WO2003031653A1 - METHOD OF SELECTING BARLEY VARIETY, BARLEY β-AMYLASE GENE AND PROCESS FOR PRODUCING MALT ALCOHOLIC DRINK - Google Patents

METHOD OF SELECTING BARLEY VARIETY, BARLEY β-AMYLASE GENE AND PROCESS FOR PRODUCING MALT ALCOHOLIC DRINK Download PDF

Info

Publication number
WO2003031653A1
WO2003031653A1 PCT/JP2002/010298 JP0210298W WO03031653A1 WO 2003031653 A1 WO2003031653 A1 WO 2003031653A1 JP 0210298 W JP0210298 W JP 0210298W WO 03031653 A1 WO03031653 A1 WO 03031653A1
Authority
WO
WIPO (PCT)
Prior art keywords
barley
gene
amylase
malt
selecting
Prior art date
Application number
PCT/JP2002/010298
Other languages
English (en)
French (fr)
Inventor
Kazuyoshi Takeda
Takafumi Kaneko
Makoto Kihara
Takashi Asakura
Kazutoshi Ito
Original Assignee
Sapporo Breweries Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sapporo Breweries Limited filed Critical Sapporo Breweries Limited
Priority to CA002462842A priority Critical patent/CA2462842A1/en
Priority to EP02800751A priority patent/EP1452607A4/en
Priority to JP2003534623A priority patent/JP4101757B2/ja
Priority to AU2002335181A priority patent/AU2002335181B2/en
Priority to US10/490,378 priority patent/US7465557B2/en
Publication of WO2003031653A1 publication Critical patent/WO2003031653A1/ja
Priority to US12/147,280 priority patent/US20090035415A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2425Beta-amylase (3.2.1.2)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/04Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
    • A01H1/045Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection using molecular markers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/46Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
    • A01H6/4624Hordeum vulgarus [barley]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/22Preparation of compounds containing saccharide radicals produced by the action of a beta-amylase, e.g. maltose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/14Multiple stages of fermentation; Multiple types of microorganisms or re-use of microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/40Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving amylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01002Beta-amylase (3.2.1.2)

Definitions

  • the present invention relates to a method for selecting a barley variety having high fermentability and a method for producing a malt alcoholic beverage using the barley.
  • barley breeding has been performed using traditional crossing techniques. In other words, individuals with different genotypes are crossed, and a desired line is selected for the obtained progeny line based on cultivation characteristics such as agricultural characteristics, environmental adaptability, disease resistance, etc., and the selected lines are selected.
  • cultivation characteristics such as agricultural characteristics, environmental adaptability, disease resistance, etc.
  • fixed barley can be obtained by cultivating the barley. This process usually takes 5 to 6 years, and after that, it is necessary to select only barley varieties with better brewing characteristics from the genetically fixed barley described above. It took a huge amount of time to select barley suitable for the meal.
  • barley In addition, such breeding of barley must be carried out by breeders based on their experience.In order to select barley that is considered to have excellent brewing characteristics, the subjective judgment of experienced breeders is required. Breeding was required.
  • Barley which is used as a raw material for malt alcoholic beverages such as beer and low-malt beer, contains saccharifying enzymes such as ⁇ -amylase and monoamylase. During saccharification, carbohydrates in barley seeds are decomposed into low molecular weight saccharides by the action of these saccharifying enzymes.
  • the present invention has been made in view of the above-mentioned problems of the related art, and has high heat stability in order to enhance saccharification efficiency in producing malt alcoholic beverages.
  • the present inventors have found a native barley having i3-amylase having high thermostability, and confirmed that the structural gene of the monoamylase is a novel gene. This led to the completion of the present invention.
  • the crude enzyme solution is added at 55 ° C. to 58 ° C. It is preferable to perform a heat treatment at a predetermined temperature within a range of 10 minutes to 60 minutes for a predetermined time, and particularly preferably to heat-treat the crude enzyme solution at 57.5 ° C. for 30 minutes. is there.
  • the gene region to be amplified in the gene amplification step is a gene region containing the barley / 3-amylase gene second etason, and in the gene detection step, the restriction enzyme is MspI.
  • the gene is detected under such conditions, and when the novel] 3-amylase of the present invention is detected, the detected gene fragment contains a 53 bp fragment while the known ⁇
  • the amylase gene is detected, a gene fragment having a size larger than 53 b ⁇ is detected.
  • the barley 3-amylase gene of the present invention is characterized by including the nucleic acid sequence of SEQ ID NO: 1 in the sequence listing.
  • the barley / 3-amylase gene of the present invention may be composed of a part of the nucleic acid sequence.
  • a malting step of malting the barley selected by the barley variety selection method to obtain malt A charging step of saccharifying the malt to obtain wort,
  • Figure 1 is a graph showing heat inactivation curves of ⁇ -amylase contained in seeds of various barley lines.
  • FIG. 2 is a diagram showing the nucleotide sequence of the known seed-expressed 3-amylase gene portion and the nucleotide sequence of the novel ⁇ -amylase gene of the present invention.
  • FIG. 3 is an electrophoresis photograph showing the CAPS polymorphism of the] 3-amylase gene of various barleys.
  • FIG. 4 is a graph showing the thermal stability of ⁇ -amylase extracted from Schooner X CS 188 cross F2 seeds.
  • FIG. 5 is a graph showing a saccharification process diagram and a heat inactivation curve of an amylase in the production of a malt alcoholic beverage.
  • the heat treatment step according to the present invention is a step of heat-treating a crude enzyme solution extracted from seeds of barley to be selected (hereinafter, referred to as test barley).
  • the growth stage of the test barley seeds according to the present invention is not particularly limited, but preferably fully-ripened barley seeds are used.
  • the barley tissue to be used is not particularly limited, but specifically, for example, an endosperm tissue can be used.
  • an endosperm tissue By using the endosperm tissue, the portion containing the embryo of a single seed can be germinated and grown, and by selecting the
  • the method for extracting the crude enzyme solution is not particularly limited as long as it does not inhibit the activity of amylase.
  • a 50 mM acetate buffer solution (pH 5.0) containing 10 mM dithiothreitol may be used.
  • the extraction solution extracted using 5.5) may be centrifuged, and the supernatant may be used as a crude enzyme solution.
  • the crude enzyme solution is preferably heat-treated at a predetermined temperature in a range of 55 ° C to 58 ° C for a predetermined time in a range of 10 minutes to 60 minutes.
  • the crude enzyme solution is subjected to a heat treatment at 57.5 ° C. for 30 minutes, but is not limited to the conditions of the temperature and the time, and may be performed under other conditions.
  • the activity measuring step according to the present invention is a step of measuring the enzymatic activity of enzyme in the heat-treated crude enzyme solution.
  • the method for measuring the activity of 3-amylase contained in the crude enzyme solution that has been heat-treated in the heat treatment step is not particularly limited, and can be performed using a known method.
  • the measurement may be performed using a BETAMYL kit (manufactured by MegaZym Co., Ltd.), which is an activity measurement kit using P-nitrophenylmaltopentanoside as a substrate.
  • Dichlorophenyl 3-maltopentaside manufactured by Ono Pharmaceutical Co., Ltd.
  • reacting the substrate with a crude enzyme solution at 37 ° C to measure the amount of dichlorophenol produced.
  • the remaining activity is 85 to
  • -amylase gene whose base sequence is already known in the seed-expressed monoamylase gene (hereinafter referred to as “-amylase gene”) (SEQ ID NO: 2 in the sequence listing)
  • the present inventors have determined that the corresponding [3-] A novel amylase gene that differs from the amylase gene by at least one base was found (SEQ ID NO: 1 in the sequence listing).
  • the nucleic acid of SEQ ID NO: 1 shows the nucleotide sequence of the second exon of the novel 0-amylase gene, and 290 to 68 of the known ⁇ -amylase gene having the nucleotide sequence of SEQ ID NO: 2
  • the eighth base indicates the second ethathon.
  • the present inventors have found that this novel amylase gene region type and ⁇ -amylase thermostability match. Therefore, by analyzing the 3-amylase gene extracted from barley by the method for selecting barley varieties of the present invention, it becomes possible to select barley varieties having 3-amylase with high heat stability. . Specifically, since there is a restriction enzyme cleavage site that is generated or eliminated due to a difference in the nucleotide sequences of both, the ⁇ -amylase gene extracted from the test barley is recognized or cleaved at the restriction enzyme cleavage site. Barley varieties can be identified by cutting with restriction enzymes and comparing the cutting patterns.
  • the gene amplification step according to the present invention is a step of amplifying a] -amylase structural gene region from genomic DNA extracted from a test barley seed.
  • the method of extracting genomic DNA from the test barley is not particularly limited, and can be performed by a known method. Specifically, for example, the CTA method (Murrayetal., 198, Nuclear A 8: 4 3 2 1 — 4 3 2 5) or E thidi um b 1 omide method (V aradarajanand Prakash 1
  • novel / 3-amylase gene according to the present invention is a novel gene discovered by the present inventors, and compared with the known i3-amylase gene, the barley ⁇ -A It is characterized in that the 25th base ⁇ of the second exon of the millase gene has been replaced with C. By this base substitution, a cleavage site of the restriction enzyme MspI that was not present in the known e-amylase gene was generated. As a result, the gene amplification product was converted to Msp
  • the method for amplifying the monoamylase structural gene is not particularly limited, and it can be carried out by the following methods: S, for example; Where P C
  • the base sequence of the primer used in the R method is not particularly limited as long as it is set in a region capable of amplifying the ⁇ -amylase gene.
  • the number of bases is preferably 10 to 60 continuous bases, and more preferably 15 to 30 continuous bases.
  • the GC content in the nucleotide sequence of the primer is 40 to 60%.
  • the region amplified in this step is preferably a region relating to CAPS strength discovered by the present inventors.
  • the ⁇ -amylase genomic structural gene translation initiation codons 1 to 12 32 b ⁇ region are amplified by PCR and cut with the restriction enzyme MspI to obtain 866 bp and 313 bp. ⁇ A region related to a CAPS marker characterized in that a 53 bp nucleic acid fragment is formed.
  • the region to be amplified in the gene amplification step according to the present invention is a region containing the 25th base of the / 3-amylase gene second etason, from the translation initiation codon 1 to 1232 bp. The range may be narrow, for example, the ⁇ -amylase gene is preferably the second etason.
  • the gene detection step according to the present invention is a step in which the i3-amylase structural gene amplified in the gene amplification step is cleaved with a restriction enzyme to detect a gene fragment having a predetermined number of bases.
  • the novel J3-amylase gene according to the present invention has a difference in base sequence from the known] 3-amylase gene. Therefore, the amplified product is amplified using a restriction enzyme that recognizes or cleaves the difference. Upon cleavage, differences in the size of the resulting nucleic acid fragments can be seen.
  • the restriction enzyme according to the present invention is not particularly limited as long as it recognizes or cleaves the above-mentioned different portion, but the restriction enzyme M which has already been found to have such an action is used. It is preferably spI.
  • a gene fragment having a predetermined number of bases is a gene fragment in which, due to the presence of the difference, the size of a nucleic acid fragment obtained by cleaving an amplified product with a restriction enzyme is different.
  • the number of bases is not particularly limited.
  • the region to be amplified is a region relating to the above-mentioned CAPS marker, and MspI is used as the restriction enzyme
  • the predetermined base numbers are 8666 bp, 313 bp and 53 bp.
  • 3-amylase gene contains, as described above, Since the base is A, it is not cleaved by MspI. That is, as shown in FIG.
  • the 53 bp nucleic acid fragment to be generated by the MspI treatment was not generated, and the 3666 bp and 86 Only two nucleic acid fragments of 6 bp are generated.
  • the detection in this step is not particularly limited as long as it can detect a nucleic acid fragment cleaved by a restriction enzyme.
  • a restriction enzyme specifically, for example, by agarose gel electrophoresis or polyacrylamide gel electrophoresis You just have to detect it.
  • the selection step of the present invention is a step of selecting a predetermined barley variety based on the number of bases of the gene fragment detected in the gene detection step.
  • the number of bases of the nucleic acid fragments detected in the gene detection step may be compared to select a barley variety in which the nucleic acid fragment having the desired number of bases has been found.
  • the barley 3-amylase gene of the present invention includes a nucleic acid having a base number of 123 bp as shown in SEQ ID NO: 1 in the sequence listing.
  • the gene is a genomic DNA encoding a 3-amylase having high thermostability, and a nucleic acid comprising a part of this nucleotide sequence is also included in the present invention.
  • the nucleic acid comprising a part of the barley; 3-amylase gene of the present invention preferably satisfies the following conditions. That is, known - amylase gene (Harunanijo) counted from the start codon 2 9 lbp of A Gazi, the A force of 2410Bp, the G forces 3216Bp, the C power ST of 3438Bp, C forces the 3493bp It is preferable that T is substituted for G at 3598 bp, and T is substituted for C at 3696 bp.
  • the malt alcoholic beverage according to the present invention is not particularly limited in the proportion of malt used in its production, and may be any alcoholic beverage produced using malt as a raw material. Specific examples include beer and low-malt beer (malt alcoholic beverages with a malt use ratio of less than 25%).
  • the malting step according to the present invention is a step of obtaining malt by malting the barley selected by the above-described method for selecting a barley variety. Except for using the barley selected as described above, the method of malting is not particularly limited and may be performed by a known method.Specifically, for example, the steeping degree is 40 to 45%. After immersion, malt can be obtained by germination at 10 to 20 ° C for 3 to 6 days and roasting.
  • the charging step according to the present invention is a step of saccharifying the malt to obtain wort. Specifically, it is further divided into the following first to fourth steps. That is, the first step is a preparation step of mixing a raw material containing malt and brewing water, saccharifying malt by heating the obtained mixture, and collecting wort from the saccharified malt. is there.
  • the malt used in this step is preferably one obtained by giving water and air to barley to cause germination, drying and removing radicles.
  • Malt is wort It is a major source of starch as a source of enzymes required for production and as a raw material for saccharification.
  • germinated malt is roasted for wort production in order to impart the flavor and pigment peculiar to malt alcoholic beverages.
  • auxiliary materials such as hops, corn starch, corn grits, rice, and sugars may be added.
  • a commercially available or separately prepared malt extract may be mixed with the water for charging, and the wort may be obtained by adding the auxiliary material as needed.
  • the malt is added to the brewing water and then mixed.
  • the preparation water is not particularly limited, and water suitable for the malt alcoholic beverage to be produced may be used.
  • saccharification may be performed under known conditions.For example, it is preferable to heat the mixed malt and charging water to 65 to 75 ° C., whereby malt saccharification is performed. Saccharification by amylase proceeds. The wort is obtained by filtering the malt saccharified solution thus obtained.
  • the second step is a fermentation step in which yeast is added to the wort and fermented to obtain a malt alcohol beverage intermediate product.
  • the yeast used here may be any liquor yeast that performs so-called alcohol fermentation that metabolizes the sugar content in the wort obtained by saccharification of the malt to produce alcohol, carbon dioxide, and the like. Fermentation, for example, Saccharomyces cerevisiae, Saccharomyces pedophile, etc., is performed by cooling the wort obtained in the above charging step and adding the yeast to the wort.
  • the fermentation conditions are basically the same as known conditions.
  • the fermentation temperature is usually 15 ° C or lower, preferably 8 to 10 ° C, and the fermentation time is preferably 8 to 10 days.
  • the third step is a storage step of storing the malt alcoholic beverage intermediate product obtained in the fermentation step.
  • the fermented liquor after the completion of alcohol fermentation is transferred to a closed tank and stored.
  • the storage conditions are basically the same as known conditions.
  • the storage temperature is preferably 0 to 2 ° C
  • the storage time is preferably 30 to 90 days.
  • the fourth step is a filtration step of filtering the intermediate malt alcoholic beverage obtained in the alcohol storage step to obtain a malt alcoholic beverage.
  • the filtration conditions are basically the same as known conditions.
  • diatomaceous earth, PVPP (polyvinylpolypyrrolidone), silica gel, cellulose powder, etc. are used as filtration aids, and the temperature is 0 ⁇ 1 ° C. Done in In this way, a malt alcoholic beverage (eg beer or low-malt beer) is obtained.
  • the filtered malt alcoholic beverages are sent to tanks, barrels, bottles or cans as they are, or after aseptic filtration or heat treatment.
  • a malt alcoholic beverage was produced using the barley selected in this way, and a fermentation efficiency measurement test was conducted. As a result, it was found that the final appearance fermentation degree was improved.
  • the final degree of appearance fermentation refers to the percentage of wort extract used in fermentation expressed as a percentage.
  • a malt alcoholic beverage according to the method for producing a malt alcoholic beverage of the present invention, it is possible to obtain a fermentable sugar with high efficiency in the preparation step, and to perform fermentation using the wort.
  • carbohydrates in barley are converted to alcohol with higher efficiency than before.
  • the starch decomposition efficiency during the saccharification process is increased, and fermentable low-molecular-weight sugars are generated more. It becomes possible.
  • the breeding method is not particularly limited, and can be performed using a known method.
  • barley 3-amylase gene of the present invention there is a possibility that barley containing ⁇ -amylase having high thermostability using a gene recombination technique can be produced.
  • the method for introducing the barley i3-amylase gene of the present invention into barley is not particularly limited, and it can be carried out by a known method.
  • amylase activity was measured using p-nitrophenyl manoleto pentaoside (BETAMYL kit; manufactured by Megazim) as a substrate.
  • BETAMYL kit p-nitrophenyl manoleto pentaoside
  • 01 was added and reacted for exactly 5 minutes.
  • the reaction was stopped by adding 150 ⁇ l of a 1% Tris solution to the reaction solution.
  • the reaction solution 100 ⁇ 1 was transferred to a multiplate, and Abs 405 was measured using a BIO-RAD plate reader.
  • the value of the treated plot divided by the value of the untreated plot was divided by a value of 850% to confirm that the / 3_ amylase enzyme of CS188 was present in the seeds.
  • CS188 selected from barley genetic resources is composed of conventional barley (Haruna ni-jo (A type), R obust (BII type), Harrington (BI type), Schooner (C-type)).
  • the types A, B and C are defined as having a residual activity of 35% or more when a crude enzyme solution extracted from barley is subjected to a heat treatment at 57.5 ° C. for 30 minutes. Those were classified as type A, those with 1035% as type B, and those with less than 10% as type C.
  • type B was further classified into two types based on the isoelectric point of one amylase contained in barley, and the type having a band of p i 6.5 was classified as B I, and the type having no band was classified as B I I.
  • the genomic DNA of the 3-amylase gene extracted from CS188 was decoded by the dye terminator method. As shown in Fig. 2, the base at 2991 bp from the translation initiation codon is ⁇ in the case of a known ⁇ - On the other hand, in the [3-amylase gene isolated from CS188, it was changed to C, confirming that the nucleotide sequence CCGG, which is a recognition site of the restriction enzyme MspI, was formed.
  • Genomic DNA was extracted by SDS-propanol method from Cs188 and the sprouting green leaves of normal varieties, and this was designated as N-type DNA and the 5'-primer (5, -A
  • 3'-primer 5 CACTCACGATGAATTCTCCGATGCCTGGGA-3': SEQ ID NO: 4
  • 50 M each, add 1 ⁇ l of DNA, premix ExTaq and calcine 50 ⁇ 1 scale PCR was performed at 94 ° C. for 1 minute, at 55 ° C. for 2 minutes, at 72 ° C. for 3 minutes: after 30 cycles, at 72 ° C. for 7 minutes.
  • 5 ⁇ l of the obtained PCR product was digested with restriction enzyme ss ⁇ I, electrophoresed on a 3% Nusieve (Takara Shuzo) gel, and the band type was observed.
  • the annealing conditions in the above-mentioned PCR method were from 50 ° C to 65 ° C.
  • i3-amylase gene In the i3-amylase gene extracted from normal barley, two bands, 8666 bp and 3666 bp, are formed by the Msp I restriction enzyme recognition site near 3667 bp from the 5 'end.
  • 3-amylase gene has a specific MspI restriction enzyme recognition site near 313 bp in addition to the MspI restriction enzyme recognition site near 366 bp. Three bands of 6 bp, 313 bp and 53 bp were formed. Therefore, in the electrophoresis image, as shown in FIG. 3, a highly thermostable-amylase trait could be selected based on the difference in the band position between 3667 bp and 314 bp.
  • the marker used for electrophoresis was 100 bp ladder DNA.
  • the homozygous CS188 gene showed the same level of activity as CS188, and the homozygous Schooner lost activity similarly to the Schooner.
  • the Hetero type showed intermediate thermal stability. Therefore, it was confirmed that the polymorphism of the j8-amylase structural gene can be used as a selection index for thermostability of monoamylase.
  • High heat stability CS—188 which is confirmed to be amylase barley, and
  • wheat germinated at 15 ° C for 6 days, and then roasted to obtain malt. After the malt was crushed, wort was produced in the saccharification step shown in the diagram in FIG.
  • the barley] 3-amylase gene and the method for producing a malt alcoholic beverage the heat stability is improved in order to enhance the saccharification efficiency in producing a malt alcoholic beverage.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Description

明糸田書
大麦品種の選抜方法'、 大麦 β —了ミラーゼ遺伝子及ぴ麦芽アルコール飲 料の製造方法
技術分野
本発明は、 発酵性の高い大麦品種の選抜方法及び当該大麦を用いた麦 芽アルコール飲料の製造方法に関する。
背景技術
従来、 大麦の育種は伝統的な交配技術を用いて行われてきた。 すなわ ち、 異なる遺伝子型を有する個体同士を交配し、 得られた後代系統につ いて農業特性、 環境適応性、 耐病性等の栽培特性に基づいて望ましい系 統を選抜し、 選抜された系統について育成することにより遣伝的に固定 した大麦を得るというものである。 この過程には、 通常 5〜 6年もの期 間を要する上、 その後に、 前記の遺伝的に固定された大麦からさらに醸 造特性に優れた大麦品種のみを選抜する必要があり、 麦芽アルコール飲 料に好適な大麦を選抜するには膨大な時間を費やす必要があった。
また、 このような大麦の育種は、 育種家がその経験に基づいて行う必 要があり、 優れた醸造特性を有すると考えられる大麦を選抜するには経 験豊富な育種家の主観的な判断で育種を行う必要があった。
—方、 ビール、 発泡酒 (l ow-raalt b eer) 等の麦芽アルコール飲料の原 料として用いられている大麦は α—アミラーゼや 一アミラーゼ等の糖 化酵素類を含有しており、 製麦や糖化の際には、 これらの糖化酵素類の 作用によって大麦種子中の炭水化物が低分子糖類に分解される。
このようなアミラーゼの性質と大麦品種間との相関関係について、 W 0 9 9 / 0 0 5 1 5号公報において、 本発明者らは、 大麦麦芽中の炭水 化物のうち発酵に利用される部分の比率である外観最終発酵度は β —ァ ミラーゼの熱安定性が高いものほど優れることを報告している。 しかし ながら、 4種類に分類される様々な大麦品種の 3—アミラーゼ熱安定性 は、 最も熱安定性の優れるものであっても 5 7. 5 °Cで 3 0分間の熱処 理によって 4 5〜 5 0 %の残存活性を示すにとどまり、 栽培大麦におい てはそれを上回る熱安定性品種は見出されなかった。
一方、 Eglinton ら (Eglinton, J. K. , P. Langridge and D. E. Evan s (1998) Thermostability variation in alleles of barley beta - amy lase. J. Cereal Science 28: 30ト309)は野生大麦(H. Spontaneum)に ]3 -ァミラーゼ熱安定性の高い系統を見出したが、野生種であることから育 種利用に困難が伴うものであった。
発明の開示
本発明は、 上記従来技術の有する課題に鑑みてなされたものであり、 麦芽アルコール飲料製造上の糖化効率を高めるべく、 熱安定性の高い
—アミラーゼを有する大麦品種を選抜する方法を提供することを目的と する。
本発明者らは、 上記目的を達成すべく鋭意研究を重ねた結果、 熱安定 性の高い i3—アミラーゼを有する在来種大麦を見出すとともに、 当該 一アミラーゼの構造遺伝子が新規遺伝子であることを見出し、 本発明を 完成するに至った。
本発明の大麦品種の選抜方法は、
前記大麦の種子から抽出した粗酵素液を熱処理する熱処理工程と、 前記熱処理された粗酵素液中の β —ア ミラーゼの酵素活性を測定する 活性測定工程と、
前記活性測定の結果、 残存活性が 8 5〜 9 0 %である J3 _アミラーゼ を含有する大麦品種を選択する選択工程と、
を含むことを特徴とする。
ここで、 前記熱処理工程において、 前記粗酵素液を、 5 5°C〜 5 8 °C の範囲内の所定温度で 1 0分〜 6 0分の範囲内の所定時間熱処理するこ とが好ましく、 特に好ましくは前記粗酵素液を 5 7 . 5 °Cで 3 0分間熱 処理することである。
また、 本発明の大麦品種の選抜方法は、
前記大麦から抽出したゲノム D N Aから ]3—アミラーゼ構造遺伝子領 域を増幅する遺伝子増幅工程と、
前記遺伝子増幅工程で増幅された 3—アミラーゼ構造遺伝子を制限酵 素で切断して、 所定の塩基数の遺伝子断片を検出する遺伝子検出工程と 前記遺伝子検出工程で検出された遺伝子断片の塩基数に基づいて所定 の大麦品種を選択する選択工程と、
を含むことを特徴とする。
ここで、 前記遺伝子増幅工程において、 増幅する遺伝子領域が大麦 /3 一アミラーゼ遺伝子第 2エタソンを含む遺伝子領域であり、 前記遺伝子 検出工程において、 前記制限酵素が M s p Iであることが好ましい。 こ のような条件で遺伝子の検出を行った場合、 本発明の新規 ]3—アミラー ゼが検出された場合には、 検出される遺伝子断片は 5 3 b pの断片を含 む一方、 既知 β —ア ミラーゼ遺伝子が検出された場合には 5 3 b ρより 大きなサイズの遺伝子断片が検出される。
さらに、 本発明の大麦 3—アミラーゼ遺伝子は、 配列表の配列番号 1 に記載の核酸配列を含むことを特徴とする。 ここで、 本発明の大麦 /3— ァミラーゼ遺伝子は、 前記核酸配列の一部からなるものであってもよい また、 本発明の麦芽アルコール飲料の製造方法は、
前記の大麦品種の選抜方法によって選抜された大麦を製麦して麦芽を 得る製麦工程と、 前記麦芽を糖化させて麦汁を得る仕込み工程と、
前記麦汁に酵母を添加して前記麦汁を発酵させ、 麦芽アルコール飲料 を得る発酵工程と、
を含むことを特徴とする。
このような製造方法により、 糖化工程中の澱粉分解効率を高め、 発酵 性低分子糖を多く生成することが可能となる。 その結果、 製造上の発酵 効率を高めることが可能となるとともに、 仕込み工程の糖化温度を上げ ることが可能となり、 工程時間の短縮やプロテアーゼ類等の働きを抑制 しつつ麦芽アルコール飲料の製造を行うことが可能となる。
図面の簡単な説明
図 1は、各種の大麦系統の種子に含まれる β —ア ミラーゼの熱失活曲線 を示すダラフである。
図 2は、 既知種子発現 3—アミラーゼ遺伝子部分の塩基配列と本発明 の新規^一アミラーゼ遺伝子の塩基配列を示した図である。
図 3は、 各種の大麦の ]3 _アミラーゼ遺伝子の C A P S多型を示す電 気泳動写真である。
図 4は、 Schooner X CS 188交配 F 2種子から抽出された β —ア ミラーゼ の熱安定性を示すグラフである。
図 5は、 麦芽アルコール飲料の製造における糖化過程のダイアグラム と 一アミラーゼの熱失活曲線を示すグラフである。
発明を実施するための最良の形態
以下、 本発明の好適な実施形態について詳細に説明する。
本発明の大麦品種の選抜方法は、
前記大麦の種子から抽出した粗酵素液を熱処理する熱処理工程と、 前記熱処理された粗酵素液中の;3—アミラーゼの酵素活性を測定する 活性測定工程と、 前記活性測定の結果、 残存活性が 8 5〜 9 0 %である ]3—アミラーゼ を含有する大麦品種を選択する選択工程と、
を含むことを特徴とする。
先ず、 本発明にかかる熱処理工程について説明する。
本発明にかかる熱処理工程は、 選抜の対象となる大麦 (以下、 被験大 麦という) の種子から抽出した粗酵素液を熱処理する工程である。
本発明にかかる被験大麦の種子としては、 その生育ステージは特に制 限されないが、 好ましくは大麦完熟種子を用いる。 ここで、 用いる大麦 の組織は特に制限はないが、 具体的には、 例えば、 胚乳組織を用いるこ とができる。 胚乳組織を用いることにより、 一粒種子の胚を含む部分を 発芽生育させ、 胚乳部分で |3—アミラーゼの形質を選抜することにより 、 戻し交配世代途中の個体選抜にも利用することが可能となる。
また、 粗酵素液の抽出方法としては、 —アミラーゼの活性を阻害し ない方法であれば特に制限はないが、 例えば、 1 0 m Mのジチオスレィ トールを含む 5 0 m M酢酸緩衝液 (p H 5 . 5 ) を用いて抽出した抽出 溶液を遠心分離し、 上清を粗酵素液とすればよい。
本発明にかかる熱処理工程においては、 前記粗酵素液を、 5 5 °C〜 5 8 °Cの範囲内の所定温度で 1 0分〜 6 0分の範囲内の所定時間熱処理す ることが好ましく、 特に好ましくは前記粗酵素液を 5 7 . 5 °Cで 3 0分 間熱処理することであるが、 この温度及び時間の条件に限定されず、 他 の条件下で行ってもよい。
次に、 本発明にかかる活性測定工程について説明する。
本発明にかかる活性測定工程は、 前記熱処理された粗酵素液中の — ァミラーゼの酵素活性を測定する工程である。
熱処理工程で熱処理された粗酵素液中に含まれる 3—アミラーゼの活 性測定の方法と しては特に制限はなく、 公知の方法を用いて行うことが できるが、 具体的には、 例えば、 基質と して P—二トロフエニルマルト ペンタォサイ ドを用いた活性測定キッ トである B E T A M Y Lキッ ト ( メガザィム社製) を用いて行ってもよく、 また、 基質としてジクロロフ ェニル 3—マルトペンタサイ ド (小野薬品工業社製) を用い、 この基質 に 3 7 °Cで粗酵素液を反応させ、 ジクロロフヱノールの生成量を測定す ることによって行ってもよい。 ここで、 一アミラーゼの活性測定の際 に、 対照として熱処理を行っていない大麦種子の粗酵素液についても活 性測定を行っておく必要がある。
次に、 本発明にかかる選択工程について説明する。
本発明にかかる選択工程は、 前記活性測定の結果、 残存活性が 8 5〜
9 0 °/0である β —ア ミラーゼを含有する大麦品種を選択する工程である すなわち、 被験大麦と対照となる大麦とのそれぞれから抽出された粗 酵素液における —アミラーゼの活性測定結果に基づいて被験大麦由来 の ]3—アミラーゼの残存活性を算出し、 その結果、 残存活性が 8 5〜 9 0 %であると認められた大麦を選択する。
次に本発明の第 2の大麦品種の選抜方法について説明する。
本発明の第 2の大麦品種の選抜方法は、
前記大麦の種子から抽出したゲノム D N Aから 一アミラーゼ構造遺 伝子領域を増幅する遺伝子増幅工程と、
前記遺伝子増幅工程で増幅された i3—アミラーゼ構造遺伝子を制限酵 素で切断して、 所定の塩基数の遺伝子断片を検出する遺伝子検出工程と 前記遺伝子検出工程で検出された遺伝子断片の塩基数に基づいて所定 の大麦品種を選択する選択工程と、
を含むことを特徴とする。 すなわち、 種子発現 一アミラーゼ遺伝子 (以下、 —アミラーゼ遺 伝子) には既に塩基配列が知られている既知遺伝子が存在するが (配列 表の配列番号 2 )、本発明者らによって当該 ]3—アミラーゼ遺伝子と少な く とも 1塩基以上異なる新規 一アミラーゼ遺伝子が見出された (配列 表の配列番号 1 )。 なお、 配列番号 1の核酸は、 新規 0—アミラーゼ遺伝 子の第 2ェクソンの塩基配列を示し、 また、 配列番号 2に記載の塩基配 列を有する既知 β —アミラーゼ遺伝子において 2 9 0〜 6 8 8番目の塩 基が第 2エタソンを示す。
また、 この新規 —アミラーゼ遺伝子領域型と β —ア ミラーゼ熱安定 性が一致することが本発明者らによって見出されている。 従って、 本発 明の大麦品種の選抜方法によって大麦から抽出された 3—アミラーゼ遺 伝子を解析することにより、 熱安定性の高い 3—アミラーゼを有する大 麦品種を選抜することが可能となる。 具体的には、 両者の塩基配列の相 違によって生成又は消滅する制限酵素切断部位が存在することから、 被 験大麦から抽出された β —ア ミラーゼ遺伝子について当該制限酵素切断 部位を認識又は切断する制限酵素で切断し、 その切断パターンを比較す ることにより大麦品種を識別することが可能となる。
先ず、 本発明にかかる遺伝子増幅工程について説明する。
本発明にかかる遺伝子増幅工程は、 被験大麦の種子から抽出したゲノ ム DNAから ]3—アミラーゼ構造遺伝子領域を増幅する工程である。 被験大麦からゲノム DNAを抽出する方法としては特に制限はなく、 公知の方法によって行うことができるが、 具体的には、 例えば、 C TA Β法 (Mu r r a y e t a l ., 1 9 8 0, N u c l e i c A c i d s R e s . 8 : 4 3 2 1 — 4 3 2 5 ) や E t h i d i um b 1 o m i d e法 (V a r a d a r a j a n a n d P r a k a s h 1
9 9 1 , P l a n t M o 1 . B i o l . R e . 9 : 6— 1 2 ) によって抽出することができる。 ここで、 ゲノム DNAを抽出する組 織は大麦種子のみならず、 葉、 茎、 根等を用いることも可能である。 例 えば、 葉を用いることで、 戻し交配世代途中の多数の個体選抜に利用す ることが可能となる。
また、 本発明にかかる新規 /3—アミラーゼ遺伝子は本発明者らによつ て見出された新規遺伝子であり、 既知 i3—アミラーゼ遺伝子と比較して 配列表の配列番号 2における大麦 β—ア ミラーゼ遺伝子第 2ェクソンの 2 5番目の塩基 Αが Cに置換されていることが特徴である。 この塩基の 置換により、 既知 e—ア ミラーゼ遺伝子には存在しなかった制限酵素 M s p Iの切断部位が生成され、 その結果、 前記遺伝子増幅産物を M s p
Iで切断した際の切断パターンが既知 i3—アミラーゼ遺伝子である場合 と異なるため、 識別可能となる。
当該 一アミラーゼ構造遺伝子を増幅する方法としては特に制限はな レヽカ S、 例; ¾Jま、、 P C R、法 (P o l y m e r a s e c h i n r e a c t i o n m e t h o d) によって行うことができる。 ここで、 P C
R法において用いられるプライマーは、 β—ア ミラーゼ遺伝子を増幅さ せることができる領域に設定されているものであればその塩基配列は特 に制限されないが、 具体的には、 例えば、 一アミラーゼ遺伝子におい て塩基数が 1 0〜 6 0個の連続した塩基であることが好ましく、 1 5〜 3 0個の連続した塩基であることがより好ましい。 また、 一般的には、 プライマーの塩基配列における G C含量が 4 0〜 6 0 %であることが好 ましい。 さらに、 P C R法に用いる二つのプライマーのプライマー間の Tm値に差がない又は少ないことが好ましい。 また、 プライマー内で 2 次構造を取らないことが好ましい。
また、 本工程で増幅される領域は、 本発明者らが見出した CA P Sマ 一力一に関する領域であることが好ましい。 具体的には、 本発明にかか る β —ア ミラーゼゲノム構造遺伝子の翻訳開始コ ドン 1〜 1 2 3 2 b ρ の領域を P C R法で増幅後、 制限酵素 M s p Iで切断することにより 8 6 6 b p、 3 1 3 b p及ぴ 5 3 b pの核酸断片が形成されることを特徴 とする C A P Sマーカーに関する領域が挙げられる。 さらに、 本発明に かかる遺伝子増幅工程において増幅される領域は、 前記 /3—アミラーゼ 遺伝子第 2エタソンの 2 5番目の塩基を含む領域であれば前記翻訳開始 コ ドン l〜 1 2 3 2 b pより狭い範囲であってもよく、 例えば、 前記 β 一アミラーゼ遺伝子第 2エタソンであることが好ましい。
次に、 本発明にかかる遺伝子検出工程について説明する。
本発明にかかる遺伝子検出工程は、 前記遺伝子増幅工程で増幅された i3—アミラーゼ構造遺伝子を制限酵素で切断して、 所定の塩基数の遺伝 子断片を検出する工程である。
本発明にかかる新規 J3—アミラーゼ遺伝子は、 上述したように既知の ]3—アミラーゼ遺伝子と塩基配列に相違が認められるため、 当該相違部 分を認識する又は切断する制限酵素を用いて増幅産物を切断すれば、 得 られる核酸断片のサイズに相違が見られる。 本発明にかかる制限酵素と しては、 このように前記相違部分を認識する又は切断するものであれば 特に制限はないが、 既にこのような作用を有することが判明している制 限酵素 M s p Iであることが好ましい。
また、 所定の塩基数の遺伝子断片とは、 前記相違部分が存在すること により、 増幅産物を制限酵素で切断して得られる核酸断片のサイズに相 違が見られるような遺伝子断片であればその塩基数は特に制限されない 。 例えば、 増幅される領域を前述の C A P Sマーカーに関する領域とし 、 前記制限酵素に M s p I を用いた場合には、 所定の塩基数は 8 6 6 b p、 3 1 3 b p及び 5 3 b p となる。 この場合、 既知の |3—ァミラーゼ 遺伝子には、 前述したように配列表の配列番号 2における 3 1 4番目の 塩基は Aであるため、 M s p Iでは切断されない。 すなわち、 図 2に示 すように、 本発明にかかる新規 /3—アミラーゼ遺伝子であれば M s p I 処理によって生成されるべき 5 3 b p の核酸断片が生成されず、 3 6 6 b p及び 8 6 6 b pの 2つの核酸断片が生成されるにすぎない。
また、 本工程にかかる検出とは、 制限酵素によって切断された核酸断 片が検出可能な方法であれば特に制限はないが、 具体的には、 例えば、 ァガロースゲル電気泳動、 ポリアク リルアミ ドゲル電気泳動によって検 出すればよい。
次に、 本発明にかかる選択工程について説明する。
本発明の選択工程は、 前記遺伝子検出工程で検出された遺伝子断片の 塩基数に基づいて所定の大麦品種を選択する工程である。
本工程では、 前記遺伝子検出工程で検出された核酸断片の塩基数を比 較し、 目的とする塩基数の核酸断片が見出された大麦品種を選択すれば よい。
次に、 本発明の大麦 ]3—アミラーゼ遺伝子について説明する。
本発明の大麦 3—アミラーゼ遺伝子は、 配列表の配列番号 1に記載の 塩基数 1 2 3 2 b pの核酸を含む。 当該遺伝子は、 高い熱安定性を有す る /3—アミラーゼをコードするゲノム D N Aであり、 この塩基配列の一 部からなる核酸も本発明に包含される。
なお、前記本発明の大麦 ;3—アミラーゼ遺伝子の一部からなる核酸は、 以下の条件を満たすものであることが好ましい。 すなわち、 既知の - アミラーゼ遺伝子 (はるなニ条) 開始コ ドンから数えて 29lbpの Aがじに、 2410bpの A力 に、 3216bpの G力 に、 3438bpの C力 S Tに、 3493bpの C力 Tに、 3598bpの Cが Gに、 3696bpの Cが Tにそれぞれ置換されているものが好まし い。
最後に、 本発明の麦芽アルコール飲料の製造方法について説明する。 本発明の麦芽アルコール飲料の製造方法は、
上記の大麦品種の選抜方法によって選抜された大麦を製麦して麦芽を 得る製麦工程と、
前記麦芽を糖化させて麦汁を得る仕込み工程と、
前記麦汁に酵母を添加して前記麦汁を発酵させ、 麦芽アルコール飲料 を得る発酵工程と、
を含むことを特徴とする。
本発明にかかる麦芽アルコール飲料は、 その製造に用いられる麦芽の 使用比率の多少は特に制限されず、 麦芽を原料として製造されるアルコ ール飲料であればよい。 具体的には、 例えばビールや発泡酒 (麦芽使用 比率 2 5 %未満の麦芽アルコール飲料) が挙げられる。
先ず、 本発明にかかる製麦工程について説明する。
本発明にかかる製麦工程は、 上記の大麦品種の選抜方法によって選抜 された大麦を製麦して麦芽を得る工程である。 上記のように選抜された 大麦を用いる以外は製麦の方法と しては特に制限されず公知の方法で行 えばよいが、 具体的には、 例えば、 浸麦度が 4 0〜4 5 %に達するまで 浸麦後、 1 0〜 2 0 °Cで 3 ~ 6 日間発芽させ、 焙燥して麦芽を得ること ができる。
次に、 本発明にかかる仕込み工程について説明する。
本発明にかかる仕込み工程は、 前記麦芽を糖化させて麦汁を得る工程 である。 具体的には、 さらに以下の第 1〜第 4の工程に分けられる。 すなわち、 第 1の工程は、 麦芽を含む原料と仕込用水とを混合し、 得 られた混合物を加温することにより麦芽を糖化させ、 前記糖化された麦 芽から麦汁を採取する仕込工程である。
本工程において用いられる麦芽は、 大麦に水分と空気を与えて発芽さ せ、 乾燥して幼根を取り除いたものであることが好ましい。 麦芽は麦汁 製造に必要な酵素源であると同時に糖化の原料と して主要なデンプン源 となる。 また、 麦芽アルコール飲料特有の香味と色素を与えるため、 発 芽させた麦芽を焙燥したものを麦汁製造に用いる。 さらに、 原料として 麦芽以外にホップ、 コーンスターチ、 コーングリ ッツ、 米、 糖類等の副 原料を添加してもよレ、。
また、 前記麦汁の製造工程において、 市販または別途調製されたモル トエキスを仕込用水と混合し、 必要に応じて前記副原料を添加し麦汁を 得ることもできる。
前記麦芽は仕込用水に添加した後、 混合される。 前記副原料を添加す る場合には、 ここで同時に混合すればよい。 また、 前記仕込用水は特に 制限されず、 製造する麦芽アルコール飲料に応じて好適な水を用いれば よい。 糖化は基本的に既知の条件で行えばよいが、 例えば、 前記混合さ れた麦芽と仕込用水とを 6 5〜 7 5 °Cに加温して行うことが好ましく、 これによつて麦芽中のアミラーゼによる糖化が進行する。 こう して得ら れた麦芽糖化液をろ過することにより麦汁が得られる。
また、 第 2の工程は、 前記麦汁に酵母を添加して発酵させ麦芽アルコ ール飲料中間品を得る発酵工程である。
ここで用いられる酵母は、 前記麦芽の糖化によって得られた麦汁内の 糖分を代謝してアルコールや炭酸ガス等を産生するいわゆるアルコール 発酵を行う酒類酵母であればいずれでもよく、 具体的には、 例えば、 サ ッカロミセス ' セレビシェ、 サッカロミセス · ゥバルム等が挙げられる 発酵は、 上記仕込工程で得られた麦汁を冷却し、 ここに前記の酵母を 添加して行う。 発酵条件については基本的には既知の条件と変わらず、 例えば発酵温度が通常 1 5 °C以下、 好ましくは 8〜 1 0 °Cであり、 発酵 時間が好ましくは 8〜 1 0日である。 さらに、 第 3の工程は、 前記発酵工程で得られた麦芽アルコール飲料 中間品を貯蔵する貯酒工程である。
本工程では、 アルコール発酵が終了した発酵液が密閉タンクに移され 、 貯蔵される。 貯蔵条件については基本的に既知の条件と変わらず、 例 えば貯蔵温度は 0〜 2 °Cが好ましく、 貯蔵時間が 3 0〜 9 0日間である ことが好ましい。 発酵終了液を貯蔵することにより残存エキスの再発酵 と熟成が行われる。
また、 第 4の工程は、 前記貯酒工程で得られた麦芽アルコール飲料中 間品をろ過し麦芽アルコール飲料を得るろ過工程である。
ろ過条件については基本的には既知の条件と変わらず、 例えばろ過助 材と して珪藻土、 P V P P (ポリ ビニルポリ ピロ リ ドン)、 シリ カゲル、 セルロースパウダー等が用いられ、 温度は 0 ± 1 °Cで行われる。 こう し て麦芽アルコール飲料 (例えばビールまたは発泡酒) が得られる。 ろ過 された麦芽アルコール飲料はそのまま、 または無菌ろ過や加熱処理を行 つた後、 タンク詰め、 たる詰め、 ビン詰めまたは缶詰めされ巿場に出荷 される。
このよ う にして選抜された大麦を用いて麦芽アルコール飲料の製造を 行い、 その発酵効率測定試験を行った結果、 外観最終発酵度が向上する ことが判明した。 ここで、 外観最終発酵度とは、 麦汁エキスのうち発酵 で利用されるエキスの割合を百分率で表したものをいう。
従って、 本発明の麦芽アルコール飲料の製造方法によって麦芽アルコ ール飲料を製造することにより、 その仕込み工程において高い効率で発 酵性糖を得ることが可能となり、 その麦汁を用いて発酵を行うことによ り、 従来よりも高い効率で大麦中の炭水化物がアルコールに変換される 。 また、 当該大麦品種を用いて麦芽アルコール飲料の製造を行うことに より、 糖化工程中の澱粉分解効率を高め、 発酵性低分子糖を多く生成す ることが可能となる。 その結果、 製造上の発酵効率を高めることが可能 となるとともに、 仕込み工程の糖化温度を上げることが可能となり、 ェ 程時間の短縮やプロテアーゼ類等の働きを抑制しつつ麦芽アルコール飲 料の製造を行うことが可能となる。
さらに、 本発明の大麦品種の選抜方法によって得られた大麦を他品種 の大麦と交配することにより、 熱安定性の高い —アミラーゼを含有す る大麦を育種することが可能となる。 この場合、 育種方法としては特に 制限はなく、 公知の方法を用いて行うことができる。
また、 本発明の大麦 3—アミラーゼ遺伝子を用いることにより、 遺伝 子組み換え技術を用いた熱安定性の高い β —ア ミラーゼを含有する大麦 の製造ができる可能性がある。 本発明の大麦 i3—アミラーゼ遺伝子を大 麦に導入する方法としては特に制限はなく、 公知の方法により実施する ことができる。
[実施例]
以下、 実施例及び比較例に基づいて本発明を更に具体的に説明するが
、 本発明は以下の実施例に何ら限定されるものではない。
実施例 1
(高度熱安定性 |3 -アミラーゼ形質の熱処理測定による選抜方法) 先ず、 大麦種子より粗酵素液を抽出した。 大麦完熟種子 1粒をハンマ 一で粉砕し、 4 0 0 μ 1 の 1 0 m Mのジチォスレイ トールを含む 5 0 m
M酢酸緩衝液 (p H 5 . 5 ) を用いて、 4 °Cで 1 2時間 1 0 O rpmの往復 振と うで抽出した。 抽出液を 1 5 0 0 O rpraで 1 0分間遠心分離した後、 上清を粗酵素液とした。
次に、 /3 _アミラーゼの熱処理を行った。 1 % BSAを含む 5 0 mM MOP S緩衝液(pH 7 . 1 )で粗酵素液を 1 Z 1 0 0倍に希釈し、 その 3 0 μ 1を
2 0 0 μ 1サンプリングチューブに入れ 5 7 . 5 °Cの湯浴中で 3 0分間処 理した。
次に、 p—ニ トロフェニルマノレトペンタォサイ ド (BETAMYL キッ ト ;メ ガザィム社製) を基質として —アミラーゼ活性を測定した。 熱処理区 と無処理区の酵素液それぞれ 1 O /i lを 2 0 0 μ 1容のサンプリングチュ ーブに入れ、 湯浴で 4 0 °Cに余熱後、 メガザィム社キッ トの基質/酵素 液 1 0 1を添加し正確に 5分間反応させた。この反応液に 1 %トリス液 1 5 0 μ 1を添加して反応を停止させた。 この反応液 1 0 0 ^ 1をマルチ プレートに移し、 BIO— RAD社プレート リーダにて Abs 4 0 5を測定した。 処理区の値を無処理区の値で除し百分率で表した値が 8 5 9 0 %であ ることで C S 1 8 8の /3 _アミラーゼ酵素が種子中に存在することを確 し/
このように、 大麦遺伝資源より選択した C S 1 8 8は、 図 1に示すよ うに従来の大麦 (はるなニ条 (A型)、 R o b u s t (B I I型)、 H a r r i n g t o n (B I型)、 S c h o o n e r (C型)) の熱安定性を 大きく上回る熱安定性の —アミラーゼを有することが判明した。 ここ で、 前記 A型、 B型、 C型とは、 大麦から抽出された粗酵素液を 5 7. 5 °Cで 3 0分間の熱処理を行った際に、 残存活性が 3 5 %以上のものを A型、 1 0 3 5 %のものを B型、 1 0 %未満のものを C型と分類した 。 また、 B型は大麦に含まれる 一アミラーゼの等電点に基づいてさら に 2種類に分類され、 p i 6. 5のバン ドを持つタイプを B I、 持たな いタイプを B I I と分類した。
実施例 2
(高度熱安定性 ]3—アミラーゼ形質の DNA多型選抜)
C S 1 8 8から抽出した 3—アミラーゼ遺伝子のゲノム DN Aをダイ ターミネータ一法により解読した。 図 2に示すように、 翻訳開始コ ドン より 2 9 1 bpの塩基が、 既知 β —了 ミラーゼ遺伝子の場合は Αであるの に対して、 C S 1 8 8から単離した ]3—アミラーゼ遺伝子では Cに変化 しており、 制限酵素 M s p Iの認識部位である塩基配列 C C G Gが形成 されていることを確認した。
C S 1 8 8 と通常品種の芽生え緑葉より SDS—プロパノール法にてゲ ノム D NAを抽出し、 これを鐯型 D N Aと して 5 ' —プライマー (5, - A
TCATCCATAGCCAGCATCCACAATGGAGG - 3' :配列番号 3 ) と 3 ' —プライマー(: 5 CACTCACGATGAATTCTCCGATGCCTGGGA - 3' :配列番号 4 )を各 5 0 M、 D N A 1 μ 1 を加え、 プレミックス ExTaqをカロえて 5 0 μ 1スケールで P C Rで增幅 ( 9 4 °C X 1分、 5 5 °C X 2分、 7 2 °C X 3分 : 30サイクルし た後 7 2 °C X 7分) を行なった。 得られた P C R産物 5 μ 1を制限酵素 Μ s ρ Iで切断し 3 % Nusieve (宝酒造製)ゲルで電気泳動しバンド型を観 察した。 なお、 上記 P C R法におけるァニリング条件は 5 0 °Cから 6 5 °Cとした。
通常の大麦から抽出した i3—アミラーゼ遺伝子では、 5 ' 末端から 3 6 7 bp付近の M s p I制限酵素認識部位により 8 6 6 bpと 3 6 6 bpの 2 本のバンドが形成され、 一方、 C S 1 8 8型 |3—アミラーゼ遺伝子はこ の 3 6 6 bp付近の M s p I制限酵素認識部位に加え 3 1 3 bp付近に特異 的に M s p I制限酵素認識部位を持つことから 8 6 6 bp、 3 1 3 bp、 5 3 bpの 3本のバンドが形成された。 従って、 電気泳動像では、 図 3に示 すように、 3 6 7 bpと 3 1 4 bpのバンド位置の違いによって高度熱安定 性 -アミラーゼ形質を選抜することが出来た。 なお、電気泳動に用いた マーカーは 1 0 0 b pラダー D NAである。
次に、 SchoonerXCS188交配 F 2種子 4 8粒を胚を含む部分と含まない 部分に半切し、 胚を含まない部分からは実施例 1の方法で熱安定性を調 查した。 ただし、 熱処理温度は 58°Cとした。 また、 胚を含む部分から発 芽させた芽生えから D NAを抽出し、 β —ア ミラーゼ遺伝子型を調査し た。
その結果、 図 4に示すように、 4 8個体全てにおいて、 C S 1 8 8遺 伝子ホモ型は C S 1 8 8と同等程度の活性を示し、 Schoonerホモ型は Sc hoonerと同様に活性を失い、 Hetero型はその中間の熱安定性を示した。 従って、 j8—アミラーゼ構造遺伝子多型を 一アミラーゼ熱安定性の選 抜指標にできることが確認された。
実施例 3
(麦芽アルコール飲料の製造方法)
高度熱安定性 3—アミラーゼ大麦であることが確認された C S 1 8 8 と、 対照品種として |3 —アミラーゼ熱安定性が A型である 0UC57+を浸麦 度 4 2 . 5 %に達するまで浸麦後、 1 5 °Cで 6 日間発芽させた後、 焙燥し 麦芽を得た。 麦芽を粉砕後、 図 5に示すダイヤグラムの糖化工程で麦汁 を製造した。
図 5に示すように、 糖化中の i3—アミラーゼ活性の失活程度は、 C S 1 8 8では温度の上昇する糖化の後期まで高い活性を有しており、 効率 的に糖化が進むことが予想された。
次に、 得られた麦汁を用いて E B C標準法に従って小規模発酵試験を 行ない、 外観最終発酵度を測定した。 その結果、 C S 1 8 8の外観最終 発酵度は 7 7 . 8 %と対照の O U C 0 5 7 +の 7 7 · 0 %と比較して高 い外観最終発酵度であったことから、 優れた発酵効率を達成することが できると考えられた。 産業上の利用可能性
以上説明したように、 本発明の大麦品種の選抜方法、 大麦 ]3—ァミラ ーゼ遺伝子及び麦芽アルコール飲料の製造方法によれば、 麦芽アルコー ル飲料製造上の糖化効率を高めるべく、 熱安定性の高い jS —アミラーゼ を有する大麦品種を選抜する方法を提供することが可能となる

Claims

請求の範囲
1 . 大麦品種の選抜方法であって、
前記大麦の種子から抽出した粗酵素液を熱処理する熱処理工程と、 前記熱処理された粗酵素液中の —アミラーゼの酵素活性を測定する 活性測定工程と、
前記活性測定の結果、 残存活性が 8 5〜 9 0 %である 一アミラーゼ を含有する大麦品種を選択する選択工程と、
を含む大麦品種の選抜方法。
2 . 前記熱処理工程において、 前記粗酵素液を、 5 5 °C〜 5 8 °Cの 範囲内の所定温度で 1 0分〜 6 0分の範囲内の所定時間熱処理する、 請 求項 1に記載の方法。
3 . 大麦品種の選抜方法であって、
前記大麦から抽出したゲノム D N Aから β —アミラーゼ構造遺伝子領 域を増幅する遺伝子増幅工程と、
前記遺伝子増幅工程で增幅された β —ア ミラーゼ構造遺伝子を制限酵 素で切断して、 所定の塩基数の遺伝子断片を検出する遺伝子検出工程と 前記遺伝子検出工程で検出された遺伝子断片の塩基数に基づいて所定 の大麦品種を選択する選択工程と、
を含む大麦品種の選抜方法。
4 . 前記遺伝子増幅工程において、 増幅する遺伝子領域が大麦 ]3— ァミラーゼ遺伝子第 2エタソンを含む遺伝子領域であり 、
前記遺伝子検出工程において、 前記制限酵素が M s p Iである、 請求 項 3に記載の方法。
5 . 配列表の配列番号 1に記載の塩基配列を含む大麦 13 —ア ミ ラー ゼ構造遺伝子。
6 . 請求項 5に記載の大麦 —アミラーゼ構造遺伝子の一部からな る核酸。
7 . 請求項 1〜 4に記載の大麦品種の選抜方法によって選抜された 大麦を製麦して麦芽を得る製麦工程と、
前記麦芽を糖化させて麦汁を得る仕込み工程と、
前記麦汁に酵母を添加して前記麦汁を発酵させ、 麦芽アルコール飲料 を得る発酵工程と、
を含む麦芽アルコール飲料の製造方法。
PCT/JP2002/010298 2001-04-10 2002-10-02 METHOD OF SELECTING BARLEY VARIETY, BARLEY β-AMYLASE GENE AND PROCESS FOR PRODUCING MALT ALCOHOLIC DRINK WO2003031653A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002462842A CA2462842A1 (en) 2001-10-04 2002-10-02 Method of selecting barley variety, barley .beta.-amylase gene and process for producing malt alcoholic beverage
EP02800751A EP1452607A4 (en) 2001-10-04 2002-10-02 METHOD FOR SELECTING BARLEY VARIETY, BARLEY BETA-AMYLASE GENE, AND PROCESS FOR PRODUCING ALCOHOLIC BEVERAGE DRINK
JP2003534623A JP4101757B2 (ja) 2001-10-04 2002-10-02 大麦品種の選抜方法、大麦β−アミラーゼ遺伝子及び麦芽アルコール飲料の製造方法
AU2002335181A AU2002335181B2 (en) 2001-10-04 2002-10-02 Method of selecting barley variety, barley beta-amylase gene and process for producing malt alcoholic drink
US10/490,378 US7465557B2 (en) 2001-10-04 2002-10-02 Method of selecting barley variety, barley β-amylase gene and process for producing malt alcoholic drink
US12/147,280 US20090035415A1 (en) 2001-04-10 2008-06-26 Method of selecting barley variety, barley beta-amylase gene and process for producing malt alcoholic beverage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001309036 2001-10-04
JP2001-309036 2001-10-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/147,280 Division US20090035415A1 (en) 2001-04-10 2008-06-26 Method of selecting barley variety, barley beta-amylase gene and process for producing malt alcoholic beverage

Publications (1)

Publication Number Publication Date
WO2003031653A1 true WO2003031653A1 (en) 2003-04-17

Family

ID=19128248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010298 WO2003031653A1 (en) 2001-04-10 2002-10-02 METHOD OF SELECTING BARLEY VARIETY, BARLEY β-AMYLASE GENE AND PROCESS FOR PRODUCING MALT ALCOHOLIC DRINK

Country Status (6)

Country Link
US (2) US7465557B2 (ja)
EP (1) EP1452607A4 (ja)
JP (1) JP4101757B2 (ja)
AU (1) AU2002335181B2 (ja)
CA (1) CA2462842A1 (ja)
WO (1) WO2003031653A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4258470B2 (ja) * 2002-06-11 2009-04-30 日本精工株式会社 車両ステアリング用伸縮軸、及びカルダン軸継手付き車両ステアリング用伸縮軸
BR112012008862A2 (pt) 2009-10-16 2019-09-24 Merck Sharp & Dohme métodos para produzir uma glicoproteína recombinante e uma eritropoietina humana madura, e, composição
US11129401B2 (en) 2015-11-24 2021-09-28 Firmenich Sa Glucosylated terpene glycosides
CN114350471B (zh) * 2021-12-23 2023-05-30 黑龙江敬众堂生物科技有限公司 一种配制酒及其生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0704540A2 (en) * 1994-09-29 1996-04-03 Sapporo Breweries Ltd. Variety classification method for barley or malt using gene diagnosis and the primer used therefor
WO1999000514A1 (en) * 1997-06-26 1999-01-07 Sapporo Breweries Ltd. A method for identifying a barley variety and a barley having a brewing property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0704540A2 (en) * 1994-09-29 1996-04-03 Sapporo Breweries Ltd. Variety classification method for barley or malt using gene diagnosis and the primer used therefor
WO1999000514A1 (en) * 1997-06-26 1999-01-07 Sapporo Breweries Ltd. A method for identifying a barley variety and a barley having a brewing property

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERKKILA M.J. ET AL.: "Allele-dependent barley grain beta-amylase activity", PLANT PHYSIOL., vol. 117, no. 2, 1998, pages 679 - 685, XP002961797 *
KIHARA M. ET AL.: "Geographical variation of beta-amylase thermostability among varieties of barley (Hordeum vulgare) and beta-amylase deficiency", PLANT BREEDING, vol. 118, no. 5, 1999, pages 453 - 455, XP002961796 *
KIHARA M. ET AL.: "Studies on breeding of beta-amylase activity in barley. 1. Variation of thermostability of beta-amylase among barley varieties and direct selection of malting quality", vol. 48, no. 1, 1998, pages 153, XP002961795 *
See also references of EP1452607A4 *
YOUICHI TSUCHIYA ET AL.: "Identification of malting barley varieties by genome analysis", J. FERMMENT BIOENG., vol. 79, no. 5, 1995, pages 429 - 432, XP000604797 *

Also Published As

Publication number Publication date
JP4101757B2 (ja) 2008-06-18
EP1452607A1 (en) 2004-09-01
JPWO2003031653A1 (ja) 2005-01-27
CA2462842A1 (en) 2003-04-17
EP1452607A4 (en) 2005-06-22
US20050053934A1 (en) 2005-03-10
US20090035415A1 (en) 2009-02-05
US7465557B2 (en) 2008-12-16
AU2002335181B2 (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4113795B2 (ja) 大麦リポキシゲナーゼ−1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法
EA028532B1 (ru) Ячмень с уменьшенной липоксигеназной активностью
CN103209584B (zh) 节能酿造方法
JP4178176B2 (ja) 大麦リポキシゲナーゼ−1遺伝子、大麦の選抜方法、麦芽アルコール飲料用原料及び麦芽アルコール飲料の製造方法
US20090035415A1 (en) Method of selecting barley variety, barley beta-amylase gene and process for producing malt alcoholic beverage
JP7410030B2 (ja) 高められた加水分解酵素活性を有する大麦
JP4450856B2 (ja) オオムギ品種の識別方法及び優良醸造形質を有するオオムギ品種
WO2011083777A1 (ja) 大麦の選別方法、麦芽及び麦芽発酵飲料
Nesvadba et al. Grain and malt quality of selected winter barley genetic resources: ENG/CZ
WO2019134962A1 (en) Cereal comprising starch with low gelatinisation temperature
JP5989345B2 (ja) 大麦選抜方法及び麦芽発泡飲料
JP5672002B2 (ja) 大麦選抜方法
WO2024227748A1 (en) Barley with improved properties
EP3785529A1 (en) Barley plants with altered protein content in grains
JP2023095491A (ja) オオムギ及びこれに関する方法
EA043494B1 (ru) Ячмень с повышенной активностью гидролитических ферментов

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003534623

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2462842

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002335181

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002800751

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002800751

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10490378

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002335181

Country of ref document: AU