WO2003026036A2 - Objet metallique revetu se presentant sous la forme d'une plaque et utilise en tant que composant d'un empilement de piles a combustible - Google Patents

Objet metallique revetu se presentant sous la forme d'une plaque et utilise en tant que composant d'un empilement de piles a combustible Download PDF

Info

Publication number
WO2003026036A2
WO2003026036A2 PCT/EP2002/010481 EP0210481W WO03026036A2 WO 2003026036 A2 WO2003026036 A2 WO 2003026036A2 EP 0210481 W EP0210481 W EP 0210481W WO 03026036 A2 WO03026036 A2 WO 03026036A2
Authority
WO
WIPO (PCT)
Prior art keywords
coating
metal object
metal
layer
fuel cell
Prior art date
Application number
PCT/EP2002/010481
Other languages
German (de)
English (en)
Other versions
WO2003026036A3 (fr
Inventor
Petra Koschany
Original Assignee
Manhattan Scientifics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manhattan Scientifics, Inc. filed Critical Manhattan Scientifics, Inc.
Priority to AU2002362328A priority Critical patent/AU2002362328A1/en
Publication of WO2003026036A2 publication Critical patent/WO2003026036A2/fr
Publication of WO2003026036A3 publication Critical patent/WO2003026036A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a coated plate-shaped metal object as a component of a fuel cell stack, and to a method for its production.
  • the plate-shaped metal object is used in particular in fuel cells as a bipolar plate, cooling layer or gas distribution structure.
  • Certain types of fuel cells are made with a polymer electrolyte membrane (PEM).
  • PEM polymer electrolyte membrane
  • This is provided with a catalyst layer on both sides and is located between two gas diffusion layers. It is also possible for the two gas diffusion layers to be provided with the catalyst layer instead of the membrane.
  • a fuel e.g. B. hydrogen gas
  • an oxidizing agent e.g. B. oxygen supplied.
  • Form on the anode due to of the catalyst protons, which cross the membrane acting as an electrolyte and combine with the oxygen in the cathode-side catalyst layer to form water. In this process, a potential difference arises between the two catalyst layers, which is used in an external circuit.
  • the fuel cell stack may contain additional layers that are formed from plate-shaped metal objects, such as. B. a coolant layer for cooling the fuel cell stack or gas distribution structures, provided with flow channels, for improved introduction of the reaction gases to the reaction site.
  • Bipolar plates, cooling layers and gas distribution layers have in common that, in order to ensure a conductive contact between the individual cells or their individual components, they must be very electrically conductive and only have a low contact resistance to the neighboring components of the fuel cell. In addition, it must be ensured that oxidation does not result in water-soluble products in the base materials used, which, when in contact with the catalyst, could block the catalyst or limit the ionic conductivity of the electrolyte. For this reason, carbon materials are often used, the contact resistances of which do not increase as a result of partial oxidation during operation of the fuel cell compared to the use of metal and which are chemically inert to blockages in the catalyst or poisoning of the electrolyte. The disadvantage of this is the high cost of the carbon materials.
  • the invention is intended to avoid all of the disadvantages listed above by using inexpensive, coated metallic components.
  • the use of metallic components in fuel cells is to be made possible, for which purpose simple and inexpensive coating processes are applied to these metallic coating objects, which keep the contact resistances to other components low and constant despite changing operating modes over time.
  • the invention enables a cost reduction by the coating being only partially and on average not thicker than 0.04 ⁇ m. or preferably as 0.01 ⁇ m.
  • a surface-covering conductive coating of the metallic coating object is not necessary for use in fuel cells in order to ensure a low contact resistance between the components used. The use of the coating material can thus be reduced.
  • the risk of the formation of water-soluble oxidation products with their negative consequences for the fuel cell can be avoided by suitable selection of the material of the coating object, or a further protective layer can be added to the coating.
  • components consisting of a metal can be used in fuel cells.
  • These are preferably bipolar plates, but also gas distribution structures, for example made of perforated structural sheets, or cooling layers.
  • the metal object to be coated it should preferably be ensured in advance that water-soluble products do not result from its oxidation, which could block the catalyst or would limit the ionic conductivity of the membrane when it comes into contact with it; otherwise this restriction of the choice of material can become unnecessary through appropriate additional protective layers.
  • Stainless steel or titanium is very suitable as a base material for the metal object due to its chemical inertness in the above sense, but the latter is less preferred due to the high cost.
  • an additional protective layer is advantageous due to the possible risk of water-soluble oxidation products.
  • a protective layer is particularly suitable for a graphite foil.
  • the coating is not applied to the entire surface of the metal object, but is a non-closed coating. This means that the entire surface of the metal object is not covered with the coating metal and its oxides.
  • Suitable coating metals are metals which can have compounds with oxygen atoms to a variable degree (MO x ), although other compounds can also be covalently bonded to the oxygen atoms, for example MO x (OH) y , and their oxides have good electrical conductivity, for example tin, indium, antimony or the platinum metals ruthenium, rhodium, osmium, palladium, iridium and platinum or alloys of such metals. It is important to ensure that the metal oxide (MO x ) conducts electricity well in as many of the oxidation states that occur in different operating modes. Ruthenium and ruthenium oxide are therefore particularly preferably used.
  • the oxidation levels of the coating vary depending on the place of use within the fuel cell and the respective operating mode.
  • a fuel cell is supplied with hydrogen gas on the anode side and oxygen-containing gas on the cathode side; in the switched-off state, air penetrates through the membrane into the anode compartment.
  • metallic components in a fuel cell stack these are alternately in an oxidizing and reducing atmosphere depending on the place of use and the selected operating mode.
  • the coating of such components must therefore have a sufficiently good electrical conductivity both in elemental-metallic and in the oxidation state MO ⁇ in order to ensure the greatest possible reduction in the contact resistance to other components.
  • the side of a bipolar plate facing the cathode of a fuel cell is exposed to an oxidizing atmosphere
  • the side facing the anode is exposed to a reducing atmosphere on the one hand during operation of the fuel cell stack and, on the other hand, to an oxidizing atmosphere when it is at a standstill.
  • the latter also applies to cooling layers which are located in the anode compartment or to gas distribution structures which are arranged in the same way and which can be produced, for example, from perforated structural sheets.
  • the composition of the coating more precisely the respective oxidation state of the metal oxide MO x , therefore changes depending on the operating modes, ie on the duration of operation or standstill of the fuel cell stack and on the chosen place of use. In order to achieve a consistently low contact resistance despite this changing composition, it is advantageous if both the metal and its variable oxidation levels have sufficient electrical conductivity.
  • All common application methods in particular electrolytic deposition, or the usual PVD (e.g. sputtering) or CVD methods are suitable for applying the metal layer to the coating object.
  • the parameters of the corresponding coating process are selected so that a thin, non-closed layer of the coating metal is formed on the surface of the coating object.
  • partial oxidation can take place. This can be done using all common methods and treatments.
  • the partial oxidation of the coating could take place by treatment with atmospheric oxygen or by Tempering in an oxygen-containing atmosphere.
  • the coating metal is tempered preferably in air at a temperature preferably between 100 ° C. and 800 ° C., particularly preferably between 200 ° C. and 400 ° C.
  • the tempering additionally improves the adhesion of the coating, since the resultant Connects coating metal oxide with oxide layers present on the coating object before the coating.
  • Further methods for partial oxidation are, for example, the electrochemical treatment of the applied coating metal or the sputtering of the coating metal in an atmosphere with a fixed oxygen content.
  • an additional protective layer is expedient, as explained above.
  • All materials that are highly conductive and chemically inert in the above sense are suitable as protective layers. They preferably consist of a thin, possibly gas-permeable graphite foil that can be attached to one or both surfaces of the component. Since a low contact resistance between the metal component and the protective layer is also essential here, the coating according to the invention can be used advantageously.
  • the composite of coated metal component and protective layer can be produced by all common methods, for example by simply laying on or pressing on, possibly at elevated temperature. If conductive bonding is chosen as the connection method, a suitable adhesion promoter is required. Further details and embodiments of the coating according to the invention are described below using examples:
  • the bipolar plates for a fuel cell stack consist of a 50 ⁇ m thick stainless steel foil, which is coated with the coating according to the invention. Ruthenium is used as the coating metal. After cleaning, degreasing and grinding the passivation layer on the surface of the stainless steel foil, the ruthenium coating is electrolytically deposited from a ruthenium chloride solution on the stainless steel foil.
  • the aqueous electrolyte solution contains 0.25% by mass of ruthenium chloride and approx. 5% by mass of isopropanol. With an electrolysis voltage of 1.48 V, a current of approx. 1.5 mA / cm 2 surface of the metal object, that is the stainless steel foil, results. 60 seconds are selected as the duration of the electrolytic deposition. This creates a non-closed coating with metallic ruthenium on the stainless steel foil. After the coated bipolar plate has dried, it is annealed for 30 minutes at 300 ° C. in an oxygen-containing atmosphere for partial oxidation.
  • the contact resistance of individual components can be determined using the following method:
  • the component to be examined is placed between two carbon fiber papers with a thickness of 0.3 mm and this in turn between two gold-plated copper electrodes of a tensioning device.
  • a defined pressure can be exerted on the component to be examined.
  • the voltage falling between the copper electrodes is determined as a function of a direct current flowing through the tensioning device, from which the area-specific resistance of the component to be examined can be determined.
  • a contact resistance can be created including the resistance of the carbon fiber papers of 16.3 m ⁇ cm 2 at a contact pressure of 11.5 bar, which is only slightly above the contact resistance of 13.3 m ⁇ cm 2 at the same contact pressure of a corresponding bipolar plate with elemental-metallic coating.
  • an untreated bipolar plate made of 50 ⁇ m stainless steel foil has a contact resistance of 188 m ⁇ cm 2 at a contact pressure of 11.5 bar.
  • the average layer thickness is less than 0.025 ⁇ m, that is to say it has less than 100 atomic layers on average. It is therefore not dense, but there are empty, uncoated areas between atomic accumulations.
  • the same coating process with ruthenium can also be used for perforated structural sheets made of stainless steel, which can advantageously be used as gas distribution structures in a fuel cell stack.
  • the aluminum bipolar plate or cooling layer is provided with a layer of elemental platinum or ruthenium by sputtering, which is then partially oxidized by tempering in an oxygen-containing atmosphere becomes.
  • a thin 0.85 mm graphite foil which is hydrophobic, serves as a protective layer.
  • the composite of coated aluminum bipolar plate or cooling layer and graphite foil is produced by means of conductive gluing.
  • epoxy resin is applied in small quantities (approx. 1.5 mg / cm 2 ) to the graphite foil and cured by means of hot pressing at 110 ° C and a pressure of approx. 35 bar.
  • a graphite foil according to Example 2 is not completely, but interrupted, for. B. applied in the form of individual webs or preferably connected web structures.
  • the contact resistance of such a bipolar plate with gas distribution channels measured using the method shown in Example 1 is in the range of approximately 22 m ⁇ cm 2 at a contact pressure of 14 bar.
  • the contact resistance of a bipolar plate with graphite foil glued to the entire surface is typically up to approx. 15 m ⁇ cm 2 at a contact pressure of also 14 bar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

L'invention concerne un objet métallique revêtu se présentant sous la forme d'une plaque et conçu pour être utilisé en tant que composant d'un empilement de piles à combustible. Le revêtement de cet objet est constitué d'une couche mince non fermée, présentant une épaisseur maximale de 0,04 νm et contenant un métal tel que de l'étain, de l'indium, de l'antimoine ou un métal du groupe platine (Ru, Rh, Os, Pa, Ir, Pt), qui comporte, dans une mesure variable, des liaisons à des atomes d'oxygène dans ladite couche. Le métal du revêtement présente, tel quel ainsi que dans tous ses états d'oxydation variables, une électroconductivité suffisamment bonne. Ledit revêtement permet d'utiliser de manière économique des composants métalliques dans des piles à combustible en tant que plaques bipolaires, couches de distribution de gaz, ou couches frigorifiques. Il est possible d'employer des matériaux peu coûteux dont les résistances de contact demeurent faibles approximativement en continu, même lorsque le mode de fonctionnement des piles à combustible change et que les degrés d'oxydation du revêtement, qui sont liés auxdits différents modes de fonctionnement, varient.
PCT/EP2002/010481 2001-09-18 2002-09-18 Objet metallique revetu se presentant sous la forme d'une plaque et utilise en tant que composant d'un empilement de piles a combustible WO2003026036A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002362328A AU2002362328A1 (en) 2001-09-18 2002-09-18 Coated metal object in the form of a plate and used as component of a fuel cell stack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10145940 2001-09-18
DE10145940.8 2001-09-18

Publications (2)

Publication Number Publication Date
WO2003026036A2 true WO2003026036A2 (fr) 2003-03-27
WO2003026036A3 WO2003026036A3 (fr) 2003-10-09

Family

ID=7699415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/010481 WO2003026036A2 (fr) 2001-09-18 2002-09-18 Objet metallique revetu se presentant sous la forme d'une plaque et utilise en tant que composant d'un empilement de piles a combustible

Country Status (2)

Country Link
AU (1) AU2002362328A1 (fr)
WO (1) WO2003026036A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004034620A1 (de) * 2004-07-16 2006-02-02 Behr Gmbh & Co. Kg Fluiddurchströmbare Vorrichtung und Betriebsverfahren
DE102004059691A1 (de) * 2004-12-10 2006-07-20 Daimlerchrysler Ag Hydrophobe Separatorplatte für eine PEM-Brennstoffzelle
EP2027621A2 (fr) * 2006-04-14 2009-02-25 Applied Materials, Inc. Conception d'electrode de pile a combustible fiable
US7959987B2 (en) 2004-12-13 2011-06-14 Applied Materials, Inc. Fuel cell conditioning layer
US8377607B2 (en) 2005-06-30 2013-02-19 GM Global Technology Operations LLC Fuel cell contact element including a TiO2 layer and a conductive layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1285417A (en) * 1969-10-13 1972-08-16 Int Nickel Ltd Production of protective coatings on metals by anodic oxidation
EP0423448A1 (fr) * 1989-09-20 1991-04-24 Asea Brown Boveri Ag Collecteur pour la conduction du courant entre des cellules à combustible arrangées selon une pile et fonctionnant à haute température et méthode de fabrication
EP0955686A1 (fr) * 1998-05-07 1999-11-10 Toyota Jidosha Kabushiki Kaisha Plaque séparatrice pour cellule à combustible gazeux, pile à combustible la contenant, et procédé pour sa préparation
US20010021470A1 (en) * 1998-10-08 2001-09-13 Barret May Fuel cells and fuel cell plates

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296827A (ja) * 1994-04-27 1995-11-10 Tokyo Gas Co Ltd 複合セパレータを有する内部マニホールド方式の固体電解質型燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1285417A (en) * 1969-10-13 1972-08-16 Int Nickel Ltd Production of protective coatings on metals by anodic oxidation
EP0423448A1 (fr) * 1989-09-20 1991-04-24 Asea Brown Boveri Ag Collecteur pour la conduction du courant entre des cellules à combustible arrangées selon une pile et fonctionnant à haute température et méthode de fabrication
EP0955686A1 (fr) * 1998-05-07 1999-11-10 Toyota Jidosha Kabushiki Kaisha Plaque séparatrice pour cellule à combustible gazeux, pile à combustible la contenant, et procédé pour sa préparation
US20010021470A1 (en) * 1998-10-08 2001-09-13 Barret May Fuel cells and fuel cell plates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 03, 29. März 1996 (1996-03-29) & JP 07 296827 A (TOKYO GAS CO LTD), 10. November 1995 (1995-11-10) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004034620A1 (de) * 2004-07-16 2006-02-02 Behr Gmbh & Co. Kg Fluiddurchströmbare Vorrichtung und Betriebsverfahren
DE102004059691A1 (de) * 2004-12-10 2006-07-20 Daimlerchrysler Ag Hydrophobe Separatorplatte für eine PEM-Brennstoffzelle
US7959987B2 (en) 2004-12-13 2011-06-14 Applied Materials, Inc. Fuel cell conditioning layer
US8377607B2 (en) 2005-06-30 2013-02-19 GM Global Technology Operations LLC Fuel cell contact element including a TiO2 layer and a conductive layer
EP2027621A2 (fr) * 2006-04-14 2009-02-25 Applied Materials, Inc. Conception d'electrode de pile a combustible fiable
EP2027621A4 (fr) * 2006-04-14 2010-01-13 Applied Materials Inc Conception d'electrode de pile a combustible fiable

Also Published As

Publication number Publication date
WO2003026036A3 (fr) 2003-10-09
AU2002362328A1 (en) 2003-04-01

Similar Documents

Publication Publication Date Title
DE112015002494B4 (de) Brennstoffzellen-Separatormaterial und Verfahren zum Herstellen des Materials
DE10356653B4 (de) Brennstoffzellenseparator und Fertigungsverfahren für denselben
DE102016105963B4 (de) Beschichteter Brennstoffzellenseparator und Herstellungsverfahren für einen beschichteten Brennstoffzellenseparator
DE102013209918B4 (de) Verfahren zum Abscheiden einer dauerhaften dünnen Goldbeschichtung auf Brennstoffzellen-Bipolarplatten
EP1961841B1 (fr) Procédé de dépôt électrochimique de particules de catalyseur sur des substrats contenant des fibres de carbone et son dispositif
DE112009001684B4 (de) Brennstoffzellenseparator und Brennstoffzelle
DE102010045552A1 (de) Leitende und hydrophile Bipolarplattenbeschichtungen und Verfahren zu deren Herstellung
DE102016102393A1 (de) Korrosionsbeständige bipolarplatte aus metall für eine protonenaustauschmembran-brennstoffzelle (pemfc) mit radikalfänger
DE19523637C2 (de) Verfahren zur Herstellung einer Korrosionsschutzbeschichtung, Substrat mit einer Korrosionsschutzbeschichtung sowie Verwendung eines solchen Substrats
DE102009034573A1 (de) Amorphe Kohlenstoffbeschichtung für Bipolarplatten von Brennstoffzellen
DE102009004196A1 (de) Verfahren zum Regenerieren eines Separators für eine Brennstoffzelle, regenerierter Separator für eine Brennstoffzelle und Brennstoffzelle
DE102014109321A1 (de) Verfahren zur Herstellung einer Bipolarplatte, Bipolarplatte für eine elektrochemische Zelle und elektrochemische Zelle
DE102005015755A1 (de) Verfahren zur Herstellung einer Chromverdampfungsschutzschicht für chromoxidbildende Metallsubstrate
DE102010045557A1 (de) Kohlenstoffbasierte Bipolarplattenbeschichtungen zum effektiven Wassermanagement
DE102016102179A1 (de) Mehrlagige Beschichtung für eine korrosionsbeständige Bipolarplatte aus Metall für eine Protonenaustauschmembranbrennstoffzelle (PEMFC)
DE102017118318A1 (de) Verfahren zur Herstellung eines Brennstoffzellenstacks, sowie Brennstoffzellenstack
DE102007033753A1 (de) An seiner Oberfläche mit metallischen Nanopartikeln versehenes ultrahydrophobes Substrat, Verfahren zu dessen Herstellung und Verwendung desselben
DE102016209742A1 (de) Rolle-zu-Rolle-Herstellung einer Hochleistungs-Brennstoffzellenelektrode mit Kern-Schale-Katalysator unter Verwendung von gesäten Elektroden
WO2018078157A1 (fr) Plaque bipolaire et couche de transport poreuse pour un électrolyseur
EP3665314A1 (fr) Revêtement et système de couches, ainsi que plaque bipolaire, pile à combustible et électrolyseur
DE102016220653A1 (de) Korrosionsbeständiger katalysator
WO2003026036A2 (fr) Objet metallique revetu se presentant sous la forme d'une plaque et utilise en tant que composant d'un empilement de piles a combustible
EP0988656B1 (fr) Production d'electrode de diffusion gazeuse par depot electrolytique du catalyseur
EP4370728A1 (fr) Cellule d'électrolyse pour électrolyse à membrane électrolytique polymère et revêtement
WO2019029769A1 (fr) Procédé de fabrication de composants ainsi que composants ainsi fabriqué

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP