WO2003021079A1 - Procede et dispositif d'extraction et de transport d'hydrates de gaz et de gaz contenus dans des hydrates de gaz - Google Patents

Procede et dispositif d'extraction et de transport d'hydrates de gaz et de gaz contenus dans des hydrates de gaz Download PDF

Info

Publication number
WO2003021079A1
WO2003021079A1 PCT/EP2002/009385 EP0209385W WO03021079A1 WO 2003021079 A1 WO2003021079 A1 WO 2003021079A1 EP 0209385 W EP0209385 W EP 0209385W WO 03021079 A1 WO03021079 A1 WO 03021079A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
water
upstream
outflow
gas hydrates
Prior art date
Application number
PCT/EP2002/009385
Other languages
German (de)
English (en)
Inventor
Wilhelm Althaus
Jürgen Grän-Heedfeld
Adam Hadulla
Stefan SCHLÜTER
Heyko Jürgen SCHULTZ
Tim Schulzke
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2003021079A1 publication Critical patent/WO2003021079A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/35Arrangements for separating materials produced by the well specially adapted for separating solids

Definitions

  • the subject of this invention is a method for the extraction and production of flammable, hydrocarbon-containing gas and gas hydrate from gas hydrate deposits of all kinds for the purpose of material and energetic use.
  • the main application is the deep-sea mining of methane gas from submarine gas hydrate deposits and permafrost areas.
  • the invention also relates to the associated device. The process works using the mammoth pump principle. In addition, preventive removal of unstable or metastable gas hydrate can be carried out with the invention for ecological and safety reasons.
  • Gas hydrates are solid, ice-shaped cage structures in which gas molecules are enclosed by a "cage" made of water olecules. These connections will be chemically counted among the clathrates.
  • the range of possible enclosed gas molecules is wide, C0 2 , H 2 S, simple hydrocarbons such as methane, whereby methane hydrate is the largest part of the gas hydrates (> 90%) and is the most interesting from an economic and ecological point of view.
  • one cubic meter of methane hydrate contains approximately 164 standard cubic meters of gaseous methane and approximately 0.8 standard cubic meters of liquid water.
  • Estimates of global gas hydrate deposits vary between 3 and 7600 trillion m 3 . So far rough estimates indicate that there is approximately twice as much carbon in gas hydrates worldwide as in all known fossil fuel deposits (coal, oil, natural gas) combined.
  • Gas hydrates are formed when there is high pressure, low temperatures, sufficient gas and water.
  • the following options are generally suitable for extracting gas from gas hydrates:
  • the fourth mining method is "mining" mining.
  • the gas can be extracted directly on site.
  • mining of the gas hydrates and subsequent gas extraction in a separate plant is conceivable.
  • Gas hydrates are found in and on the sediments of the ocean floor at depths of more than approx. 300- 500 m, depending on the latitude.
  • the lower limit of the gas hydrate stability zone is determined by the heat rising from the earth's core, which destabilizes the clathrates or prevents formation.
  • gas hydrated layers several meters thick have formed on the seabed.
  • the gas hydrates serve as cement in the pore spaces of the sediment, but also occur in layers or tubers.
  • the sediment layer that is permeated by them can be up to about 1000 m thick.
  • gas hydrates In addition to an enormous energy content, gas hydrates, especially the submarine deposits, have a potential hazard.
  • Warm underground currents can, for example, destabilize gas hydrate deposits on and in the seabed.
  • a sudden release of large amounts of the gas bound in clathrates can cause landslides on the sea floor and undersea mudslides.
  • Crater fields on the seabed indicate the instability of gas hydrate veins.
  • These craters also called “pock arks”
  • Slides and explosive gas releases could result in tsunamis (giant waves) in coastal areas.
  • the landslides also pose a threat to deep-sea cables and drilling platforms. Communication lines can be cut and oil rigs capsized by tsunamis.
  • methane gas releases can have a lasting negative ecological impact, since methane as a greenhouse gas has a strong influence on the global climate. Methane is between 20 and 60 times more climate active than C0 2 . An increased introduction into the atmosphere increases the greenhouse effect.
  • JP 91 58662 recommends the introduction of heated sea water (through the waste heat from a nuclear reactor placed on the sea floor) into a gas hydrate deposit, the gas obtained by melting the gas hydrate being withdrawn from the deposit via a second borehole.
  • WO / 98 44078 a method is known for the degradation of surface gas hydrates on the seabed, wherein various collector arrangements can be applied to the seabed, collect chunks of gas hydrate and released gas and bring them with an impressed flow in a tube-like arrangement to the sea surface, where the obtained Local gas is converted into liquid hydrocarbons for better transport.
  • US 4,424,858 describes a device which contains two tubes arranged one inside the other, the upper end of the inner tube being below the sea level and sucking in sea water, which is conveyed into a deposit in order to dissolve gas hydrate there. The resulting gas is transported to the surface of the sea through the outer tube.
  • the inner tube can extend deeper into the reservoir than the outer one and may be perforated to allow gas from different
  • the outer tube also contains a side arm, which is below the sea level and can be closed for the start-up process, in order to discharge cooled sea water that has risen with the gas.
  • US 4,007,787 proposes to convey light hydrocarbons into the deposit which do not form hydrate under deposit conditions, in order to thereby release the gas from the hydrates.
  • a freezing point depressant can also be injected into the reservoir to accelerate gas production.
  • US Pat. No. 3,969,834 also shows a possibility of using the airlift principle for liquids, suspensions, To promote sions and slurries of seabeds and river beds.
  • a pipe is run from the water surface to the bottom.
  • a collector is attached, which is placed on the medium to be pumped and has a side arm, which allows ambient water to be sucked in.
  • Air is blown into the first pipe via a second pipe and a mixer. This air rises in the pipe and sucks material lying on the floor with it.
  • Another object of the present invention is to propose a method with which it is possible to promote gas hydrates and gases from gas hydrate layers, especially methane gas, in an economically and technically as well as ecologically safe and controlled manner. Another object of the present invention is to provide a corresponding device for carrying out such a method.
  • the extraction of gases from gas hydrates forms a future-proof alternative to the use of conventional fossil raw materials.
  • the controlled destabilization and use of methane contained in natural gas hydrates can stabilize the global energy supply in the long term and by replacing it whose fossil fuels and CO 2 reduction reduce global climate change.
  • the invention permits the extraction and extraction of gas hydrates and gas from gas hydrates from all types of gas hydrate deposits.
  • the extraction of free gas and liquid hydrocarbons that are also present in the deposits can also be carried out by the above beaten equipment can be realized.
  • the invention represents a structurally simple, economical, safe, controllable and environmentally friendly method for obtaining gas hydrates and gas from gas hydrates.
  • the process is largely self-sustaining, and part of the methane gas obtained can be used to heat the circulating water.
  • the cavern formed when the gas hydrates stored in the sea floor are broken down is filled with water and therefore mechanically stabilized.
  • Deposit gas (leakage current) flowing out of the side of the cavern is cooled on the way through the sediment and forms gas hydrate again, whereby the deposit area is additionally cemented and solidified. Due to the new formation of the gas hydrate, no leakage current enters the atmosphere. In contrast to surface degradation, the ecosystems that cover the sea floor are preserved.
  • the introduction of chemicals, additives, inhibitors, etc. can be dispensed with, the dissolution process can take place through the use of other physical phenomena (temperature increase, pressure reduction).
  • the seawater extracted into the deposit contains dissolved NaCl as a natural hydrate inhibitor, which reduces the destabilization of the gas hydrate. supports.
  • Fig. 1 shows the basic principle of a erfindungsge ⁇ MAESSEN device in which the Abströmer is arranged coaxially in the Aufströmer.
  • FIG. 2 shows an embodiment of the device according to FIG. 1, in which a specific separating device and an oil separator are additionally provided in the collecting container.
  • Fig. 3 shows the embodiment in which the upstream and downstream flow is spaced apart.
  • FIG. 4 shows a further alternative of the solution according to the invention, in which the upflow is arranged coaxially in the outflow.
  • FIG. 1 the basic principle of the invention is shown.
  • a pipe arrangement represented here by a double pipe arrangement 1, 2, is introduced into the sea floor 8 up to the gas hydrate deposit 3.
  • the inner tube 2 can be as long as the outer 1 or longer. It can therefore also be embedded deeper into the sea floor. Based on the design of the airlift loop reactor, the two tubes form the up and downflow area.
  • Figs. 1 and 2 is the inner tube 2 of the outflow, the outer tube 1 of the upflow.
  • Fig. 4 The reverse flow guidance is shown in Fig. 4.
  • the outer tube is the outflow 32 and the inner tube is the upflow 33.
  • the bottom or deflection area of the airlift loop reactor is formed by the storage area 3.
  • the head of the reactor is formed by the gas collecting container 4, which can be both an oil rig and a mobile drilling vessel and is also described below as a "sea vehicle”.
  • Water (sea water) heated by a heat exchanger 24 is conveyed through the outflow region into the deposit. There, the temperature is increased by the energy introduced, and the solid gas hydrate is thus destabilized and degassed / evaporated in a controlled manner.
  • the released gas 16 rises in the upstream and is caught in the seacraft and separated from the water.
  • the gas obtained can be used for direct recycling, chemical conversion or transport, the separated water can be circulated and returned to the deposit, which means less heating energy is required than when using "fresh" sea water.
  • the process is self-sustaining after the start-up phase, since the circulating flow is induced by the resulting density difference. The amount of gas released can be safely controlled by the energy brought into the deposit.
  • FIG. 1 provides more detailed information about the head region 4.
  • a part of the water conveyed into the deposit remains there and fills up the cavern formed and thus contributes to mechanical stabilization. There is therefore a loss of water flow which can be compensated for by a fresh water flow 9 led into the head 4 via the pump 23.
  • the product gas 11 obtained can be fed via the valve 25 to a direct recycling, a chemical conversion or a transport device, a partial flow of the gas 12 can be passed via the valve 26, for example, into a burner 13 or other energy generator.
  • the hot combustion gas 14 is used directly or indirectly to heat the outflowing water.
  • FIG. 2 An embodiment is shown in which the structure of the sea vehicle has been changed. 2 shows the great variability of the method and the device.
  • a solid phase 17 that rises with the dissolved gas and circulating water is taken into account with torn up solid gas hydrate and / or rock and sediment.
  • the solid particles enter the collecting tank 4 of the sea vehicle with gas and circulating water and can be separated there by various separating devices 19.
  • the possible separating devices are represented in FIG. 2 by way of example by separating plates which collect and separate the solid particles via sedimentation processes.
  • the use of other apparatuses such as hydrocyclones for the separation process described here in the illustrated process is also an object of the invention.
  • the solid particles 20 can be removed from the collection areas by means of the pump 28. It is also possible to put the solid particles back into the cavern or the borehole via the outflow or other devices.
  • Solid gas hydrate pieces rising in the upstream are destabilized by the reduction of the hydrostatic pressure and by the indirect heating of the rising suspension by the heated outflowing circulating water and dissolve.
  • Oil hydrates and their deposits often also contain longer-chain, liquid hydrocarbons (hereinafter referred to as "oils"). Under certain circumstances, these oils 18 are also conveyed into the collecting tank 4 of the reactor and float there due to their lower density.
  • Another object of the invention are separation devices of all kinds, which separate the oil phase from the circulating water and remove it from the reactor head via the pump 29. The oil can be directly used, chemically converted, or transported through the oil drain 22 be fed.
  • the separating device is exemplified in FIG. 2 by an oil trap with separating plates.
  • Another object of the invention is the isolation of the individual reactor components.
  • the insulation of the pipe structure is particularly important for the use of the conveyor device according to the invention in permafrost soil.
  • the constructive design of the upstream and downstream flow is preferably carried out by means of tubes pushed into one another, also of different cross-sectional shapes (oval, round, angular, rectangular, etc.), preferably round, preferably concentric.
  • Pipe diameters can range from 1 cm to 50 m. Dimensions are preferably used as are known from the field of oil drilling, etc.
  • the use of several upstream and downstream streams connected in parallel is possible, as is the use of satellite drilling, i.e. Boreholes at a spatial distance from the main drilling site, for additional, one-sided delivery of water heated to hydrate destabilization into the gas hydrate deposit.
  • the gas hydrates in the deposit can be destabilized by the conveying device according to the invention, in addition to the temperature increase, also by reducing the pressure (applying negative pressure) and using (chemical and physical) destabilizing additives.
  • Start-up phase are also those marked with 30 to provide supporting pumping devices.
  • the favorable structural design prevents the inflow area from becoming blocked by gas hydrate forming in the pipe from the inflowing gas and water (if the formation conditions occur locally), since the outflowing warm circulating water indirectly contributes to heating the inflow area, and the gas hydrate formation conditions are consequently avoided ,
  • the structural design of the pipe arrangement can be of various types, as long as it is carried out according to the mammoth pump principle and is also the subject of this invention.
  • the pipe arrangement of the upstream and downstream areas can e.g. as already mentioned and in FIGS. 1 and 2 are shown as a double pipe arrangement, but can also be carried out, for example, by an arrangement in which the pipes are spatially separated from one another (FIG. 3).
  • the upstream and downstream flow areas can also reach into the deposit at different, spatially separated locations (two or more separate boreholes), so that controlled destabilization occurs at the point at which the outflow plunges into the deposit.
  • the released gas flows through the deposit and is directed into the head through the upstream borehole. In this way, an interaction of the upstream and downstream flow is achieved.

Abstract

L'invention concerne un procédé d'extraction et de transport de gaz contenus dans des hydrates de gaz à partir de gisements, situés en dessous de la surface de la terre ou de l'eau. Selon ce procédé, a) un fluide est introduit à l'aide d'au moins un dispositif d'écoulement (2), parvenant jusqu'au gisement (3) depuis une zone située au-dessus de la surface de la terre ou de l'eau, b) ce fluide déstabilise au moins partiellement l'hydrate de gaz, de sorte que le gaz se dégage, et c) le gaz dégagé et/ou l'hydrate de gaz est évacué par l'intermédiaire d'au moins un dispositif ascendant (1), qui s'étend du gisement jusqu'à la surface de la terre ou de l'eau.
PCT/EP2002/009385 2001-08-28 2002-08-22 Procede et dispositif d'extraction et de transport d'hydrates de gaz et de gaz contenus dans des hydrates de gaz WO2003021079A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10141896.5 2001-08-28
DE10141896A DE10141896A1 (de) 2001-08-28 2001-08-28 Verfahren und Vorrichtung zur Gewinnung und Förderung von Gashydraten und Gasen aus Gashydraten

Publications (1)

Publication Number Publication Date
WO2003021079A1 true WO2003021079A1 (fr) 2003-03-13

Family

ID=7696731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/009385 WO2003021079A1 (fr) 2001-08-28 2002-08-22 Procede et dispositif d'extraction et de transport d'hydrates de gaz et de gaz contenus dans des hydrates de gaz

Country Status (2)

Country Link
DE (1) DE10141896A1 (fr)
WO (1) WO2003021079A1 (fr)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016333A1 (fr) * 2004-08-10 2006-02-16 Schlumberger Canada Limited Procede d'exploitation d'hydrates gazeux
WO2007072172A1 (fr) * 2005-12-20 2007-06-28 Schlumberger Technology B.V. Procede et systeme de developpement de formations porteuses d'hydrocarbures et comprenant la depressurisation des hydrates de gaz
WO2007117167A1 (fr) * 2006-04-07 2007-10-18 Petru Baciu Procédure et appareil d'extraction de gaz hydrocarbures à partir d'hydrates sous-terrains
CN100386500C (zh) * 2004-12-14 2008-05-07 中国科学院广州能源研究所 一种开采天然气水合物的方法及装置
CN100434654C (zh) * 2007-02-09 2008-11-19 中国科学院广州能源研究所 一种海水淡化与海洋天然气水合物开采联产方法
US7546880B2 (en) 2006-12-12 2009-06-16 The University Of Tulsa Extracting gas hydrates from marine sediments
CN101555797B (zh) * 2009-05-19 2011-08-03 四川大学 海底天然气水合物开采装置及其开采方法
EP2382371A2 (fr) * 2008-12-31 2011-11-02 Chevron U.S.A. Incorporated Procédé et système destinés à produire des hydrocarbures à partir d'un réservoir d'hydrates à l'aide d'un gaz de balayage
CN103291253A (zh) * 2013-07-06 2013-09-11 李贤明 海床天然气水合物的收集办法及系统
CN103321641A (zh) * 2013-07-01 2013-09-25 北京四达特商业有限责任公司 一种可燃冰固态开采方法
CN105156079A (zh) * 2015-06-12 2015-12-16 西南石油大学 一种海底表层天然气水合物切削收集装置
CN105649589A (zh) * 2016-03-10 2016-06-08 西南石油大学 综合太阳能与超声空化开采天然气水合物的实验装置及方法
CN106884627A (zh) * 2017-03-28 2017-06-23 中国石油大学(华东) 一种海底天然气水合物开采装置
CN106930730A (zh) * 2017-03-10 2017-07-07 太原理工大学 一种废弃矿井采空区煤层气的抽采方法
EP2318653A4 (fr) * 2008-08-25 2017-09-27 Chevron U.S.A., Inc. Procédé et système de production et de traitement conjoints d'hydrocarbures à partir de réservoirs d'hydrates de gaz naturel et d'hydrocarbures traditionnels
CN107387043A (zh) * 2017-08-14 2017-11-24 西南石油大学 一种煤层自生多元气体驱替提高煤层气采收率的方法
CN107503723A (zh) * 2017-10-23 2017-12-22 大庆东油睿佳石油科技有限公司 一种天然气水合物排式水平井化学驱开采的方法
CN107503715A (zh) * 2017-10-23 2017-12-22 大庆东油睿佳石油科技有限公司 一种模拟平行水平井注海水开采天然气水合物的装置
CN107514245A (zh) * 2017-10-23 2017-12-26 大庆东油睿佳石油科技有限公司 一种天然气水合物排式水平井开采的方法
CN107514248A (zh) * 2017-10-23 2017-12-26 大庆东油睿佳石油科技有限公司 一种天然气水合物平行水平井化学驱开采的方法
CN107514247A (zh) * 2017-10-23 2017-12-26 大庆东油睿佳石油科技有限公司 一种模拟天然气水合物排式水平井注海水开采的装置
CN107542440A (zh) * 2017-10-23 2018-01-05 大庆东油睿佳石油科技有限公司 一种u型井微波加热开采天然气水合物的方法
CN107542436A (zh) * 2017-10-23 2018-01-05 大庆东油睿佳石油科技有限公司 一种模拟平行水平井混相驱开采天然气水合物的装置
CN107542439A (zh) * 2017-10-23 2018-01-05 大庆东油睿佳石油科技有限公司 一种排式水平井开采天然气水合物的方法
CN107558976A (zh) * 2017-10-23 2018-01-09 大庆东油睿佳石油科技有限公司 一种天然气水合物排式水平井注热水开采的方法
CN107676069A (zh) * 2017-10-23 2018-02-09 大庆东油睿佳石油科技有限公司 一种模拟天然气水合物平行水平井化学驱开采的装置
CN107676065A (zh) * 2017-10-23 2018-02-09 大庆东油睿佳石油科技有限公司 一种模拟排式水平井注海水开采天然气水合物的装置
CN107676068A (zh) * 2017-10-23 2018-02-09 大庆东油睿佳石油科技有限公司 一种模拟排式水平井混相驱开采天然气水合物的装置
CN107842360A (zh) * 2017-10-23 2018-03-27 大庆东油睿佳石油科技有限公司 一种模拟天然气水合物平行水平井混相驱开采的装置
CN108035699A (zh) * 2017-11-27 2018-05-15 华南理工大学 一种利用海底地热能原位开采天然气水合物的系统及方法
CN108590622A (zh) * 2018-05-04 2018-09-28 西南石油大学 一种带涡流发生器的天然气水合物井下分离装置
CN109707435A (zh) * 2019-01-10 2019-05-03 陕西煤业化工技术研究院有限责任公司 一种声场与水力压裂复合技术提高煤层瓦斯抽采系统及方法
CN109915085A (zh) * 2019-04-12 2019-06-21 吉林大学 一种基于气水平衡的天然气水合物开采方法
WO2019223265A1 (fr) * 2018-05-25 2019-11-28 西南石油大学 Procédé et système d'extraction d'un flux à l'état solide d'hydrate de gaz naturel en condition de circulation vers l'avant sous-équilibrée
US10704350B2 (en) * 2018-08-13 2020-07-07 Hunan University Of Science And Technology Process for drilling natural gas hydrates with submersible core drilling rig using pressure wireline

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116122781A (zh) * 2023-02-23 2023-05-16 西南石油大学 一种实现下伏游离气与海洋水合物联合开采装置与方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007787A (en) * 1975-08-18 1977-02-15 Phillips Petroleum Company Gas recovery from hydrate reservoirs
US4376462A (en) * 1981-02-19 1983-03-15 The United States Of America As Represented By The United States Department Of Energy Substantially self-powered method and apparatus for recovering hydrocarbons from hydrocarbon-containing solid hydrates
JPH09158662A (ja) * 1995-12-07 1997-06-17 Power Reactor & Nuclear Fuel Dev Corp 海底ガスハイドレート分解システム
US5713416A (en) * 1996-10-02 1998-02-03 Halliburton Energy Services, Inc. Methods of decomposing gas hydrates

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1394976A (en) * 1973-08-14 1975-05-21 Do Politekhn Chesky I Airlift for lifting liquids pulps and the like
US4424858A (en) * 1981-02-19 1984-01-10 The United States Of America As Represented By The United States Department Of Energy Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates
US5950732A (en) * 1997-04-02 1999-09-14 Syntroleum Corporation System and method for hydrate recovery
DE19849337A1 (de) * 1998-10-26 2000-01-27 Linde Ag Verfahren und Vorrichtung zum Fördern von Erdgas aus Gashydratlagerstätten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007787A (en) * 1975-08-18 1977-02-15 Phillips Petroleum Company Gas recovery from hydrate reservoirs
US4376462A (en) * 1981-02-19 1983-03-15 The United States Of America As Represented By The United States Department Of Energy Substantially self-powered method and apparatus for recovering hydrocarbons from hydrocarbon-containing solid hydrates
JPH09158662A (ja) * 1995-12-07 1997-06-17 Power Reactor & Nuclear Fuel Dev Corp 海底ガスハイドレート分解システム
US5713416A (en) * 1996-10-02 1998-02-03 Halliburton Energy Services, Inc. Methods of decomposing gas hydrates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 10 31 October 1997 (1997-10-31) *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016333A1 (fr) * 2004-08-10 2006-02-16 Schlumberger Canada Limited Procede d'exploitation d'hydrates gazeux
CN100386500C (zh) * 2004-12-14 2008-05-07 中国科学院广州能源研究所 一种开采天然气水合物的方法及装置
WO2007072172A1 (fr) * 2005-12-20 2007-06-28 Schlumberger Technology B.V. Procede et systeme de developpement de formations porteuses d'hydrocarbures et comprenant la depressurisation des hydrates de gaz
US7530392B2 (en) 2005-12-20 2009-05-12 Schlumberger Technology Corporation Method and system for development of hydrocarbon bearing formations including depressurization of gas hydrates
WO2007117167A1 (fr) * 2006-04-07 2007-10-18 Petru Baciu Procédure et appareil d'extraction de gaz hydrocarbures à partir d'hydrates sous-terrains
US7546880B2 (en) 2006-12-12 2009-06-16 The University Of Tulsa Extracting gas hydrates from marine sediments
CN100434654C (zh) * 2007-02-09 2008-11-19 中国科学院广州能源研究所 一种海水淡化与海洋天然气水合物开采联产方法
EP3369890A1 (fr) * 2008-08-25 2018-09-05 Chevron U.S.A. Inc. Procédé et système de production et de traitement conjoints d'hydrocarbures à partir de réservoirs d'hydrates de gaz naturel et d'hydrocarbures traditionnels
EP2318653A4 (fr) * 2008-08-25 2017-09-27 Chevron U.S.A., Inc. Procédé et système de production et de traitement conjoints d'hydrocarbures à partir de réservoirs d'hydrates de gaz naturel et d'hydrocarbures traditionnels
CN102395751A (zh) * 2008-12-31 2012-03-28 雪佛龙美国公司 用于利用扫掠气从水合物储层中生产烃的方法和系统
EP2382371A4 (fr) * 2008-12-31 2012-02-01 Chevron Usa Inc Procédé et système destinés à produire des hydrocarbures à partir d'un réservoir d'hydrates à l'aide d'un gaz de balayage
EP2382371A2 (fr) * 2008-12-31 2011-11-02 Chevron U.S.A. Incorporated Procédé et système destinés à produire des hydrocarbures à partir d'un réservoir d'hydrates à l'aide d'un gaz de balayage
CN101555797B (zh) * 2009-05-19 2011-08-03 四川大学 海底天然气水合物开采装置及其开采方法
CN103321641A (zh) * 2013-07-01 2013-09-25 北京四达特商业有限责任公司 一种可燃冰固态开采方法
CN103321641B (zh) * 2013-07-01 2015-02-11 北京四达特商业有限责任公司 一种可燃冰固态开采方法
CN103291253A (zh) * 2013-07-06 2013-09-11 李贤明 海床天然气水合物的收集办法及系统
CN105156079A (zh) * 2015-06-12 2015-12-16 西南石油大学 一种海底表层天然气水合物切削收集装置
CN105649589A (zh) * 2016-03-10 2016-06-08 西南石油大学 综合太阳能与超声空化开采天然气水合物的实验装置及方法
CN106930730A (zh) * 2017-03-10 2017-07-07 太原理工大学 一种废弃矿井采空区煤层气的抽采方法
CN106884627A (zh) * 2017-03-28 2017-06-23 中国石油大学(华东) 一种海底天然气水合物开采装置
CN107387043A (zh) * 2017-08-14 2017-11-24 西南石油大学 一种煤层自生多元气体驱替提高煤层气采收率的方法
CN107387043B (zh) * 2017-08-14 2019-10-01 西南石油大学 一种煤层自生多元气体驱替提高煤层气采收率的方法
CN107503723A (zh) * 2017-10-23 2017-12-22 大庆东油睿佳石油科技有限公司 一种天然气水合物排式水平井化学驱开采的方法
CN107503715A (zh) * 2017-10-23 2017-12-22 大庆东油睿佳石油科技有限公司 一种模拟平行水平井注海水开采天然气水合物的装置
CN107514247A (zh) * 2017-10-23 2017-12-26 大庆东油睿佳石油科技有限公司 一种模拟天然气水合物排式水平井注海水开采的装置
CN107542440A (zh) * 2017-10-23 2018-01-05 大庆东油睿佳石油科技有限公司 一种u型井微波加热开采天然气水合物的方法
CN107542436A (zh) * 2017-10-23 2018-01-05 大庆东油睿佳石油科技有限公司 一种模拟平行水平井混相驱开采天然气水合物的装置
CN107542439A (zh) * 2017-10-23 2018-01-05 大庆东油睿佳石油科技有限公司 一种排式水平井开采天然气水合物的方法
CN107558976A (zh) * 2017-10-23 2018-01-09 大庆东油睿佳石油科技有限公司 一种天然气水合物排式水平井注热水开采的方法
CN107676069A (zh) * 2017-10-23 2018-02-09 大庆东油睿佳石油科技有限公司 一种模拟天然气水合物平行水平井化学驱开采的装置
CN107676065A (zh) * 2017-10-23 2018-02-09 大庆东油睿佳石油科技有限公司 一种模拟排式水平井注海水开采天然气水合物的装置
CN107676068A (zh) * 2017-10-23 2018-02-09 大庆东油睿佳石油科技有限公司 一种模拟排式水平井混相驱开采天然气水合物的装置
CN107842360A (zh) * 2017-10-23 2018-03-27 大庆东油睿佳石油科技有限公司 一种模拟天然气水合物平行水平井混相驱开采的装置
CN107514248A (zh) * 2017-10-23 2017-12-26 大庆东油睿佳石油科技有限公司 一种天然气水合物平行水平井化学驱开采的方法
CN107514245A (zh) * 2017-10-23 2017-12-26 大庆东油睿佳石油科技有限公司 一种天然气水合物排式水平井开采的方法
CN108035699A (zh) * 2017-11-27 2018-05-15 华南理工大学 一种利用海底地热能原位开采天然气水合物的系统及方法
CN108590622A (zh) * 2018-05-04 2018-09-28 西南石油大学 一种带涡流发生器的天然气水合物井下分离装置
WO2019223265A1 (fr) * 2018-05-25 2019-11-28 西南石油大学 Procédé et système d'extraction d'un flux à l'état solide d'hydrate de gaz naturel en condition de circulation vers l'avant sous-équilibrée
US11156064B2 (en) 2018-05-25 2021-10-26 Southwest Petroleum University Natural gas hydrate solid-state fluidization mining method and system under underbalanced positive circulation condition
US10704350B2 (en) * 2018-08-13 2020-07-07 Hunan University Of Science And Technology Process for drilling natural gas hydrates with submersible core drilling rig using pressure wireline
CN109707435A (zh) * 2019-01-10 2019-05-03 陕西煤业化工技术研究院有限责任公司 一种声场与水力压裂复合技术提高煤层瓦斯抽采系统及方法
CN109915085A (zh) * 2019-04-12 2019-06-21 吉林大学 一种基于气水平衡的天然气水合物开采方法
CN109915085B (zh) * 2019-04-12 2021-01-29 吉林大学 一种基于气水平衡的天然气水合物开采方法

Also Published As

Publication number Publication date
DE10141896A1 (de) 2003-03-27

Similar Documents

Publication Publication Date Title
WO2003021079A1 (fr) Procede et dispositif d'extraction et de transport d'hydrates de gaz et de gaz contenus dans des hydrates de gaz
EP2394021B1 (fr) Procédé d'extraction de gaz naturel issu d'hydrates d'hydrocarbures avec stockage simultané de dioxyde de carbone dans des formations géologiques
DE3235845C2 (de) Verfahren und Vorrichtung zur Aufspaltung einer unterirdischen stratigraphischen Schichtenbildung
DE60128154T2 (de) Verfahren zur entsorgung von biologischen feststoffen und zur erzeugung von methan
US10053966B2 (en) Nanogas flooding of subterranean formations
US20150159917A1 (en) Method and apparatus of using heat generated by single well engineered geothermal system (swegs) to heat oil laden rock or rock with permeable fluid content for enhance oil recovery
DE1758780A1 (de) Verfahren zum Lagern und Wiederabziehen von Kohlenwasserstoffen in bzw.aus Salzkavernen
DE102010023542B4 (de) Vorrichtung und Verfahren zur Gewinnung, insbesondere In-Situ-Gewinnung, einer kohlenstoffhaltigen Substanz aus einer unterirdischen Lagerstätte
US11585195B2 (en) Treatment of subterranean formations
US20190093463A1 (en) Hydraulic Fracturing with Nanobubbles
EP1412615B1 (fr) Vaporisation in situ
EP2686517B1 (fr) Systèmes et procédés pour séparer des mélanges de pétrole et/ou de gaz
EP3294984B1 (fr) Procédé de stabilisation mécanique de sédiments abyssaux, de gisements marins de matières premières et/ou d'une pente sous-marine et procédé de régulation/conditionnement des propriétés hydrauliques de sédiments abyssaux
CA2658996A1 (fr) Recuperation de lixiviat de petrole des sables bitumineux et de matieres hotes semblables
DD139737A5 (de) Verfahren zur gewinnung von organischen gasen
DE60002604T2 (de) Methode zur rückgewinnung wasserlöslicher tenside
DE60026148T2 (de) Verfahren zur abfallbeseitigung und methanerzeugung
EP2340353B1 (fr) Dispositif et procédé pour l'assainissement et la séparation d'accumulations gazeuses dans des eaux
DE1249191B (de) Verfahren zur sekundären Gewinnung von Öl durch Fluten mit einer Flüssigkeit hoher Dichte
DE3230927C2 (de) Verfahren zur Verladung und/oder zum Umschlag von umweltunfreundlichen Materialien bei der Betreibung von Offshore-Erdölfeldern im Flachwasser- und Wattenbereich und hierzu geeignete künstliche Insel
DE102016112590B4 (de) Verfahren zum Schutz der Wasserqualität von Gewässern beim Verwahren von organikreichem Eisenhydroxidschlamm (EHS)
Neff et al. Environmental challenges of heavy crude oils: Management of liquid wastes
Bergmo et al. CO2 capture from offshore oil installations: An evaluation of alternative methods for deposition with emphasis on carbonated water injection
US20230271111A1 (en) Supramolecular Host Guest Product Concentrators For Production Fluids
Nabzar Panorama 2011: Water in fuel production Oil production and refining

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP