  • the stop layer 12 which makes it possible to have a chemical attack selectivity with respect to the substrate, makes it possible to greatly slow down the attack. Indeed, silicon is very little attacked by HF or solutions based on HF.
  • the silicon barrier layer can then be removed, for example by chemical etching, for example with TMAH.
  • the structure of Figure 4 is obtained.
  • the intermediate layer 13 can optionally be removed, for example by chemical attack.
  • the structure obtained can be completed using technological steps which are compatible with the final support. These may be operations to ensure connectivity.
  • the method makes it possible to obtain devices 2 in reverse order with respect to their initial position on the quasi-substrate. If the device must not be inverted, it is necessary to use for the transfer to the final support an intermediate support which allows the manipulation of the thin layer supporting the device to be transferred.
  • the thin layer adheres reversibly to the intermediate support.
  • FIGS 5 and 6 illustrate this second implementation of the method according to the invention.
  • Figure 5 illustrates a step subsequent to that shown in Figure 4.
  • the support 4 ' is an intermediate support.
  • a final support 5 is then bonded to the free face of the intermediate layer 13 if it has been preserved.
  • FIG. 6 illustrates the structure obtained after elimination of the intermediate support 4 ′. This elimination can be obtained by tearing off the intermediate support if the adhesion force of this intermediate support is less than the adhesion force of the final support.
  • the thickness of the glass substrate is large, it may be advantageous to repeat several times on the substrate the intermediate stop-layer layer stack.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Laminated Bodies (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une couche mince comprenant des composants ou des circuits, caractérisé en ce qu'il comprend les étapes suivantes; la formation sur un substrat en verre d'une couche d'arrêt; la réalisation, sur la couche d'arrêt, d'une couche mince comprenant tout ou partie d'au moins un composant et/ou circuit; l'élimination ou l'amincissement du substrat en verre.

Description

PROCEDE DE FABRICATION D'UNE COUCHE MINCE COMPRENANT TOUT OU PARTIE DE COMPOSANT (S) ET/OU DE CIRCUIT (S)
DESCRIPTION
DOMAINE TECHNIQUE
L'invention concerne un procédé de fabrication d'une couche mince comprenant tout ou partie de composant (s) et/ou de circuit (s).
ETAT. DE LA TECHNIQUE ANTERIEURE Aujourd'hui, afin de diminuer le coût des systèmes portatifs (par exemple les téléphones portables, les cartes à puces ou encore les assistants personnels du futur) , de nombreuses voies sont envisageables. Une voie consiste à utiliser, chaque fois que cela est possible, des procédés de fabrication permettant la réalisation de composants sur de grandes surfaces au moyen de techniques à relativement faible coût. Certains composants sont déjà fabriqués de cette façon. Par exemple, les écrans à cristal liquide ou LCD sont réalisés sur des plaques de verre de grandes dimensions dont le coût est relativement faible. Ce type de technologie peut aussi être utilisé pour la réalisation de composants passifs (résistifs, inductifs ou capacitifs) ou pour la réalisation de circuits faiblement complexes qui ne nécessitent pas l'utilisation de technologies microélectroniques avancées, ou encore pour la réalisation de EMS (pour " icro-Electro-Mechanical-Systems") ou de MOEMS (pour "Micro-Opto-Electro-Mechanical-Systems") ou au sens large des systèmes tels que des capteurs mécaniques, optiques, chimiques, biologiques...
Par ailleurs, il peut être intéressant, voire nécessaire, de reporter ces composants, réalisés sur un substrat de fabrication, vers un autre support qui peut être le support final. Cela peut permettre en particulier de diminuer le coût global du système, par exemple dans le cas où l'on viendrait reporter le composant sur le support final. Le conditionnement du composant est alors simplifié. Le report peut également être mis en œuvre pour donner une nouvelle fonctionnalité à ces composants, par exemple en les rendant souples et/ou moins fragiles et/ou plus légers.
Pour les systèmes portatifs (cartes à puces, assistants personnels, téléphones portables...), il est nécessaire de disposer également de composants de faible épaisseur pour des problèmes de poids, de souplesse (par exemple pour s'adapter à celle de la carte à puce) . Les techniques de report sont alors très intéressantes. Ainsi, il peut être avantageux de reporter un ou plusieurs composants sur des supports plastiques qui peuvent être rigides ou souples selon les applications.
Pour certaines applications, il est également intéressant d'utiliser ces techniques de report car elles permettent d'empiler les composants en couches minces les uns sur les autres, ce qui permet d'obtenir des structures tridimensionnelles. Ces techniques trouvent donc aussi des applications dans le domaine de l'intégration. Pour obtenir des composants, habituellement réalisés sur un support en verre, sur un support de type plastique, une suggestion serait de fabriquer directement ces composants sur un support plastique. Une telle fabrication pose des problèmes. En effet, il faudrait soit modifier toute la technologie de réalisation de ces composants pour qu'elle soit compatible avec du plastique, soit trouver des supports plastiques qui soient compatibles avec les traitements thermiques de la technologie employée.
Une autre approche consiste à réaliser ces composants, voire des objets, sur un support en verre et à les reporter sur le support définitif désiré. Le problème qui se pose alors est de trouver une technique de report de ces composants par exemple sur un support plastique ou sur un support présentant d'autres composants afin de réaliser des structures tridimensionnelles.
Un moyen pour obtenir le report d'une couche mince comprenant des composants d'un substrat initial vers un support final est d'utiliser des techniques de collage et d'amincissement. En effet, on peut coller le substrat initial sur le support final, la partie couche mince du substrat initial étant adjacent au support final, puis éliminer la partie du substrat ' initial autre que la couche mince. Cette élimination peut se faire par polissage mécanique et/ou chimique. Le problème qui se pose alors est celui de l'obtention de l'amincissement requis. En effet, les épaisseurs de verre ne sont pas bien contrôlées (en épaisseur ou en homogénéité) et une élimination par simple polissage ou rectification ne permet pas d'obtenir un film contenant des composants et qui soit uniforme et homogène.
On connaît différentes techniques pour reporter des couches d'un support vers un autre support. On peut citer par exemple les techniques divulguées par T. HAMAGUCHI et al. dans Proc. IEDM, 1985, page 688. Ces techniques présentent un grand intérêt car elles permettent de transférer une couche réalisée à partir d'un premier substrat de type SOI vers un autre substrat. Cette technique utilise la couche enterrée d'oxyde de silicium comme couche d'arrêt pour l'amincissement du substrat SOI. Il est ainsi possible d'obtenir le transfert homogène d'un film mince. Cependant, cette technique ne s'applique pas aux substrats en verre. En effet, il n'existe pas de substrat en verre avec couche d'arrêt.
Plus récemment, d'autres techniques ont été proposées pour reporter des transistors TFT (réalisés en polysilicium sur un substrat en verre) sur des substrats en plastique. On peut se référer à ce sujet à l'article de S. UTSUNOMIYA et al. dans Proc. IDS 2000, page 916 ou au document EP-A-0 924 769. Ces méthodes sont basées sur la création d'une couche de séparation sur un substrat (généralement en silicium amorphe) qui, après réalisation de composants sur cette couche, permettra la séparation et le report sur un autre substrat. Dans ce cas, la séparation (ou exfoliation) est obtenue à l'aide d'une irradiation avec de la lumière (typiquement un faisceau type laser) . Une telle irradiation est cependant difficile à maîtriser pour les grandes surfaces. En effet, une inhomogénéité d'illumination doit entraîner une exfoliation inhomogène, ce qui peut conduire à une détérioration du film superficiel. Ceci constitue une difficulté technologique non négligeable.
Parmi les procédés de report, il est également possible d'utiliser les méthodes de transfert de couches minces de matériaux contenant ou pas tout ou partie d'un composant microélectronique. Ces méthodes sont basées sur la création d'une couche fragile enterrée dans un matériau à partir de l'introduction d'une ou plusieurs espèces gazeuses. On peut se référer à ce sujet aux documents FR-A-2 681 472 (correspondant au brevet américain 5 374 564), FR-A-2 748 851 (correspondant au brevet américain 6 020 252) , FR-A-2 748 850 (correspondant au brevet américain 6 190 998) et FR-A-2 773 261. Ces procédés sont généralement utilisés avec l'objectif de détacher l'ensemble d'un film d'un substrat initial pour le reporter sur un support. Le film mince obtenu contient alors une partie du substrat. Ces films peuvent servir de couches actives pour la réalisation de composants électroniques ou optiques. En effet, le principal intérêt de ces procédés est qu'ils permettent d'obtenir des films minces de substrats par exemple monocristallins sur des supports différents. En outre, ces procédés permettent de récupérer le reste du substrat initial pour une nouvelle utilisation. Ces films peuvent contenir tout ou partie d'un composant. Cependant, ces procédés sont plus difficiles à mettre en œuvre pour certains substrats tels que le verre, la silice fondue ou certains matériaux amorphes. En effet, pour obtenir la séparation, il faudrait se placer dans des conditions expérimentales extrêmes : très forte dose d'implantation, énergie mécanique de séparation importante...
EXPOSÉ DE L' INVENTION
Pour remédier aux problèmes de l'art antérieur, il est proposé un procédé qui permet de reporter sur un support final une couche mince pouvant comporter certains éléments, constitués par au moins une partie de composant (s) et/ou d'objet (s), la couche mince étant une couche superficielle réalisée sur un substrat en verre. Pour cela, le procédé met en œuvre une couche d'arrêt enterrée, située entre le substrat en verre et la couche mince. Par couche d'arrêt, on entend une couche qui permet d'arrêter ou de fortement ralentir une étape d'amincissement, par exemple par gravure chimique et/ou mécanochimique. Par exemple, si le substrat est en verre, on peut utiliser une couche d'arrêt qui peut être du silicium (amorphe, polycristallin, monocristallin) . De façon avantageuse, une couche intermédiaire, en un matériau dont les propriétés (optiques et/ou chimiques et/ou mécaniques) sont voisines de celles du substrat de base, peut être interposée entre la couche mince et la couche d'arrêt. Cette couche intermédiaire peut être constituée par un dépôt d'oxyde de silicium. La formation d'une couche intermédiaire en un matériau de nature identique ou proche du matériau constituant le substrat de base permet d'obtenir un quasi-substrat. Ce quasi-substrat se comporte comme un substrat classique pour la réalisation d'un dispositif.
L'invention a donc pour objet un procédé de fabrication d'une couche mince comprenant des composants ou des circuits, caractérisé en ce qu'il comprend les étapes suivantes : a) la formation sur un substrat en verre d'une couche d'arrêt, b) la réalisation, sur la couche d'arrêt, d'une couche mince comprenant tout ou partie d'au moins un composant et/ou circuit, c) l'élimination ou l'amincissement du substrat en verre.
Le procédé peut comprendre en outre une étape de réalisation d'une couche intermédiaire entre la couche d'arrêt et la couche mince. Cette couche intermédiaire peut être en un matériau choisi parmi
Si02 et Si3N4.
Selon une application particulière, lors de l'étape b) , la réalisation de tout ou partie de composant (s) ou de circuit (s) concerne la réalisation d'un écran à cristal liquide.
Selon une autre application particulière, lors de l'étape b) , la réalisation de tout ou partie de composant (s) ou de circuit (s) concerne la réalisation de tout ou partie de circuits microélectroniques, de composants mécaniques et/ou de composants optiques.
L'étape c) peut mettre en œuvre une ou plusieurs techniques choisies parmi la rectification, le polissage mécano-chimique et l'attaque chimique. Avantageusement, la couche d'arrêt est en silicium.
Avantageusement, le procédé peut comprendre en outre une étape de solidarisation d'un support sur ladite couche mince.
L'étape c) peut permettre d'éliminer le substrat en verre, le procédé comportant en outre une étape d'élimination de la couche d'arrêt. L'étape b) peut être suivie d'une étape de protection de tout ou partie de composant (s) ou de circuit (s) réalisés en vue de l'étape de solidarisation. Avantageusement, la couche mince étant destinée à faire partie de l'un des deux moyens de confinement d'un cristal liquide, l'étape de solidarisation consiste à solidariser ladite couche mince sur un support destiné à faire partie de l'autre des deux moyens de confinement du cristal liquide permettant ainsi de constituer un écran à cristal liquide. Eventuellement, l'étape c) fournissant un écran à cristal liquide de type transmissif, cet écran est transformé en écran de type réflectif lors d'une étape postérieure consistant à fixer successivement, sur la face libre de la couche mince, un polariseur et un réflecteur. L'étape de solidarisation peut aussi comprendre la solidarisation de ladite couche mince sur un support traité pour présenter tout ou partie de composant (s) ou de circuit (s). Les composant (s) ou circuit (s) du support peuvent constituer tout ou partie de circuits microélectroniques, de- composants mécaniques et/ou de composants optiques. L'étape de solidarisation peut aussi comprendre la solidarisation de ladite couche mince sur un support choisi parmi un support souple, un support rigide, un support en plastique et le support d'une carte à puce. L'étape de solidarisation et l'étape c) peuvent être menées pour ne reporter qu'une partie de la couche mince sur le support. L'étape de solidarisation peut consister à solidariser la couche mince sur un support intermédiaire, le procédé comprenant une autre étape de solidarisation, postérieure à l'étape c) , consistant à fixer un support final du côté du substrat en verre aminci ou éliminé. Le procédé peut alors en outre une étape consistant à séparer la couche mince du support intermédiaire.
Avantageusement, la couche mince est en matériau semiconducteur.
BRÈVE DESCRIPTION DES DESSINS
L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :
- les figures 1 à 4 sont des vues en coupe transversale illustrant une première mise en œuvre du procédé selon la présente invention,
- les figures 5 et 6 sont des vues en coupe transversale illustrant une deuxième mise en œuvre du procédé selon la présente invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION DE L'INVENTION
La figure 1 illustre l'étape de formation sur un substrat en verre 11 d'une couche d'arrêt 12. Selon un mode de réalisation avantageux, une couche intermédiaire 13 à base de Si02 peut être déposée sur la couche d'arrêt 12 pour constituer un quasi-substrat 10.
Le substrat 11 est avantageusement une plaque de verre de grandes dimensions, telle que celles utilisées pour la fabrication des écrans LCD. Il peut s'agir par exemple du verre 1737 de chez Corning ou tout autre verre compatible avec la réalisation des étapes du procédé selon l'invention. La couche d'arrêt 12 est par exemple obtenue par dépôt de silicium amorphe. Elle peut avoir 300 n d'épaisseur. Dans certains cas, cette couche peut être recristallisée, par exemple à l'aide d'un faisceau laser de façon à obtenir du silicium polycristallin appelé encore polysilicium. La couche d'arrêt peut également être en Si3N4 ou être une multicouche dont les couches sont choisies parmi des couches de Si, Si3N4, Si02, etc. Dans certains cas, avant de créer cette couche spécifique permettant la séparation, on peut déposer sur le substrat 11 une couche supplémentaire favorisant l'adhérence ou nécessaire à la suite du procédé. Cette couche supplémentaire peut être en oxyde de silicium.
La couche intermédiaire 13 est par exemple constituée par un dépôt d'oxyde de silicium de quelques centaines de nanomètres (par exemple 800 nm) . Elle présente une surface libre 14 de type Si02, proche de la surface du verre 11. On obtient alors un quasi- substrat 10. Sur la face libre 14 de la couche intermédiaire 13, on dépose une couche mince 3, par exemple en silicium, dans laquelle on réalise tout ou partie d'un dispositif 2 (voir la figure 2). Par dispositif, on entend un ensemble d'éléments actifs ou passifs. A titre d'exemple, un dispositif peut comprendre un composant optique, optoélectronique ou électronique, ou un capteur mécanique, chimique et/ou biologique. Ce peut être également une matrice active avec son circuit d'adressage (cas d'un écran plat) réalisé de façon standard. Si la couche mince 3 doit être reportée sur un support, sa face libre peut être traitée pour la rendre compatible avec le support, notamment dans le cas d'un support plastique.
La figure 3 représente l'étape de solidarisation du quasi-substrat 10 supportant la couche mince 3 avec un support final 4. La solidarisation peut être obtenue par ajout de matière
' (par exemple de la colle) ou par une préparation de surface (adhésion moléculaire) . Le procédé se poursuit par une étape d'élimination du substrat en verre. L'élimination du substrat 11 peut être réalisée par différents moyens tels que la rectification ou le polissage mécano- chimique ou même l'attaque chimique (humide ou sèche). De façon avantageuse, l'attaque chimique peut ne se faire que du côté du verre à éliminer, par exemple à l'aide d'un "spin etcher". En effet, si l'on utilise un bain chimique, il peut être nécessaire de protéger le support final. Le verre peut être attaqué par une solution à base de HF. La couche d'arrêt 12, qui permet d'avoir une sélectivité d'attaque chimique par rapport au substrat, permet de fortement ralentir l'attaque. En effet, le silicium est très peu attaqué par l'HF ou les solutions à base de HF. La couche d'arrêt en silicium peut être ensuite éliminée par exemple par gravure chimique, par exemple avec du TMAH. On obtient la structure de la figure 4.
La couche intermédiaire 13 peut éventuellement être éliminée par exemple par attaque chimique.
A ce stade, la structure obtenue peut être complétée en utilisant des étapes technologiques qui sont compatibles avec le support définitif. Il peut s'agir d'opérations permettant d'assurer la connectique.
Le procédé, tel qu'il est mis en œuvre ci- dessus, permet d'obtenir des dispositifs 2 de façon inversée par rapport à leur position initiale sur le quasi-substrat. Si le dispositif ne doit pas être inversé, il est nécessaire d'utiliser pour le report sur le support final un support intermédiaire qui permet la manipulation de la couche mince supportant le dispositif à transférer. De façon avantageuse, la couche mince adhère de façon réversible sur le support intermédiaire.
Les figures 5 et 6 illustrent cette deuxième mise en œuvre du procédé selon l'invention.
La figure 5 illustre une étape postérieure à celle représentée à la figure 4. Le support 4' est un support intermédiaire. Un support final 5 est alors collé sur la face libre de la couche intermédiaire 13 si elle a été conservée.
La figure 6 illustre la structure obtenue après élimination du support intermédiaire 4 ' . Cette élimination peut être obtenue par arrachage du support intermédiaire si la force d'adhérence de ce support intermédiaire est moins élevée que la force d'adhérence du support final.
Si l'épaisseur du substrat en verre est importante, il peut être intéressant de répéter plusieurs fois sur le substrat l'empilement couche d'arrêt-couche intermédiaire.
Il entre dans le cadre de la présente invention de disposer d'un support final de taille différente du quasi-substrat.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une couche mince comprenant des composants ou des circuits, caractérisé en ce qu'il comprend les étapes suivantes : a) la formation sur un substrat en verre (11) d'une couche d'arrêt (12), b) la réalisation, sur la couche d'arrêt (12), d'une couche mince (3) comprenant tout ou partie d'au moins un composant et/ou circuit (2), c) l'élimination ou l'amincissement du substrat en verre (11) .
2. Procédé selon la revendication 1, caractérisé en ce qu'il comprend en outre une étape de réalisation d'une couche intermédiaire (13) entre la couche d'arrêt (12) et la couche mince (3).
3. Procédé selon la revendication 2, caractérisé en ce que la couche intermédiaire est en un matériau choisi parmi Si02 et Si3N4.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que, lors de l'étape b) , la réalisation de tout ou partie de composant (s) ou de circuit (s) concerne la réalisation d'un écran à cristal liquide.
5. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que, lors de l'étape b) , la réalisation de tout ou partie de composant (s) ou de circuit (s) concerne la réalisation de tout ou partie de circuits microélectroniques, de composants mécaniques et/ou de composants optiques.
6. Procédé selon la revendication 1, caractérisé en ce que l'étape c) met en œuvre une ou plusieurs techniques choisies parmi la rectification, le polissage mécano-chimique et l'attaque chimique.
7. Procédé selon la revendication 1, caractérisé en ce que la couche d'arrêt (12) est en silicium.
8. Procédé selon la revendication 1, caractérisé en ce qu'il comprend en outre une étape de solidarisation d'un support (4) sur ladite couche mince (3) .
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'étape c) permet d'éliminer le substrat en verre (11), le procédé comportant en outre une étape d'élimination de la couche d'arrêt (12).
10. Procédé selon la revendication 8, caractérisé en ce que l'étape b) est suivie d'une étape de protection de tout ou partie de composant (s) ou de circuit (s) réalisés en vue de l'étape de solidarisation.
11. Procédé selon la revendication 8, caractérisé en ce que, la couche mince étant destinée à faire partie de l'un des deux moyens de confinement d'un cristal liquide, l'étape de solidarisation consiste à solidariser ladite couche mince sur un support destiné à faire partie de l'autre des deux moyens de confinement du cristal liquide permettant ainsi de constituer un écran à cristal liquide.
12. Procédé selon la revendication 11, caractérisé en ce que, l'étape c) fournissant un écran à cristal liquide de type transmissif, cet écran est transformé en écran de type réflectif lors d'une étape postérieure consistant à fixer successivement, sur la face libre de la couche mince, un polariseur et un réflecteur.
13. Procédé selon la revendication 8, caractérisé en ce que l'étape de solidarisation comprend la solidarisation de ladite couche mince sur un support traité pour présenter tout ou partie de composant (s) ou de circuit(s).
14. Procédé selon la revendication 13, caractérisé en ce que lesdits composant (s) ou circuit (s) du support constituent tout ou partie de circuits microélectroniques, de composants mécaniques et/ou de composants optiques.
15. Procédé selon la revendication 8, caractérisé en ce que l'étape de solidarisation comprend la solidarisation de ladite couche mince sur un support choisi parmi un support souple, un support rigide, un support en plastique et le support d'une carte à puce.
16. Procédé selon la revendication 8, caractérisé en ce que l'étape de solidarisation et l'étape c) sont menées pour ne reporter qu'une partie de la couche mince sur le support.
17. Procédé selon la revendication 9, caractérisé en ce que l'étape de solidarisation consiste à solidariser la couche mince sur un support intermédiaire (4'), le procédé comprenant une autre étape de solidarisation, postérieure à l'étape c) , consistant à fixer un support final (5) du côté du substrat en verre (11) aminci ou éliminé.
18. Procédé selon la revendication 17, caractérisé en ce qu'il comprend en outre une étape consistant à séparer la couche mince (3) du support intermédiaire (4').
19. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite couche mince (3) est en matériau semiconducteur.
PCT/FR2002/003408 2001-10-09 2002-10-07 Procede de fabrication d'une couche mince WO2003032383A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002350823A AU2002350823A1 (en) 2001-10-09 2002-10-07 Method for making a thin layer comprising all or part of component(s) and/or of circuit(s)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0112955A FR2830681A1 (fr) 2001-10-09 2001-10-09 Procede de fabrication d'une couche mince comprenant tout ou partie de composant(s) et ou de circuit(s)
FR01/12955 2001-10-09

Publications (2)

Publication Number Publication Date
WO2003032383A2 true WO2003032383A2 (fr) 2003-04-17
WO2003032383A3 WO2003032383A3 (fr) 2003-10-09

Family

ID=8868060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003408 WO2003032383A2 (fr) 2001-10-09 2002-10-07 Procede de fabrication d'une couche mince

Country Status (3)

Country Link
AU (1) AU2002350823A1 (fr)
FR (1) FR2830681A1 (fr)
WO (1) WO2003032383A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876219B1 (fr) * 2004-10-06 2006-11-24 Commissariat Energie Atomique Procede d'elaboration de structures empilees mixtes, a zones isolantes diverses et/ou zones de conduction electrique verticale localisees.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695956A (en) * 1970-05-25 1972-10-03 Rca Corp Method for forming isolated semiconductor devices
EP0924769A1 (fr) * 1997-07-03 1999-06-23 Seiko Epson Corporation Procede de transfert de dispositifs a couches minces, dispositif a couches minces, dispositif a circuit integre a couches minces, substrat de matrice active, affichage a cristaux liquides et appareil electronique
US6027958A (en) * 1996-07-11 2000-02-22 Kopin Corporation Transferred flexible integrated circuit
US6110393A (en) * 1996-10-09 2000-08-29 Sandia Corporation Epoxy bond and stop etch fabrication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695956A (en) * 1970-05-25 1972-10-03 Rca Corp Method for forming isolated semiconductor devices
US6027958A (en) * 1996-07-11 2000-02-22 Kopin Corporation Transferred flexible integrated circuit
US6110393A (en) * 1996-10-09 2000-08-29 Sandia Corporation Epoxy bond and stop etch fabrication method
EP0924769A1 (fr) * 1997-07-03 1999-06-23 Seiko Epson Corporation Procede de transfert de dispositifs a couches minces, dispositif a couches minces, dispositif a circuit integre a couches minces, substrat de matrice active, affichage a cristaux liquides et appareil electronique

Also Published As

Publication number Publication date
FR2830681A1 (fr) 2003-04-11
AU2002350823A1 (en) 2003-04-22
WO2003032383A3 (fr) 2003-10-09

Similar Documents

Publication Publication Date Title
EP1982217B1 (fr) Réalisation de cavités pouvant être remplies par un matériau fluidique dans un composé microtechnologique optique
EP0660140B1 (fr) Procédé de réalisation d'une structure en relief sur un support en matériau semi-conducteur
EP1364400B1 (fr) Procede de fabrication de couches minces sur un support specifique et une application
US7045441B2 (en) Method for forming a single-crystal silicon layer on a transparent substrate
CN105420674A (zh) 单晶薄膜键合体及其制造方法
FR2893750A1 (fr) Procede de fabrication d'un dispositif electronique flexible du type ecran comportant une pluralite de composants en couches minces.
FR2823599A1 (fr) Substrat demomtable a tenue mecanique controlee et procede de realisation
EP1203403A1 (fr) Procede de transfert d'une couche mince comportant une etape de surfragilisation
FR2947380A1 (fr) Procede de collage par adhesion moleculaire.
WO2002082502A2 (fr) Procede de transfert selectif de puces semiconductrices d'un support initial sur un support final
FR2935537A1 (fr) Procede d'initiation d'adhesion moleculaire
EP1497857A1 (fr) Procede de manipulation de couches semiconductrices pour leur amincissement
FR2889887A1 (fr) Procede de report d'une couche mince sur un support
EP2842155B1 (fr) Procede de collage dans une atmosphere de gaz presentant un coefficient de joule-thomson negatif
FR2925223A1 (fr) Procede d'assemblage avec marques enterrees
EP1493181A2 (fr) Procede de transfert d'elements de substrat a substrat
EP3151265A1 (fr) Procede de realisation d'une structure semiconductrice comportant une portion contrainte
EP3151266B1 (fr) Procede de formation d'une portion semiconductrice par croissance epitaxiale sur une portion contrainte
EP2697825B1 (fr) Procédé de fabrication d'un dispositif opto-microélectronique
CA2457899C (fr) Capteur d'image couleur sur substrat transparent et procede de fabrication
EP2798672A1 (fr) Procede de fabrication d'une structure multicouche sur un support
WO2003032383A2 (fr) Procede de fabrication d'une couche mince
EP2798668B1 (fr) Procede de fabrication d'une structure multicouche sur un support
EP3365929B1 (fr) Procédé de fabrication d'une structure hybride
WO2013098528A1 (fr) Procede de fabrication d'une structure multicouche sur un support

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP