JP2006016251A - METHOD FOR MANUFACTURING Lu3Al5O12 CRYSTAL MATERIAL FOR DETECTING RADIATION - Google Patents

METHOD FOR MANUFACTURING Lu3Al5O12 CRYSTAL MATERIAL FOR DETECTING RADIATION Download PDF

Info

Publication number
JP2006016251A
JP2006016251A JP2004195633A JP2004195633A JP2006016251A JP 2006016251 A JP2006016251 A JP 2006016251A JP 2004195633 A JP2004195633 A JP 2004195633A JP 2004195633 A JP2004195633 A JP 2004195633A JP 2006016251 A JP2006016251 A JP 2006016251A
Authority
JP
Japan
Prior art keywords
crystal
garnet
crystal material
radiation
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004195633A
Other languages
Japanese (ja)
Other versions
JP4702767B2 (en
Inventor
Noboru Ichinose
昇 一ノ瀬
Seishi Shimamura
清史 島村
Satoshi Nakakita
里志 中北
Yasuhiro Isaki
靖浩 伊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokushin Industries Corp
Hokushin Industry Co Ltd
Original Assignee
Hokushin Industries Corp
Hokushin Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokushin Industries Corp, Hokushin Industry Co Ltd filed Critical Hokushin Industries Corp
Priority to JP2004195633A priority Critical patent/JP4702767B2/en
Publication of JP2006016251A publication Critical patent/JP2006016251A/en
Application granted granted Critical
Publication of JP4702767B2 publication Critical patent/JP4702767B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an Lu<SB>3</SB>Al<SB>5</SB>O<SB>12</SB>crystal material for detecting radiation having high fluorescence intensity. <P>SOLUTION: The Lu<SB>3</SB>Al<SB>5</SB>O<SB>12</SB>crystal is manufactured by using a garnet seed crystal which is expressed by general formula: A<SB>3</SB>B<SB>2</SB>D<SB>3</SB>O<SB>12</SB>(wherein A is one kind of rare earth elements; B is one kind selected from rare earth elements, Al and Ga; and D is Al or Ga) and which is different from the Lu<SB>3</SB>Al<SB>5</SB>O<SB>12</SB>crystal but has the same melting point as that of the Lu<SB>3</SB>Al<SB>5</SB>O<SB>12</SB>crystal or a melting point lower by ≤150°C than that of the Lu<SB>3</SB>Al<SB>5</SB>O<SB>12</SB>crystal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、放射線検出用LuAl12結晶材料の製造方法に関し、特に、主として、X線断層撮影装置(X−ray Computed Tomography:X線CT)、陽電子放射断層撮影装置(Positron Emission computed Tomography:PET)、タイム・オブ・フライト陽電子放射断層撮影装置(Time−Of−Flight Positron Emission computed Tomography:TOF−PET)などの医療診断装置に用いられる放射線検出用LuAl12結晶材料の製造方法に関する。 The present invention relates to a method for producing a radiation-detecting Lu 3 Al 5 O 12 crystal material, and in particular, mainly an X-ray computed tomography (X-ray CT), a positron emission computed tomography (Positron Emission computed). Of Lu 3 Al 5 O 12 crystal material for radiation detection used in medical diagnostic devices such as Tomography (PET), Time-of-Flight Positron Emission Tomography (TOF-PET) It relates to a manufacturing method.

従来、医療診断や工業用非破壊検査などに放射線が利用され、例えば、医療装置として、X線CT、PETなどが実用化されている。このような放射線を利用した装置には、ガンマ線やX線などの放射線を検出するための放射線検出器、例えば、シンチレータが使用されている。   Conventionally, radiation has been used for medical diagnosis, industrial nondestructive inspection, and the like. For example, X-ray CT and PET have been put to practical use as medical devices. In such an apparatus using radiation, a radiation detector for detecting radiation such as gamma rays and X-rays, for example, a scintillator is used.

シンチレータは、ガンマ線やX線などの放射線の刺激により可視光線又は可視光線に近い波長の電磁波を放射する物質であり、密度が高いこと、蛍光の減衰時間が短いこと、耐放射線性に優れていること、及び加工性が良いことが要求される。   A scintillator is a substance that emits visible light or electromagnetic waves with a wavelength close to visible light upon stimulation of radiation such as gamma rays and X-rays, and has high density, short fluorescence decay time, and excellent radiation resistance. And good workability is required.

このようなPET用のシンチレータ材料としては、従来、BiGe12単結晶(BGO)が使用されていたが、高性能な特性を求めてセリウムをドープしたGdSiO(Ce:GSO)単結晶が開発され、実用化された(例えば、特許文献1参照)。 Conventionally, Bi 4 Ge 3 O 12 single crystal (BGO) has been used as such a scintillator material for PET, but cerium-doped Gd 2 SiO 5 (Ce: GSO) is required for high performance characteristics. ) A single crystal was developed and put into practical use (for example, see Patent Document 1).

また、その後、さらに高性能な特性を求めて種々の検討が行われ、セリウムをドープしたルテチウムオキシオルトシリケート結晶(Ce:LuSiO(Ce:LSO))が開発され、現在最も高性能なものとして実用化されている(例えば、特許文献2、3、4等参照)。 After that, various studies were conducted to obtain higher performance characteristics, and a cerium-doped lutetium oxyorthosilicate crystal (Ce: Lu 2 SiO 5 (Ce: LSO)) was developed, which is currently the most powerful. It has been put into practical use (see, for example, Patent Documents 2, 3, 4, etc.).

しかし、このような希土類オルトシリケート単結晶は、劈開性が強く、育成中に割れたり、カット時にクラックが入りやすく加工時の制御が非常に難しい。   However, such rare earth orthosilicate single crystals have strong cleaving properties and are easily cracked during growth or cracked during cutting, and are difficult to control during processing.

このような希土類オルトシリケート単結晶以外に、LuAl12やYAl12のようなガーネット結晶も放射線検出用結晶(例えば、特許文献5参照)として発光量及び蛍光寿命などが多く検討されているが、現在主流となっているBGO、GSO、LSOと比較すると、発光量及び蛍光寿命などの特性が大きく劣るため実用化されていないのが現状である(例えば、非特許文献1、2、3等参照)。 In addition to such rare earth orthosilicate single crystals, garnet crystals such as Lu 3 Al 5 O 12 and Y 3 Al 5 O 12 are also radiation detection crystals (see, for example, Patent Document 5) that have a light emission amount and a fluorescence lifetime. Although many studies have been made, compared to BGO, GSO, and LSO, which are currently mainstream, characteristics such as light emission amount and fluorescence lifetime are greatly inferior, so that they are not put into practical use (for example, non-patent documents). 1, 2, 3 etc.).

このような単結晶以外に、各種のセラミックス材料がシンチレータとして検討され、BaFCl:Eu、LaOBr:Tb、CsI:Tl、CaWO、CdWO(CWO)などの多結晶体(セラミックス)(例えば、特許文献6参照)、(Gd,Y):Euのような立方晶構造を有する希土類酸化物の多結晶体(セラミックス)(例えば、特許文献7参照)、GdS:Prのような希土類酸硫化物の多結晶体(セラミックス)(例えば、特許文献8参照)などが知られている。 In addition to such single crystals, various ceramic materials have been studied as scintillators, and polycrystalline bodies (ceramics) such as BaFCl: Eu, LaOBr: Tb, CsI: Tl, CaWO 4 , CdWO 4 (CWO) (for example, patents) Reference 6), polycrystals (ceramics) of rare earth oxides having a cubic structure such as (Gd, Y) 2 O 3 : Eu (see, for example, Patent Document 7), Gd 2 O 2 S: Pr Such rare earth oxysulfide polycrystals (ceramics) (see, for example, Patent Document 8) are known.

このようなセラミックスシンチレータ材料は、粉末を焼結して製造されるため、透明性(透光性)の改良、焼結性の改良などに関して種々の提案がなされている。例えば、GdS:Prなどの蛍光体セラミックス中の不純物量、特にリン酸塩(PO)の含有量を100ppm以下とすることによって、シンチレータの光出力を向上させるという提案がある(例えば、特許文献9参照)。また、希土類酸硫化物粉末にLiF、LiGeF、NaBFのようなフッ化物を焼結助剤として添加し、これらの混合粉末を熱間静水圧プレス(HIP)で焼結することによって、高密度化させた蛍光体セラミックスが提案されている(例えば、特許文献10参照)。 Since such a ceramic scintillator material is manufactured by sintering powder, various proposals have been made regarding improvement of transparency (translucency), improvement of sintering property, and the like. For example, there is a proposal to improve the light output of the scintillator by setting the amount of impurities in phosphor ceramics such as Gd 2 O 2 S: Pr, particularly the content of phosphate (PO 4 ) to 100 ppm or less ( For example, see Patent Document 9). Also, fluorides such as LiF, Li 2 GeF 6 , and NaBF 4 are added to the rare earth oxysulfide powder as a sintering aid, and these mixed powders are sintered by hot isostatic pressing (HIP). A phosphor ceramic having a high density has been proposed (see, for example, Patent Document 10).

特公昭62−8472号公報(特許請求の範囲)Japanese Examined Patent Publication No. 62-8472 (Claims) 米国特許第4958080号明細書(I CLAIM)US Pat. No. 4,958,080 (I CLAIM) 米国特許第5025151号明細書(WHAT IS CLAIMED IS)US Pat. No. 5,025,151 (WHAT IS CLAIMED IS) 特開平9−118593号公報(特許請求の範囲)JP-A-9-118593 (Claims) U.S.P.5,057,692(特公平6−7165)U. S. P. 5,057,692 (Japanese Patent Publication No. 6-7165) 特公昭59−45022号公報(特許請求の範囲)Japanese Patent Publication No.59-45022 (Claims) 特開昭59−27283号公報(特許請求の範囲)JP 59-27283 A (Claims) 特開昭58−204088号公報(特許請求の範囲)JP 58-204088 A (Claims) 特開平7−188655号公報(特許請求の範囲)JP-A-7-188655 (Claims) 特開平5−016756号公報(特許請求の範囲)JP-A-5-016756 (Claims) M.Moszynski,IEEE Trans.,on Nucl.,Sci.,44(1997)1052M.M. Moszynski, IEEE Trans. , On Nucl. , Sci. , 44 (1997) 1052 A.Lempicki,IEEE Trans.,on Nucl.,Sci.,42(1995)280A. Lempicki, IEEE Trans. , On Nucl. , Sci. , 42 (1995) 280 C.W.E.van Ejik,Nucl.,Instr. and Meth.,A460(2001)1.C. W. E. van Eik, Nucl. , Instr. and Meth. , A460 (2001) 1.

本発明は、このような事情に鑑み、高い蛍光強度を有する放射線検出用LuAl12結晶材料の製造方法を提供することを課題とする。 In view of such circumstances, and an object thereof is to provide a method of manufacturing the radiation detection Lu 3 Al 5 O 12 crystal material having a high fluorescence intensity.

上記課題を達成する本発明の第1の態様は、LuAl12結晶材料の製造方法において、一般式A12(Aは希土類元素のいずれか一種であり、Bは希土類元素、Al又はGaのいずか一種であり、DはAl又はGaである)で表され且つ前記LuAl12結晶とは異なるが融点が当該LuAl12結晶と同一又はそれよりも150℃以内の範囲で低い融点を有するガーネット種結晶を用いて前記LuAl12結晶を作製することを特徴とする放射線検出用LuAl12結晶材料の製造方法にある。 According to a first aspect of the present invention for achieving the above object, in the method for producing a Lu 3 Al 5 O 12 crystal material, the general formula A 3 B 2 D 3 O 12 (A is any one of rare earth elements, B rare earth element is one type or Al or Ga noise, D is a different but the melting point the Lu 3 Al 5 O 12 crystals and represented and the Lu 3 Al 5 O 12 crystal with a a) Al or Ga Production of the Lu 3 Al 5 O 12 crystal material for radiation detection, characterized in that the Lu 3 Al 5 O 12 crystal is produced using a garnet seed crystal having a melting point that is the same or lower than 150 ° C. Is in the way.

本発明の第2の態様は、第1の態様において、請求項1において、前記ガーネット種結晶が、ErAl12、TmAl12、HoAl12、DyAl12、又はYAl12であることを特徴とする放射線検出用LuAl12結晶材料の製造方法にある。 According to a second aspect of the present invention, in the first aspect, in the first aspect, the garnet seed crystal is Er 3 Al 5 O 12 , Tm 3 Al 5 O 12 , Ho 3 Al 5 O 12 , Dy 3 Al. 5 O 12, or the method of manufacturing the radiation detection Lu 3 Al 5 O 12 crystalline material, characterized in that Y is 3 Al 5 O 12.

本発明の第3の態様は、第1又は2の態様において、前記LuAl12結晶を構成するLuの一部が、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tmのうち少なくとも一種以上の元素Zによって置換され、(ZLu1−xAl12(0<x<0.5)で表されるガーネット系結晶を作製することを特徴とする放射線検出用LuAl12結晶材料の製造方法にある。 According to a third aspect of the present invention, in the first or second aspect, a part of Lu constituting the Lu 3 Al 5 O 12 crystal is Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Garnet substituted with at least one element Z of Gd, Tb, Dy, Ho, Er, and Tm and represented by (Z x Lu 1-x ) 3 Al 5 O 12 (0 <x <0.5) The present invention resides in a method for producing a radiation-detecting Lu 3 Al 5 O 12 crystal material characterized by producing a system crystal.

本発明で作製される放射線検出用LuAl12結晶材料は、ガーネット構造を有するが、Luカチオンは酸素によって八配位、Alカチオンは酸素によって六面体および四面体配位され、その結晶構造が8つの化学式単位を含む単位格子当たり160個のイオンを持つ立方晶系の構造を有するのが好ましい。なお、本発明で作製される放射線検出用LuAl12結晶材料は、結晶が透明でかつ高い蛍光度を有するのであれば、セラミック、多結晶、単結晶などの結晶状態を問わないが、単結晶が好ましいことはいうまでもない。 The Lu 3 Al 5 O 12 crystal material for radiation detection produced in the present invention has a garnet structure, but the Lu cation is octacoordinated by oxygen, and the Al cation is hexahedrally and tetrahedrally coordinated by oxygen. Preferably has a cubic structure with 160 ions per unit cell containing 8 chemical formula units. Note that the radiation-detecting Lu 3 Al 5 O 12 crystal material produced in the present invention may be in any crystalline state such as ceramic, polycrystal, and single crystal as long as the crystal is transparent and has high fluorescence. Needless to say, a single crystal is preferable.

一方、このようなLuAl12結晶が放射線を吸収した際に発生する蛍光の強度を増大させ、シンチレータとしての特性を向上させるため、又は蛍光ピークをシフトさせるなどのために、必要に応じてLuAl12結晶を構成するLuの一部を他の元素と置換してもよい。このようにLuと置換できる元素は、蛍光の波長に吸収が存在しないものを用いるのが好ましい。このようなLuAl12結晶を構成するLuと置換できる元素としては、例えば、LuAl12結晶を構成するLuとのモル比で0.01〜10モル%置換することができる。なお、このようにLuAl12結晶を構成するLuの一部を他の元素と置換すると、蛍光の強度が上昇するが、発光波長や蛍光寿命が変化する場合があるので、所望の特性に合わせて適宜選択する必要がある。 On the other hand, it is necessary to increase the intensity of fluorescence generated when such a Lu 3 Al 5 O 12 crystal absorbs radiation, improve the characteristics as a scintillator, or shift the fluorescence peak. Accordingly, a part of Lu constituting the Lu 3 Al 5 O 12 crystal may be replaced with another element. As such an element that can be substituted for Lu, it is preferable to use an element having no absorption at the fluorescence wavelength. As an element that can be substituted for Lu constituting such a Lu 3 Al 5 O 12 crystal, for example, 0.01 to 10 mol% may be substituted at a molar ratio with Lu constituting the Lu 3 Al 5 O 12 crystal. it can. If a part of Lu constituting the Lu 3 Al 5 O 12 crystal is replaced with another element in this manner, the intensity of fluorescence increases, but the emission wavelength and fluorescence lifetime may change. It is necessary to select appropriately according to the characteristics.

本発明に用いる、LuAl12結晶を構成するLuの一部と置換する他の元素としては、セリウムCe、プラセオジムPr、サマリウムSm、ユウロピウムEu、テルビウムTb、ジスプロシウムDy、ホルミウムHo、エルビウムEr、ツリウムTm、イッテルビウムYbなどの希土類元素が挙げられるが、特にCeが好ましい。また、ガンマ線を照射したときに発光する光の波長をシフトさせるために、LuAl12結晶を構成するLuの一部をガドリウムGd、イットリウムY、テルビウムTb、ジスプロシウムDy、ホルミウムHo、エルビウムEr、ツリウムTm、イッテルビウムYbなどで置換できるが、特にGdが好ましい。 Other elements used in the present invention to replace part of Lu constituting the Lu 3 Al 5 O 12 crystal include cerium Ce, praseodymium Pr, samarium Sm, europium Eu, terbium Tb, dysprosium Dy, holmium Ho, and erbium. Examples include rare earth elements such as Er, thulium Tm, and ytterbium Yb. Ce is particularly preferable. Further, in order to shift the wavelength of light emitted when irradiated with gamma rays, a part of Lu composing the Lu 3 Al 5 O 12 crystal is replaced with gadolinium Gd, yttrium Y, terbium Tb, dysprosium Dy, holmium Ho, erbium. Although it can be substituted with Er, thulium Tm, ytterbium Yb or the like, Gd is particularly preferable.

本発明により製造される放射線検出用LuAl12結晶材料は、PET又はTOF−PETなどの検出器のシンチレータとして使用するので、高品質、かつ均質な結晶を得る必要がある。したがって、本発明に用いる結晶育成方法としては、ベルヌーイ法、結晶引上げ法(CZ法)、ブリッジマン法、熱交換法、カイロポーラス法、又は帯域溶融法(FZ法)などが挙げられるが、量産性の面から、ベルヌーイ法およびCZ法が好ましい。また、より結晶の品質を向上させる結晶育成方法としてはFZ法が好ましい。以下では、CZ法又はFZ法を用いた、本発明の放射線検出用LuAl12結晶材料の製造方法を説明する。 Since the Lu 3 Al 5 O 12 crystal material for radiation detection produced according to the present invention is used as a scintillator of a detector such as PET or TOF-PET, it is necessary to obtain high quality and homogeneous crystals. Therefore, examples of the crystal growth method used in the present invention include Bernoulli method, crystal pulling method (CZ method), Bridgman method, heat exchange method, cairoporous method, zone melting method (FZ method), etc. From the viewpoint of properties, the Bernoulli method and the CZ method are preferred. Further, the FZ method is preferable as a crystal growth method for further improving the quality of the crystal. Hereinafter, using the CZ method or FZ method, a method for manufacturing the radiation detection Lu 3 Al 5 O 12 crystalline material of the present invention.

結晶引上げ法では、酸化ガス、不活性ガスあるいは還元ガス雰囲気中でLuAl12結晶の材料を室温からその材料の融点以上の温度まで加熱して融液とし、その融液にガーネット種結晶を接触させ、そのガーネット種結晶を所定の回転数と速度で引上げることによって、LuAl12結晶を作製するようになっている。 In the crystal pulling method, a Lu 3 Al 5 O 12 crystal material is heated from room temperature to a temperature equal to or higher than the melting point of the material in an oxidizing gas, inert gas or reducing gas atmosphere, and a garnet species is added to the melt. A Lu 3 Al 5 O 12 crystal is produced by bringing the garnet seed crystal into contact with the crystal and pulling the garnet seed crystal at a predetermined rotational speed and speed.

一方、帯域溶融法では、LuAl12結晶の材料を圧縮成形した後、酸化ガス、不活性ガスあるいは還元ガス雰囲気中でその材料を室温からその材料の融点以上の温度まで加熱して融液とし、その融液にガーネット種結晶を接触させ、そのガーネット種結晶を所定の回転数と速度で移動することによって、LuAl12結晶を作製するようになっている。 On the other hand, in the zone melting method, after a Lu 3 Al 5 O 12 crystal material is compression-molded, the material is heated from room temperature to a temperature equal to or higher than the melting point of the material in an oxidizing gas, inert gas or reducing gas atmosphere. A Lu 3 Al 5 O 12 crystal is produced by using a melt, bringing the garnet seed crystal into contact with the melt, and moving the garnet seed crystal at a predetermined rotational speed and speed.

これらの方法に用いられるガーネット種結晶は、一般式A12で表されるガーネット構造を有するが、前述した本発明により製造される放射線検出用LuAl12結晶材料と同様の立方晶系の構造を有するのが好ましい。 The garnet seed crystal used in these methods has a garnet structure represented by the general formula A 3 B 2 D 3 O 12 , but the Lu 3 Al 5 O 12 crystal material for radiation detection manufactured according to the present invention described above. It is preferable to have the same cubic system structure.

本発明のガーネット種結晶を構成する元素Aとしては、希土類元素が好ましく、元素Bとしては、希土類元素、Al又はGaが好ましく、元素Dとしては、Al又はGaが好ましいが、本発明に用いるガーネット種結晶としては、特にErAl12、TmAl12、HoAl12、DyAl12、又はYAl12が好ましい。 The element A constituting the garnet seed crystal of the present invention is preferably a rare earth element, the element B is preferably a rare earth element, Al or Ga, and the element D is preferably Al or Ga, but the garnet used in the present invention. As the seed crystal, Er 3 Al 5 O 12 , Tm 3 Al 5 O 12 , Ho 3 Al 5 O 12 , Dy 3 Al 5 O 12 , or Y 3 Al 5 O 12 is particularly preferable.

さらに、ガーネット種結晶の融点がLuAl12結晶の材料の融点よりも低い場合(特に、ガーネット種結晶の融点が、その材料の融点から0〜150℃の範囲で低い場合が好ましい)であっても、その材料の融液にそのガーネット種結晶を接触させた後のLuAl12結晶の育成速度を制御することによって、そのガーネット種結晶を本発明に用いることができる。 Furthermore, when the melting point of the garnet seed crystal is lower than the melting point of the material of the Lu 3 Al 5 O 12 crystal (particularly, the melting point of the garnet seed crystal is preferably in the range of 0 to 150 ° C. from the melting point of the material). Even so, the garnet seed crystal can be used in the present invention by controlling the growth rate of the Lu 3 Al 5 O 12 crystal after the garnet seed crystal is brought into contact with the melt of the material.

本発明により作製される放射線検出用LuAl12結晶材料は、蛍光強度が高いため、その放射線検出用LuAl12結晶材料を用いた放射線検出器は高い解像力を有するという効果を奏する。 Since the Lu 3 Al 5 O 12 crystal material for radiation detection produced according to the present invention has high fluorescence intensity, the radiation detector using the Lu 3 Al 5 O 12 crystal material for radiation detection has a high resolving power. Play.

以下に、本発明の放射線検出用LuAl12結晶材料の製造方法について具体的に説明する。なお、本実施形態の説明は例示であり、本発明は以下の説明に限定されない。 Hereinafter, a manufacturing method of a radiation detecting Lu 3 Al 5 O 12 crystalline material of the present invention will be described in detail. The description of the present embodiment is an exemplification, and the present invention is not limited to the following description.

CZ法を用いた本発明の放射線検出用LuAl12結晶材料の製造方法は、以下のようなものである。粉末又は多結晶の希土類酸化物原料、すなわち、粉末のLu、Alなどのマトリックス用原料に、必要に応じてCeOなどを坩堝内に充填し、空気あるいは酸素などの酸化ガス、N、He、Ne、Arなどの不活性ガスあるいはNとHとの合計を基準としてHが1〜20モル%占める還元ガス雰囲気中でそれらの混合物を室温から2050℃程度、すなわち、それらの混合物が融解する温度まで加熱する。次に、それらの混合物が融解して融液となったのを確認した後、その融液の温度をその混合物の融点近辺に保ちながら、その融液にYAl12やTmAl12などのガーネット種結晶を接触させ、そのガーネット種結晶を5〜10rpmで回転させながら0.1〜10mm/hで引上げることによって、結晶中に気泡やスキャッタリングセンターなどのないLuAl12結晶が得られる。 The method for producing the Lu 3 Al 5 O 12 crystal material for radiation detection of the present invention using the CZ method is as follows. Powder or polycrystalline rare earth oxide raw material, that is, powder raw material for matrix such as Lu 2 O 3 , Al 2 O 3, etc., is filled with CeO 2 or the like, if necessary, and oxidized such as air or oxygen Gas, N 2 , He, Ne, Ar or other inert gas, or a mixture of them in a reducing gas atmosphere in which H 2 is 1 to 20 mol% based on the total of N 2 and H 2 , from room temperature to about 2050 ° C. I.e., to a temperature at which the mixture melts. Next, after confirming that the mixture melted into a melt, while maintaining the temperature of the melt near the melting point of the mixture, Y 3 Al 5 O 12 or Tm 3 Al was added to the melt. Lu 3 free from bubbles and scattering centers in the crystal by contacting a garnet seed crystal such as 5 O 12 and pulling the garnet seed crystal at 0.1 to 10 mm / h while rotating at 5 to 10 rpm. Al 5 O 12 crystals are obtained.

同様に、FZ法を用いた本発明の放射線検出用LuAl12結晶材料の製造方法は、以下のようなものである。粉末又は多結晶の希土類酸化物原料、すなわち、粉末のLu、Alなどのマトリックス用原料に、必要に応じてCeOなどを添加し、その混合物をゴムチューブなどに充填した後、静水圧プレスで直径10〜20mm、長さ50〜200mmに圧縮成形した後、所定の温度で焼成する。次に、空気あるいは酸素などの酸化ガス、N、He、Ne、Arなどの不活性ガスあるいはNとHとの合計を基準としてHが1〜20モル%占める還元ガス雰囲気下でその混合物を2050℃程度、すなわち、それらの材料が融解する温度まで加熱して、その混合物が融解して融液となったことを確認した後、その融液の温度をその混合物の融点近辺に保ちながら、その融液にYAl12やTmAl12などのガーネット種結晶を接触させ、そのガーネット種結晶を5〜10rpmで回転させながら0.1〜10mm/hの速度で引下げることによって、結晶中に気泡やスキャッタリングセンターなどのないLuAl12結晶が得られる。 Similarly, the manufacturing method of the radiation detecting Lu 3 Al 5 O 12 crystal material of the present invention using the FZ method is as follows. CeO 2 or the like is added to a powder or polycrystalline rare earth oxide raw material, that is, a powder raw material for a matrix such as Lu 2 O 3 or Al 2 O 3 as necessary, and the mixture is filled into a rubber tube or the like. Then, after compression-molding to a diameter of 10 to 20 mm and a length of 50 to 200 mm by an isostatic press, firing is performed at a predetermined temperature. Next, in an reducing gas atmosphere in which H 2 is 1 to 20 mol% based on an oxidizing gas such as air or oxygen, an inert gas such as N 2 , He, Ne, Ar, or the total of N 2 and H 2 The mixture is heated to about 2050 ° C., that is, the temperature at which the materials melt, and after confirming that the mixture has melted into a melt, the temperature of the melt is brought to the vicinity of the melting point of the mixture. While maintaining, the garnet seed crystal such as Y 3 Al 5 O 12 or Tm 3 Al 5 O 12 is brought into contact with the melt, and the garnet seed crystal is rotated at 5 to 10 rpm, and the speed is 0.1 to 10 mm / h. By pulling down, a Lu 3 Al 5 O 12 crystal free from bubbles and scattering centers in the crystal can be obtained.

このようにして得られるLuAl12結晶は、PETやTOF−PET用のシンチレータとして有用である。 The Lu 3 Al 5 O 12 crystal thus obtained is useful as a scintillator for PET or TOF-PET.

また、このようなLuAl12結晶を所定の寸法に切り出したシンチレータは、放射線、例えばガンマ線を吸収することにより発生する蛍光の波長に合わせた光検出器、例えば、可視光又は紫外線の光電子増倍管などの光検出器と組み合わせることにより、放射線検出器とすることができる。 In addition, a scintillator obtained by cutting such a Lu 3 Al 5 O 12 crystal into a predetermined size is a photodetector that matches the wavelength of fluorescence generated by absorbing radiation, for example, gamma rays, such as visible light or ultraviolet light. A radiation detector can be obtained by combining with a photodetector such as a photomultiplier tube.

(実施例1)CZ法による放射線検出用LuAl12結晶材料の作製
純度99.99%の市販のバルク粉砕原料であるLuとAlとCeOとのモル比率が2.985mol%対5.00mol%対0.03mol%からなる混合物を攪拌混合し、坩堝内に充填した。それをそのまま単結晶作成炉内に置き、Nガスでその炉内の空気を十分に置換した後、12時間かけて2000℃まで加熱した。引き続き、N雰囲気下でその混合物の温度が2050℃になるまで加熱して坩堝内の混合物が融解して融液になったことを確認した後に、その融液にYAGからなるガーネット種結晶(融点1940℃)を接触させ、そのガーネット種結晶を鉛直方向に引上げ速度5〜10mm/hで素早く引上げを開始し、結晶が成長していることを確認した後、引上げ速度1.5mm/h、回転数10rpmで引上げ、結晶を成長・作製した。作製した結晶は、直径30mm、長さ約50mmで、気泡、クラック及びスッキャッタリングセンターなどがなく、黄色透明かつ高品質な、Ceで賦活されたLuAl12(Ce:LuAG)結晶であった。
Example 1 Production of Lu 3 Al 5 O 12 Crystal Material for Radiation Detection by CZ Method Molar ratio of Lu 2 O 3 , Al 2 O 3 and CeO 2 , which is a commercially available bulk pulverized raw material with a purity of 99.99% Of 2.985 mol% vs. 5.00 mol% vs. 0.03 mol% was stirred and mixed and filled into a crucible. It was placed in a single crystal production furnace as it was, and the air in the furnace was sufficiently replaced with N 2 gas, and then heated to 2000 ° C. over 12 hours. Subsequently, after the mixture was heated to 2050 ° C. in an N 2 atmosphere to confirm that the mixture in the crucible melted into a melt, a garnet seed crystal composed of YAG ( A melting point of 1940 ° C.), the garnet seed crystal was quickly pulled up in the vertical direction at a pulling speed of 5 to 10 mm / h, and after confirming that the crystal was growing, a pulling speed of 1.5 mm / h, A crystal was grown and produced by pulling up at a rotation speed of 10 rpm. The produced crystal has a diameter of 30 mm, a length of about 50 mm, has no bubbles, cracks, and a scattering center, and is a yellow transparent, high-quality, Ce-activated Lu 3 Al 5 O 12 (Ce: LuAG) crystal. Met.

(実施例2)FZ法による放射線検出用LuAl12結晶材料の作製
純度99.99%の市販のバルク粉砕原料であるLuとAlとCeOとのモル比率が2.985mol%対5.00mol%対0.03mol%からなる混合物を攪拌混合した。その混合物をゴムチューブに充填した後、静水圧プレスで直径10mm、長さ80mmに圧縮成形した後、大気中1400℃で焼成した。次に、N雰囲気下でその混合物を2050℃まで加熱して、その混合物が融解して融液となったことを確認した後に、その融液にYAGからなるガーネット種結晶(融点1940℃)を接触させ、そのガーネット種結晶を鉛直方向に引下げ速度5〜10mm/hで素早く引下げを開始し、結晶が成長していることを確認した後、引下げ速度1.5mm/h、回転数10rpmで引下げ、結晶を成長・作製した。作製したガーネット結晶は、直径6mm、長さ約40mmで、気泡、クラック及びスッキャッタリングセンター等がなく、黄色透明かつ高品質なCe:LuAG結晶であった。
Example 2 Production of Lu 3 Al 5 O 12 Crystal Material for Radiation Detection by FZ Method A molar ratio of Lu 2 O 3 , Al 2 O 3 and CeO 2 , which is a commercially available bulk pulverized raw material having a purity of 99.99% Was stirred and mixed with a mixture consisting of 2.985 mol% vs. 5.00 mol% vs. 0.03 mol%. The mixture was filled in a rubber tube, compression-molded to a diameter of 10 mm and a length of 80 mm by an isostatic press, and then fired at 1400 ° C. in the atmosphere. Next, the mixture was heated to 2050 ° C. in an N 2 atmosphere, and after confirming that the mixture melted into a melt, a garnet seed crystal composed of YAG (melting point: 1940 ° C.) The garnet seed crystal was quickly pulled down in the vertical direction at a pulling speed of 5 to 10 mm / h. After confirming that the crystal was growing, the pulling speed was 1.5 mm / h and the rotation speed was 10 rpm. Pulled down to grow and produce crystals. The produced garnet crystal was a Ce: LuAG crystal having a diameter of 6 mm and a length of about 40 mm, free of bubbles, cracks, and a scattering center, and having a high quality and transparency.

(X線回折測定)
実施例2で得られたCe:LuAG結晶を粉末にし、X線回折測定を行った。図1及び図2に得られたX線回折スペクトルを示す。ここで、●はJCPDS(Joint Committee on Powder Diffraction Standards)に掲載されているLuAG単結晶のX線回折データを示す。図1及び図2に示すように、得られたCe:LuAG結晶のX線回折データは、CeOに起因するピークはなく、JCPDSに掲載されているLuAG単結晶のX線回折データと一致し、得られたCe:LuAG結晶がCe:LuAG単結晶であることを確認した。
(X-ray diffraction measurement)
The Ce: LuAG crystal obtained in Example 2 was powdered and subjected to X-ray diffraction measurement. 1 and 2 show the X-ray diffraction spectra obtained. Here, ● represents X-ray diffraction data of a LuAG single crystal published in JCPDS (Joint Committee on Powder Diffraction Standards). As shown in FIGS. 1 and 2, the X-ray diffraction data of the obtained Ce: LuAG crystal does not have a peak due to CeO 2 , and agrees with the X-ray diffraction data of the LuAG single crystal published in JCPDS. Thus, it was confirmed that the obtained Ce: LuAG crystal was a Ce: LuAG single crystal.

次に、実施例1及び2で得られたCe:LuAG結晶のガンマ線照射によるシンチレータ特性を測定した。なお、発光量の測定条件としては、線源にCs137を用い、光電子増倍管(浜松ホトニクス社製、R2486)で測定した。得られたシンチレータ特性をそれぞれ表1に、実施例2のCe:LuAG結晶の発光スペクトルを図3に示す。 Next, the scintillator characteristics of the Ce: LuAG crystals obtained in Examples 1 and 2 by gamma ray irradiation were measured. The light emission amount was measured using a photomultiplier tube (R2486, manufactured by Hamamatsu Photonics) using Cs 137 as a radiation source. The obtained scintillator characteristics are shown in Table 1, and the emission spectrum of the Ce: LuAG crystal of Example 2 is shown in FIG.

Figure 2006016251
Figure 2006016251

表1に示すように、実施例1及び2で得られたCe:LuAG結晶の発光量は、それぞれ430ch、442chであった。また、図3に示すように、実施例2で得られたCe:LuAG結晶の発光スペクトルは510nmであり、その蛍光寿命は0.1μsであった。   As shown in Table 1, the light emission amounts of the Ce: LuAG crystals obtained in Examples 1 and 2 were 430 ch and 442 ch, respectively. Further, as shown in FIG. 3, the emission spectrum of the Ce: LuAG crystal obtained in Example 2 was 510 nm, and the fluorescence lifetime was 0.1 μs.

本発明の放射線検出用LuAl12結晶材料の製造方法は、主として、X線断層撮影装置(X−ray Computed Tomography:X線CT)、陽電子放射断層撮影装置(Positron Emission computed Tomography:PET)、タイム・オブ・フライト陽電子放射断層撮影装置(Time−Of−Flight Positron Emission computed Tomography:TOF−PET)などの医療診断装置用の放射線検出用LuAl12結晶材料の製造に用いられるが、その他、放射線検出用の各種用途の放射線検出用LuAl12結晶材料の製造に用いられる。 The production method of the Lu 3 Al 5 O 12 crystal material for radiation detection according to the present invention mainly includes an X-ray computed tomography (X-ray computed tomography: X-ray CT), a positron emission computed tomography (PET). ), Time-of-flight positron emission tomography (TOF-PET), etc., used for the production of radiation-detecting Lu 3 Al 5 O 12 crystal materials for medical diagnostic devices However, it is used for the production of a Lu 3 Al 5 O 12 crystal material for radiation detection for various uses for radiation detection.

実施例2に係るCe:LuAG結晶のX線回析スペクトルを示す図である。4 is a diagram showing an X-ray diffraction spectrum of a Ce: LuAG crystal according to Example 2. FIG. 実施例2に係るCe:LuAG結晶のX線回析スペクトルを示す図である。4 is a diagram showing an X-ray diffraction spectrum of a Ce: LuAG crystal according to Example 2. FIG. 実施例2に係るCe:LuAG結晶の発光スペクトルを示す図である。6 is a graph showing an emission spectrum of a Ce: LuAG crystal according to Example 2. FIG.

Claims (3)

LuAl12結晶材料の製造方法において、一般式A12(Aは希土類元素のいずれか一種であり、Bは希土類元素、Al又はGaのいずか一種であり、DはAl又はGaである)で表され且つ前記LuAl12結晶とは異なるが融点が当該LuAl12結晶と同一又はそれよりも150℃以内の範囲で低い融点を有するガーネット種結晶を用いて前記LuAl12結晶を作製することを特徴とする放射線検出用LuAl12結晶材料の製造方法。 In the method for producing a Lu 3 Al 5 O 12 crystal material, the general formula A 3 B 2 D 3 O 12 (A is one of the rare earth elements, and B is one of the rare earth elements, Al or Ga) , D is Al or Ga) and is different from the Lu 3 Al 5 O 12 crystal, but has a melting point that is the same as that of the Lu 3 Al 5 O 12 crystal or a lower melting point within 150 ° C. A method for producing a Lu 3 Al 5 O 12 crystal material for radiation detection, characterized in that the Lu 3 Al 5 O 12 crystal is produced using a garnet seed crystal. 請求項1において、前記ガーネット種結晶が、ErAl12、TmAl12、HoAl12、DyAl12、又はYAl12であることを特徴とする放射線検出用LuAl12結晶材料の製造方法。 In claim 1, said garnet seed crystal, Er 3 Al 5 O 12, Tm 3 Al 5 O 12, Ho 3 Al 5 O 12, Dy 3 Al 5 O 12, or Y 3 Al 5 O 12 A method for producing a characteristic Lu 3 Al 5 O 12 crystal material for radiation detection. 請求項1又は2において、前記LuAl12結晶を構成するLuの一部が、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tmのうち少なくとも一種以上の元素Zによって置換され、(ZLu1−xAl12(0<x<0.5)で表されるガーネット系結晶を作製することを特徴とする放射線検出用LuAl12結晶材料の製造方法。

In Claim 1 or 2, a part of Lu constituting the Lu 3 Al 5 O 12 crystal is Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, A garnet-based crystal represented by (Z x Lu 1-x ) 3 Al 5 O 12 (0 <x <0.5) is produced by substitution with at least one element Z of Tm. A method for producing a Lu 3 Al 5 O 12 crystal material for radiation detection.

JP2004195633A 2004-07-01 2004-07-01 Method for producing Lu3Al5O12 crystal material for radiation detection and method for producing (ZxLu1-x) 3Al5O12 crystal material for radiation detection Expired - Fee Related JP4702767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004195633A JP4702767B2 (en) 2004-07-01 2004-07-01 Method for producing Lu3Al5O12 crystal material for radiation detection and method for producing (ZxLu1-x) 3Al5O12 crystal material for radiation detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004195633A JP4702767B2 (en) 2004-07-01 2004-07-01 Method for producing Lu3Al5O12 crystal material for radiation detection and method for producing (ZxLu1-x) 3Al5O12 crystal material for radiation detection

Publications (2)

Publication Number Publication Date
JP2006016251A true JP2006016251A (en) 2006-01-19
JP4702767B2 JP4702767B2 (en) 2011-06-15

Family

ID=35790834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004195633A Expired - Fee Related JP4702767B2 (en) 2004-07-01 2004-07-01 Method for producing Lu3Al5O12 crystal material for radiation detection and method for producing (ZxLu1-x) 3Al5O12 crystal material for radiation detection

Country Status (1)

Country Link
JP (1) JP4702767B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231334A (en) * 2007-03-23 2008-10-02 Tohoku Univ Single crystal for scintillator and manufacturing method of the same
CN100455536C (en) * 2006-04-07 2009-01-28 中国科学院上海硅酸盐研究所 Luetcium aluminum garnet -base transparent ceramic and process for preparing same
JP2009031132A (en) * 2007-07-27 2009-02-12 Tohoku Univ Radiation detector
JP2009264751A (en) * 2008-04-21 2009-11-12 Furukawa Co Ltd Method for manufacturing of scintillator, the scintillator, application liquid for the scintillator, and method for preparing the liquid
JP2010169674A (en) * 2008-12-26 2010-08-05 Tohoku Univ Radiation detector
US20110114887A1 (en) * 2008-07-23 2011-05-19 Koninklijke Phillips Electronics N.V. Gd2O2S MATERIAL FOR USE IN CT APPLICATIONS
JP2012066994A (en) * 2010-08-27 2012-04-05 Furukawa Co Ltd Garnet-type single crystal for scintillator, and radiation detector using the same
JP2013040274A (en) * 2011-08-15 2013-02-28 Furukawa Co Ltd Garnet type crystal for scintillator and radiation detector using the same
JP2013043960A (en) * 2011-08-26 2013-03-04 Furukawa Co Ltd Garnet type crystal for scintillator and radiation detector using the same
JP2013522875A (en) * 2010-03-09 2013-06-13 クリー インコーポレイテッド Method for forming warm white light emitting device having high color rendering evaluation value and related light emitting device
US8643038B2 (en) 2010-03-09 2014-02-04 Cree, Inc. Warm white LEDs having high color rendering index values and related luminophoric mediums
JP2014508704A (en) * 2011-02-17 2014-04-10 クライツール スポル.エス アール.オー. Method for preparing a garnet-type doped single crystal having a diameter of up to 500 mm
JP2015163715A (en) * 2015-05-14 2015-09-10 株式会社光波 single crystal phosphor
JP2018035373A (en) * 2017-11-21 2018-03-08 株式会社光波 Fluophor laminate structure
JP2018070872A (en) * 2012-11-14 2018-05-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Scintillator material
CN113174257A (en) * 2021-05-12 2021-07-27 安徽工业大学 Rare earth ion doped garnet crystal luminescent material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789797A (en) * 1993-09-20 1995-04-04 Mitsubishi Heavy Ind Ltd Production of terbium aluminum garnet single crystal
JPH0971416A (en) * 1995-09-06 1997-03-18 Nec Corp Crystal composition and solid laser apparatus produced by using the composition
JPH09202699A (en) * 1995-11-21 1997-08-05 Nippon Telegr & Teleph Corp <Ntt> Production of single crystal of garnet type structure
JP2001072968A (en) * 1999-05-06 2001-03-21 General Electric Co <Ge> Transparent solid scintillator material
JP2003277191A (en) * 2002-03-26 2003-10-02 Japan Science & Technology Corp LIGHT-EMITTING MATERIAL FOR SCINTILLATOR, COMPRISING Yb MIXED CRYSTAL OXIDE SINGLE CRYSTAL

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789797A (en) * 1993-09-20 1995-04-04 Mitsubishi Heavy Ind Ltd Production of terbium aluminum garnet single crystal
JPH0971416A (en) * 1995-09-06 1997-03-18 Nec Corp Crystal composition and solid laser apparatus produced by using the composition
JPH09202699A (en) * 1995-11-21 1997-08-05 Nippon Telegr & Teleph Corp <Ntt> Production of single crystal of garnet type structure
JP2001072968A (en) * 1999-05-06 2001-03-21 General Electric Co <Ge> Transparent solid scintillator material
JP2003277191A (en) * 2002-03-26 2003-10-02 Japan Science & Technology Corp LIGHT-EMITTING MATERIAL FOR SCINTILLATOR, COMPRISING Yb MIXED CRYSTAL OXIDE SINGLE CRYSTAL

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100455536C (en) * 2006-04-07 2009-01-28 中国科学院上海硅酸盐研究所 Luetcium aluminum garnet -base transparent ceramic and process for preparing same
JP2008231334A (en) * 2007-03-23 2008-10-02 Tohoku Univ Single crystal for scintillator and manufacturing method of the same
JP2009031132A (en) * 2007-07-27 2009-02-12 Tohoku Univ Radiation detector
JP2009264751A (en) * 2008-04-21 2009-11-12 Furukawa Co Ltd Method for manufacturing of scintillator, the scintillator, application liquid for the scintillator, and method for preparing the liquid
US8668844B2 (en) * 2008-07-23 2014-03-11 Koninklijke Philips N.V. Fluorescent material for use in CT applications
US20110114887A1 (en) * 2008-07-23 2011-05-19 Koninklijke Phillips Electronics N.V. Gd2O2S MATERIAL FOR USE IN CT APPLICATIONS
JP2011529111A (en) * 2008-07-23 2011-12-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Gd2O2S material for CT applications
JP2010169674A (en) * 2008-12-26 2010-08-05 Tohoku Univ Radiation detector
JP2013522875A (en) * 2010-03-09 2013-06-13 クリー インコーポレイテッド Method for forming warm white light emitting device having high color rendering evaluation value and related light emitting device
US8643038B2 (en) 2010-03-09 2014-02-04 Cree, Inc. Warm white LEDs having high color rendering index values and related luminophoric mediums
JP2012066994A (en) * 2010-08-27 2012-04-05 Furukawa Co Ltd Garnet-type single crystal for scintillator, and radiation detector using the same
JP2014508704A (en) * 2011-02-17 2014-04-10 クライツール スポル.エス アール.オー. Method for preparing a garnet-type doped single crystal having a diameter of up to 500 mm
JP2013040274A (en) * 2011-08-15 2013-02-28 Furukawa Co Ltd Garnet type crystal for scintillator and radiation detector using the same
JP2013043960A (en) * 2011-08-26 2013-03-04 Furukawa Co Ltd Garnet type crystal for scintillator and radiation detector using the same
JP2018070872A (en) * 2012-11-14 2018-05-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Scintillator material
JP2015163715A (en) * 2015-05-14 2015-09-10 株式会社光波 single crystal phosphor
JP2018035373A (en) * 2017-11-21 2018-03-08 株式会社光波 Fluophor laminate structure
CN113174257A (en) * 2021-05-12 2021-07-27 安徽工业大学 Rare earth ion doped garnet crystal luminescent material and preparation method and application thereof

Also Published As

Publication number Publication date
JP4702767B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
US6437336B1 (en) Scintillator crystals and their applications and manufacturing process
JP5389328B2 (en) Single crystal for scintillator containing Pr, its manufacturing method, radiation detector and inspection apparatus
AU2006252151B2 (en) Scintillator compositions, and related processes and articles of manufacture
JP4702767B2 (en) Method for producing Lu3Al5O12 crystal material for radiation detection and method for producing (ZxLu1-x) 3Al5O12 crystal material for radiation detection
JP5686724B2 (en) Solid scintillator, radiation detector, and X-ray tomography apparatus
JP6630879B2 (en) Light emitters and radiation detectors
JP2006233185A (en) Metal halide compound for radiation detection and method for producing the same, as well as scintillator and radiation detector
EP2386620A1 (en) Chloride scintillator for radiation detection
KR20200020668A (en) Garnet scintillator doped with monovalent ions
US7060982B2 (en) Fluoride single crystal for detecting radiation, scintillator and radiation detector using the single crystal, and method for detecting radiation
JP4851810B2 (en) Single crystal material for scintillator and manufacturing method
JPWO2004086089A1 (en) Fluoride single crystal material for thermofluorescence dosimeter and thermofluorescence dosimeter
JP2009046598A (en) Single crystal material for scintillator
CN112630818A (en) Silicon-site-doped improved rare earth orthosilicate scintillation material and preparation method and application thereof
JP4605588B2 (en) Fluoride single crystal for radiation detection, method for producing the same, and radiation detector
JP2003277191A (en) LIGHT-EMITTING MATERIAL FOR SCINTILLATOR, COMPRISING Yb MIXED CRYSTAL OXIDE SINGLE CRYSTAL
JP5994149B2 (en) X-ray scintillator materials
JP4905756B2 (en) Fluoride single crystal and scintillator for radiation detection and radiation detector
JP2022151064A (en) Scintillator and radiation detector
WO2018110451A1 (en) Phosphor for detecting ionizing radiation, phosphor material containing said phosphor, and inspection apparatus and diagnostic apparatus having said phosphor material
Li et al. Scintillators
CN108193274B (en) Compound tungstate scintillation crystal and preparation method thereof
JP2004137489A (en) Fluoride single crystal material for radiation detection and radiation detector
WO2021149670A1 (en) Scintillator and radiation detector
CN117186891A (en) Transition metal element doped garnet Dan Gouxing aluminate scintillation material with high quality factor, and preparation method and application thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

LAPS Cancellation because of no payment of annual fees