JPS627657B2 - - Google Patents

Info

Publication number
JPS627657B2
JPS627657B2 JP53029053A JP2905378A JPS627657B2 JP S627657 B2 JPS627657 B2 JP S627657B2 JP 53029053 A JP53029053 A JP 53029053A JP 2905378 A JP2905378 A JP 2905378A JP S627657 B2 JPS627657 B2 JP S627657B2
Authority
JP
Japan
Prior art keywords
light
light guide
photoelectric conversion
conversion element
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53029053A
Other languages
Japanese (ja)
Other versions
JPS54121664A (en
Inventor
Hiroharu Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2905378A priority Critical patent/JPS54121664A/en
Publication of JPS54121664A publication Critical patent/JPS54121664A/en
Publication of JPS627657B2 publication Critical patent/JPS627657B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

【発明の詳細な説明】 本発明は、例えばカラーテレビジヨン受像管、
或いは、プロジエクタ用映像管等に用いられるビ
ームインデツクス型陰極線管のインデツクス信号
の取り出しに用いて好適な光検出装置に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides, for example, a color television picture tube,
Alternatively, the present invention relates to a photodetection device suitable for use in extracting an index signal from a beam index cathode ray tube used in a picture tube for a projector or the like.

先ず第1図及び第2図を参照して、ビームイン
デツクス型カラー陰極線管の構成を説明するに、
1はビームインデツクス型カラー陰極線管を全体
として示し、2はその管体、3は管体2のネツク
部2a内に配置された電子銃、4はこの電子銃3
より発射される電子ビーム、5はビーム4の水
平、垂直偏向用電磁偏向装置を示す。6は管体2
のフエースプレート2bの内面に被着形成された
螢光面を示す。この螢光面6は、第2図に示すよ
うに、フエースプレート2bの内面に例えば垂直
方向に延長するストライプ状の各色例えば赤、緑
及び青の螢光体R、G及びBが順次交互に配列さ
れてなる。各色の螢光体R、G及びB間には、光
吸収層所謂ガードバンド7が形成配置される。
又、この螢光面6上即ち内面にはメタルバツク層
8が被着される。そして、この螢光面上、即ちメ
タルバツク層8上に電子ビームの照射、即ち衝撃
によつてインデツクス光を発生する物質層9が被
着される。この物質層9としては、電子ビームの
衝撃によつて可視光又は紫外線等を発光する残光
性の短い螢光体が用いられる。そして、この螢光
体即ちインデツクス光を発生する物質層9は、各
色の螢光体R、G及びBの延長方向に沿うように
電子ビーム4の水平走査方向に所要の間隔を以つ
て例えばガードバンド7に対向する位置に配置さ
れる。
First, the configuration of a beam index type color cathode ray tube will be explained with reference to FIGS. 1 and 2.
Reference numeral 1 indicates a beam index type color cathode ray tube as a whole, 2 is its tube body, 3 is an electron gun disposed within the neck portion 2a of the tube body 2, and 4 is this electron gun 3.
5 indicates an electromagnetic deflection device for horizontal and vertical deflection of the electron beam 4 emitted from the electron beam. 6 is tube body 2
The fluorescent surface formed on the inner surface of the face plate 2b is shown. As shown in FIG. 2, this phosphor surface 6 has phosphors R, G, and B of each color, e.g., red, green, and blue, arranged alternately in stripes extending vertically on the inner surface of the face plate 2b. It will be arranged. A light absorbing layer, so-called guard band 7, is formed between the phosphors R, G, and B of each color.
A metal back layer 8 is also deposited on the fluorescent surface 6, that is, on the inner surface. Then, on this fluorescent surface, that is, on the metal back layer 8, a material layer 9 is deposited which generates index light when irradiated with an electron beam, that is, by impact. As this material layer 9, a phosphor with a short afterglow property is used which emits visible light or ultraviolet light or the like when impacted by an electron beam. This phosphor, that is, the material layer 9 that generates index light, is arranged at a required interval in the horizontal scanning direction of the electron beam 4 along the extension direction of the phosphors R, G, and B of each color, for example, with a guard. It is arranged at a position facing the band 7.

一方、管体2の例えばフアンネル壁2fに、こ
れに対してフリツト付けされて埋め込まれたレン
ズ系10を設け、その外側に物質層9よりのイン
デツクス光、例えば可視又は紫外線を検出して、
これを電気的信号に変換する光検出素子即ち、例
えばPINダイオード素子等の光電変換素子11が
配置されこれよりの電気信号を例えば増巾器等の
所要の回路12を通じ、これによつて電子ビーム
に対する色切換えの制御、或いは、電子ビームの
走査速度の変調を行なうようになされる。
On the other hand, a lens system 10 is provided on, for example, the funnel wall 2f of the tube body 2, and is fritted and embedded therein, and outside the lens system 10 detects index light, for example, visible or ultraviolet light, from the material layer 9.
A photodetector element 11 for converting this into an electrical signal, that is, a photoelectric conversion element 11 such as a PIN diode element, is arranged, and the electrical signal is passed through a necessary circuit 12 such as an amplifier, thereby converting it into an electron beam. Control of color switching or modulation of scanning speed of the electron beam is performed.

このようにインデツクス光を検出する光検出装
置は、通常、前述したように、集光レンズ10を
用いることによつてできるだけ多くの光が光電変
換素子11に達するように、素子11が、第3図
に示すようにレンズ10の光軸上に配置される。
ところが、このような集光レンズ10を用いて
も、第4図に示すように、レンズ10の光軸より
ずれた拡散光に関しては、素子11に入らず他に
拡散してしまう。
In a photodetection device that detects index light in this way, as described above, the element 11 is usually arranged in a third direction so that as much light as possible reaches the photoelectric conversion element 11 by using the condenser lens 10. As shown in the figure, it is arranged on the optical axis of the lens 10.
However, even when such a condensing lens 10 is used, as shown in FIG. 4, diffused light that is deviated from the optical axis of the lens 10 does not enter the element 11 and is diffused elsewhere.

更に、残光性の少い螢光体物質9よりの発光波
長、即ちインデツクス光の波長と光電変換素子1
1の高い光電変換効率を示す波長範囲とが、必ず
しも一致しない場合があり、素子11より十分満
足できる程度の出力が得られない場合もある。
Furthermore, the wavelength of light emitted from the phosphor material 9 with little afterglow property, that is, the wavelength of the index light and the photoelectric conversion element 1
The wavelength range showing a high photoelectric conversion efficiency of 1 may not necessarily match, and there may be cases where a sufficiently satisfactory output from the element 11 cannot be obtained.

本発明は、能率良く光信号を電気信号に変換す
ることができるようにした新規な光検出装置を提
供するものである。
The present invention provides a novel photodetection device that can efficiently convert optical signals into electrical signals.

即ち、本発明においては、導光体と光電変換素
子とを有し、導光体によつて上述したインデツク
ス信号のような、電気信号に変換する被検知光を
無駄なく受け、しかもこれによつて被検知光を光
電変換素子が比較的高い変換効率を示す波長範囲
の光に変換して光電変換素子に導くようにする。
That is, the present invention has a light guide and a photoelectric conversion element, and the light guide can receive detected light to be converted into an electric signal, such as the above-mentioned index signal, without wasting it, and can also use the light to be detected by the light guide. Then, the detected light is converted into light within a wavelength range in which the photoelectric conversion element exhibits relatively high conversion efficiency, and the converted light is guided to the photoelectric conversion element.

第5図を参照して本発明の一例を説明するに、
本発明においては、基本的には板状の導光体13
とその一端面に接触若しくは近接対向して光電変
換素子11、例えばPINダイオードの受光面を配
置する。
An example of the present invention will be described with reference to FIG.
In the present invention, basically the plate-shaped light guide 13
A light-receiving surface of a photoelectric conversion element 11, for example, a PIN diode, is arranged in contact with or close to one end surface of the photoelectric conversion element 11, for example, a PIN diode.

導光体13は、透明担持体に有機螢光体が分散
されて成り、相対向する主面13a及び13b
は、できるだけ鏡面に、しかも平坦ないしは緩か
な曲面として構成される。この導光体13を構成
する透明担持体としては、透明樹脂、例えばアク
リル樹脂、エポキシ樹脂、ポリウレタン樹脂、ジ
アリルフタレート樹脂、ポリカーボネート樹脂、
フツ素樹脂、ポリプロピレン樹脂、ユリア・メラ
ミン樹脂、シリコン樹脂、ポリエステル樹脂、ポ
リアセタール樹脂、酢酸ビニル樹脂、フエノール
樹脂、ポリアミド樹脂、繊維素系樹脂等を用い得
る。また、これに分散する有機螢光体としてはロ
ーダミンを用い得る。またこの有機螢光体の透明
担持体中の濃度は、0.5〜2000ppm程度に選ぶ。
The light guide 13 is formed by dispersing an organic phosphor in a transparent carrier, and has main surfaces 13a and 13b facing each other.
is constructed as mirror-like as possible, and as a flat or gently curved surface. The transparent carrier constituting the light guide 13 may be made of transparent resin such as acrylic resin, epoxy resin, polyurethane resin, diallyl phthalate resin, polycarbonate resin,
Fluororesins, polypropylene resins, urea/melamine resins, silicone resins, polyester resins, polyacetal resins, vinyl acetate resins, phenolic resins, polyamide resins, cellulose resins, and the like can be used. Furthermore, rhodamine can be used as the organic fluorophore dispersed therein. The concentration of this organic phosphor in the transparent carrier is selected to be approximately 0.5 to 2000 ppm.

導光体13は、例えば帯状に構成され、その長
手方向の一端の一端面13cに光電変換素子11
を配置する。導光体13と光電変換素子11との
間には、導光体13と素子11とに屈折率が近い
液体、列えば水を導光体13と素子11との間に
両者に密着させて配し、導光体13の端面13c
及び素子11の受光面に夫々生ずる光学的界面に
おける導光体13よりの光の反射を防止し、導光
体13よりの光が能率良く素子11に導入される
ようにする。
The light guide 13 is formed into a strip shape, for example, and has the photoelectric conversion element 11 on one end face 13c of one longitudinal end thereof.
Place. Between the light guide 13 and the photoelectric conversion element 11, a liquid having a refractive index similar to that of the light guide 13 and the element 11, such as water, is placed in close contact with both the light guide 13 and the element 11. end surface 13c of the light guide 13
The light from the light guide 13 is prevented from being reflected at the optical interfaces formed on the light-receiving surface of the element 11, and the light from the light guide 13 is efficiently introduced into the element 11.

そして、導光体13の一方の主面13a又は1
3b、或いは両主面13a及び13bに、被検出
光14、例えば第1図に説明したインデツクス光
のような、例えば信号光を照射する。これら主面
13a及び13bは、光電変換素子11の受光面
より十分大なる面積に選ばれる。
Then, one main surface 13a or 1 of the light guide 13
3b or both principal surfaces 13a and 13b are irradiated with detected light 14, for example, signal light such as the index light explained in FIG. These main surfaces 13a and 13b are selected to have a sufficiently larger area than the light receiving surface of the photoelectric conversion element 11.

第6図を参照して、導光体13の作用を説明す
るに、今、説明の便宜上、導光体13中、即ち透
明担持体中に分散された1つの有機螢光体粒子を
符号15で示す黒点として示す。そして、実線矢
印14で示すように導光体13中に光が導入し、
これが粒子15を励起すると、これによつて入射
光14とは異なる波長、即ち入射光14より長い
波長の光を発生する。
In explaining the function of the light guide 13 with reference to FIG. 6, for convenience of explanation, one organic phosphor particle dispersed in the light guide 13, that is, in a transparent carrier will be referred to as 15. It is shown as a black dot. Then, light is introduced into the light guide 13 as shown by the solid arrow 14,
When this excites the particles 15, they thereby generate light of a different wavelength than the incident light 14, ie a longer wavelength than the incident light 14.

この粒子15より発生する光は、等方的に放射
し、その一部の光は、光電変換素子11が配置さ
れた端面13c側へと向うが、他の一部の光は破
線16で示すように導光体13の他の端面或いは
主面13a及び13b、即ち導光体13とその周
囲の雰囲気との光学的界面に向う。例えば、導光
体13が空気中に配置される場合、空気の屈折率
をn1とすると、導光体13を構成する透明担持体
の屈折率n2は、n2>n1であるので、導光体13と
外気との光学的界面に導光体13側から向う光の
うち、この界面に垂直な線となす入射角θが、こ
の界面で全反射を生ずる臨界角θcより大の入射
角である光に関してはこれが外部に導出されず全
反射し、これが操返されて端面13cへと向う。
そして、屈折率n2がn1に比し大であればあるほ
ど、外光14の入射角θiが大きくても導光体1
3中に効率良く入り、螢光体15の励起を効率良
く行うことができ、また臨界角θcが小となるの
で螢光体15よりの光を効率良く端面13cへと
全反射させて導くことができる。
The light generated by the particles 15 is emitted isotropically, and some of the light goes toward the end surface 13c where the photoelectric conversion element 11 is arranged, while the other part of the light is shown by a broken line 16. In this way, the light is directed toward the other end surface or main surfaces 13a and 13b of the light guide 13, that is, the optical interface between the light guide 13 and the surrounding atmosphere. For example, when the light guide 13 is placed in the air, if the refractive index of air is n 1 , then the refractive index n 2 of the transparent carrier constituting the light guide 13 is n 2 > n 1 . , of the light that approaches the optical interface between the light guide 13 and the outside air from the light guide 13 side, the incident angle θ with a line perpendicular to this interface is larger than the critical angle θc that causes total reflection at this interface. Regarding the light at the incident angle, it is not led out to the outside, but is totally reflected, and is reflected back toward the end surface 13c.
The larger the refractive index n 2 is compared to n 1 , the larger the incident angle θi of the external light 14 is, the more the light guide 1
3 and can efficiently excite the phosphor 15, and since the critical angle θc is small, the light from the phosphor 15 can be efficiently totally reflected and guided to the end surface 13c. I can do it.

尚、導光体13の一方の主面13aを外光(被
検出光)の受光面とするときは、これを反対側の
主面13bには、導光体13を透過した外光を再
び導光体13中に反射させる反射面を例えばアル
ミニウム等の金属箔の被着等によつて形成し得
る。
Note that when one main surface 13a of the light guide 13 is used as a light receiving surface for external light (light to be detected), the main surface 13b on the opposite side is used to receive external light that has passed through the light guide 13 again. A reflective surface for reflecting light into the light guide 13 can be formed by, for example, depositing a metal foil such as aluminum.

導光体13の一例を詳細に説明するに、透面ア
クリル樹脂(透明担持体)30gに、ローダミンB
染料(有機螢光体)7mgを添加し、溶剤として2
塩化メチレンを約300g加えてシロツプ状にす
る。これを100mm×100mmの大きさの枠付きのガラ
ス面上に流し静置した状態で溶剤を蒸発させ、乾
燥後の厚さが2mmの板状導光板を得た。これを第
7図に示すように、帯状に切断し、その長手方向
の一端面13cより中応線に沿う切込み17を形
成し、第8図に示すように切込み17によつて分
割された端部を例えば温めながら重ね合せ、この
重ね合せられた端面13cに光電変換素子として
PINダイオード11を配置する。この構造におい
て、導光体13の幅Wを10mm、長さLを13mmに
し、重ね合せられた端面13cの全体の厚さを4
mm、幅4mmとした。この導光体13の一方の主面
13a側の上方2mで45゜ずれた位置に光源とし
ての螢光灯を配置して、素子11の光出力を測定
し、次に導光体13を排除して同様の光出力を測
定したところ導光体13を設けた場合は、設けな
い場合の約3.3倍の出力増加をみた。そして、更
に、導光体13の受光面13aと端面13cを除
く他の主面13b及び周端面にアルミニウム箔を
コートさせたところ、更に3割の出力増加をみ
た。
To explain in detail an example of the light guide 13, 30 g of transparent acrylic resin (transparent carrier) is coated with Rhodamine B
Add 7 mg of dye (organic phosphor) and 2 mg as solvent.
Add about 300g of methylene chloride and make into syrup. This was poured onto a glass surface with a frame measuring 100 mm x 100 mm and left to stand still to evaporate the solvent, thereby obtaining a plate-shaped light guide plate with a thickness of 2 mm after drying. As shown in FIG. 7, this is cut into a strip shape, and a notch 17 is formed along the middle tension line from one end surface 13c in the longitudinal direction, and the ends divided by the notch 17 as shown in FIG. For example, the parts are overlapped while being heated, and a photoelectric conversion element is formed on this overlapped end face 13c.
A PIN diode 11 is placed. In this structure, the width W of the light guide 13 is 10 mm, the length L is 13 mm, and the overall thickness of the overlapping end surfaces 13c is 4 mm.
mm, and the width was 4 mm. A fluorescent lamp as a light source is placed at a position 2 m above one main surface 13a of this light guide 13 and shifted by 45 degrees, the light output of the element 11 is measured, and then the light guide 13 is removed. When similar optical output was measured, it was found that when the light guide 13 was provided, the output increased by about 3.3 times compared to when the light guide 13 was not provided. Furthermore, when the main surface 13b and peripheral end surface of the light guide 13 other than the light-receiving surface 13a and end surface 13c were coated with aluminum foil, the output was further increased by 30%.

導光体13の形状や、光電変換素子11の配置
等は、種々選び得るものであり、例えば第9図に
示すように、第8図に説明した同様に一端面13
c側において重ね合せた導光体13を2枚用意
し、更に夫々重ね合せられた端面13cが共通の
面を形成するよう重ね合せて光電変換素子11を
対向させて受光能率を高めるようになし得る。
The shape of the light guide 13, the arrangement of the photoelectric conversion element 11, etc. can be selected in various ways. For example, as shown in FIG.
Two light guides 13 stacked on the c side are prepared, and the light guides 13 are stacked so that the stacked end faces 13c form a common surface, and the photoelectric conversion elements 11 are made to face each other to increase the light receiving efficiency. obtain.

更に、他の例としては、第10図にその上面図
を示し、第11図に断面図を示すように中心孔1
8を有するラツパ状の導光体13を設け、その中
心孔18と、導光体13の中央端面13cとに対
向して光電変換素子11を、配置して被検出光を
中心孔18を通じて素子11に直接導入すると共
に、導光体13を通じて導くようにすることもで
きる。この構造のものにおいてラツパ状導光体1
3の外径を40mm、内径を8mmとしたものにおいて
素子11の光出力を測定したところ、この導光体
13の存在によつてその出力は1.6倍増加した。
Furthermore, as another example, as shown in FIG. 10 in a top view and in FIG. 11 as a cross-sectional view,
A photoelectric conversion element 11 is arranged opposite to the center hole 18 of the light guide 13 and the central end surface 13c of the light guide 13, and the light to be detected passes through the center hole 18 to the element. It is also possible to introduce the light directly into the light guide 11 or to guide it through the light guide 13 . In this structure, the wrap-shaped light guide 1
When the optical output of the element 11 was measured using a device with an outer diameter of 40 mm and an inner diameter of 8 mm, the presence of the light guide 13 increased the output by 1.6 times.

尚、本発明による光検出装置を、例えば第1図
に説明したインデツクス管型陰極線管1に用いる
場合は、例えば、第12図に示すように陰極線管
1のそのフアンネル部2fに沿つて導光体13の
受光面が、フアンネル壁を通じてインデツクス光
の発光源に対向するようにする。この場合、フア
ンネル部2fの導光体13が配置される部分は、
インデツクス光の波長の光を透過するようになさ
れることは云うまでもないところであろう。
Incidentally, when the photodetector according to the present invention is used, for example, in the index tube type cathode ray tube 1 illustrated in FIG. The light receiving surface of the body 13 faces the index light source through the funnel wall. In this case, the portion of the funnel portion 2f where the light guide 13 is arranged is
Needless to say, it is made to transmit light having the wavelength of the index light.

第13図は、アクリル樹脂中にローダミンB染
料を分散させたものにおいて、その分散濃度を夫
夫0ppm、3ppm、30ppm、100ppm、300ppm、
10000ppmに変化させて測定した各波長に対する
吸収スペクトル曲線である。これより明らかなよ
うに約500nm〜600nmで吸収が生じていて、こ
の波長の光によつてローダミンBが励起されてこ
れより長い波長の光を発していることが分る。
Figure 13 shows the dispersion concentration of Rhodamine B dye dispersed in acrylic resin: 0ppm, 3ppm, 30ppm, 100ppm, 300ppm,
This is an absorption spectrum curve for each wavelength measured by changing the wavelength to 10,000 ppm. As is clear from this, absorption occurs at about 500 nm to 600 nm, and rhodamine B is excited by light at this wavelength and emit light at a longer wavelength.

第14図はローダミンBの発光スペクトルで、
これより明らかなように約600nm〜650nmでピ
ークを示す発光を生ずる。尚、同図中破線曲線
は、ローダミンBの分散濃度が高い場合の発光ス
ペクトルで、この場合、外光で励起されて発光し
た光が他のローダミンを励起して更に長波長の2
次の長波長光を発光するためのものと思われる。
Figure 14 shows the emission spectrum of rhodamine B.
As is clear from this, light emission having a peak at about 600 nm to 650 nm is generated. The broken line curve in the same figure is the emission spectrum when the dispersion concentration of rhodamine B is high. In this case, the light excited by external light and emitted excites other rhodamines and further emit light with longer wavelengths.
It seems to be used to emit the next long wavelength light.

これら吸収スペクトル及び発光スペクトルをみ
ることによつて明らかなように、ローダミンBが
分散された導光体13に、500nm〜600nm程度
の波長の光を導入すると、これより長波長の600
以上の光が端面13cよりとり出されて光電変換
素子11に導入されることになる。したがつて、
例えば被検出光としてのインデツクス光の発光物
質としてY3Al5O12:Ceを用いる場合、その発光
波長は約515nmであるが、この波長の光に対し
殆んど感度を示さず、長波長側で感度を示のPIN
ダイオードのような一般の検出素子を光電変換素
子として用いても、導光体13を介存させた本発
明装置によれば、これより長波長の光を素子11
に送り込むことができ、高い出力を得ることがで
きることになる。
As is clear from looking at these absorption spectra and emission spectra, when light with a wavelength of approximately 500 nm to 600 nm is introduced into the light guide 13 in which Rhodamine B is dispersed, 600 nm of wavelength longer than this is introduced.
The above light is extracted from the end face 13c and introduced into the photoelectric conversion element 11. Therefore,
For example, when Y 3 Al 5 O 12 :Ce is used as a luminescent substance for index light as detected light, its emission wavelength is approximately 515 nm, but it shows almost no sensitivity to light at this wavelength, and PIN showing sensitivity on the side
Even if a general detection element such as a diode is used as a photoelectric conversion element, according to the device of the present invention in which the light guide 13 is used, light with a longer wavelength is transmitted to the element 11.
This means that high output can be obtained.

第15図は第8図に説明した構造の導光体13
の端面13cにPINダイオード11を配置し、第
8図に示すように端部の重ね合せ部以外の導光体
長さLeを18cmに、幅Wを1.3cmとした場合におい
て、導光体13の真上2m上方に螢光灯を配置し
た場合と、これを排除してPINダイオードで直接
光を受けた場合の各出力の比を、ローダミンBの
分散濃度を変えて測定した出力曲線である。この
場合、導光体13の端面13aより光を受け、他
の面等には、何ら反射面を設けなかつたものであ
るが、他方の主面13bに例えばアルミ箔による
反射面を設け、導光体13を通過する入射外光が
効率良く導光体13中に反射して導入するように
なすときは、第15図の出力比の約3割の増加を
みることができ、更に前述したように導光体13
の光導出端としての端面13cと光電変換素子1
1との間に水を介在させるときは、更に3〜4割
の出力増加をみることができた。したがつて、反
射面の形成、水の介存等を施すことによつて第1
5図において出力比が約0.5以上であれば、導光
体13を設けたことによる出力増加の効果を得る
ことができることになり、したがつて、螢光体の
分散濃度は0.5ppm〜2000ppmが望ましいという
ことがわかる。また、この場合、導光体13は入
力光、即ち被検出光、例えばインデツクス光に対
し、数ナノ秒という極めて速い応答速度を示す。
これは、分散された有機螢光体の励起に要する時
間が短いこと、更に殆んど1次励起による光のみ
がとり出され、螢光体より発光した光が再び他の
螢光体粒子を励起して2次発光が生ずることがな
いようになし得ることに因ると考えられる。
FIG. 15 shows a light guide 13 having the structure explained in FIG.
When the PIN diode 11 is arranged on the end surface 13c of the light guide 13, and the length Le of the light guide other than the overlapped portion of the end portion is set to 18 cm and the width W is set to 1.3 cm, as shown in FIG. This is an output curve measured by changing the dispersion concentration of Rhodamine B and the ratio of each output when a fluorescent lamp is placed 2 meters directly above and when it is removed and the PIN diode receives light directly. In this case, light is received from the end surface 13a of the light guide 13, and no reflective surface is provided on the other surfaces, but a reflective surface made of aluminum foil, for example, is provided on the other main surface 13b to guide the light. When the incident external light passing through the light body 13 is efficiently reflected and introduced into the light guide body 13, it is possible to see an increase of about 30% in the output ratio shown in FIG. Like the light guide 13
The end face 13c as a light emitting end and the photoelectric conversion element 1
When water was interposed between 1 and 1, an additional 30 to 40% increase in output could be seen. Therefore, by forming a reflective surface, using water, etc., the first
In Fig. 5, if the output ratio is approximately 0.5 or more, it is possible to obtain the effect of increasing the output by providing the light guide 13, and therefore the dispersion concentration of the phosphor is 0.5 ppm to 2000 ppm. It turns out that it is desirable. Further, in this case, the light guide 13 exhibits an extremely fast response speed of several nanoseconds to the input light, that is, the light to be detected, for example, the index light.
This is because the time required to excite the dispersed organic phosphor is short, and moreover, almost only the light due to the primary excitation is extracted, and the light emitted from the phosphor is re-excited by other phosphor particles. This is thought to be due to the fact that it can be done so that secondary light emission does not occur due to excitation.

上述したように、本発明による光検出装置によ
れば、第3図及び第4図に説明したように集光レ
ンズ系を用いる場合のような被検出光の無駄を回
避でき、入射角が大きな光線でも、効率よく導光
体13中に導入し、導光体13中に分散させた有
機螢光体によつて長波長の光に変換して長波長に
対し高い感度を示す光電変換素子11に導くの
で、高感度の光検出を大きな出力で検出すること
ができる。
As described above, according to the photodetection device according to the present invention, as explained in FIGS. 3 and 4, it is possible to avoid wasting the detected light as in the case of using a condensing lens system, and it is possible to avoid waste of detected light as in the case of using a condensing lens system as explained in FIGS. 3 and 4. The photoelectric conversion element 11 exhibits high sensitivity to long wavelengths by efficiently introducing light into the light guide 13 and converting it into long wavelength light by the organic phosphor dispersed in the light guide 13. Therefore, highly sensitive photodetection can be performed with a large output.

したがつて冒頭に述べたインデツクス管のイン
デツクス信号の検出装置として用いて好適なもの
であるが、他の各種光検出に用いて有益なもので
ある。
Therefore, it is suitable for use as a detection device for the index signal of the index tube mentioned at the beginning, but it is also useful for use in various other types of light detection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はインデツクス型陰極線管の構成図、第
2図はその要部の拡大断面図、第3図及び第4図
はその光検出部の説明図、第5図は本発明装置の
一例の斜視図、第6図はその原理図、第7図及び
第8図は本発明装置の他の例の製造過程を示す
図、第9図は本発明装置の更に他の例の斜視図、
第10図は本発明装置の更に他の例の上面図、第
11図はその縦断面図、第12図は本発明装置を
インデツクス型陰極線管に適用した場合の一例の
側面図、第13図は吸収スペクトル図、第14図
は発光スペクトル図、第15図は螢光体の分散濃
度−出力比曲線図である。 13は導光体、11は光電変換素子である。
Fig. 1 is a block diagram of an index type cathode ray tube, Fig. 2 is an enlarged sectional view of its main parts, Figs. A perspective view, FIG. 6 is a diagram of its principle, FIGS. 7 and 8 are views showing the manufacturing process of another example of the device of the present invention, and FIG. 9 is a perspective view of still another example of the device of the present invention,
FIG. 10 is a top view of still another example of the device of the present invention, FIG. 11 is a longitudinal sectional view thereof, FIG. 12 is a side view of an example of the device of the present invention applied to an index type cathode ray tube, and FIG. 13 14 is an absorption spectrum diagram, FIG. 14 is an emission spectrum diagram, and FIG. 15 is a dispersion concentration-output ratio curve diagram of the fluorescent material. 13 is a light guide, and 11 is a photoelectric conversion element.

Claims (1)

【特許請求の範囲】[Claims] 1 透明担持体に有機螢光体が分散された導光体
と、光電変換素子とを有し、上記導光体には外部
より上記有機螢光体を励起する波長域の光を導入
し、この励起によつて上記有機螢光体より発生し
た光を上記光電変換素子に導くようにして成り、
上記光電変換素子は上記発生した光の波長に感度
を示ようになされた光検出装置。
1. A light guide having an organic phosphor dispersed in a transparent carrier and a photoelectric conversion element, into which light in a wavelength range that excites the organic phosphor is introduced from the outside into the light guide, Due to this excitation, light generated from the organic phosphor is guided to the photoelectric conversion element,
The photodetection device is such that the photoelectric conversion element is sensitive to the wavelength of the generated light.
JP2905378A 1978-03-14 1978-03-14 Optical detecting device Granted JPS54121664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2905378A JPS54121664A (en) 1978-03-14 1978-03-14 Optical detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2905378A JPS54121664A (en) 1978-03-14 1978-03-14 Optical detecting device

Publications (2)

Publication Number Publication Date
JPS54121664A JPS54121664A (en) 1979-09-20
JPS627657B2 true JPS627657B2 (en) 1987-02-18

Family

ID=12265625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2905378A Granted JPS54121664A (en) 1978-03-14 1978-03-14 Optical detecting device

Country Status (1)

Country Link
JP (1) JPS54121664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246950U (en) * 1988-09-22 1990-03-30

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023247Y2 (en) * 1979-07-23 1990-01-25
JPS5846554A (en) * 1981-09-11 1983-03-18 Sanyo Electric Co Ltd Color picture tube device of beam index type
JPS5866546U (en) * 1981-10-30 1983-05-06 三洋電機株式会社 Beam index type color picture tube device
JPS5875740A (en) * 1981-10-30 1983-05-07 Sanyo Electric Co Ltd Beam index type color picture tube unit
JPS5972653U (en) * 1982-11-08 1984-05-17 三洋電機株式会社 flat color cathode ray tube
JPS6163754U (en) * 1985-09-26 1986-04-30

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS411208Y1 (en) * 1965-10-08 1966-02-02
JPS5293268A (en) * 1976-01-30 1977-08-05 Sony Corp Color cathode-ray tube for signal feedback type

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS411208Y1 (en) * 1965-10-08 1966-02-02
JPS5293268A (en) * 1976-01-30 1977-08-05 Sony Corp Color cathode-ray tube for signal feedback type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246950U (en) * 1988-09-22 1990-03-30

Also Published As

Publication number Publication date
JPS54121664A (en) 1979-09-20

Similar Documents

Publication Publication Date Title
CA1315377C (en) Luminescent fiber marker-detector
JPH02141629A (en) Photo detector
JP3019274B2 (en) Photodetector
JPS627657B2 (en)
US4804845A (en) Luminescence detecting devices
US5923120A (en) Microchannel plate with a transparent conductive film on an electron input surface of a dynode
JPH084635Y2 (en) Radiation detector
JPS63108658A (en) Photoelectric transfer tube
EP0049515B1 (en) Beam-indexing color picture tube
KR100238905B1 (en) Index type color cathode ray tube
JP2003083809A (en) Infrared visible conversion member and infrared detection device
KR102507169B1 (en) Image plate scanning device
US6507032B1 (en) Storage phosphor panel with increased luminous efficiency
KR100312685B1 (en) Beam index type cathode ray tube and method for making photodetector compatible with this cathode ray tube
US4176919A (en) Passive high-speed automatic shutter for imaging devices
JP2756463B2 (en) Infrared image sensor
KR100338027B1 (en) Beam index type cathode ray tube
JPS6052414B2 (en) Radiation image information reading device
JPS639793B2 (en)
JPS6326920Y2 (en)
KR930006268B1 (en) Color cathode-ray tube device of beam indexing type
JPS63102142A (en) Light detector
JPH057720Y2 (en)
JPS5846554A (en) Color picture tube device of beam index type
JPS62271330A (en) Beam index type cathode-ray tube