WO2003023338A1 - Infrared-visible conversion member and infrared detector - Google Patents

Infrared-visible conversion member and infrared detector Download PDF

Info

Publication number
WO2003023338A1
WO2003023338A1 PCT/JP2002/009232 JP0209232W WO03023338A1 WO 2003023338 A1 WO2003023338 A1 WO 2003023338A1 JP 0209232 W JP0209232 W JP 0209232W WO 03023338 A1 WO03023338 A1 WO 03023338A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
light
visible
visible light
phosphor layer
Prior art date
Application number
PCT/JP2002/009232
Other languages
French (fr)
Japanese (ja)
Inventor
Itaru Mizuno
Minoru Kondo
Atsushi Onoda
Kyozo Mizutani
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2003023338A1 publication Critical patent/WO2003023338A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/58Photometry, e.g. photographic exposure meter using luminescence generated by light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/02Frequency-changing of light, e.g. by quantum counters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14669Infrared imagers

Definitions

  • the present invention relates to an infrared-visible conversion member and an infrared detector, and more particularly, to an infrared-visible conversion member that converts infrared light into visible light using a phosphor, and an infrared detection device using the member. Things.
  • an inorganic material containing a specific rare earth element has the property of converting infrared light into ultraviolet light by multiphoton excitation of rare earth ions, and is relatively inexpensive.
  • Japanese Unexamined Patent Application Publication No. Hei 6 — 256661 Japanese Unexamined Patent Application Publication No. 6_1-25050, Japanese Unexamined Patent Application Publication No. 6-247 741, Japanese Unexamined Patent Application Publication No. — No. 2 9 8 1 9 and Tokuhei Hei 8 — 6 9 0 25).
  • the present invention has been made in view of the above-mentioned problems of the related art, and has a sufficiently high visible light emission intensity and a high resolution when converting infrared light into visible light, and is an inexpensive infrared-visual conversion member. It is an object of the present invention to provide a sensitive and inexpensive infrared detector.
  • a first infrared-visible conversion member of the present invention comprises: an infrared-visible conversion member disposed on a light receiving surface of a photodetector having sensitivity to visible light; A substrate which is disposed on a surface and has transparency to visible light; and an upcoming phosphor which is disposed on the substrate and converts infrared light into visible light and has a film thickness of 5 to 12 And a phosphor layer having a thickness of 0 ⁇ m.
  • the first infrared-visible conversion member of the present invention when the phosphor layer is irradiated with infrared light, infrared rays are absorbed by an infrared exci- table phosphor (IEP) and visible light is re-emitted. .
  • IEP infrared exci- table phosphor
  • the film thickness of the phosphor layer to 5 to 120 tm, it is possible to achieve both a high level of visible light emission intensity and high resolution. Therefore, by arranging the first infrared-visible conversion member such that the side closer to the light receiving surface of the photodetector is the substrate and the far side is the phosphor layer, the visible light converted from the infrared light is converted to the substrate. Since the image is transmitted to the light receiving surface of the photodetector via the optical sensor and the image of the visible light is detected with high sensitivity and high resolution, an excellent infrared detecting element can be realized.
  • the first infrared-visible conversion member of the present invention preferably further includes a visible light shielding layer that transmits infrared light and reflects or absorbs visible light, on the phosphor layer. This prevents visible light from entering the phosphor layer and allows infrared light to selectively enter the phosphor layer. As a result, the phosphor layer Since the visible light is substantially only the visible light emitted from the up-conversion phosphor, the resolution of the image detected by the photodetector can be improved.
  • the first infrared-visible conversion member of the present invention is formed by integrating the substrate in a state where a plurality of optical fibers are bundled, and a plurality of cores for transmitting visible light incident from the phosphor layer.
  • the fiber optic plate has a lower refractive index than the core, and has a cladding covering each outer peripheral portion of the core.
  • the average particle size of the gap-compared phosphor is 1 Z 2 or less of the distance between adjacent cores. It is preferred that As a result, when the visible light from the up-conversion phosphor enters a predetermined core, the visible light is more reliably prevented from being incident on another core adjacent to the core. The sensitivity at the time of detection with a detector can be improved.
  • the first infrared detection device of the present invention includes a photodetector having sensitivity to visible light, and the first infrared-visible conversion device of the present invention arranged on a light receiving surface of the photodetector. And a member.
  • the first infrared detection device of the present invention by arranging the first infrared-visible conversion member of the present invention on the light-receiving surface of the photodetector, the first infrared-visible conversion member of the present invention can be used to convert infrared light into visible light. Both the light emission intensity and the resolution are compatible at a high level, and it is possible to detect an image by the converted visible light with high sensitivity and high resolution.
  • the second infrared-visible conversion member of the present invention includes a substrate having transparency to infrared light, and an up-conversion member disposed on the substrate for converting infrared light into visible light.
  • the second infrared-visible conversion member of the present invention by setting the thickness of the phosphor layer containing the up-compensation phosphor to 5 to 120 ⁇ , both the visible light emission intensity and the resolution are improved. It is the same as the first infrared-visible conversion member described above in that the compatibility can be achieved at a high level. Furthermore, the second infrared-visible conversion member is arranged such that the side closer to the light receiving surface of the photodetector is the phosphor layer and the far side is the substrate, so that the infrared light transmitted through the substrate is converted into visible light by the phosphor layer.
  • the light After being converted to the light, the light is directly transmitted to the light receiving surface of the photodetector, so that deterioration of the image due to visible light can be sufficiently prevented. Further, since the substrate prevents the phosphor layer from being damaged, the above-mentioned excellent characteristics can be stably obtained over a long period of time.
  • the infrared-visible conversion member of the present invention preferably further includes, on the phosphor layer, a visible light shielding layer that transmits infrared light and reflects or absorbs visible light. This prevents visible light from entering the phosphor layer and allows infrared light to selectively enter the phosphor layer.
  • the visible light from the phosphor layer is substantially only the visible light emitted from the up-compared phosphor, so that the resolution of the image detected by the photodetector can be improved.
  • the infrared detection device of the present invention comprises: a light detector having sensitivity to visible light;
  • the infrared detector of the present invention by arranging the second infrared-visible conversion member of the present invention on the light receiving surface of the light detector, the visible light emission intensity and the infrared light conversion at the time of conversion from infrared light to visible light are improved. Both resolutions are compatible at a high level and can be converted It is possible to detect an image by visual light with high sensitivity and high resolution.
  • FIG. 1 is a schematic configuration diagram showing an infrared detector according to the first embodiment.
  • FIG. 2 is a graph showing the correlation between the thickness of the phosphor layer and the light intensity.
  • FIG. 3 is a graph showing the correlation between the thickness of the phosphor layer and the resolution.
  • FIG. 4 is a graph showing the correlation between the thickness of the phosphor layer and the relative luminance.
  • Fig. 5 is a graph showing the infrared absorption spectrum of water glass.
  • FIG. 6 is a schematic sectional view showing an example of a fiber optic plate.
  • FIG. 7 is a schematic configuration diagram showing an infrared detector according to the second embodiment.
  • FIG. 8 is a schematic sectional view showing an infrared-visible conversion member according to the third embodiment.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment according to the infrared-visible conversion member of the present invention.
  • Fig. 1 shows an infrared detector equipped with a CCD image sensor as an image sensor.
  • An infrared-visible conversion member 2 a is arranged on the light receiving surface of the light of the CCD image sensor 1.
  • the driver 5 is electrically connected to the CCD image sensor 1.
  • the infrared-visible conversion member 2 a is obtained by laminating a phosphor layer 3 containing an upcomparation phosphor on a fiber optic plate (FOP) 4.
  • the thickness of the phosphor layer 3 is set in the range of 5 to 12.
  • the phosphor layer 3 is disposed farther from the light receiving surface of the CCD image sensor 1 and the FOP 4 is disposed closer to the light receiving surface.
  • the up-conversion phosphor contained in the phosphor layer 3 absorbs infrared light and re-emits visible light. This conversion from infrared light to visible light does not require pre-excitation.
  • Such up-conversion phosphors include, for example, rare earth elements or compounds thereof, more specifically, erbium (Er), yttrium (Y), ytterbium (Yb), and dysprosium.
  • Dr thulium
  • Sm samarium
  • inorganic materials containing these halides fluoride, chloride.
  • infrared light of a specific wavelength eg, 1.5 m
  • visible light of a specific wavelength eg, 550 nm, 660 nm.
  • One of the above up-conversion phosphors may be used alone, or two or more may be used in combination.
  • the correlation between the thickness of the phosphor layer 3 and the visible light emission intensity is shown in Fig. 2
  • the correlation between the thickness of the phosphor layer 3 and the resolution is shown in Fig. 3
  • the correlation between the thickness of the phosphor layer 3 and the relative luminance is shown.
  • the correlation is shown in FIG.
  • the visible light emission intensity and the resolution show different dependencies on the thickness of the phosphor layer 3.
  • both the visible light emission intensity and the resolution can be compatible at a high level.
  • a sufficiently high relative luminance can be achieved as shown in FIG.
  • the thickness of the phosphor layer 3 exceeds 120 ⁇ m, at least one of the visible light emission intensity and the resolution becomes insufficient, while the thickness of the phosphor layer 3 is less than 5 ⁇ m In the case of (1), it becomes difficult to form a uniform phosphor layer, and in any case, the above effects cannot be obtained.
  • the phosphor layer 3 can be formed by, for example, a centrifugal sedimentation method.
  • a predetermined amount of the fine particles of the up-conversion phosphor corresponding to the thickness of the phosphor layer 3 is added to a water glass solution to form a suspension, and this suspension is placed on a predetermined surface of the FOP 4. Apply. Sedimentation of the up-conversion phosphor in the suspension After being deposited on the FOP 4, the phosphor layer 3 is obtained by sucking and drying the water glass solution by suction or the like.
  • the phosphor layer 3 thus obtained may contain water glass.
  • Figure 5 shows the infrared absorption spectrum of water glass. As shown in the figure, water glass shows almost no absorptivity to infrared light, so that it can be used as a binder for binding the up-compensation phosphor.
  • the binder of the phosphor layer 3 is not particularly limited as long as it transmits infrared light, and an organic binder or the like may be used in addition to the water glass.
  • the visible light from the phosphor layer 3 is transmitted to the CCD image sensor 1 by the FOP4.
  • FIG. 6 is a cross-sectional view of the FOP 4 perpendicular to the optical path direction.
  • the FOP 4 includes a plurality of cores 11 made of a core glass having a high refractive index, a clad 12 made of a clad glass having a lower refractive index than the core glass, and covering each outer peripheral portion of the core 11, An absorber 13 made of an absorber glass exhibiting absorptivity to visible light and disposed between the cores 11.
  • the visible light that has entered the FOP 4 repeats total reflection within the core 11 and is transmitted from the light receiving surface to the emission surface. At this time, light (stray light) leaking from the core 11 without total reflection may be generated. However, such stray light is absorbed by the absorber 13 to prevent the stray light from entering the other cores 2. Thus, the FOP 4 allows the visible light from the phosphor layer 3 to be transmitted to the CCD image sensor 1 with a sufficiently high resolution.
  • the average particle diameter of the up-compensation phosphor contained in the phosphor layer 3 is not more than ⁇ of the distance d between the adjacent cores 11.
  • the average particle size of the up-conversion phosphor is preferably 3 ⁇ m or less (more preferably, 2 ⁇ m or less).
  • the average particle size of the upcomparation phosphor is If it exceeds 1/2, when visible light from the upcoming phosphor enters the predetermined core, the visible light is also likely to enter other cores adjacent to the core, and the CCD image sensor The resolution of the image detected in step 1 tends to decrease.
  • the up-conversion phosphor absorbs infrared light and becomes visible. When light is re-emitted, both visible light emission intensity and resolution can be compatible at a high level. Further, by transmitting the visible light from the infrared-visible conversion member 2a to the CCD image sensor 1 by the FOP 4, the resolution of the image by the visible light is maintained at a high level. Can be detected with high sensitivity.
  • the infrared detector of the first embodiment when the thickness of the phosphor layer 3 is 5 ⁇ , and infrared light having an intensity of 156.7 W is incident thereon, a peak of 797 counts is obtained. Was detected (gamma value: 1.4). This result indicates that the infrared detector has sufficient sensitivity for detecting the position of the laser beam.
  • the apparatus shown in FIG. 1 has a CCD image sensor 1 as an image sensor, but a MOS image sensor may be used instead of the CCD image sensor 1. Thereby, an image with visible light from the infrared-visible detection member 2 can be detected with high sensitivity.
  • FIG. 7 is a schematic configuration diagram showing a second embodiment according to the present invention.
  • Figure 7 shows an infrared detector equipped with a Si photodiode as a photodetector.
  • the phosphor layer 3 is placed on the light receiving surface of the Si photodiode 6 and a glass plate 7 that transmits infrared light.
  • the infrared-visible conversion member 2b is formed by laminating in order, and the thickness of the phosphor layer 3 is set within a range of 5 to 120 ⁇ .
  • the up-conversion phosphor absorbs infrared light and re-emits visible light.
  • both the visible light emission intensity and the resolution can be compatible at a high level, and the visible light can be detected with high sensitivity by the S 1 photodiode 6.
  • the infrared light transmitted through the glass plate 7 is After being converted into visible light by the light source, the light is directly transmitted to the light receiving surface of the Si photodiode 6, so that light attenuation can be sufficiently prevented.
  • the glass plate 7 prevents the phosphor layer 3 from being damaged, the above-mentioned excellent characteristics can be stably obtained over a long period of time.
  • the second embodiment is not limited to this.
  • a CCD image sensor or a MOS type image sensor may be used as an image pickup device instead of the Si photodiode 6 which is a photodetector.
  • the deterioration of the resolution can be prevented by disposing the phosphor layer 3 on the light receiving surface of the image sensor, whereby the image by the visible light from the infrared-visible conversion member 2 can be highly sensitive. Can be detected.
  • FIG. 8 is a schematic configuration diagram showing a second embodiment according to the present invention.
  • a phosphor layer 3 having a thickness of 5 to 12 ⁇ m and a visible light shielding layer 8 are laminated in this order on the FOP 4 to constitute an infrared-visible conversion member 2.
  • Visible light blocking layer 8 is composed of a S i O 2 layer and T i 0 2 layers are stacked in a plurality alternately on the planarization layer 9 formed on the phosphor layer 3 dielectric multilayer reflection film, a fluorescent Approximately 90% of infrared light incident on the body layer 3 is transmitted, while 90% or more of visible light incident on the phosphor layer 3 is reflected.
  • a dielectric multilayer reflective film formed on a flat substrate that absorbs visible light and transmits infrared light may be bonded to the phosphor layer 3.
  • the up-compensation phosphor absorbs infrared light and regenerates visible light. It is the same as in the first and second embodiments that both the emission intensity of visible light and the resolution can be compatible at a high level when emitting.
  • a visible light shielding layer 8 is further provided on the phosphor layer 3 to suppress the incidence of visible light on the phosphor layer and to select infrared light for the phosphor layer 3. Since it is possible to make the incident light incident, the resolution of the image by the visible light converted from the infrared light can be further improved.
  • the third embodiment is not limited to this.
  • the visible light shielding layer 8 only needs to reflect or absorb visible light and transmit infrared light.
  • the visible light shielding layer 8 absorbs visible light and transmits infrared light.
  • An Si substrate can also be used.
  • the infrared-visible conversion member 2 is subjected to force coupling so that the surface on the FOP 4 side is on the light receiving surface of the image sensor. By doing so, an infrared detector can be obtained.
  • any of a CCD image sensor, a MOS image sensor, and a Si photodiode may be used as such an image sensor.
  • Industrial applicability As described above, according to the infrared-visible conversion member of the present invention, by setting the thickness of the phosphor layer to 5 to 120 m, both the visible light emission intensity and the resolution can be achieved at a high level. Becomes possible.
  • the infrared-visible conversion member of the present invention on the light-receiving surface of a photodetector having sensitivity to visible light, an image formed by the visible light converted from the infrared light has high sensitivity and high resolution Therefore, an excellent infrared detecting element can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

An infrared-visible conversion member which is disposed on the light receiving surface of a photodetector having a sensitivity to a visible light, and which comprises a substrate disposed on a visible light receiving surface and being transparent to a visible light, and a phosphor layer disposed on the substrate, containing an up-conversion phosphor for converting an infrared ray into a visible light, and having a film thickness of 5-120 μm. Accordingly, a high-level trade-off between a visible light emission intensity and resolution is enabled, and an excellent infrared detecting element can be implemented because an image by a visible light converted from an infrared ray can be detected with high sensitivity and high resolution.

Description

糸田  Itoda
赤外可視変換部材及ぴ赤外線検出装置 技術分野  Infrared-visible conversion member and infrared detector
本発明は、 赤外可視変換部材及び赤外線検出器に関するものであり、 詳しくは、 蛍光体を用いて赤外光を可視光に変換する赤外可視変換部材 及び該部材を用いた赤外線検出装置に関するものである。  The present invention relates to an infrared-visible conversion member and an infrared detector, and more particularly, to an infrared-visible conversion member that converts infrared light into visible light using a phosphor, and an infrared detection device using the member. Things.
背景技術 Background art
近年、 光通信技術の開発の進展に伴い、 赤外光 (例えば波長 1 . 5 μ mの近赤外光) を視覚的に検出する素子に対する需要が高まっている。 このような赤外光検出素子としては、 S— 1光電面を有するィメージィ ンテンシフィァ、 赤外ビジコン、 I n G a A sの固体素子などが知られ ているが、 これらは変換効率や感度の点で必ずしも十分とは言えず、 ま た価格が高いという欠点を有している。 そのため、 変換効率や感度が高 く且つ安価な赤外線検出素子の開発が望まれている。  In recent years, with the development of optical communication technology, the demand for an element that visually detects infrared light (for example, near-infrared light having a wavelength of 1.5 μm) is increasing. As such an infrared light detecting element, an image intensifier having an S-1 photocathode, an infrared vidicon, an InGaAs solid-state element, and the like are known. However, it is not always sufficient and has the disadvantage that the price is high. Therefore, development of an inexpensive infrared detecting element having high conversion efficiency and sensitivity is desired.
このような背景の下、 赤外光を可視光に変換する蛍光体 (アップコン バージョン蛍光体) の赤外線検出素子への適用が検討されている。 例え ば特定の希土類元素を含有する無機材料は、 希土類イオンの多光子励起 により赤外光を紫外光に波長上方変換する特性を有し、 また比較的安価 であることから、 アップコンバージョン蛍光体として有望視されている Against this background, the application of phosphors that convert infrared light to visible light (up-conversion phosphors) to infrared detectors is being studied. For example, an inorganic material containing a specific rare earth element has the property of converting infrared light into ultraviolet light by multiphoton excitation of rare earth ions, and is relatively inexpensive. Promising
(特開平 6 — 2 5 6 6 1号、 特開平 6 _ 1 0 2 5 5 0号、 特開平 6 - 2 4 7 7 4 1号、 特開平 7 — 7 7 7 1 5号、 特開平 8 — 2 9 8 1 9号、 特 開平 8 — 6 9 0 2 5号など)。 (Japanese Unexamined Patent Application Publication No. Hei 6 — 256661, Japanese Unexamined Patent Application Publication No. 6_1-25050, Japanese Unexamined Patent Application Publication No. 6-247 741, Japanese Unexamined Patent Application Publication No. — No. 2 9 8 1 9 and Tokuhei Hei 8 — 6 9 0 25).
発明の開示 Disclosure of the invention
しかしながら、 上記のアップコンパージョン蛍光体を赤外線検出素子 に適用した場合、 可視光発光強度や解像度の点で十分な特性を得ること は困難であり、 このよ うな赤外線検出素子は未だ実用に供し得るもので はなかった。 However, when the above up-conversion phosphor is applied to an infrared detector, sufficient characteristics can be obtained in terms of visible light emission intensity and resolution. However, such an infrared detecting element has not yet been practically used.
本発明は、 上記従来技術の有する課題に鑑みてなされたものであり、 赤外線を可視光に変換するに際し、 可視光発光強度及び解像度が十分に 高く、 且つ安価な赤外可視変換部材、 並びに高感度且つ安価な赤外線検 出装置を提供することを目的とする。  The present invention has been made in view of the above-mentioned problems of the related art, and has a sufficiently high visible light emission intensity and a high resolution when converting infrared light into visible light, and is an inexpensive infrared-visual conversion member. It is an object of the present invention to provide a sensitive and inexpensive infrared detector.
上記目的を達成するために、 本発明の第 1の赤外可視変換部材は、 可 視光に対して感度を有する光検出器の受光面上に配置される赤外可視変 換部材において、 受光面上に配置され、 可視光に対して透過性を有する 基板と、 基板上に配置され、 赤外光を可視光に変換するアップコンパ一 ジョン蛍光体を含有し且つ膜厚が 5〜 1 2 0 μ mである蛍光体層と、 を 備える。  In order to achieve the above object, a first infrared-visible conversion member of the present invention comprises: an infrared-visible conversion member disposed on a light receiving surface of a photodetector having sensitivity to visible light; A substrate which is disposed on a surface and has transparency to visible light; and an upcoming phosphor which is disposed on the substrate and converts infrared light into visible light and has a film thickness of 5 to 12 And a phosphor layer having a thickness of 0 μm.
本発明の第 1の赤外可視変換部材において、 赤外光を蛍光体層に照射 すると、 アツアコンノ ーシヨン紫光体 ( infrared exci tabl e phosphor : IEP) により赤外線が吸収されて可視光が再放射される。 このとき、 当 該蛍光体層の膜厚を 5〜1 2 0 t mとすることによって、 可視光発光強 度及び解像度の双方を高水準で両立することが可能となる。 従って、 当 該第 1の赤外可視変換部材を、 光検出器の受光面に近い側が基板、 遠い 側が蛍光体層となるように配置することによって、 赤外光から変換され た可視光が基板を介して光検出器の受光面に伝送され、 その可視光によ る像が高感度且つ高解像度で検出されるので、 優れた赤外線検出素子を 実現することが可能となる。  In the first infrared-visible conversion member of the present invention, when the phosphor layer is irradiated with infrared light, infrared rays are absorbed by an infrared exci- table phosphor (IEP) and visible light is re-emitted. . At this time, by setting the film thickness of the phosphor layer to 5 to 120 tm, it is possible to achieve both a high level of visible light emission intensity and high resolution. Therefore, by arranging the first infrared-visible conversion member such that the side closer to the light receiving surface of the photodetector is the substrate and the far side is the phosphor layer, the visible light converted from the infrared light is converted to the substrate. Since the image is transmitted to the light receiving surface of the photodetector via the optical sensor and the image of the visible light is detected with high sensitivity and high resolution, an excellent infrared detecting element can be realized.
本発明の第 1の赤外可視変換部材は、 蛍光体層上に、 赤外光を透過し 且つ可視光を反射又は吸収する可視光遮蔽層をさらに備えることが好ま しい。 これにより蛍光体層への可視光の入射を防止し、 赤外光を蛍光体 層に選択的に入射させることが可能となる。 その結果、 蛍光体層からの 可視光は実質的にアップコンパージョン蛍光体から放射された可視光の みとなるため、 光検出器で検出される像の解像度を向上させることがで きる。 The first infrared-visible conversion member of the present invention preferably further includes a visible light shielding layer that transmits infrared light and reflects or absorbs visible light, on the phosphor layer. This prevents visible light from entering the phosphor layer and allows infrared light to selectively enter the phosphor layer. As a result, the phosphor layer Since the visible light is substantially only the visible light emitted from the up-conversion phosphor, the resolution of the image detected by the photodetector can be improved.
また、 本発明の第 1の赤外可視変換部材は、 基板が、 複数の光フアイ バを束ねた状態で一体化することによって形成され、 蛍光体層から入射 した可視光を伝搬する複数のコアと、 コアよりも屈折率が低く、 コアの それぞれの外周部を覆ぅクラッ ドと、 を備えるファイバォプティ ックプ レートであることが好ましい。 これにより基板による赤外線の吸収が抑 制されるので、 可視光を光検出器で検出する際の感度を向上させること ができる。  Further, the first infrared-visible conversion member of the present invention is formed by integrating the substrate in a state where a plurality of optical fibers are bundled, and a plurality of cores for transmitting visible light incident from the phosphor layer. Preferably, the fiber optic plate has a lower refractive index than the core, and has a cladding covering each outer peripheral portion of the core. As a result, the absorption of infrared light by the substrate is suppressed, so that the sensitivity for detecting visible light by the photodetector can be improved.
また、 本棻明の第 1の赤外可視変換部材において、 基板がファイバォ プティックプレ一トである場合には、 ァップコンパ一ジョン蛍光体の平 均粒径が隣接するコア間の距離の 1 Z 2以下であることが好ましい。 こ れにより、 ァップコンバージョン蛍光体からの可視光が所定のコアに入 射する際に、 そのコアに隣接する他のコアへの可視光の入射がより確実 に防止されるので、 可視光を光検出器で検出する際の感度を向上させる ことができる。  In the first infrared-visible conversion member of the present invention, when the substrate is a fiber optic plate, the average particle size of the gap-compared phosphor is 1 Z 2 or less of the distance between adjacent cores. It is preferred that As a result, when the visible light from the up-conversion phosphor enters a predetermined core, the visible light is more reliably prevented from being incident on another core adjacent to the core. The sensitivity at the time of detection with a detector can be improved.
また、 本発明の第 1の赤外線検出装置は、 可視光に対して感度を有す る光検出器と、 光検出器の受光面上に配置された上記本発明の第 1の赤 外可視変換部材と、 を備える。 本発明の第 1の赤外線検出装置では、 本 発明の第 1の赤外可視変換部材を光検出器の受光面に配置することによ つて、 赤外光から可視光への変換の際に可視光発光強度及ぴ解像度の双 方が高水準で両立され、 変換された可視光による像を高感度且つ高解像 度で検出することが可能となる。  Further, the first infrared detection device of the present invention includes a photodetector having sensitivity to visible light, and the first infrared-visible conversion device of the present invention arranged on a light receiving surface of the photodetector. And a member. In the first infrared detection device of the present invention, by arranging the first infrared-visible conversion member of the present invention on the light-receiving surface of the photodetector, the first infrared-visible conversion member of the present invention can be used to convert infrared light into visible light. Both the light emission intensity and the resolution are compatible at a high level, and it is possible to detect an image by the converted visible light with high sensitivity and high resolution.
また、 本発明の第 2の赤外可視変換部材は、 赤外光に対して透過性を 有する基板と、 基板上に配置され、 赤外光を可視光に変換するアップコ ンパージョン蛍光体を含有し且つ膜厚が 5〜 1 2 0 mである蛍光体層 と、 を備え、 蛍光体層が、 可視光に対して感度を有する光検出器の受光 面上に配置されることを特徴とする。 Further, the second infrared-visible conversion member of the present invention includes a substrate having transparency to infrared light, and an up-conversion member disposed on the substrate for converting infrared light into visible light. A phosphor layer containing an impregnated phosphor and having a film thickness of 5 to 120 m, wherein the phosphor layer is disposed on a light receiving surface of a photodetector having sensitivity to visible light. It is characterized by the following.
本発明の第 2の赤外可視変換部材において、 アップコンパージョン蛍 光体を含有する蛍光体層の膜厚を 5〜 1 2 0 μ ιηとすることによって、 可視光発光強度及び解像度の双方を高水準で両立することが可能となる 点については上記第 1の赤外可視変換部材と同様である。 さらに第 2の 赤外可視変換部材は、 光検出器の受光面に近い側が蛍光体層、 遠い側が 基板となるように配置することによって、 基板を透過した赤外光が蛍光 体層で可視光に変換された後、 光検出器の受光面に直接伝送されるので 、 可視光による像の劣化を十分に防止することができる。 また、 当該基 板により蛍光体層の損傷が防止されるので、 上記の優れた特性を長期に わたって安定的に得ることができる。  In the second infrared-visible conversion member of the present invention, by setting the thickness of the phosphor layer containing the up-compensation phosphor to 5 to 120 μιη, both the visible light emission intensity and the resolution are improved. It is the same as the first infrared-visible conversion member described above in that the compatibility can be achieved at a high level. Furthermore, the second infrared-visible conversion member is arranged such that the side closer to the light receiving surface of the photodetector is the phosphor layer and the far side is the substrate, so that the infrared light transmitted through the substrate is converted into visible light by the phosphor layer. After being converted to the light, the light is directly transmitted to the light receiving surface of the photodetector, so that deterioration of the image due to visible light can be sufficiently prevented. Further, since the substrate prevents the phosphor layer from being damaged, the above-mentioned excellent characteristics can be stably obtained over a long period of time.
本発明の赤外可視変換部材は、 蛍光体層上に、 赤外光を透過し且つ可 視光を反射又は吸収する可視光遮蔽層をさらに備えることが好ましい。 これにより蛍光体層への可視光の入射を防止し、 赤外光を蛍光体層に選 択的に入射させることが可能となる。 その結果、 蛍光体層からの可視光 は実質的にァップコンパージョン蛍光体から放射された可視光のみとな るため、 光検出器で検出される像の解像度を向上させることができる。 また、 本発明の赤外線検出装置は、 可視光に対して感度を有する光検 出器と、  The infrared-visible conversion member of the present invention preferably further includes, on the phosphor layer, a visible light shielding layer that transmits infrared light and reflects or absorbs visible light. This prevents visible light from entering the phosphor layer and allows infrared light to selectively enter the phosphor layer. As a result, the visible light from the phosphor layer is substantially only the visible light emitted from the up-compared phosphor, so that the resolution of the image detected by the photodetector can be improved. Further, the infrared detection device of the present invention comprises: a light detector having sensitivity to visible light;
光検出器の受光面上に配置された上記本発明の第 2の赤外可視変換部材 と、 を備えることを特徴とする。 And the above-mentioned second infrared-visible conversion member of the present invention, which is arranged on the light receiving surface of the photodetector.
本発明の赤外線検出器では、 本発明の第 2の赤外可視変換部材を光検 出器の受光面に配置することによって、 赤外光から可視光への変換の際 に可視光発光強度及び解像度の双方が高水準で両立され、 変換された可 視光による像を高感度且つ高解像度で検出することが可能となる。 図面の簡単な説明 In the infrared detector of the present invention, by arranging the second infrared-visible conversion member of the present invention on the light receiving surface of the light detector, the visible light emission intensity and the infrared light conversion at the time of conversion from infrared light to visible light are improved. Both resolutions are compatible at a high level and can be converted It is possible to detect an image by visual light with high sensitivity and high resolution. BRIEF DESCRIPTION OF THE FIGURES
図 1は第 1実施形態にかかる赤外線検出器を示す概略構成図である。 図 2は蛍光体層の膜厚と光強度との相関を示すグラフである。  FIG. 1 is a schematic configuration diagram showing an infrared detector according to the first embodiment. FIG. 2 is a graph showing the correlation between the thickness of the phosphor layer and the light intensity.
図 3は蛍光体層の膜厚と解像度との相関を示すグラフである。  FIG. 3 is a graph showing the correlation between the thickness of the phosphor layer and the resolution.
図 4は蛍光体層の膜厚と相対輝度との相関を示すグラフである。 図 5は水ガラスの赤外吸収スぺク トルを示すダラフである。  FIG. 4 is a graph showing the correlation between the thickness of the phosphor layer and the relative luminance. Fig. 5 is a graph showing the infrared absorption spectrum of water glass.
図 6はフアイバオプティックプレートの一例を示す模式断面図である 図 7は第 2実施形態にかかる赤外線検出器を示す概略構成図である。 図 8は第 3実施形態にかかる赤外可視変換部材を示す模式断面図であ る。  FIG. 6 is a schematic sectional view showing an example of a fiber optic plate. FIG. 7 is a schematic configuration diagram showing an infrared detector according to the second embodiment. FIG. 8 is a schematic sectional view showing an infrared-visible conversion member according to the third embodiment.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しつつ、 本発明の好適な実施形態について詳細に説 明する。 なお、 図面の説明においては同一要素には同一符号を付し、 重 複する説明を省略する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.
図 1は本発明の赤外可視変換部材にかかる第 1実施形態を示す概略構 成図である。 図 1は撮像素子としての C C Dイメージセンサを備える赤 外線検出器を示すものである。 C C Dィメージセンサ 1の光の受光面上 には赤外可視変換部材 2 aが配置されている。 また、 C C Dイメージセ ンサ 1にはドライバ 5が電気的に接続されている。  FIG. 1 is a schematic configuration diagram showing a first embodiment according to the infrared-visible conversion member of the present invention. Fig. 1 shows an infrared detector equipped with a CCD image sensor as an image sensor. An infrared-visible conversion member 2 a is arranged on the light receiving surface of the light of the CCD image sensor 1. The driver 5 is electrically connected to the CCD image sensor 1.
赤外可視変換部材 2 aは、 アップコンパージョン蛍光体を含む蛍光体 層 3をファイバォブティックプレート (F O P ) 4上に積層したもので ある。 蛍光体層 3の膜厚は 5〜 1 2 の範囲内に設定されている。 また、 C C Dイメージセンサ 1の受光面から遠い側が蛍光体層 3、 近い 側が F O P 4となるように配置されている。 蛍光体層 3に含まれるアップコンパージョン蛍光体は、 赤外光を吸収 して可視光を再放射するものである。 この赤外光から可視光への変換に は予備励起を必要としない。 かかるアップコンバージョン蛍光体として は、 例えば希土類元素又はその化合物、 より具体的には、 エルビウム ( E r )、 イッ トリ ウム (Y)、 イッテルビウム (Y b)、 デイスプロシゥムThe infrared-visible conversion member 2 a is obtained by laminating a phosphor layer 3 containing an upcomparation phosphor on a fiber optic plate (FOP) 4. The thickness of the phosphor layer 3 is set in the range of 5 to 12. The phosphor layer 3 is disposed farther from the light receiving surface of the CCD image sensor 1 and the FOP 4 is disposed closer to the light receiving surface. The up-conversion phosphor contained in the phosphor layer 3 absorbs infrared light and re-emits visible light. This conversion from infrared light to visible light does not require pre-excitation. Such up-conversion phosphors include, for example, rare earth elements or compounds thereof, more specifically, erbium (Er), yttrium (Y), ytterbium (Yb), and dysprosium.
(D r )、 ツリ ウム (T m)、 サマリ ウム ( S m) 並びにこれらのハロゲ ン化物 (フッ化物、 塩化物) 等を含有する無機材料が挙げられる。 これ らの無機材料を用いることにより特定波長 (例えば 1. 5 m) の赤外 光を特定波長 (例えば 5 5 0 n m、 6 6 0 n m) の可視光に変換するこ とができる。 上記のアップコンバージョン蛍光体は、 1種を単独で用い てもよく、 2種以上を組み合わせて用いてもよい。 (Dr), thulium (Tm), samarium (Sm), and inorganic materials containing these halides (fluoride, chloride). By using these inorganic materials, infrared light of a specific wavelength (eg, 1.5 m) can be converted to visible light of a specific wavelength (eg, 550 nm, 660 nm). One of the above up-conversion phosphors may be used alone, or two or more may be used in combination.
ここで、 蛍光体層 3の膜厚と可視光発光強度との相関を図 2、 蛍光体 層 3の膜厚と解像度との相関を図 3、 蛍光体層 3の膜厚と相対輝度との 相関を図 4にそれぞれ示す。 図 2、 3に示したように、 可視光発光強度 と解像度とは蛍光体層 3の膜厚に対して異なる依存性を示す。 本実施形 態においては、 蛍光体層 3の膜厚を 5〜 1 2 0 ;z mとすることによって 、 可視光発光強度及び解像度の双方を高水準で両立することが可能とな り、 図 4に示したように十分に高い相対輝度を達成することができる。 なお、 蛍光体層 3の膜厚が 1 2 0 μ mを越えると可視光発光強度と解像 度との少なく とも一方が不十分となり、 他方、 蛍光体層 3の膜厚が 5 μ m未満の場合には均一な蛍光体層を形成することが困難となり、 いずれ の場合にも上記の効果を得ることができない。  Here, the correlation between the thickness of the phosphor layer 3 and the visible light emission intensity is shown in Fig. 2, the correlation between the thickness of the phosphor layer 3 and the resolution is shown in Fig. 3, and the correlation between the thickness of the phosphor layer 3 and the relative luminance is shown. The correlation is shown in FIG. As shown in FIGS. 2 and 3, the visible light emission intensity and the resolution show different dependencies on the thickness of the phosphor layer 3. In the present embodiment, by setting the thickness of the phosphor layer 3 to 5 to 120; zm, both the visible light emission intensity and the resolution can be compatible at a high level. Thus, a sufficiently high relative luminance can be achieved as shown in FIG. If the thickness of the phosphor layer 3 exceeds 120 μm, at least one of the visible light emission intensity and the resolution becomes insufficient, while the thickness of the phosphor layer 3 is less than 5 μm In the case of (1), it becomes difficult to form a uniform phosphor layer, and in any case, the above effects cannot be obtained.
蛍光体層 3は、 例えば遠心沈降法により形成することができる。 すな わち、 蛍光体層 3の膜厚に応じた所定量のァップコンパージョン蛍光体 微粒子を、 水ガラス溶液に加えて懸濁液とし、 この懸濁液を F O P 4の 所定の面上に塗布する。 懸濁液中のアップコンパージョン蛍光体を沈降 させて F O P 4上に堆積させた後、 吸引などにより水ガラス溶液を吸い 取り乾燥することによって蛍光体層 3が得られる。 The phosphor layer 3 can be formed by, for example, a centrifugal sedimentation method. In other words, a predetermined amount of the fine particles of the up-conversion phosphor corresponding to the thickness of the phosphor layer 3 is added to a water glass solution to form a suspension, and this suspension is placed on a predetermined surface of the FOP 4. Apply. Sedimentation of the up-conversion phosphor in the suspension After being deposited on the FOP 4, the phosphor layer 3 is obtained by sucking and drying the water glass solution by suction or the like.
このようにして得られる蛍光体層 3中には水ガラスが含まれていても よい。 水ガラスの赤外吸収スペク トルは図 5に示す通りである。 図示の ように水ガラスは赤外光に対して殆ど吸収性を示さないため、 アップコ ンパージョン蛍光体を結着するバインダーとして用いることができる。 なお、 蛍光体層 3のバインダ一は赤外光を透過するものであれば特に制 限されず、 水ガラスの他に有機系バインダ一などを使用してもよい。 蛍光体層 3からの可視光は、 F O P 4により C C Dィメージセンサ 1 に伝送される。 図 6は F O P 4の光路方向に垂直な断面図を示すもので ある。 F O P 4は、 高屈折率のコアガラスからなる複数のコア 1 1 と、 コアガラスよりも低屈折率のクラッ ドガラスからなりコア 1 1のそれぞ れの外周部を被覆するクラッ ド 1 2と、 可視光に対して吸収性を示す吸 収体ガラスからなり コア 1 1の間に配置された吸収体 1 3と、 で構成さ れている。  The phosphor layer 3 thus obtained may contain water glass. Figure 5 shows the infrared absorption spectrum of water glass. As shown in the figure, water glass shows almost no absorptivity to infrared light, so that it can be used as a binder for binding the up-compensation phosphor. The binder of the phosphor layer 3 is not particularly limited as long as it transmits infrared light, and an organic binder or the like may be used in addition to the water glass. The visible light from the phosphor layer 3 is transmitted to the CCD image sensor 1 by the FOP4. FIG. 6 is a cross-sectional view of the FOP 4 perpendicular to the optical path direction. The FOP 4 includes a plurality of cores 11 made of a core glass having a high refractive index, a clad 12 made of a clad glass having a lower refractive index than the core glass, and covering each outer peripheral portion of the core 11, An absorber 13 made of an absorber glass exhibiting absorptivity to visible light and disposed between the cores 11.
F O P 4に入射した可視光は、 コア 1 1内で全反射を繰り返し、 受光 面から出射面に伝送される。 このとき、 全反射しないでコア 1 1から漏 れる光 (迷光) が生じる場合があるが、 かかる迷光は吸収体 1 3により 吸収され、 他のコア 2への迷光の入射が防止される。 このように F O P 4によって、 蛍光体層 3からの可視光を十分に高い解像度で C C Dィメ ージセンサ 1に伝送することができる。  The visible light that has entered the FOP 4 repeats total reflection within the core 11 and is transmitted from the light receiving surface to the emission surface. At this time, light (stray light) leaking from the core 11 without total reflection may be generated. However, such stray light is absorbed by the absorber 13 to prevent the stray light from entering the other cores 2. Thus, the FOP 4 allows the visible light from the phosphor layer 3 to be transmitted to the CCD image sensor 1 with a sufficiently high resolution.
ここで、 蛍光体層 3に含まれるアップコンパージョン蛍光体の平均粒 径は、 隣接するコア 1 1間の距離 dの 1 / 2以下であることが好ましい 。 例えばコア間距離 dが 6 Ai mである場合、 アップコンバージョン蛍光 体の平均粒径は 3ミクロン以下 (より好ましくは 2 μ m以下) であるこ とが好ましい。 アップコンパージョン蛍光体の平均粒径がコア間距離の 1 / 2を超えると、 アップコンパージ 3ン蛍光体からの可視光が所定の コアに入射する際に、 そのコアに隣接する他のコアにも可視光が入射し やすくなり、 C CDィメージセンサ 1で検出される像の解像度が低下す る傾向にある。 Here, it is preferable that the average particle diameter of the up-compensation phosphor contained in the phosphor layer 3 is not more than の of the distance d between the adjacent cores 11. For example, when the distance d between the cores is 6 Aim, the average particle size of the up-conversion phosphor is preferably 3 μm or less (more preferably, 2 μm or less). The average particle size of the upcomparation phosphor is If it exceeds 1/2, when visible light from the upcoming phosphor enters the predetermined core, the visible light is also likely to enter other cores adjacent to the core, and the CCD image sensor The resolution of the image detected in step 1 tends to decrease.
このように第 1実施形態では、 アップコンバージョン蛍光体を含む蛍 光体層 3の膜厚を 5〜 1 2 0 ; mとすることによって、 アップコンバー ジョン蛍光体が赤外光を吸収して可視光を再放射する際に、 可視光発光 強度と解像度との双方を高水準で両立することができる。 また、 F O P 4により赤外可視変換部材 2 aからの可視光 C C Dイメージセンサ 1に 伝送することによって、 当該可視光による像の解像度が高水準に維持さ れるので、 その像を C CDィメージセンサ 1により高感度で検出するこ とができる。  As described above, in the first embodiment, by setting the thickness of the phosphor layer 3 including the up-conversion phosphor to 5 to 120; m, the up-conversion phosphor absorbs infrared light and becomes visible. When light is re-emitted, both visible light emission intensity and resolution can be compatible at a high level. Further, by transmitting the visible light from the infrared-visible conversion member 2a to the CCD image sensor 1 by the FOP 4, the resolution of the image by the visible light is maintained at a high level. Can be detected with high sensitivity.
例えば第 1実施形態の赤外線検出器において、 蛍光体層 3の膜厚を 5 Ο μ πιと し、 これに強度 1 5 6. 7 Wの赤外光を入射させると、 7 9 7カウントのピークが検出された (ガンマ値: 1. 4)。 この結果は当該 赤外線検出器がレーザビームの位置検出を行う上で十分な感度を有して いることを示すものである。  For example, in the infrared detector of the first embodiment, when the thickness of the phosphor layer 3 is 5 μμπι, and infrared light having an intensity of 156.7 W is incident thereon, a peak of 797 counts is obtained. Was detected (gamma value: 1.4). This result indicates that the infrared detector has sufficient sensitivity for detecting the position of the laser beam.
なお、 第 1実施形態はこれに限られるものではない。 例えば図 1に示 した装置は撮像素子として C CDイメージセンサ 1を備えるものである が、 C CDイメージセンサ 1の代わりに MO S型ィメージセンサを用レ、 てもよい。 これにより、 赤外可視検出部材 2からの可視光による像を高 感度で検出することができる。  Note that the first embodiment is not limited to this. For example, the apparatus shown in FIG. 1 has a CCD image sensor 1 as an image sensor, but a MOS image sensor may be used instead of the CCD image sensor 1. Thereby, an image with visible light from the infrared-visible detection member 2 can be detected with high sensitivity.
また、 本実施形態においては、 蛍光体層 3上に有機膜 (例えばポリパ ラキシリ レン) をさらに備えていてもよい。 これにより蛍光体層 3の損 傷が防止されるので、 上記の優れた特性を長期にわたって得ることがで さる。 図 7は本発明にかかる第 2実施形態を示す概略構成図である。 図 7は 光検出素子としての S i フォ トダイォードを備える赤外線検出器を示す もので、 S i フォ トダイォード 6の光の受光面上に蛍光体層 3、 赤外光 を透過するガラス板 7がこの順に積層されて赤外可視変換部材 2 bが構 成されており、 蛍光体層 3の膜厚は 5〜 1 2 0 μ ιηの範囲内に設定され ている。 In the present embodiment, an organic film (for example, polyparaxylylene) may be further provided on the phosphor layer 3. This prevents the phosphor layer 3 from being damaged, so that the above excellent characteristics can be obtained for a long period of time. FIG. 7 is a schematic configuration diagram showing a second embodiment according to the present invention. Figure 7 shows an infrared detector equipped with a Si photodiode as a photodetector.The phosphor layer 3 is placed on the light receiving surface of the Si photodiode 6 and a glass plate 7 that transmits infrared light. The infrared-visible conversion member 2b is formed by laminating in order, and the thickness of the phosphor layer 3 is set within a range of 5 to 120 μιη.
このように第 2実施形態においても、 蛍光体層 3の膜厚を 5〜 1 2 0 mとすることによって、 アップコンパージョン蛍光体が赤外光を吸収 して可視光を再放射する際に、 可視光発光強度と解像度との双方を高水 準で両立することができ、 当該可視光を S 1 フォ トダイォード 6により 高感度で検出することができる。 さらに第 2実施形態においては、 S i フォ トダイォード 6の受光面上に蛍光体層 3、 ガラス板 7をこの順で配 置することによって、 ガラス板 7を透過した赤外光が蛍光体層 3で可視 光に変換された後、 S i フォ トダイォード 6の受光面に直接伝送される ので、 光の減衰を十分に防止することができる。 また、 ガラス板 7によ り蛍光体層 3の損傷が防止されるので、 上記の優れた特性を長期にわた つて安定的に得ることができる。  As described above, also in the second embodiment, when the thickness of the phosphor layer 3 is set to 5 to 120 m, the up-conversion phosphor absorbs infrared light and re-emits visible light. Thus, both the visible light emission intensity and the resolution can be compatible at a high level, and the visible light can be detected with high sensitivity by the S 1 photodiode 6. Further, in the second embodiment, by disposing the phosphor layer 3 and the glass plate 7 on the light receiving surface of the Si photodiode 6 in this order, the infrared light transmitted through the glass plate 7 is After being converted into visible light by the light source, the light is directly transmitted to the light receiving surface of the Si photodiode 6, so that light attenuation can be sufficiently prevented. Further, since the glass plate 7 prevents the phosphor layer 3 from being damaged, the above-mentioned excellent characteristics can be stably obtained over a long period of time.
なお、 第 2実施形態はこれに限られるものではない。 例えば光検出素 子である S iフォトダイオード 6の代わりに、 イメージ撮像素子として C C Dイメージセンサ又は M O S型イメージセンサを用いてもよい。 ィ メージセンサを用いる場合、 ィメージセンサの受光面上に蛍光体層 3を 配置することで解像度の劣化を防止することができ、 これにより赤外可 視変換部材 2からの可視光による像を高感度で検出することができる。  Note that the second embodiment is not limited to this. For example, a CCD image sensor or a MOS type image sensor may be used as an image pickup device instead of the Si photodiode 6 which is a photodetector. In the case of using an image sensor, the deterioration of the resolution can be prevented by disposing the phosphor layer 3 on the light receiving surface of the image sensor, whereby the image by the visible light from the infrared-visible conversion member 2 can be highly sensitive. Can be detected.
図 8は本発明にかかる第 2実施形態を示す概略構成図である。 図 8に おいては、 F O P 4上に、 膜厚 5〜 1 2 Ό μ mの蛍光体層 3と、 可視光 遮蔽層 8とがこの順で積層されて赤外可視変換部材 2が構成されている 可視光遮蔽層 8は、 蛍光体層 3上に形成された平坦化層 9上に S i O 2層と T i 0 2層とが複数交互に積層された誘電体多層反射膜からなり、 蛍光体層 3に入射する赤外光の約 9 0 %を透過し、 その一方で、 蛍光体 層 3に入射する可視光の 9 0 %以上を反射するものである。 なお、 可視 光を吸収し且つ赤外光を透過する平坦な基板上に誘電体多層反射膜を形 成したものを蛍光体層 3に貼りあわせてもよい。 FIG. 8 is a schematic configuration diagram showing a second embodiment according to the present invention. In FIG. 8, a phosphor layer 3 having a thickness of 5 to 12 μm and a visible light shielding layer 8 are laminated in this order on the FOP 4 to constitute an infrared-visible conversion member 2. ing Visible light blocking layer 8 is composed of a S i O 2 layer and T i 0 2 layers are stacked in a plurality alternately on the planarization layer 9 formed on the phosphor layer 3 dielectric multilayer reflection film, a fluorescent Approximately 90% of infrared light incident on the body layer 3 is transmitted, while 90% or more of visible light incident on the phosphor layer 3 is reflected. It should be noted that a dielectric multilayer reflective film formed on a flat substrate that absorbs visible light and transmits infrared light may be bonded to the phosphor layer 3.
第 3実施形態において、 アップコンパージョン蛍光体を含む蛍光体層 3の膜厚を 5〜 1 2 0 μ πιとすることによって、 アップコンパージョン 蛍光体が赤外光を吸収して可視光を再放射する際に、 可視光発光強度と 解像度との双方を高水準で両立することができる点については第 1及び 第 2実施形態と同様である。 加えて、 第 3実施形態においては、 蛍光体 層 3上に可視光遮蔽層 8をさらに設けることによって、 可視光の蛍光体 層への入射を抑制し、 赤外光を蛍光体層 3に選択的に入射させることが できるので、 赤外光から変換された可視光による像の解像度をより向上 させることができる。  In the third embodiment, by setting the thickness of the phosphor layer 3 containing the up-compensation phosphor to 5 to 120 μππ, the up-compensation phosphor absorbs infrared light and regenerates visible light. It is the same as in the first and second embodiments that both the emission intensity of visible light and the resolution can be compatible at a high level when emitting. In addition, in the third embodiment, a visible light shielding layer 8 is further provided on the phosphor layer 3 to suppress the incidence of visible light on the phosphor layer and to select infrared light for the phosphor layer 3. Since it is possible to make the incident light incident, the resolution of the image by the visible light converted from the infrared light can be further improved.
なお、 第 3実施形態はこれに限られるものではない。 例えば可視光遮 蔽層 8は、 可視光を反射又は吸収し且つ赤外光を透過するものであれば よく、 上記の多層反射膜の代わりに、 可視光を吸収し且つ赤外光を透過 する S i基板を用いることもできる。  Note that the third embodiment is not limited to this. For example, the visible light shielding layer 8 only needs to reflect or absorb visible light and transmit infrared light. Instead of the multilayer reflective film, the visible light shielding layer 8 absorbs visible light and transmits infrared light. An Si substrate can also be used.
また、 図 8には撮像素子を図示していないが、 第 1実施形態と同様に 、 赤外可視変換部材 2の F O P 4側の面が撮像素子の受光面上となるよ うに両者を力ップリングすることによって赤外線検出器とすることがで きる。 また、 かかる撮像素子としては、 C C Dイメージセンサ、 M O S 型イメージセンサ、 S i フォトダイオードのいずれを使用してもよい。 産業上の利用可能性 以上説明した通り、 本発明の赤外可視変換部材によれば、 蛍光体層の 膜厚を 5〜 1 2 0 mとすることによって、 可視光発光強度及び解像度 の双方を高水準で両立することが可能となる。 従って、 可視光に対して 感度を有する光検出器の受光面に本発明の赤外可視変換部材を配置する ことによって、 赤外光から変換された可視光による像が高感度且つ高解 像度で検出されるので、 優れた赤外線検出素子を実現することが可能と なる。 Further, although the image sensor is not shown in FIG. 8, as in the first embodiment, the infrared-visible conversion member 2 is subjected to force coupling so that the surface on the FOP 4 side is on the light receiving surface of the image sensor. By doing so, an infrared detector can be obtained. In addition, any of a CCD image sensor, a MOS image sensor, and a Si photodiode may be used as such an image sensor. Industrial applicability As described above, according to the infrared-visible conversion member of the present invention, by setting the thickness of the phosphor layer to 5 to 120 m, both the visible light emission intensity and the resolution can be achieved at a high level. Becomes possible. Therefore, by arranging the infrared-visible conversion member of the present invention on the light-receiving surface of a photodetector having sensitivity to visible light, an image formed by the visible light converted from the infrared light has high sensitivity and high resolution Therefore, an excellent infrared detecting element can be realized.

Claims

言青求の範囲 Scope of Word
1 . 可視光に対して感度を有する光検出器の受光面上に配置される 赤外可視変換部材において、  1. In the infrared-visible conversion member arranged on the light receiving surface of a photodetector having sensitivity to visible light,
前記受光面上に配置され、 可視光に対して透過性を有する基板と、 前記基板上に配置され、 赤外光を可視光に変換するアップコンパージョ ン蛍光体を含有し且つ膜厚が 5〜 1 2 0 //; mである蛍光体層と、 を備える赤外可視変換部材。 A substrate disposed on the light receiving surface and having transparency to visible light; and an upcomparation phosphor for converting infrared light to visible light, which is disposed on the substrate and having a film thickness of 5 A phosphor layer having a thickness of ~ 120 //; m.
2 . 前記蛍光体層上に、 赤外光を透過し且つ可視光を反射又は吸収 する可視光遮蔽層をさらに備える請求項 1に記載の赤外可視変換部材。  2. The infrared-visible conversion member according to claim 1, further comprising a visible light shielding layer that transmits infrared light and reflects or absorbs visible light, on the phosphor layer.
3 . 前記基板が、  3. The substrate is
複数の光ファイバを束ねた状態で一体化することによって形成され、 前記蛍光体層から入射した可視光を伝搬する複数のコアと、 A plurality of cores formed by integrating a plurality of optical fibers in a bundled state, and a plurality of cores for transmitting visible light incident from the phosphor layer;
前記コアよりも屈折率が低く、 前記コアのそれぞれの外周部を覆うクラ ッド、と、 A clad having a lower refractive index than the core and covering each outer peripheral portion of the core;
を備えるファイバォプティックプレ一トである請求項 1に記載の赤外可 視変換部材。 The infrared-visible conversion member according to claim 1, which is a fiber optic plate having:
4 . 前記ァップコンパージョン蛍光体の平均粒径が隣接する前記コ ァ間の距離の 1ノ 2以下である請求項 3に記載の赤外可視換部材。  4. The infrared-visible conversion member according to claim 3, wherein the average particle diameter of the gap-compared phosphor is 1 to 2 or less as the distance between adjacent cores.
5 . 可視光に対して感度を有する光検出器と、  5. a photodetector sensitive to visible light;
前記光検出器の受光面上に配置された請求項 1に記載の赤外可視変換部 材と、 The infrared-visible conversion member according to claim 1, which is disposed on a light receiving surface of the photodetector.
を備える赤外線検出装置。 An infrared detection device comprising:
6 . 赤外光に対して透過性を有する基板と、  6. a substrate having a transmittance to infrared light;
前記基板上に配置され、 赤外光を可視光に変換するアップコンパージョ ン蛍光体を含有し且つ膜厚が 5〜 1 2 0 μ mである蛍光体層と、 を備え、 前記蛍光体層が、 可視光に対して感度を有する光検出器の受光面上に配 置される赤外可視変換部材。 A phosphor layer which is disposed on the substrate, contains an up-conversion phosphor for converting infrared light into visible light, and has a film thickness of 5 to 120 μm; An infrared-visible conversion member, wherein the phosphor layer is disposed on a light receiving surface of a photodetector having sensitivity to visible light.
7 . 前記蛍光体層上に赤外光を透過し且つ可視光を反射又は吸収す る可視光遮蔽層をさらに備える請求項 6に記載の赤外可視変換部材。  7. The infrared-visible conversion member according to claim 6, further comprising a visible light shielding layer that transmits infrared light and reflects or absorbs visible light on the phosphor layer.
8 . 可視光に対して感度を有する光検出器と、  8. a photodetector sensitive to visible light;
前記光検出器の受光面上に配置された請求項 6に記載の赤外可視変換部 材と、 The infrared-visible conversion member according to claim 6, which is disposed on a light receiving surface of the photodetector,
を備える赤外線検出装置。 An infrared detection device comprising:
PCT/JP2002/009232 2001-09-10 2002-09-10 Infrared-visible conversion member and infrared detector WO2003023338A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-274002 2001-09-10
JP2001274002A JP2003083809A (en) 2001-09-10 2001-09-10 Infrared visible conversion member and infrared detection device

Publications (1)

Publication Number Publication Date
WO2003023338A1 true WO2003023338A1 (en) 2003-03-20

Family

ID=19099124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009232 WO2003023338A1 (en) 2001-09-10 2002-09-10 Infrared-visible conversion member and infrared detector

Country Status (2)

Country Link
JP (1) JP2003083809A (en)
WO (1) WO2003023338A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018442B2 (en) 2008-09-22 2011-09-13 Microsoft Corporation Calibration of an optical touch-sensitive display device
JP2014522578A (en) * 2011-06-06 2014-09-04 ユニバーシティー オブ フロリダ リサーチ ファウンデーション,インコーポレイテッド Infrared imaging device incorporating IR up-conversion device with built-in CMOS image sensor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568305B2 (en) 2006-09-29 2014-08-06 ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド Method and apparatus for infrared detection and display
MX2012013643A (en) 2010-05-24 2013-05-01 Univ Florida Method and apparatus for providing a charge blocking layer on an infrared up-conversion device.
US9437835B2 (en) * 2011-06-06 2016-09-06 University Of Florida Research Foundation, Inc. Transparent infrared-to-visible up-conversion device
EP2727154B1 (en) 2011-06-30 2019-09-18 University of Florida Research Foundation, Inc. A method and apparatus for detecting infrared radiation with gain
KR20180018660A (en) 2015-06-11 2018-02-21 유니버시티 오브 플로리다 리서치 파운데이션, 인코포레이티드 Monodisperse, IR-absorbing nanoparticles, and related methods and apparatus
WO2017154444A1 (en) * 2016-03-09 2017-09-14 ソニー株式会社 Photoelectric conversion element and image pickup device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156528A (en) * 1981-03-22 1982-09-27 Nec Corp Image detector using infrared rays
JPH0280928A (en) * 1988-09-16 1990-03-22 Seiko Instr Inc Infrared image sensor
JPH083550A (en) * 1994-06-15 1996-01-09 Mitsubishi Materials Corp Coating for forming infrared rays sensitive transparent film exhibiting strong emission brightness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156528A (en) * 1981-03-22 1982-09-27 Nec Corp Image detector using infrared rays
JPH0280928A (en) * 1988-09-16 1990-03-22 Seiko Instr Inc Infrared image sensor
JPH083550A (en) * 1994-06-15 1996-01-09 Mitsubishi Materials Corp Coating for forming infrared rays sensitive transparent film exhibiting strong emission brightness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018442B2 (en) 2008-09-22 2011-09-13 Microsoft Corporation Calibration of an optical touch-sensitive display device
JP2014522578A (en) * 2011-06-06 2014-09-04 ユニバーシティー オブ フロリダ リサーチ ファウンデーション,インコーポレイテッド Infrared imaging device incorporating IR up-conversion device with built-in CMOS image sensor

Also Published As

Publication number Publication date
JP2003083809A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
EP1861733B1 (en) X-ray detector with in-pixel processing circuits
CN107045138B (en) Back scattering detection module
EP1065525A2 (en) Radiation image read out apparatus
US6384400B1 (en) High resolution and high luminance scintillator and radiation imager employing the same
EP1199886B1 (en) Infrared camera with phosphor coated CCD
KR20130080425A (en) Scintillator panel and radiation image sensor
CN112424644A (en) Wavelength-shifting patch-coupled scintillation detector
WO2003023338A1 (en) Infrared-visible conversion member and infrared detector
JPH06100782B2 (en) Image recording / reading device
JP2002277555A (en) Radiation imager cover
EP3528484B1 (en) Radiation image reading device
JPH02190792A (en) Radiation detector
CN106653778B (en) Radiation detector assembly and method of manufacturing the same
JP2010169674A (en) Radiation detector
JP4053997B2 (en) Device for detecting information contained in a phosphorous layer
JP2003329797A (en) Material and method for forming radiation image
JP3330895B2 (en) Stimulable phosphor sheet and radiation image recording / reproducing method
US3971932A (en) Apparatus for enhancing the long wavelength response of photodetectors
JP2002333480A (en) Scintillator panel, and radiation detector using the same
JP5428837B2 (en) Radiation detector
JP5043540B2 (en) Radiation detector
JP4053998B2 (en) Device for detecting information contained in a phosphorous layer
KR20150053196A (en) Scintillator panel
JPS627657B2 (en)
JP2003098257A (en) Radiation image reader

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase