JP2010169674A - Radiation detector - Google Patents

Radiation detector Download PDF

Info

Publication number
JP2010169674A
JP2010169674A JP2009290287A JP2009290287A JP2010169674A JP 2010169674 A JP2010169674 A JP 2010169674A JP 2009290287 A JP2009290287 A JP 2009290287A JP 2009290287 A JP2009290287 A JP 2009290287A JP 2010169674 A JP2010169674 A JP 2010169674A
Authority
JP
Japan
Prior art keywords
conversion layer
wavelength conversion
light
scintillator crystal
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009290287A
Other languages
Japanese (ja)
Inventor
Akira Yoshikawa
彰 吉川
Takeyuki Yanagida
健之 柳田
Kei Kamata
圭 鎌田
Takanori Endo
貴範 遠藤
Yoshiyuki Usui
善行 薄
Hiroki Sato
浩樹 佐藤
Kosuke Tsutsumi
浩輔 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Furukawa Co Ltd
Original Assignee
Tohoku University NUC
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Furukawa Co Ltd filed Critical Tohoku University NUC
Priority to JP2009290287A priority Critical patent/JP2010169674A/en
Publication of JP2010169674A publication Critical patent/JP2010169674A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide high-sensitivity radiation detectors having superior energy resolution. <P>SOLUTION: The refractive index of a scintillator crystal 2 is not less than n1; the refractive index of a first light wavelength conversion layer 4, which is filled into a space between the scintillator crystal 2 and a photodetector 5, is less than n1 and not less than n2; and the refractive index of a second light wavelength conversion layer 3, which is filled into a space between the scintillator crystal 2 and a reflection member 9, is less than n2. Thus, the wavelength of scintillation light 6 is fitted to wavelength sensitivity of the photodetector 5 by the second light wavelength conversion layer 3, and the transmittance of the scintillator crystal 2 is transmitted effectively into a high wavelength. The scintillation light 6 is efficiently reflected, prior to reaching the first light wavelength conversion layer 4 and efficiently reaches the photodetector 5, without being reflected by the first light wavelength conversion layer 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、放射線の入射を検出する放射線検出器に関し、特に、放射線の入射によりシンチレータ結晶で発生するシンチレーション光を光検出器により電気信号に変換する放射線検出器に関する。   The present invention relates to a radiation detector that detects the incidence of radiation, and more particularly to a radiation detector that converts scintillation light generated in a scintillator crystal by the incidence of radiation into an electrical signal by a photodetector.

放射線検出器は、一般にX線やγ線などの放射線を受光して可視光に変換するシンチレータ結晶、このシンチレータ結晶で変換され透過してきた可視光を検知して電気信号に変換するホトマルチプライヤチューブ(PMT)やホトダイオード(PD)などの光検出器、シンチレータ結晶から発したシンチレーション光を効率よく光検出器に導くための反射部材、等から構成されている。   Generally, a radiation detector is a scintillator crystal that receives radiation such as X-rays or γ-rays and converts it into visible light, and a photomultiplier tube that detects visible light converted and transmitted by the scintillator crystal and converts it into an electrical signal. (PMT), a photodiode (PD) or the like, a reflection member for efficiently guiding scintillation light emitted from the scintillator crystal to the photodetector, and the like.

シンチレータ結晶には、放射線を吸収して光に変換する機能のほか、変換した光を減衰させずに光検出部まで透過させる透明性が要求される。加えて、放射線検出器のシンチレータ結晶材料には、放射線を吸収し発光するシンチレータ結晶としての機能が必要であるほか、検出器の電気信号への変換効率が高い波長に発光のピーク波長を持つことも重要となる。   In addition to the function of absorbing radiation and converting it into light, the scintillator crystal is required to have transparency that allows the converted light to pass through to the light detection unit without being attenuated. In addition, the scintillator crystal material of the radiation detector must have a function as a scintillator crystal that absorbs radiation and emits light, and has a peak emission wavelength at a wavelength where the conversion efficiency of the detector to an electric signal is high. Is also important.

一方、CsIやプラセオジム添加ルテチウムアルミネート(LuAl12:Pr)などの発光のピーク波長が400nm以下のシンチレータ結晶と光検出器を組み合わせた放射線検出器では、蛍光波長が400nm以下では光検出器の電気信号への変換効率が低いために、放射線検出器の光変換効率、および、検出感度が低下する。 On the other hand, in a radiation detector that combines a scintillator crystal having a peak emission wavelength of 400 nm or less such as CsI or praseodymium-doped lutetium aluminate (Lu 3 Al 5 O 12 : Pr) with a photodetector, light is emitted at a fluorescence wavelength of 400 nm or less. Since the conversion efficiency of the detector into an electrical signal is low, the light conversion efficiency and detection sensitivity of the radiation detector are reduced.

そこで、多結晶化合物からなるシンチレータ結晶から発生した、シンチレーション光の波長を光検出器の波長感度に適合する波長に変換する光波長変換層をシンチレータ結晶と光検出器との間に形成し放射線検出器の光変換効率、および、検出感度を高める方法がある(例えば、特許文献1参照)。   Therefore, radiation detection is performed by forming an optical wavelength conversion layer between the scintillator crystal and the photodetector, which converts the wavelength of the scintillation light generated from the scintillator crystal made of a polycrystalline compound into a wavelength suitable for the wavelength sensitivity of the photodetector. There is a method for increasing the light conversion efficiency and detection sensitivity of the detector (for example, see Patent Document 1).

また、円柱状に切り出したCsIの円状の二面にシンチレーション光の波長を光検出器の波長感度に適合する波長に変換する光波長変換層を塗布し、そのうち一面を光検出器に光学接着することで放射線検出器の光変換効率、および、検出感度を高める方法もある(例えば、特許文献2参照)。   In addition, an optical wavelength conversion layer that converts the wavelength of scintillation light into a wavelength suitable for the wavelength sensitivity of the photodetector is applied to two circular CsI surfaces cut into a cylindrical shape, and one of the surfaces is optically bonded to the photodetector. There is also a method of increasing the light conversion efficiency and detection sensitivity of the radiation detector (see, for example, Patent Document 2).

特開2002−82171号公報JP 2002-82171 A 特公平07−78215号公報Japanese Patent Publication No. 07-78215

Nuclear Instruments and Methods in Physics Research A 486 (2002) 40-47Nuclear Instruments and Methods in Physics Research A 486 (2002) 40-47

特許文献1に記載された技術においては、シンチレータ結晶と光検出器の間にのみ波長変換層を形成する。シンチレータ結晶と光検出器の間の面以外の面には波長変換層が形成されていない。   In the technique described in Patent Document 1, a wavelength conversion layer is formed only between the scintillator crystal and the photodetector. A wavelength conversion layer is not formed on a surface other than the surface between the scintillator crystal and the photodetector.

このため、シンチレータ結晶と光検出器の間の面以外の面でシンチレーション光を波長変換するとともに効率よく反射させて、最終的に光検出器に導くことができず、結果として放射線検出器の検出感度は向上しないという課題がある。   For this reason, the scintillation light is wavelength-converted on a surface other than the surface between the scintillator crystal and the photodetector, and is efficiently reflected and finally led to the photodetector, resulting in detection of the radiation detector. There is a problem that the sensitivity is not improved.

特許文献2に記載された技術においては、CsIシンチレータ結晶の屈折率は、その発光のピーク波長において1.8であり、光波長変換層の屈折率は1.4〜1.62程度であるため両者の屈折率差が小さい。   In the technique described in Patent Document 2, the refractive index of the CsI scintillator crystal is 1.8 at the peak wavelength of light emission, and the refractive index of the light wavelength conversion layer is about 1.4 to 1.62. The difference in refractive index between the two is small.

従って、光波長変換層をシンチレータ結晶と光検出器との間に形成しても、シンチレータ結晶と光波長変換層の間でのシンチレーション光の全反射成分が少ないため、光波長変換層を透過し光検出器に入射する。   Therefore, even if the light wavelength conversion layer is formed between the scintillator crystal and the photodetector, the total reflection component of the scintillation light between the scintillator crystal and the light wavelength conversion layer is small, so that the light wavelength conversion layer is transmitted. The light enters the photodetector.

一方、屈折率が2.0程度であるルテチウムアルミネート(LuAl12)等を母材とするシンチレータ結晶体では、屈折率が1.4〜1.62程度である光波長変換層をシンチレータ結晶と光検出器との間に形成した場合、シンチレータ結晶と光検出器の表面との屈折率の差が大きい。このため、シンチレータ結晶と光波長変換層の間でのシンチレーション光の全反射成分が多くなり、放射線検出器の光変換効率および検出感度が低下する課題がある。 On the other hand, in a scintillator crystal whose base material is lutetium aluminate (Lu 3 Al 5 O 12 ) having a refractive index of about 2.0, a light wavelength conversion layer having a refractive index of about 1.4 to 1.62 Is formed between the scintillator crystal and the photodetector, the difference in refractive index between the scintillator crystal and the surface of the photodetector is large. For this reason, the total reflection component of the scintillation light between the scintillator crystal and the light wavelength conversion layer increases, and there is a problem that the light conversion efficiency and the detection sensitivity of the radiation detector are lowered.

本発明は上述のような課題に鑑みてなされたものであり、簡単な構造で光変換効率および検出感度が良好な放射線検出器を提供するものである。   The present invention has been made in view of the above problems, and provides a radiation detector having a simple structure and good light conversion efficiency and detection sensitivity.

本発明の放射線検出器は、放射線の入射を検出する放射線検出器であって、放射線の入射により内部でシンチレーション光を発生する屈折率がn1(n1は特定の実数)以上のシンチレータ結晶と、シンチレータ結晶に対向する位置に配置されていて入射するシンチレーション光を電気信号に変換する光検出器と、シンチレータ結晶と光検出器との間隙に充填されていて屈折率がn2(n2はn1未満の実数)以上の第一光波長変換層と、光検出器と対向しているシンチレータ結晶の一面以外の表面と対向する位置に配置されていて入射するシンチレーション光を反射する反射部材と、シンチレータ結晶と反射部材との間隙に充填されていて屈折率がn2未満の第二光波長変換層と、を有する。   A radiation detector according to the present invention is a radiation detector for detecting the incidence of radiation, a scintillator crystal having a refractive index n1 (n1 is a specific real number) or more that generates scintillation light internally by the incidence of radiation, and a scintillator A photodetector arranged at a position facing the crystal and converting incident scintillation light into an electrical signal; and a gap between the scintillator crystal and the photodetector is filled with a refractive index of n2 (n2 is a real number less than n1) ) The first light wavelength conversion layer described above, a reflecting member that is disposed at a position facing a surface other than one surface of the scintillator crystal facing the photodetector and reflects incident scintillation light, and the scintillator crystal and the reflection A second light wavelength conversion layer filled in a gap with the member and having a refractive index of less than n2.

従って、本発明の放射線検出器では、シンチレータ結晶に放射線が入射するとシンチレーション光が発生し、このシンチレーション光を光検出器が電気信号に変換することで、放射線の入射が検出される。ただし、シンチレータ結晶の屈折率がn1以上であり、シンチレータ結晶と光検出器との間隙に充填されている第一光波長変換層の屈折率がn1未満のn2以上であり、シンチレータ結晶と反射部材との間隙に充填されている第二光波長変換層の屈折率がn2未満である。このため、第二光波長変換層によりシンチレーション光の波長を光検出器の波長感度に適合させることができ、かつ、シンチレータ結晶の透過率が高い波長に効果的に変換することができる。加えて、シンチレータ結晶と第二光波長変換層との屈折率差が十分に大きいため、シンチレーション光が効率よく反射されてから第一光波長変換層に効率よく到達する。シンチレータ結晶と第一光波長変換層との屈折率差が十分に小さいため、シンチレーション光は第一光波長変換層で反射されることなく効率よく光検出器に到達する。   Therefore, in the radiation detector of the present invention, scintillation light is generated when radiation enters the scintillator crystal, and the scintillation light is converted into an electrical signal by the photodetector, thereby detecting the incidence of radiation. However, the refractive index of the scintillator crystal is n1 or more, the refractive index of the first light wavelength conversion layer filled in the gap between the scintillator crystal and the photodetector is n2 or more less than n1, and the scintillator crystal and the reflecting member The refractive index of the second light wavelength conversion layer filled in the gap is less than n2. For this reason, the wavelength of the scintillation light can be adapted to the wavelength sensitivity of the photodetector by the second light wavelength conversion layer, and can be effectively converted to a wavelength with high transmittance of the scintillator crystal. In addition, since the refractive index difference between the scintillator crystal and the second light wavelength conversion layer is sufficiently large, the scintillation light is efficiently reflected and then efficiently reaches the first light wavelength conversion layer. Since the refractive index difference between the scintillator crystal and the first light wavelength conversion layer is sufficiently small, the scintillation light efficiently reaches the photodetector without being reflected by the first light wavelength conversion layer.

また、上述のような放射線検出器において、シンチレータ結晶は、シンチレーション光のピーク波長が400nm以下で屈折率n1が1.8以上であり、第一光波長変換層は、屈折率n2が1.62以上であり、第二光波長変換層は、屈折率n2が1.62未満である放射線検出器において、第二光波長変換層は、蛍光体が均一に分散されている透光性の樹脂からなってもよい。   In the radiation detector as described above, the scintillator crystal has a peak wavelength of scintillation light of 400 nm or less and a refractive index n1 of 1.8 or more, and the first light wavelength conversion layer has a refractive index n2 of 1.62. The second light wavelength conversion layer is a radiation detector having a refractive index n2 of less than 1.62, and the second light wavelength conversion layer is made of a translucent resin in which phosphors are uniformly dispersed. It may be.

また、上述のような放射線検出器において、第一光波長変換層は、蛍光体が均一に分散されている透光性の多孔質ガラスからなってもよい。   In the radiation detector as described above, the first light wavelength conversion layer may be made of translucent porous glass in which phosphors are uniformly dispersed.

また、上述のような放射線検出器において、蛍光体は、クマリン系化合物、オキサゾール系化合物、フェニル系化合物、オキサジアゾール系化合物、ローダミン系化合物、スルフォローダミン系化合物、ジシアノメチル系化合物(DCM)、スチリル系化合物、および、パイロメタン系化合物、から選択される少なくとも一種の有機化合物からなってもよい。   In the radiation detector as described above, the phosphor is a coumarin compound, an oxazole compound, a phenyl compound, an oxadiazole compound, a rhodamine compound, a sulfodamine compound, a dicyanomethyl compound (DCM). Or at least one organic compound selected from styryl compounds and pyromethane compounds.

また、上述のような放射線検出器において、シンチレータ結晶は、プラセオジム添加ルテチウムアルミネートからなってもよい。   In the radiation detector as described above, the scintillator crystal may be composed of praseodymium-added lutetium aluminate.

また、上述のような放射線検出器において、光検出器は、ノーマルモードAPD(Avalanche Photo Diode)またはガイガーモードAPDピクセルの集合からなる半導体受光素子からなってもよい。   Further, in the radiation detector as described above, the photodetector may be composed of a semiconductor light receiving element including a set of normal mode APD (Avalanche Photo Diode) or Geiger mode APD pixels.

本発明の放射線検出器では、シンチレータ結晶の屈折率がn1以上であり、シンチレータ結晶と光検出器との間隙に充填されている第一光波長変換層の屈折率がn1未満のn2以上であり、シンチレータ結晶と反射部材との間隙に充填されている第二光波長変換層の屈折率がn2未満である。このため、第二光波長変換層によりシンチレーション光の波長を光検出器の波長感度に適合させることができ、かつ、シンチレータ結晶の透過率が高い波長に効果的に変換することができる。加えて、シンチレータ結晶と第二光波長変換層との屈折率差が十分に大きいため、シンチレーション光が効率よく反射されてから第一光波長変換層に効率よく到達する。シンチレータ結晶と第一光波長変換層との屈折率差が十分に小さいため、シンチレーション光は第一光波長変換層で反射されることなく効率よく光検出器に到達する。従って、光検出器における光電変換効率が大幅に増加し、光検出器に到達する光子数も多くなり、放射線検出器は高感度でエネルギー分解能が優れたものになる。   In the radiation detector of the present invention, the refractive index of the scintillator crystal is n1 or more, and the refractive index of the first light wavelength conversion layer filled in the gap between the scintillator crystal and the photodetector is n2 or more which is less than n1. The refractive index of the second light wavelength conversion layer filled in the gap between the scintillator crystal and the reflecting member is less than n2. For this reason, the wavelength of the scintillation light can be adapted to the wavelength sensitivity of the photodetector by the second light wavelength conversion layer, and can be effectively converted to a wavelength with high transmittance of the scintillator crystal. In addition, since the refractive index difference between the scintillator crystal and the second light wavelength conversion layer is sufficiently large, the scintillation light is efficiently reflected and then efficiently reaches the first light wavelength conversion layer. Since the refractive index difference between the scintillator crystal and the first light wavelength conversion layer is sufficiently small, the scintillation light efficiently reaches the photodetector without being reflected by the first light wavelength conversion layer. Therefore, the photoelectric conversion efficiency in the photodetector is greatly increased, the number of photons reaching the photodetector is increased, and the radiation detector has high sensitivity and excellent energy resolution.

本発明の実施の形態の放射線検出器の内部構造を示す模式図である。It is a schematic diagram which shows the internal structure of the radiation detector of embodiment of this invention. 放射線検出器での光学特性を示す模式図である。It is a schematic diagram which shows the optical characteristic in a radiation detector. 一般的な光検出器であるPMTとPDの分波長感度(量子変換効率)を示す特性図である。It is a characteristic view which shows the wavelength sensitivity (quantum conversion efficiency) of PMT and PD which are general photodetectors. プラセオジム添加ルテチウムアルミネート(LuAl12:Pr)の発光スペクトルと透過スペクトルとを示す特性図である。Praseodymium added lutetium aluminate: is a characteristic diagram showing the emission spectrum and the transmission spectrum of (Lu 3 Al 5 O 12 Pr ). CeFの発光スペクトルと吸収スペクトルとを示す特性図である。It is a characteristic diagram showing the emission spectrum and the absorption spectrum of CeF 3. LuAl12:Prからなるシンチレータ結晶の発光スペクトルを示す特性図である。Lu 3 Al 5 O 12: is a graph showing the emission spectrum of the scintillator crystals made of Pr. CeFからなるシンチレータ結晶の発光スペクトルを示す特性図である。It is a characteristic diagram showing the emission spectrum of the scintillator crystals made of CeF 3. 実施例1〜5および比較例1の各種特性を示す特性図である。It is a characteristic view which shows the various characteristics of Examples 1-5 and Comparative Example 1. 実施例6〜10および比較例2の各種特性を示す特性図である。It is a characteristic view which shows the various characteristics of Examples 6-10 and Comparative Example 2. 実施例11〜15および比較例3の各種特性を示す特性図である。It is a characteristic view which shows the various characteristics of Examples 11-15 and Comparative Example 3. 実施例16〜20および比較例4の各種特性を示す特性図である。It is a characteristic view which shows the various characteristics of Examples 16-20 and Comparative Example 4.

本発明の実施の一形態を図面を参照して以下に説明する。本実施の形態の放射線検出器1は、図1に示すように、放射線8の入射を検出する放射線検出器1であって、放射線8の入射により内部で発生するシンチレーション光6のピーク波長が400nm以下で屈折率が1.8以上のシンチレータ結晶2と、シンチレータ結晶2に対向する位置に配置されていて入射するシンチレーション光6を電気信号に変換する光検出器5と、シンチレータ結晶2と光検出器5との間隙に充填されていて屈折率が1.62以上の第一光波長変換層4と、を有する。   An embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the radiation detector 1 of the present embodiment is a radiation detector 1 that detects the incidence of radiation 8, and the peak wavelength of scintillation light 6 that is generated internally by the incidence of radiation 8 is 400 nm. A scintillator crystal 2 having a refractive index of 1.8 or more, a photodetector 5 that is disposed at a position facing the scintillator crystal 2 and converts incident scintillation light 6 into an electrical signal, and the scintillator crystal 2 and light detection And a first light wavelength conversion layer 4 having a refractive index of 1.62 or more.

さらに、光検出器5と対向しているシンチレータ結晶2の一面以外の表面と対向する位置に配置されていて入射するシンチレーション光6を反射する反射部材9と、シンチレータ結晶2と反射部材9との間隙に充填されていて屈折率が1.62未満の第二光波長変換層3と、も有する。   Further, a reflecting member 9 that is disposed at a position facing a surface other than one surface of the scintillator crystal 2 facing the photodetector 5 and reflects the incident scintillation light 6, and the scintillator crystal 2 and the reflecting member 9 And a second optical wavelength conversion layer 3 filled in the gap and having a refractive index of less than 1.62.

換言すると、本実施の形態の放射線検出器1は、放射線8の入射により内部でシンチレーション光6を発生する屈折率がn1(n1は特定の実数)以上のシンチレータ結晶2と、シンチレータ結晶2と光検出器5との間隙に充填されていて屈折率がn2(n2はn1未満の実数)以上の第一光波長変換層4と、シンチレータ結晶2と反射部材9との間隙に充填されていて屈折率がn2未満の第二光波長変換層3と、を有する。   In other words, the radiation detector 1 according to the present embodiment includes a scintillator crystal 2 having a refractive index n1 (n1 is a specific real number) or more that generates scintillation light 6 when radiation 8 is incident, and the scintillator crystal 2 and light. The gap between the detector 5 and the first light wavelength conversion layer 4 having a refractive index of n2 (n2 is a real number less than n1) or more, and the gap between the scintillator crystal 2 and the reflecting member 9 is filled and refracted. A second light wavelength conversion layer 3 having a rate of less than n2.

なお、詳細には後述するが、シンチレータ結晶2は、例えば、ルテチウムアルミネート(LuAl12:Pr)等を母材とする、プラセオジム添加ルテチウムアルミネートからなる。 As will be described in detail later, the scintillator crystal 2 is made of praseodymium-added lutetium aluminate containing, for example, lutetium aluminate (Lu 3 Al 5 O 12 : Pr) as a base material.

また、第二光波長変換層3は、蛍光体が均一に分散されている透光性の樹脂からなる。さらに、第一光波長変換層4は、蛍光体が均一に分散されている透光性の多孔質ガラスからなる。   The second light wavelength conversion layer 3 is made of a translucent resin in which phosphors are uniformly dispersed. Furthermore, the first light wavelength conversion layer 4 is made of translucent porous glass in which phosphors are uniformly dispersed.

なお、上述の蛍光体は、クマリン系化合物、オキサゾール系化合物、フェニル系化合物、オキサジアゾール系化合物、ローダミン系化合物、スルフォローダミン系化合物、ジシアノメチル系化合物(DCM)、スチリル系化合物、および、パイロメタン系化合物、から選択される少なくとも一種の有機化合物からなる。   In addition, the above-described phosphor includes a coumarin compound, an oxazole compound, a phenyl compound, an oxadiazole compound, a rhodamine compound, a sulfodamine compound, a dicyanomethyl compound (DCM), a styryl compound, and It consists of at least one organic compound selected from pyromethane compounds.

上述のような構成において、本実施の形態の放射線検出器1では、放射線源7からシンチレータ結晶2に放射線8が入射すると、その強度に対応したシンチレーション光6が発生する。このシンチレーション光6を光検出器5が電気信号に変換することで、放射線8の入射が検出される。   In the configuration as described above, in the radiation detector 1 of the present embodiment, when the radiation 8 enters the scintillator crystal 2 from the radiation source 7, scintillation light 6 corresponding to the intensity is generated. The scintillation light 6 is converted into an electrical signal by the photodetector 5, whereby the incidence of the radiation 8 is detected.

ただし、シンチレータ結晶2は屈折率が1.8以上でシンチレーション光6のピーク波長が400nm以下であり、このシンチレータ結晶2と光検出器5との間隙には屈折率が1.62以上の第一光波長変換層4が充填されている。さらに、シンチレータ結晶2と反射部材9との間隙には屈折率が1.62未満の第二光波長変換層3が充填されている。   However, the scintillator crystal 2 has a refractive index of 1.8 or more and a peak wavelength of the scintillation light 6 of 400 nm or less, and a gap between the scintillator crystal 2 and the photodetector 5 has a refractive index of 1.62 or more. The light wavelength conversion layer 4 is filled. Further, the gap between the scintillator crystal 2 and the reflecting member 9 is filled with the second light wavelength conversion layer 3 having a refractive index of less than 1.62.

このため、シンチレータ結晶2で発生したシンチレーション光6は、最初に一部が、第二光波長変換層3に到達して波長が変換される。これで、シンチレーション光6の波長を光検出器5の波長感度に適合させることができる。   For this reason, a part of the scintillation light 6 generated in the scintillator crystal 2 first reaches the second light wavelength conversion layer 3 and the wavelength is converted. Thereby, the wavelength of the scintillation light 6 can be adapted to the wavelength sensitivity of the photodetector 5.

同時に、シンチレーション光6を、シンチレータ結晶2での透過率が高い波長に変換することができる。さらに、第二光波長変換層3での反射率が高い波長に変換することができる。   At the same time, it is possible to convert the scintillation light 6 into a wavelength having a high transmittance through the scintillator crystal 2. Furthermore, it can convert into the wavelength with the high reflectance in the 2nd light wavelength conversion layer 3. FIG.

従って、シンチレータ結晶2で発生して第二光波長変換層3に到達したシンチレーション光6は光検出器5の波長感度に適合した波長となり、図1に示すように、第二光波長変換層3で良好に反射されながら、シンチレータ結晶2を良好に透過する。   Accordingly, the scintillation light 6 generated in the scintillator crystal 2 and reaching the second light wavelength conversion layer 3 has a wavelength suitable for the wavelength sensitivity of the photodetector 5, and as shown in FIG. The light passes through the scintillator crystal 2 while being well reflected.

従って、上述のようなシンチレーション光6は、最終的に第一光波長変換層4に到達するが、この第一光波長変換層4での反射率が低く透過率が高い。なお、シンチレータ結晶2で第一光波長変換層4に直接到達した一部のシンチレーション光6も、第一光波長変換層4での反射率が低く透過率が高い。   Therefore, the scintillation light 6 as described above finally reaches the first light wavelength conversion layer 4, but the reflectance at the first light wavelength conversion layer 4 is low and the transmittance is high. A part of the scintillation light 6 that has directly reached the first light wavelength conversion layer 4 by the scintillator crystal 2 also has a low reflectance and a high transmittance at the first light wavelength conversion layer 4.

そして、この第一光波長変換層4を透過するときに、光検出器5の波長感度に適合する波長に変換することができる。従って、シンチレーション光6の全部が、最終的に光検出器5に良好な効率で入射することになる。   Then, when transmitting through the first light wavelength conversion layer 4, it can be converted into a wavelength suitable for the wavelength sensitivity of the photodetector 5. Accordingly, all of the scintillation light 6 finally enters the photodetector 5 with good efficiency.

このため、本実施の形態の放射線検出器1では、光検出器5から出力される電気信号を大幅に増加させることが可能になり、結果的に放射線検出器1の検出感度を増大させることが可能になる。   For this reason, in the radiation detector 1 of this Embodiment, it becomes possible to increase the electrical signal output from the photodetector 5 significantly, and can increase the detection sensitivity of the radiation detector 1 as a result. It becomes possible.

ここで、上述のような放射線検出器1の作用を検証する。まず、シンチレータ結晶から発した光の光波長変換層との界面での反射角をθ、屈折角をθ、シンチレータ結晶の屈折率をn1、光波長変換層の屈折率をn2とすると、
n1・sinθ=n2・sinθ
となる。
Here, the operation of the radiation detector 1 as described above will be verified. First, when the reflection angle of the light emitted from the scintillator crystal at the interface with the optical wavelength conversion layer is θ 1 , the refractive angle is θ 2 , the refractive index of the scintillator crystal is n 1, and the refractive index of the optical wavelength conversion layer is n 2,
n1 · sin θ 1 = n2 · sin θ 2
It becomes.

また、屈折率n1のシンチレータ結晶における光の全反射のときの角度(θ=90°)つまり、臨界角τを求めると、
τ=sin−1(n2/n1)
となる。
Further, when the angle (θ 2 = 90 °) at the time of total reflection of light in the scintillator crystal having the refractive index n1, that is, the critical angle τ is obtained,
τ = sin −1 (n2 / n1)
It becomes.

また、シンチレータ結晶と光波長変換層の界面での反射率Rは、
R=(n1−n2)/(n1+n2)
となる。
The reflectance R at the interface between the scintillator crystal and the light wavelength conversion layer is
R = (n1-n2) 2 / (n1 + n2) 2
It becomes.

従って、シンチレータ結晶と光波長変換層との屈折率差が大きければ大きいほど、臨界角τは大きくなり、反射率Rも大きくなる。すなわち、シンチレータ結晶と光波長変換層との屈折率差が大きければ大きいほど、シンチレータ結晶と光波長変換層との界面での全反射する光の割合が多くなる。   Therefore, the greater the difference in refractive index between the scintillator crystal and the light wavelength conversion layer, the greater the critical angle τ and the greater the reflectance R. That is, the greater the difference in refractive index between the scintillator crystal and the light wavelength conversion layer, the greater the proportion of light that is totally reflected at the interface between the scintillator crystal and the light wavelength conversion layer.

従来の放射線検出器においては、シンチレータ結晶から出射されたシンチレーション光は直接、PMTやPDなどの光検出器に供給され、この光検出器においてシンチレーション光の強度に比例した電気信号に変換されていた。   In the conventional radiation detector, the scintillation light emitted from the scintillator crystal is directly supplied to a photodetector such as PMT or PD, and is converted into an electric signal proportional to the intensity of the scintillation light in this photodetector. .

しかしながら、CsIやプラセオジム添加ルテチウムアルミネート(LuAl12:Pr)等といった発光のピーク波長が400nm以下のシンチレータ結晶では、PMTやPDなどの分波長感度(量子変換効率)に適合した波長ではないため、光変換効率が低いという問題点があった。 However, in a scintillator crystal whose emission peak wavelength is 400 nm or less, such as CsI or praseodymium-added lutetium aluminate (Lu 3 Al 5 O 12 : Pr), a wavelength suitable for the wavelength sensitivity (quantum conversion efficiency) such as PMT and PD However, there is a problem that the light conversion efficiency is low.

加えて、CsIやプラセオジム添加ルテチウムアルミネート(LuAl12:Pr)、CeFなどのシンチレータ結晶では、シンチレータ結晶の発光のピーク波長における透過率が、より長い波長域での透過率に比較して小さい。 In addition, in the scintillator crystals such as CsI, praseodymium-added lutetium aluminate (Lu 3 Al 5 O 12 : Pr), and CeF 3 , the transmittance at the peak wavelength of light emission of the scintillator crystal is increased in the longer wavelength region. Small compared.

このため、シンチレーション光が光検出器に到達するまでの自己吸収のためにシンチレーション光の強度が減衰し、放射線検出器1の光変換効率、および、検出感度が低下するという問題点があった。   For this reason, there is a problem that the intensity of the scintillation light is attenuated due to self-absorption until the scintillation light reaches the photodetector, and the light conversion efficiency and detection sensitivity of the radiation detector 1 are lowered.

例えば、図2に示すように、シンチレータ結晶2の周囲に光波長変換層0を形成し、このうちの一面を光検出器5と接合し、残りの面を反射部材9により覆われた放射線検出器において、シンチレータ結晶2と屈折率の差が大きい光波長変換層0を、シンチレータ結晶2と反射部材9の間に形成した場合、シンチレータ結晶2から発した光が光波長変換層0で透過する割合が少なくなる。   For example, as shown in FIG. 2, the light wavelength conversion layer 0 is formed around the scintillator crystal 2, one of the surfaces is bonded to the photodetector 5, and the remaining surface is covered with the reflecting member 9. In the case where the light wavelength conversion layer 0 having a large refractive index difference from the scintillator crystal 2 is formed between the scintillator crystal 2 and the reflecting member 9, light emitted from the scintillator crystal 2 is transmitted through the light wavelength conversion layer 0. The ratio is reduced.

このため、光波長変換層0を透過した光が反射部材9に到達した際の、反射部材9と光波長変換層0との界面での散乱や反射部材9を透過する光成分の影響により、光の減衰が発生するという問題を軽減できる。結果として光検出器5まで到達する光の量が増加する。   For this reason, when the light transmitted through the light wavelength conversion layer 0 reaches the reflection member 9, scattering at the interface between the reflection member 9 and the light wavelength conversion layer 0 and the influence of the light component transmitted through the reflection member 9, The problem of light attenuation can be reduced. As a result, the amount of light reaching the photodetector 5 increases.

また、シンチレータ結晶2と屈折率の差が小さい光波長変換層0をシンチレータ結晶2と光検出器5の間に形成した場合、シンチレータ結晶2から発した光が光波長変換層0で全反射する割合が少なくなるために、光検出器5まで到達する光の量が増加する。   Further, when the light wavelength conversion layer 0 having a small refractive index difference from the scintillator crystal 2 is formed between the scintillator crystal 2 and the photodetector 5, the light emitted from the scintillator crystal 2 is totally reflected by the light wavelength conversion layer 0. Since the ratio decreases, the amount of light reaching the photodetector 5 increases.

なお、上述のような放射線検出器1に、一般的に用いられる光検出器であるPMTとPDの分波長感度(量子変換効率)のグラフを、図3に例示する。シンチレーション光6を高い変換効率で電気信号に変換するためには、シンチレーション光6は400〜600nm付近の波長域に発光ピーク波長を有することが好ましい。   In addition, the graph of the wavelength sensitivity (quantum conversion efficiency) of PMT and PD which are generally used photodetectors in the radiation detector 1 as described above is illustrated in FIG. In order to convert the scintillation light 6 into an electric signal with high conversion efficiency, it is preferable that the scintillation light 6 has an emission peak wavelength in a wavelength region near 400 to 600 nm.

図4はプラセオジム添加ルテチウムアルミネート(LuAl12:Pr)の発光スペクトルと透過スペクトルとを示すグラフである。発光ピーク波長は310nmであり、PMTやPDなどの分波長感度(量子変換効率)に適合した波長ではない。 FIG. 4 is a graph showing an emission spectrum and a transmission spectrum of praseodymium-added lutetium aluminate (Lu 3 Al 5 O 12 : Pr). The emission peak wavelength is 310 nm, which is not a wavelength suitable for wavelength sensitivity (quantum conversion efficiency) such as PMT and PD.

図5はCeFの発光スペクトルと吸収スペクトルを示すグラフである。発光ピーク波長は300nmであり、PMTやPDなどの分波長感度(量子変換効率)に適合した波長ではない。 FIG. 5 is a graph showing an emission spectrum and an absorption spectrum of CeF 3 . The emission peak wavelength is 300 nm, which is not a wavelength suitable for the wavelength sensitivity (quantum conversion efficiency) such as PMT and PD.

そこで、本実施の形態の放射線検出器1は、図1に示すように、放射線8の入射により内部でシンチレーション光6を発生する屈折率がn1(n1は特定の実数)以上のシンチレータ結晶2と、シンチレータ結晶2と光検出器5との間隙に充填されていて屈折率がn2(n2はn1未満の実数)以上の第一光波長変換層4と、シンチレータ結晶2と反射部材9との間隙に充填されていて屈折率がn2未満の第二光波長変換層3として、シンチレーション光6のピーク波長が400nm以下で屈折率が1.8以上のシンチレータ結晶2と、シンチレータ結晶2と光検出器5との間隙に充填されていて屈折率が1.62以上の第一光波長変換層4と、シンチレータ結晶2と反射部材9との間隙に充填されていて屈折率が1.62未満の第二光波長変換層3と、を有する。   Therefore, as shown in FIG. 1, the radiation detector 1 of the present embodiment includes a scintillator crystal 2 having a refractive index n1 (n1 is a specific real number) or more that generates scintillation light 6 inside by the incidence of radiation 8. The gap between the scintillator crystal 2 and the reflection member 9 is filled in the gap between the scintillator crystal 2 and the photodetector 5 and the refractive index is n2 (n2 is a real number less than n1) or more, and the gap between the scintillator crystal 2 and the reflecting member 9. And a scintillator crystal 2 having a peak wavelength of the scintillation light 6 of 400 nm or less and a refractive index of 1.8 or more, a scintillator crystal 2 and a photodetector. 5 is filled in the gap between the first light wavelength conversion layer 4 having a refractive index of 1.62 or more and the scintillator crystal 2 and the reflecting member 9 and having a refractive index of less than 1.62. Dual light wavelength It has a 換層 3, a.

このため、第二光波長変換層3によりシンチレーション光6の波長を光検出器5の波長感度に適合させることができ、かつ、シンチレータ結晶2の透過率が高い波長に効果的に変換することができる。   For this reason, the wavelength of the scintillation light 6 can be adapted to the wavelength sensitivity of the photodetector 5 by the second light wavelength conversion layer 3, and the scintillator crystal 2 can be effectively converted to a wavelength with high transmittance. it can.

加えて、シンチレータ結晶2と第二光波長変換層3との屈折率差が十分に大きいため、シンチレーション光6が効率よく反射されてから第一光波長変換層4に効率よく到達する。   In addition, since the refractive index difference between the scintillator crystal 2 and the second light wavelength conversion layer 3 is sufficiently large, the scintillation light 6 is efficiently reflected before reaching the first light wavelength conversion layer 4 efficiently.

シンチレータ結晶2と第一光波長変換層4との屈折率差が十分に小さいため、シンチレーション光6は第一光波長変換層4で反射されることなく効率よく光検出器5に到達する。   Since the difference in refractive index between the scintillator crystal 2 and the first light wavelength conversion layer 4 is sufficiently small, the scintillation light 6 efficiently reaches the photodetector 5 without being reflected by the first light wavelength conversion layer 4.

従って、光検出器5における光電変換効率が大幅に増加し、光検出器5に到達する光子数も多くなり、放射線検出器1は高感度でエネルギー分解能が優れたものになる。   Therefore, the photoelectric conversion efficiency in the photodetector 5 is greatly increased, the number of photons reaching the photodetector 5 is increased, and the radiation detector 1 has high sensitivity and excellent energy resolution.

本発明者らがシンチレータ結晶2の構成材料として検討したLuAl12:Prは潮解性がなく、LSOの半分程度の短い蛍光寿命(22nsec以下)・酸化物のシンチレータ結晶中で最も高いエネルギー分解能(〜5%)という優れた特性をもつシンチレータ結晶2である。 Lu 3 Al 5 O 12 : Pr investigated by the present inventors as a constituent material of the scintillator crystal 2 has no deliquescent property, and has the shortest fluorescence lifetime (less than 22 nsec) of LSO and the highest among oxide scintillator crystals. It is a scintillator crystal 2 having an excellent characteristic of energy resolution (˜5%).

またCeF潮解性がなく、LSOのよりも短い蛍光寿命(30nsec以下)・フッ化物のシンチレータ結晶中で最も高いエネルギー分解能(〜18%)といった特性をもつシンチレータ結晶2である。 Further, it is a scintillator crystal 2 that does not have CeF 3 deliquescence and has characteristics such as a shorter fluorescence lifetime than LSO (30 nsec or less) and the highest energy resolution (˜18%) among fluoride scintillator crystals.

図6は、蛍光体としてのジフェニルオキサゾール他を含有した各光波長変換層3,4を形成した場合におけるLuAl12:Prからなるシンチレータ結晶2の発光スペクトルを示すグラフである。 FIG. 6 is a graph showing an emission spectrum of the scintillator crystal 2 made of Lu 3 Al 5 O 12 : Pr when each of the light wavelength conversion layers 3 and 4 containing diphenyloxazole or the like as a phosphor is formed.

図7は、蛍光体としてのジフェニルオキサゾール他を含有した各光波長変換層3,4を形成した場合におけるCeFからなるシンチレータ結晶2の発光スペクトルを示すグラフである。 FIG. 7 is a graph showing an emission spectrum of the scintillator crystal 2 made of CeF 3 when the respective light wavelength conversion layers 3 and 4 containing diphenyloxazole or the like as a phosphor are formed.

図6,7に示すように各光波長変換層3,4を有するシンチレータ結晶2の発光スペクトルのピーク波長は420nm付近であり、この値は、図2に示すような光検出器5としてのPMTやPDのピーク応答波長に近接している。   As shown in FIGS. 6 and 7, the peak wavelength of the emission spectrum of the scintillator crystal 2 having the light wavelength conversion layers 3 and 4 is around 420 nm, and this value is the PMT as the photodetector 5 as shown in FIG. And close to the peak response wavelength of PD.

また、図3、4に示すようなLuAl12:PrやCeFの透過率が高い波長に発光スペクトルのピーク波長をもつ。従って、上記のような各光波長変換層3,4を形成することにより、光検出器5に適合した波長を有する光に変換し得るシンチレータ結晶2が得られると同時に、光検出器5における光電変換効率が大幅に増加し、光検出器5に達する光子数も多くなり、放射線検出器1は高感度でエネルギー分解能が優れたものになる。 Moreover, Lu 3 Al 5 O 12, as shown in FIGS. 3 and 4: the wavelength high transmittance of Pr and CeF 3 with the peak wavelength of the emission spectrum. Therefore, by forming the respective light wavelength conversion layers 3 and 4 as described above, the scintillator crystal 2 that can be converted into light having a wavelength suitable for the photodetector 5 is obtained, and at the same time, the photoelectric in the photodetector 5 is obtained. The conversion efficiency is greatly increased, the number of photons reaching the photodetector 5 is increased, and the radiation detector 1 has high sensitivity and excellent energy resolution.

なお、光波長変換層3,4は、単層のみならず相互に特性が異なる蛍光材料を含有した複数層で構成することも可能である。例えば、波長が200mm近傍のシンチレーション光6を、より長波長である300〜350nm程度の波長を有する青緑発光に変換し、さらに、この変換発光をより長波長のシンチレーション光6に変換することにより、PMTやPDにおける光電変換効率をさらに高めることも可能である。   In addition, the light wavelength conversion layers 3 and 4 can be composed of not only a single layer but also a plurality of layers containing fluorescent materials having different characteristics. For example, by converting the scintillation light 6 having a wavelength of about 200 mm into blue-green light having a longer wavelength of about 300 to 350 nm, and further converting this converted light into longer wavelength scintillation light 6 It is also possible to further increase the photoelectric conversion efficiency in the PMT and PD.

また、上述のような放射線検出器1において、光検出器5が、ノーマルモードAPDまたはガイガーモードAPDピクセルの集合からなる半導体受光素子からなってもよい(図示せず)。   Further, in the radiation detector 1 as described above, the photodetector 5 may be composed of a semiconductor light receiving element formed of a set of normal mode APD or Geiger mode APD pixels (not shown).

つぎに、本発明に係る放射線検出器の、さらなる具体例として複数の実施例を図8ないし図11を参照して以下に説明する。まず、LuAl12:Pr(屈折率:1.8)、および、CeF(屈折率:1.68)を1×1×1cmの立方体に切断し、その六面を鏡面研磨した。 Next, as a further specific example of the radiation detector according to the present invention, a plurality of embodiments will be described below with reference to FIGS. First, Lu 3 Al 5 O 12 : Pr (refractive index: 1.8) and CeF 3 (refractive index: 1.68) were cut into 1 × 1 × 1 cm cubes, and the six surfaces were mirror-polished. .

また、透光性の樹脂材料としてのポリシロキサン系のシリコーン樹脂をトルエンに溶かした溶液と、ジフェニルオキサゾール及び1、4ビス(5−フェニル2−オキサゾリル)ベンゼンを混合した飽和溶液を作製し、屈折率が1.62未満の第二光波長変換層の基となる樹脂スラリーを調製した。   In addition, a solution in which a polysiloxane-based silicone resin as a translucent resin material is dissolved in toluene and a saturated solution in which diphenyloxazole and 1,4 bis (5-phenyl-2-oxazolyl) benzene are mixed are prepared, and refraction is performed. A resin slurry serving as a base of the second light wavelength conversion layer having a rate of less than 1.62 was prepared.

また、透光性の樹脂材料としてのテトラメトキシシランをメタノールと水の混合溶媒中に溶解させ、乾燥制御剤としてn,n−ジメチルホルムアミドを加え、ゲル化・熟成させ湿潤ゲルを得た。   Further, tetramethoxysilane as a translucent resin material was dissolved in a mixed solvent of methanol and water, and n, n-dimethylformamide was added as a drying control agent to gel and ripen to obtain a wet gel.

湿潤ゲルを上記立方体LuAl12:Prの一面に塗布したのち、乾燥させることで100μm厚の多孔質ガラスを得た。得られた多孔質ガラスについて、ジフェニルオキサゾール及び1、4ビス(5−フェニル2−オキサゾリル)ベンゼンを混合した飽和トルエン溶液中に浸し、細孔中に蛍光分子を導入し、屈折率が1.62以上の第一光波長変換層を形成した。 A wet gel was applied to one surface of the cubic Lu 3 Al 5 O 12 : Pr and then dried to obtain a porous glass having a thickness of 100 μm. The obtained porous glass was immersed in a saturated toluene solution in which diphenyloxazole and 1,4bis (5-phenyl2-oxazolyl) benzene were mixed, fluorescent molecules were introduced into the pores, and the refractive index was 1.62. The above first light wavelength conversion layer was formed.

[実施例1]
上記の屈折率が1.62以上の第一光波長変換層を一面に形成した立方体LuAl12:Prの他の五面に上記樹脂スラリーを塗布して乾燥硬化させることで、100μmの厚さを有する屈折率が1.62未満の第二光波長変換層をも一体に形成した立方体のLuAl12:Prでシンチレータ結晶を作製した。
[Example 1]
The resin slurry is applied to the other five surfaces of the cubic Lu 3 Al 5 O 12 : Pr on which the first light wavelength conversion layer having the above refractive index of 1.62 or more is formed on one surface, and is dried and cured, thereby obtaining 100 μm. A scintillator crystal was made of cubic Lu 3 Al 5 O 12 : Pr in which a second light wavelength conversion layer having a refractive index of less than 1.62 and having a refractive index of less than 1.62 was integrally formed.

つぎに、屈折率が1.62未満の第二光波長変換層を形成した五面を反射部材で覆い、屈折率が1.62以上の第一光波長変換層を形成した一面をPMT(R9800)の入射面に光学的に接合し、放射線検出器を構成した。   Next, the five surfaces on which the second light wavelength conversion layer having a refractive index of less than 1.62 is formed are covered with a reflecting member, and the one surface on which the first light wavelength conversion layer having a refractive index of 1.62 or more is formed is defined as PMT (R9800). ) Was optically bonded to the incident surface to form a radiation detector.

[実施例2]
上記の屈折率が1.62以上の第一光波長変換層を一面に形成した立方体LuAl12:Prの他の五面を反射部材で覆い、屈折率が1.62以上の第一光波長変換層を形成した一面をPMT(R9800)の入射面に光学的に接合し、放射線検出器を構成した。
[Example 2]
The other five surfaces of the cubic Lu 3 Al 5 O 12 : Pr on which the first optical wavelength conversion layer having the refractive index of 1.62 or more is formed on one surface are covered with a reflecting member, and the first refractive index is 1.62 or more. One surface on which the one-light wavelength conversion layer was formed was optically bonded to the incident surface of the PMT (R9800) to constitute a radiation detector.

[実施例3]
立方体LuAl12:Prの全面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成し、このうちの五面を反射部材で覆い立方体のLuAl12:Prでシンチレータ結晶を作製した。つぎに、残りの一面をPMT(R9800)の入射面に光学的に接合し、放射線検出器を構成した。
[Example 3]
The resin slurry is applied to the entire surface of the cubic Lu 3 Al 5 O 12 : Pr and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm. A scintillator crystal was made of cubic Lu 3 Al 5 O 12 : Pr by covering the five sides with a reflecting member. Next, the remaining surface was optically bonded to the incident surface of the PMT (R9800) to constitute a radiation detector.

[実施例4]
立方体LuAl12:Prの五面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成し、この五面を反射部材で覆い立方体のLuAl12:Prでシンチレータ結晶を作製した。つぎに、反射部材で覆われていない一面をPMT(R9800)の入射面に光学的に接合し、放射線検出器を構成した。
[Example 4]
The resin slurry is applied to five surfaces of cubic Lu 3 Al 5 O 12 : Pr and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm. The surface was covered with a reflective member, and a scintillator crystal was made of cubic Lu 3 Al 5 O 12 : Pr. Next, one surface not covered with the reflecting member was optically bonded to the incident surface of the PMT (R9800) to constitute a radiation detector.

[実施例5]
立方体LuAl12:Prの対向する二面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成した。
[Example 5]
The resin slurry was applied to two opposite surfaces of the cubic Lu 3 Al 5 O 12 : Pr and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm.

このうちの一面、および、各光波長変換層を形成していない四面を反射部材で覆い立方体のLuAl12:Prでシンチレータ結晶を作製した。つぎに、反射部材で覆われていない一面をPMT(R9800)の入射面に光学的に接合し、放射線検出器を構成した。 A scintillator crystal was made of cubic Lu 3 Al 5 O 12 : Pr by covering one surface of these and four surfaces on which each light wavelength conversion layer was not formed with a reflecting member. Next, one surface not covered with the reflecting member was optically bonded to the incident surface of the PMT (R9800) to constitute a radiation detector.

[比較例1]
立方体LuAl12:Prの一面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成し、この一面、および、この一面に接する各光波長変換層を形成していない四面を反射部材で覆い立方体のLuAl12:Prでシンチレータ結晶を作製した。
[Comparative Example 1]
The resin slurry is applied to one surface of the cubic Lu 3 Al 5 O 12 : Pr and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm. And the four surfaces where each light wavelength conversion layer in contact with this one surface was not formed were covered with a reflecting member, and a scintillator crystal was made of cubic Lu 3 Al 5 O 12 : Pr.

つぎに、反射部材で覆われていない一面をPMT(R9800)の入射面に光学的に接合し、放射線検出器を構成した。なお、上述の実施例1〜5および比較例1の各種特性を図8に示す。   Next, one surface not covered with the reflecting member was optically bonded to the incident surface of the PMT (R9800) to constitute a radiation detector. In addition, the various characteristics of above-mentioned Examples 1-5 and the comparative example 1 are shown in FIG.

[実施例6]
上記の屈折率が1.62以上の第一光波長変換層を一面に形成した立方体CeFの他の五面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層をも一体に形成した立方体のCeFでシンチレータ結晶を作製した。
[Example 6]
The resin slurry is applied to the other five surfaces of the cubic CeF 3 on which the first light wavelength conversion layer having the refractive index of 1.62 or more is formed on one surface, and then dried and cured to obtain a refractive index having a thickness of 100 μm. A scintillator crystal was made of cubic CeF 3 integrally formed with a second light wavelength conversion layer of less than 1.62.

つぎに、屈折率が1.62未満の第二光波長変換層を形成した五面を反射部材で覆い、屈折率が1.62以上の第一光波長変換層を形成した一面をPMT(R9800)の入射面に光学的に接合し、放射線検出器を構成した。   Next, the five surfaces on which the second light wavelength conversion layer having a refractive index of less than 1.62 is formed are covered with a reflecting member, and the one surface on which the first light wavelength conversion layer having a refractive index of 1.62 or more is formed is defined as PMT (R9800). ) Was optically bonded to the incident surface to form a radiation detector.

[実施例7]
上記の屈折率が1.62以上の第一光波長変換層を一面に形成した立方体CeFの他の五面を反射部材で覆い、屈折率が1.62以上の第一光波長変換層を形成した一面をPMT(R9800)の入射面に光学的に接合し、放射線検出器を構成した。
[Example 7]
The other five surfaces of the cubic CeF 3 on which the first light wavelength conversion layer having a refractive index of 1.62 or more is formed on one surface are covered with a reflecting member, and the first light wavelength conversion layer having a refractive index of 1.62 or more is covered. The formed surface was optically bonded to the incident surface of PMT (R9800) to constitute a radiation detector.

[実施例8]
立方体CeFの全面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成し、このうちの五面を反射部材で覆い立方体のCeFでシンチレータ結晶を作製した。つぎに、残りの一面をPMT(R9800)の入射面に光学的に接合し、放射線検出器を構成した。
[Example 8]
The resin slurry is applied to the entire surface of the cubic CeF 3 and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm, and five of these layers are made of a reflecting member. A scintillator crystal was made of CeF 3 in a cover cube. Next, the remaining surface was optically bonded to the incident surface of the PMT (R9800) to constitute a radiation detector.

[実施例9]
立方体CeFの五面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成し、この五面を反射部材で覆い立方体のCeFでシンチレータ結晶を作製した。つぎに、反射部材で覆われていない一面をPMT(R9800)の入射面に光学的に接合し、放射線検出器を構成した。
[Example 9]
The resin slurry is applied to five sides of the cubic CeF 3 and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm, and the five sides are covered with a reflecting member. A scintillator crystal was made of cubic CeF 3 . Next, one surface not covered with the reflecting member was optically bonded to the incident surface of the PMT (R9800) to constitute a radiation detector.

[実施例10]
立方体CeFの対向する二面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成し、このうちの一面、および、各光波長変換層を形成していない四面を反射部材で覆い立方体のCeFでシンチレータ結晶を作製した。つぎに、反射部材で覆われていない一面をPMT(R9800)の入射面に光学的に接合し、放射線検出器を構成した。
[Example 10]
The resin slurry is applied to two opposite surfaces of the cubic CeF 3 and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm. The four surfaces on which the respective light wavelength conversion layers were not formed were covered with a reflecting member, and a scintillator crystal was made of cubic CeF 3 . Next, one surface not covered with the reflecting member was optically bonded to the incident surface of the PMT (R9800) to constitute a radiation detector.

[比較例2]
立方体CeFの一面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成し、この一面、および、この一面に接する各光波長変換層を形成していない四面を反射部材で覆い立方体のCeFでシンチレータ結晶を作製した。
[Comparative Example 2]
The resin slurry is applied to one surface of the cubic CeF 3 and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm, and this one surface and this one surface are in contact with each other. The four surfaces on which each light wavelength conversion layer was not formed were covered with a reflecting member, and a scintillator crystal was made of cubic CeF 3 .

つぎに、反射部材で覆われていない一面をPMT(R9800)の入射面に光学的に接合し、放射線検出器を構成した。なお、上述の実施例6〜10および比較例2の各種特性を図9に示す。   Next, one surface not covered with the reflecting member was optically bonded to the incident surface of the PMT (R9800) to constitute a radiation detector. In addition, the various characteristics of above-mentioned Examples 6-10 and the comparative example 2 are shown in FIG.

図9に実施例6〜10の放射線検出器、および、各光波長変換層を形成しなかった場合の標準のCeF3を用いた放射線検出器に、137Csγ線を照射したときの発光量を示す。実施例6〜10の放射線検出器において標準の放射線検出器よりも発光量が増加した。 FIG. 9 shows the amount of light emitted when the radiation detectors of Examples 6 to 10 and the radiation detector using standard CeF3 when each light wavelength conversion layer is not formed are irradiated with 137 Csγ rays. . In the radiation detectors of Examples 6 to 10, the amount of luminescence increased compared to the standard radiation detector.

特に、屈折率が1.62未満の第二光波長変換層を形成した五面を反射部材で覆い、屈折率が1.62以上の第一光波長変換層を形成した一面をPMT(R9800)の入射面に光学的に接合した実施例6の場合に発光量が最大となった。   In particular, the five surfaces on which the second light wavelength conversion layer having a refractive index of less than 1.62 is formed are covered with a reflecting member, and the one surface on which the first light wavelength conversion layer having a refractive index of 1.62 or more is formed is PMT (R9800). In the case of Example 6 optically bonded to the incident surface, the light emission amount was maximized.

[実施例11]
上記の屈折率が1.62以上の第一光波長変換層を一面に形成した立方体LuA112:Prの他の五面に上記樹脂スラリーを塗布して乾燥硬化させることで、100μmの厚さを有する屈折率が1.62未満の第二光波長変換層も一体に形成した立方体のLuA112:Prでシンチレータ結晶を作製した。
[Example 11]
The resin slurry is applied to the other five surfaces of the cube Lu 3 A1 5 0 12 : Pr on which the first light wavelength conversion layer having the refractive index of 1.62 or more is formed on one surface, and is dried and cured, thereby obtaining 100 μm. A scintillator crystal was made of cubic Lu 3 A1 5 0 12 : Pr in which a second light wavelength conversion layer having a refractive index of less than 1.62 and a refractive index of less than 1.62 was also integrally formed.

つぎに、屈折率が1.62未満の第二光波長変換層を形成した五面を反射部材で覆い、屈折率が1.62以上の第一光波長変換層を形成した一面を、ノーマルモードAPD(浜松ホトニクス製S8664−8221)からなる半導体受光素子の入射面に光学的に接合し、放射線検出器を構成した。   Next, the five surfaces on which the second light wavelength conversion layer having a refractive index of less than 1.62 is formed are covered with a reflecting member, and the one surface on which the first light wavelength conversion layer having a refractive index of 1.62 or more is formed is converted into a normal mode. A radiation detector was configured by optically bonding to an incident surface of a semiconductor light receiving element made of APD (S8664-8221 manufactured by Hamamatsu Photonics).

[実施例12]
上記の屈折率が1.62以上の第一光波長変換層を一面に形成した立方体LuA112:Prの他の五面を反射部材で覆い、屈折率が1.62以上の第一光波長変換層を形成した一面を、ノーマルモードAPD(浜松ホトニクス製S8664−8221)からなる半導体受光素子の入射面に光学的に接合し、放射線検出器を構成した。
[Example 12]
The other five surfaces of the cube Lu 3 A1 5 0 12 : Pr on which the first light wavelength conversion layer having a refractive index of 1.62 or more is formed on one surface are covered with a reflecting member, and the first refractive index is 1.62 or more. One surface on which the one-light wavelength conversion layer was formed was optically bonded to the incident surface of a semiconductor light-receiving element made of normal mode APD (S8664-8221 manufactured by Hamamatsu Photonics) to constitute a radiation detector.

[実施例13]
立方体LuA112:Prの全面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成し、このうちの五面を反射部材で覆い立方体のLuA112:Prでシンチレータ結晶を作製した。つぎに、残りの一面を、ノーマルモードAPD(浜松ホトニクス製S8664−8221)からなる半導体受光素子の入射面に光学的に接合し、放射線検出器を構成した。
[Example 13]
Cubic Lu 3 A1 5 0 12 : The resin slurry is applied to the entire surface of Pr and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm. A scintillator crystal was made of cubic Lu 3 A1 5 0 12 : Pr by covering the five faces with a reflecting member. Next, the remaining one surface was optically bonded to the incident surface of a semiconductor light receiving element composed of a normal mode APD (S8664-8221 manufactured by Hamamatsu Photonics) to constitute a radiation detector.

[実施例14]
立方体LuA112:Prの五面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成し、この五面を反射部材で覆い立方体のLuA112:Prでシンチレータ結晶を作製した。つぎに、反射部材で覆われていない一面を、ノーマルモードAPD(浜松ホトニクス製S8664−8221)からなる半導体受光素子の入射面に光学的に接合し、放射線検出器を構成した。
[Example 14]
The resin slurry is applied to the five surfaces of the cube Lu 3 A1 5 0 12 : Pr and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm. The surface was covered with a reflecting member, and a scintillator crystal was made of cubic Lu 3 A1 5 0 12 : Pr. Next, the one surface not covered with the reflecting member was optically bonded to the incident surface of the semiconductor light receiving element composed of the normal mode APD (S8664-8221 manufactured by Hamamatsu Photonics) to constitute a radiation detector.

[実施例15]
立方体LuA112:Prの対向する二面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成した。
[Example 15]
The resin slurry was applied to two opposing surfaces of the cube Lu 3 A1 5 0 12 : Pr and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm.

このうちの一面、および、各光波長変換層を形成していない四面を反射部材で覆い立方体のLuA112:Prでシンチレータ結晶を作製した。つぎに、反射部材で覆われていない一面を、ノーマルモードAPD(浜松ホトニクス製S8664−8221)からなる半導体受光素子の入射面に光学的に接合し、放射線検出器を構成した。 A scintillator crystal was made of cubic Lu 3 A1 5 0 12 : Pr by covering one surface of these and four surfaces on which each light wavelength conversion layer was not formed with a reflecting member. Next, the one surface not covered with the reflecting member was optically bonded to the incident surface of the semiconductor light receiving element composed of the normal mode APD (S8664-8221 manufactured by Hamamatsu Photonics) to constitute a radiation detector.

[比較例3]
立方体LuA112:Prの一面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成し、この一面、および、この一面に接する各光波長変換層を形成していない四面を反射部材で覆い立方体のLuA112:Prでシンチレータ結晶を作製した。
[Comparative Example 3]
Cubic Lu 3 A1 5 0 12 : The resin slurry is applied to one surface of Pr and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm. Further, the four surfaces on which the respective light wavelength conversion layers in contact with the one surface were not formed were covered with a reflecting member, and a scintillator crystal was produced with cubic Lu 3 A1 5 0 12 : Pr.

つぎに、反射部材で覆われていない一面を、ノーマルモードAPD(浜松ホトニクス製S8664−8221)からなる半導体受光素子の入対面に光学的に接合し、放射線検出器を構成した。なお、上述の実施例11〜15および比較例3の各種特性を図10に示す。   Next, the one surface not covered with the reflecting member was optically bonded to the entrance surface of the semiconductor light receiving element composed of normal mode APD (S8664-8221 manufactured by Hamamatsu Photonics) to constitute a radiation detector. In addition, the various characteristics of the above-mentioned Examples 11-15 and the comparative example 3 are shown in FIG.

図10に実施例11〜15の放射線検出器、および、各光波長変換層を形成しなかった場合の標準の放射線検出器の発光量を示す。実施例11〜15の放射線検出器において標準の放射線検出器よりも発光量が飛躍的に増加した。   FIG. 10 shows the light emission amounts of the radiation detectors of Examples 11 to 15 and the standard radiation detector when each light wavelength conversion layer is not formed. In the radiation detectors of Examples 11 to 15, the amount of light emission increased dramatically compared to the standard radiation detector.

特に、屈折率が1.62未満の第二光波長変換層を形成した五面を反射部材で覆い、屈折率が1.62以上の第一光波長変換層を形成した一面を、APDからなる半導体受光素子の入射面に光学的に接合した実施例11の場合に発光量が最大となった。
[実施例16]
上記の屈折率が1.62以上の第一光波長変換層を一面に形成した立方体LuA112:Prの他の五面に上記樹脂スラリーを塗布して乾燥硬化させることで、100μmの厚さを有する屈折率が1.62未満の第二光波長変換層をも一体に形成した立方体のLuA112:Prでシンチレータ結晶を作製した。
In particular, the five surfaces on which the second light wavelength conversion layer having a refractive index of less than 1.62 is formed are covered with a reflecting member, and the one surface on which the first light wavelength conversion layer having a refractive index of 1.62 or more is formed is made of APD. In the case of Example 11 optically bonded to the incident surface of the semiconductor light receiving element, the light emission amount was maximized.
[Example 16]
The resin slurry is applied to the other five surfaces of the cube Lu 3 A1 5 0 12 : Pr on which the first light wavelength conversion layer having the refractive index of 1.62 or more is formed on one surface, and is dried and cured, thereby obtaining 100 μm. A scintillator crystal was made of cubic Lu 3 A1 5 0 12 : Pr integrally formed with a second light wavelength conversion layer having a refractive index of less than 1.62 and a refractive index of less than 1.62.

つぎに、屈折率が1.62未満の第二光波長変換層を形成した五面を反射部材で覆い、屈折率が1.62以上の第一光波長変換層を形成した一面を、ガイガーモードAPDの集合であるMPPC(登録商標)(浜松ホトニクス製10362−33−050)からなる半導体受光素子の入射面に光学的に接合し、放射線検出器を構成した。   Next, the five surfaces on which the second light wavelength conversion layer having a refractive index of less than 1.62 is formed are covered with a reflecting member, and the one surface on which the first light wavelength conversion layer having a refractive index of 1.62 or more is formed is converted into a Geiger mode. A radiation detector was configured by optically bonding to an incident surface of a semiconductor light receiving element made of MPPC (registered trademark) (10362-33-050 manufactured by Hamamatsu Photonics), which is a set of APDs.

[実施例17]
上記の屈折率が1.62以上の第一光波長変換層を一面に形成した立方体LuA112:Prの他の五面を反射部材で覆い、屈折率が1.62以上の第一光波長変換層を形成した一面を、ガイガーモードAPDの集合であるMPPC(浜松ホトニクス製10362−33−050)からなる半導体受光素子の入射面に光学的に接合し、放射線検出器を構成した。
[Example 17]
The other five surfaces of the cube Lu 3 A1 5 0 12 : Pr on which the first light wavelength conversion layer having a refractive index of 1.62 or more is formed on one surface are covered with a reflecting member, and the first refractive index is 1.62 or more. One surface on which the one-light wavelength conversion layer is formed is optically bonded to an incident surface of a semiconductor light receiving element made of MPPC (manufactured by Hamamatsu Photonics, 10362-33-050), which is a set of Geiger mode APDs, to constitute a radiation detector. .

[実施例18]
立方体LuA112:Prの全面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成し、このうちの五面を反射部材で覆い立方体のLuA112:Prでシンチレータ結晶を作製した。
[Example 18]
Cubic Lu 3 A1 5 0 12 : The resin slurry is applied to the entire surface of Pr and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm. A scintillator crystal was made of cubic Lu 3 A1 5 0 12 : Pr by covering the five faces with a reflecting member.

つぎに、残りの一面を、ガイガーモードAPDの集合であるMPPC(浜松ホトニクス製10362−33−050)からなる半導体受光素子の入射面に光学的に接合し、放射線検出器を構成した。   Next, the remaining surface was optically bonded to the incident surface of a semiconductor light receiving element made of MPPC (10362-33-050 manufactured by Hamamatsu Photonics), which is a set of Geiger mode APDs, to constitute a radiation detector.

[実施例19]
立方体LuA112:Prの五面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成し、この五面を反射部材で覆い立方体のLuA112:Prでシンチレータ結晶を作製した。
[Example 19]
The resin slurry is applied to the five surfaces of the cube Lu 3 A1 5 0 12 : Pr and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm. The surface was covered with a reflecting member, and a scintillator crystal was made of cubic Lu 3 A1 5 0 12 : Pr.

つぎに、反射部材で覆われていない一面を、ガイガーモードAPDの集合であるMPPC(浜松ホトニクス製10362−33−050)からなる半導体受光素子の入射面に光学的に接合し、放射線検出器を構成した。   Next, one surface not covered with the reflecting member is optically bonded to the incident surface of the semiconductor light receiving element made of MPPC (manufactured by Hamamatsu Photonics, 10362-33-050), which is a set of Geiger mode APDs, and the radiation detector is attached. Configured.

[実施例20]
立方体LuA112:Prの対向する二面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成した。
[Example 20]
The resin slurry was applied to two opposing surfaces of the cube Lu 3 A1 5 0 12 : Pr and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm.

このうちの一面、および、各光波長変換層を形成していない四面を反射部材で覆い立方体のLuA112:Prでシンチレータ結晶を作製した。つぎに、反射部材で覆われていない一面を、ガイガーモードAPDの集合であるMPPC(浜松ホトニクス製10362−33−050)からなる半導体受光素子の入射面に光学的に接合し、放射線検出器を構成した。 A scintillator crystal was made of cubic Lu 3 A1 5 0 12 : Pr by covering one surface of these and four surfaces on which each light wavelength conversion layer was not formed with a reflecting member. Next, one surface not covered with the reflecting member is optically bonded to the incident surface of the semiconductor light receiving element made of MPPC (manufactured by Hamamatsu Photonics, 10362-33-050), which is a set of Geiger mode APDs, and the radiation detector is attached. Configured.

[比較例4]
立方体LuA112:Prの一面に上記樹脂スラリーを塗布し乾燥硬化させることで100μmの厚さを有する屈折率が1.62未満の第二光波長変換層を形成し、この一面、および、この一面に接する各光波長変換層を形成していない四面を反射部材で覆い立方体のLuA112:Prでシンチレータ結晶を作製した。
[Comparative Example 4]
Cubic Lu 3 A1 5 0 12 : The resin slurry is applied to one surface of Pr and dried and cured to form a second light wavelength conversion layer having a refractive index of less than 1.62 having a thickness of 100 μm. Further, the four surfaces on which the respective light wavelength conversion layers in contact with the one surface were not formed were covered with a reflecting member, and a scintillator crystal was produced with cubic Lu 3 A1 5 0 12 : Pr.

つぎに、反射部材で覆われていない一面を、ガイガーモードAPDの集合であるMPPC(浜松ホトニクス製10362−33−050)からなる半導体受光素子の入対面に光学的に接合し、放射線検出器を構成した。なお、上述の実施例16〜20および比較例4の各種特性を図11に示す。   Next, one surface not covered with the reflecting member is optically bonded to the entrance surface of the semiconductor light receiving element made of MPPC (manufactured by Hamamatsu Photonics, 10362-33-050), which is a set of Geiger mode APDs, and a radiation detector is attached. Configured. In addition, the various characteristics of above-mentioned Examples 16-20 and the comparative example 4 are shown in FIG.

図11に実施例16〜20の放射線検出器、および、各光波長変換層を形成しなかった場合の標準の放射線検出器の発光量を示す。実施例16〜20の放射線検出器において標準の放射線検出器よりも発光量が飛躍的に増加した。   FIG. 11 shows the light emission amounts of the radiation detectors of Examples 16 to 20 and the standard radiation detector when each light wavelength conversion layer is not formed. In the radiation detectors of Examples 16 to 20, the amount of luminescence increased dramatically compared to the standard radiation detector.

特に、屈折率が1.62未満の第二光波長変換層を形成した五面を反射部材で覆い、屈折率が1.62以上の第一光波長変換層を形成した一面をMPPCの入射面に光学的に接合した実施例16の場合に発光量が最大となった。   In particular, the five surfaces on which the second light wavelength conversion layer having a refractive index of less than 1.62 is formed are covered with a reflecting member, and the one surface on which the first light wavelength conversion layer having a refractive index of 1.62 or more is formed is incident on the MPPC. In the case of Example 16 optically bonded to the substrate, the light emission amount was maximized.

1 放射線検出器
2 シンチレータ結晶
3 第二光波長変換層
4 第一光波長変換層
5 光検出器
6 シンチレーション光
7 放射線源
8 放射線
9 反射部材
DESCRIPTION OF SYMBOLS 1 Radiation detector 2 Scintillator crystal 3 2nd light wavelength conversion layer 4 1st light wavelength conversion layer 5 Photodetector 6 Scintillation light 7 Radiation source 8 Radiation 9 Reflective member

Claims (7)

放射線の入射を検出する放射線検出器であって、
前記放射線の入射により内部でシンチレーション光を発生する屈折率がn1(n1は特定の実数)以上のシンチレータ結晶と、
前記シンチレータ結晶に対向する位置に配置されていて入射する前記シンチレーション光を電気信号に変換する光検出器と、
前記シンチレータ結晶と前記光検出器との間隙に充填されていて屈折率がn2(n2は前記n1未満の実数)以上の第一光波長変換層と、
前記光検出器と対向している前記シンチレータ結晶の一面以外の表面と対向する位置に配置されていて入射する前記シンチレーション光を反射する反射部材と、
前記シンチレータ結晶と前記反射部材との間隙に充填されていて屈折率が前記n2未満の第二光波長変換層と、
を有する放射線検出器。
A radiation detector for detecting the incidence of radiation,
A scintillator crystal having a refractive index n1 (n1 is a specific real number) or more that generates scintillation light inside by the incidence of the radiation;
A photodetector that is disposed at a position facing the scintillator crystal and converts the incident scintillation light into an electrical signal;
A first light wavelength conversion layer filled in a gap between the scintillator crystal and the photodetector and having a refractive index of n2 (n2 is a real number less than n1) or more;
A reflecting member that is disposed at a position facing a surface other than one surface of the scintillator crystal facing the photodetector and reflects the incident scintillation light;
A second light wavelength conversion layer filled in a gap between the scintillator crystal and the reflecting member and having a refractive index of less than the n2,
A radiation detector.
前記シンチレータ結晶は、前記シンチレーション光のピーク波長が400nm以下で前記屈折率n1が1.8以上であり、
前記第一光波長変換層は、前記屈折率n2が1.62以上であり、
前記第二光波長変換層は、前記屈折率n2が1.62未満である請求項1に記載の放射線検出器。
The scintillator crystal has a peak wavelength of the scintillation light of 400 nm or less and a refractive index n1 of 1.8 or more.
The first light wavelength conversion layer has the refractive index n2 of 1.62 or more,
The radiation detector according to claim 1, wherein the second light wavelength conversion layer has the refractive index n2 of less than 1.62.
前記第二光波長変換層は、蛍光体が均一に分散されている透光性の樹脂からなる請求項2に記載の放射線検出器。   The radiation detector according to claim 2, wherein the second light wavelength conversion layer is made of a translucent resin in which phosphors are uniformly dispersed. 前記第一光波長変換層は、蛍光体が均一に分散されている透光性の多孔質ガラスからなる請求項1ないし3の何れか一項に記載の放射線検出器。   The radiation detector according to any one of claims 1 to 3, wherein the first light wavelength conversion layer is made of translucent porous glass in which phosphors are uniformly dispersed. 前記蛍光体は、クマリン系化合物、オキサゾール系化合物、フェニル系化合物、オキサジアゾール系化合物、ローダミン系化合物、スルフォローダミン系化合物、ジシアノメチル系化合物(DCM)、スチリル系化合物、および、パイロメタン系化合物、から選択される少なくとも一種の有機化合物からなる請求項3または4に記載の放射線検出器。   The phosphor includes a coumarin compound, an oxazole compound, a phenyl compound, an oxadiazole compound, a rhodamine compound, a sulfododamine compound, a dicyanomethyl compound (DCM), a styryl compound, and a pyromethane compound. The radiation detector according to claim 3, comprising at least one organic compound selected from the group consisting of: 前記シンチレータ結晶は、プラセオジム添加ルテチウムアルミネートからなる請求項1ないし5の何れか一項に記載の放射線検出器。   The radiation detector according to any one of claims 1 to 5, wherein the scintillator crystal is composed of praseodymium-added lutetium aluminate. 前記光検出器は、ノーマルモードAPDまたはガイガーモードAPDピクセルの集合からなる半導体受光素子からなることを特徴とする請求項1ないし6の何れか一項に記載の放射線検出器。   The radiation detector according to any one of claims 1 to 6, wherein the photodetector is a semiconductor light receiving element including a set of normal mode APD or Geiger mode APD pixels.
JP2009290287A 2008-12-26 2009-12-22 Radiation detector Pending JP2010169674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009290287A JP2010169674A (en) 2008-12-26 2009-12-22 Radiation detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008333650 2008-12-26
JP2009290287A JP2010169674A (en) 2008-12-26 2009-12-22 Radiation detector

Publications (1)

Publication Number Publication Date
JP2010169674A true JP2010169674A (en) 2010-08-05

Family

ID=42701936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009290287A Pending JP2010169674A (en) 2008-12-26 2009-12-22 Radiation detector

Country Status (1)

Country Link
JP (1) JP2010169674A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229940A (en) * 2011-04-25 2012-11-22 Fujifilm Corp Radiographic device, radiographic system and radiographic method
JP2013113685A (en) * 2011-11-28 2013-06-10 Canon Inc Radiation detection instrument and radiation imaging system
JP5415637B1 (en) * 2013-02-28 2014-02-12 上島 良司 Radiation detector
JP2015075376A (en) * 2013-10-08 2015-04-20 株式会社東芝 Radiation detector and radiation examination system
CN108152847A (en) * 2018-01-31 2018-06-12 东莞南方医大松山湖科技园有限公司 Scintillation crystal, crystal module, detector and Positron emission tomography equipment

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129304A (en) * 1986-11-19 1988-06-01 Kuraray Co Ltd Scintillator fiber having high light emission efficiency
JPH04287580A (en) * 1991-03-18 1992-10-13 Hitachi Ltd X-ray image pickup method and device, and fluorescent plate and cooling type ccd camera
JPH06130153A (en) * 1992-10-21 1994-05-13 Fuji Electric Co Ltd Scintillation detector for monitoring radioactive gas
JPH0735866A (en) * 1993-07-23 1995-02-07 Power Reactor & Nuclear Fuel Dev Corp Radioactive gas monitor
JPH0894758A (en) * 1994-09-26 1996-04-12 Mitsubishi Electric Corp Distribution-type detector using scintillation fiber
JPH08508567A (en) * 1993-03-26 1996-09-10 ボード・オヴ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム Position-sensitive radiation detector
JP2002082171A (en) * 2000-09-11 2002-03-22 Toshiba Corp Radiation detector and x-ray diagnostic equipment using the same
JP2004317300A (en) * 2003-04-16 2004-11-11 Toshiba Corp Plane radiation detector and its manufacturing method
JP2006016251A (en) * 2004-07-01 2006-01-19 Hokushin Ind Inc METHOD FOR MANUFACTURING Lu3Al5O12 CRYSTAL MATERIAL FOR DETECTING RADIATION
JP2006526791A (en) * 2003-06-05 2006-11-24 サーモ・ニトン・アナライザーズ・エルエルシー Neutron and gamma ray monitors
JP2008026013A (en) * 2006-07-18 2008-02-07 Toshiba Corp Scintillator panel and radiation detector
WO2008079445A2 (en) * 2006-07-28 2008-07-03 Koninklijke Philips Electronics, N.V. Time of flight measurements in positron emission tomography
WO2008084347A2 (en) * 2007-01-05 2008-07-17 Koninklijke Philips Electronics, N.V. Fast radiation detectors
JP2008533484A (en) * 2005-03-16 2008-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray detector having in-pixel processing circuit
WO2008107808A2 (en) * 2007-03-05 2008-09-12 Koninklijke Philips Electronics, N.V. Improved light detection in a pixelated pet detector

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129304A (en) * 1986-11-19 1988-06-01 Kuraray Co Ltd Scintillator fiber having high light emission efficiency
JPH04287580A (en) * 1991-03-18 1992-10-13 Hitachi Ltd X-ray image pickup method and device, and fluorescent plate and cooling type ccd camera
JPH06130153A (en) * 1992-10-21 1994-05-13 Fuji Electric Co Ltd Scintillation detector for monitoring radioactive gas
JPH08508567A (en) * 1993-03-26 1996-09-10 ボード・オヴ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム Position-sensitive radiation detector
JPH0735866A (en) * 1993-07-23 1995-02-07 Power Reactor & Nuclear Fuel Dev Corp Radioactive gas monitor
JPH0894758A (en) * 1994-09-26 1996-04-12 Mitsubishi Electric Corp Distribution-type detector using scintillation fiber
JP2002082171A (en) * 2000-09-11 2002-03-22 Toshiba Corp Radiation detector and x-ray diagnostic equipment using the same
JP2004317300A (en) * 2003-04-16 2004-11-11 Toshiba Corp Plane radiation detector and its manufacturing method
JP2006526791A (en) * 2003-06-05 2006-11-24 サーモ・ニトン・アナライザーズ・エルエルシー Neutron and gamma ray monitors
JP2006016251A (en) * 2004-07-01 2006-01-19 Hokushin Ind Inc METHOD FOR MANUFACTURING Lu3Al5O12 CRYSTAL MATERIAL FOR DETECTING RADIATION
JP2008533484A (en) * 2005-03-16 2008-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray detector having in-pixel processing circuit
JP2008026013A (en) * 2006-07-18 2008-02-07 Toshiba Corp Scintillator panel and radiation detector
WO2008079445A2 (en) * 2006-07-28 2008-07-03 Koninklijke Philips Electronics, N.V. Time of flight measurements in positron emission tomography
WO2008084347A2 (en) * 2007-01-05 2008-07-17 Koninklijke Philips Electronics, N.V. Fast radiation detectors
WO2008107808A2 (en) * 2007-03-05 2008-09-12 Koninklijke Philips Electronics, N.V. Improved light detection in a pixelated pet detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229940A (en) * 2011-04-25 2012-11-22 Fujifilm Corp Radiographic device, radiographic system and radiographic method
JP2013113685A (en) * 2011-11-28 2013-06-10 Canon Inc Radiation detection instrument and radiation imaging system
JP5415637B1 (en) * 2013-02-28 2014-02-12 上島 良司 Radiation detector
JP2015075376A (en) * 2013-10-08 2015-04-20 株式会社東芝 Radiation detector and radiation examination system
CN108152847A (en) * 2018-01-31 2018-06-12 东莞南方医大松山湖科技园有限公司 Scintillation crystal, crystal module, detector and Positron emission tomography equipment
CN108152847B (en) * 2018-01-31 2024-08-06 东莞南方医大松山湖科技园有限公司 Scintillation crystal, crystal module, detector and positron emission imaging device

Similar Documents

Publication Publication Date Title
RU2476906C2 (en) Light reflector and collimator assembly for improved light accumulation in scintillation detectors
CN105676258B (en) The system and method for detecting target emanation
US20100276602A1 (en) Radiation detector with optical waveguide and neutron scintillating material
JP2008026013A (en) Scintillator panel and radiation detector
JP6762949B2 (en) Scintillator array for neutron detection and neutron detection method
CN1892252A (en) Gamma and neutron radiation detector
CN107045138B (en) Back scattering detection module
US9995841B2 (en) Compact scintillation detector
WO2006097882A2 (en) X-ray detector with in-pixel processing circuits
JP2010169674A (en) Radiation detector
CN113167916A (en) Radiation detection device with reflector
Kapłon Technical attenuation length measurement of plastic scintillator strips for the total-body J-PET scanner
JP5428837B2 (en) Radiation detector
US8536532B1 (en) Upconverting nanoparticles for optimizing scintillator based detection systems
RU2300782C2 (en) Scintillation-based neutron detector
US20190243007A1 (en) Radiation Detectors
US10234571B1 (en) Radiation detector
CN116324514A (en) Plastic scintillation optical fiber and manufacturing method thereof
JP2010096648A (en) Radiation-into-light transducing element, and radiation detector
JP6862427B2 (en) Scintillator array
WO2007106333A2 (en) Scintillator with improved light collection
US20180321418A1 (en) Article including a body including a fluorescent material and a wavelength shifting fiber, a radiation detector including the article, and a method of using the same
EP4215949A1 (en) Plastic scintillation fiber and method for manufacturing same
WO2003023338A1 (en) Infrared-visible conversion member and infrared detector
CN111081728B (en) X-ray flat panel detector and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131015

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507