WO2003018870A2 - Einrichtung zur reaktiven plasmabehandlung von substraten und verfahren zur anwendung - Google Patents

Einrichtung zur reaktiven plasmabehandlung von substraten und verfahren zur anwendung Download PDF

Info

Publication number
WO2003018870A2
WO2003018870A2 PCT/DE2002/003131 DE0203131W WO03018870A2 WO 2003018870 A2 WO2003018870 A2 WO 2003018870A2 DE 0203131 W DE0203131 W DE 0203131W WO 03018870 A2 WO03018870 A2 WO 03018870A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
plasma
vacuum chamber
plasma source
substrates
Prior art date
Application number
PCT/DE2002/003131
Other languages
English (en)
French (fr)
Other versions
WO2003018870A3 (de
Inventor
Hans-Ulrich Poll
Dietmar Roth
Original Assignee
Roth & Rau Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roth & Rau Ag filed Critical Roth & Rau Ag
Priority to EP02760136A priority Critical patent/EP1421227A2/de
Publication of WO2003018870A2 publication Critical patent/WO2003018870A2/de
Publication of WO2003018870A3 publication Critical patent/WO2003018870A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32743Means for moving the material to be treated for introducing the material into processing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/32779Continuous moving of batches of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2001Maintaining constant desired temperature

Definitions

  • the invention relates to a device according to the preamble of claim 1, in particular for the reactive plasma treatment or plasma-assisted coating of substrates at elevated temperature in a low-pressure plasma of reactive gases. Furthermore, the invention relates to a method for using a device according to the invention.
  • the invention relates to both chemical and physical vapor deposition (CVD, PVD), which are generally known for etching, coating or for modifying a substrate surface.
  • this temperature is generated by, for example, the substrates lying on a correspondingly hot support.
  • the heat is transferred from the carrier to the substrate both by heat radiation and by heat conduction.
  • the disadvantage here is that the carrier must be hot itself and the heat transfer is very slow due to the vacuum conditions that are often required for the process.
  • the substrate carrier When running through with moving substrates, the substrate carrier must either be kept permanently at a high temperature or heated up quickly when loading the system.
  • thin substrates of low heat capacity are heated directly by heat radiation from a separate radiation source, it being advantageous if the substrates of the radiation source offer the largest possible exposed absorption surface by means of suitable receiving devices.
  • the radiation source or parts thereof, e.g. Radiation window, and the substrate recordings are located directly in the reaction space. The properties of these parts are often undesirably changed in the treatment process by coating or modification, e.g. in its permeability to heat radiation or its heat absorption capacity.
  • reaction gases it is advantageous, if necessary also indispensable, for the reaction gases to be low
  • the plasma is generated electrically, with a voltage being applied to a suitable electrode arrangement, which ignites an electrical gas discharge.
  • a high effect of the plasma is achieved when the with the
  • DE 198 53 121 Cl specifies a method for treating a surface in a high-frequency plasma.
  • the surface to be treated is switched as an electrode of the high-frequency discharge, a thin electrically conductive layer being formed on the surface and the energy being supplied to the conductive layer by means of a coupling electrode, which is arranged on the side close to the substrate, which extends from the surface to be coated from behind the substrate.
  • Plasma chemical material conversion requires a sufficiently high supply of process gas or reactive gas in the plasma area. This must be ensured by supplying a fresh gas mixture and deriving inactive, gaseous secondary products from the reaction. An even response, e.g. an areal homogeneous coating, etching or
  • Modification rate is achieved when the process gases flow evenly onto the plasma area and the substrate surface and gaseous reaction products are evenly discharged from the reaction area in front of the substrate surface. That can be done by appropriate
  • Gas routing devices are effected. However, such devices often adversely affect plasma generation in terms of their effectiveness and uniformity.
  • the gas guiding devices change the electrical and magnetic field conditions in the vicinity of the plasma source and conversely the flow conditions of the process gases are disturbed by the electrode internals.
  • the reaction products are more or less uniformly deposited in the entire plasma space.
  • the corresponding undesirable coatings of the plasma chamber are associated with a high cleaning effort.
  • the electrodes of the plasma source are also coated, which can very quickly lead to insulation of the electrodes and consequently to the impediment or extinction of the plasma discharge.
  • the invention is therefore based on the object of creating a device for reactive plasma-assisted plasma treatment of at least one substrate, which ensures reliable homogeneous plasma generation over the surface to be treated, as well as uniform temperature control and reactive gas guidance. Furthermore, contamination of the device by reaction products is to be largely avoided. In particular, the device should also be able to be operated as a continuous system. Another task is to provide a procedure for using the facility.
  • the invention solves the problem for the device by the features specified in the characterizing part of claim 1. For the method, the object is achieved by the features of claim 9.
  • Advantageous further developments of the invention are characterized in the respective subclaims and are described in more detail below together with the description of the preferred embodiment of the invention, including the drawing.
  • the process space within a vacuum chamber is essentially limited to the immediate plasma area with the surfaces of the substrates to be treated and the components required for supplying and distributing the process gas.
  • the electrodes of the plasma generating device and the substrate heating device are arranged in a separate room, separate from the plasma room, within the vacuum chamber. In the invention, these spaces are referred to as the first space, in which the substrate arrangement and the reactive gas inlet are located, and as the second space, in which the electrodes of the plasma source and the substrate heating device are arranged.
  • Both rooms are located inside the vacuum chamber, whereby they are separated from each other by a partition.
  • the partition is permeable to the electrical and magnetic fields of the plasma electrodes and the heat radiation from the substrate heating device.
  • a partition made of glass or ceramic is claimed.
  • the protection of the invention also includes other materials, such as quartz or plastics, which, under the given technological conditions, ensure the required stability and permeability for electrical and magnetic fields and the heat radiation.
  • High-frequency alternating voltages (HF) or microwave arrangements (MW) can be used to generate the plasma, in practice a high-frequency plasma source is often more advantageous.
  • electrodes of an HF plasma source can be flat and have openings. Such electrodes can very advantageously be arranged directly on the dividing wall, such that the plasma discharge is formed through the dividing wall within the first space.
  • the substrate arrangement can advantageously lie directly on the partition, so that in particular flat substrates can be arranged directly within the center of the plasma discharge.
  • the reactive gas inlet can advantageously be arranged flat in the form of a gas shower opposite the partition directly above the substrate arrangement.
  • the substrate heating device for heating the substrate arrangement can advantageously be arranged behind the electrodes in relation to the partition with the substrate arrangement in the case of the described flat and perforated electrodes of an HF plasma source.
  • the heat radiation can act flatly on the substrate arrangement through the openings in the electrodes and the partition.
  • the openings should advantageously be arranged in the electrode surface with a high surface density and should not be larger than a few millimeters in diameter. A flat homogeneous plasma with high radiation permeability is thus achieved. Grid-shaped wire nets are also possible.
  • the device can also be designed as a continuous system.
  • the inventive Partition wall consisting of a static plate separating the electrodes from the first space and a second plate which is arranged to be movable from the first via a vacuum gap which is as narrow as possible and which carries the substrates.
  • the second movable plate can be designed as a conveyor belt.
  • the entire vacuum chamber is evacuated in practice.
  • the partition does not have to be vacuum-tight, but a certain gas exchange may be possible, with an appropriate control of the supply of the reactive gases and the discharge of the inactive secondary products in or out of the first room to avoid that an undesirably effective amount of reactive gases from the can penetrate the first room into the second room.
  • a neutral atmosphere should be set in the second room.
  • a process gas is let in and the plasma source is ignited, so that a plasma discharge takes place in the first space in the area of the substrate arrangement, under the effect of which reactive products arise deposit the substrates or treat the surfaces with the plasma discharge, e.g. are etched.
  • reaction products of the plasma process are deposited not only on the substrates in a known manner, but also in the entire first room. In the second room with the
  • Electrodes of the plasma source in which there is no reactive gas the mechanical internals like the electrodes are practically not coated with disruptive deposits. This part of the device thus remains clean and in particular the electrodes of the plasma source and the substrate heating device can be operated without problems.
  • the required maintenance effort of the facility, especially for cleaning work, is significantly reduced.
  • the advantages are equally effective in batch systems as in continuous systems.
  • the drawing shows a schematic representation of a continuous system according to the invention in side view.
  • the drawing shows a vacuum chamber 1 with a substrate inlet lock 2 and a substrate outlet lock 3.
  • Substrates 4 in the form of semiconductor wafers lie on a multiplicity of glass substrate carriers 5, which are arranged in a row through the vacuum chamber 1 by means of a transport system (not shown) in the direction of the arrow can be moved.
  • the substrate carrier 5 consist of glass plates in the exemplary embodiment with a thickness of 6 mm.
  • the substrate supports 5 divide the vacuum chamber 1 into a first space 6 and a second space 7 in the manner of a partition wall according to the invention.
  • the substrate supports 5 are electrically insulating, have low dielectric losses and are therefore permeable to high-frequency, plasma-generating electrical and magnetic fields, and heat radiation.
  • the electrodes 8 and 9 are insulated by two glass plates 10 and 11, flat, symmetrical and held in one plane parallel to the substrate carriers 5.
  • a radiation-permeable, metallic shield 13 in the example in the form of a coarse-meshed metal mesh, is provided on the side of the electrode arrangement facing away from the substrate carriers.
  • Radiation spectrum is set such that a high proportion of the radiated thermal energy can penetrate the arrangements between it and the substrates 4 with little loss, so that the radiation-absorbing substrates can be optimally heated.
  • An Si 3 N 4 protective layer is to be applied to the already mentioned semiconductor wafers as substrates 4 using a CVD method.
  • the substrates 4 are introduced through the substrate entry lock 2 into the first space 6 of the vacuum chamber 1.
  • the substrates 4 lie directly on the substrate carriers 5.
  • the vacuum chamber is evacuated and a mixture of silane and ammonia is permanently admitted into the first space 6 as a reactive gas and the gaseous inactive secondary products are removed from the first space 6 via an exhaust gas line, not shown.
  • the heat radiator 14 is in operation and heats the substrates 4 from below through the substrate carrier 5 to the required process temperature of approximately 300 ° C.
  • a plasma discharge is maintained between the electrodes 8 and 9, the main discharge current running through the substrate carrier 5 directly above the substrates 4.
  • the electrodes 8 and 9 are acted upon by the HF generator 12 with a high-frequency voltage with a frequency in the range of 100 kHz, a pressure of approximately 0.01 to 1 mbar being set in the vacuum chamber 1.
  • the plasma power based on the electrode area is, for example, between 0.1 and 1 W / cm 2 -
  • the substrate carriers 5 with the substrates 4 are slowly passed through the vacuum chamber 1, quickly heated to the reaction temperature of approx. 300 ° C. and under the action of the plasma and the reactive gas made of silane and ammonia, a protective layer of Si 3 N 4 separates continuously from.
  • a suitable microwave plasma source can also be used.
  • a substrate heating device can also be used, in which the heat radiation is introduced into the first room via windows.
  • the invention naturally also includes devices in which an inert gas is used instead of a reactive gas for specific applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Die Erfindung betrifft eine Einrichtung zur reaktiven Plasmabehandlung von Substraten (4), bestehend aus einer Vakuumkammer (1) mit mindestens einer Substratanordnung, einer Plasmaquelle, z.B. einer Hochfrequenz-Plasmaquelle mit flächigen Elektroden (8, 9), einem Reaktivgaseinlass (15) und einer Substrat-Heizeinrichtung. Die Vakuumkammer (1) besteht aus einem ersten Raum (6) und einem zweiten Raum (7), die mittels einer Trennwand aus Glas oder Keramik voneinander getrennt sind. Im ersten Raum (6) sind die Substratanordnung sowie der Reaktivgaseinlass (15) und im zweiten Raum (7) die Elektroden (8, 9) der Plasmaquelle und die Substrat-Heizeinrichtung angeordnet. Die Substratanordnung und die Elektroden (8, 9) der Plasmaquelle können parallel zueinander angeordnet sein. Weiterhin betrifft die Erfindung ein Verfahren zur Anwendung einer Einrichtung. Dabei wird mindestens ein Substrat (4) als Substratanordnung in den ersten Raum (6) der Vakuumkammer (1) eingebracht, die Vakuumkammer (1) evakuiert, das Substrat (4) mittels der Substrat-Heizeinrichtung auf eine technologisch vorgegebene Temperatur aufgeheizt und in der Folge zur Abscheidung einer Beschichtung auf dem Substrat (4) oder zur Oberflächenbehandlung der Substrate (4) mittels der Plasmaquelle im ersten Raum (6) ein Plasma erzeugt und ein Reaktivgas eingelassen.

Description

Beschreibung
Einrichtung zur reaktiven Plasmabehandlung von Substraten und Verfahren zur Anwendung
Technisches Gebiet
Die Erfindung betrifft eine Einrichtung nach dem Oberbegriff des Anspruchs 1, insbesondere für die reaktive Plasmabehandlung oder plasmagestützten Beschichtung von Substraten bei erhöhter Temperatur in einem Niederdruckplasma reaktiver Gase. Des Weiteren betrifft die Erfindung ein Verfahren zur Anwendung einer erfindungsgemäßen Einrichtung. Dabei betrifft die Erfindung sowohl die chemische wie auch die physikalische Dampfabscheidung (CVD, PVD) , die zum Ätzen, Beschichten oder zur Modifizierung einer Substratoberfläche allgemein bekannt sind.
Stand der Technik
CVD- und PVD-Verfahren zur Erzeugung dünner Oberflächenschichten aber auch zum Ätzen und Modifizieren von Substratoberflächen unter Einwirkung von chemisch reaktiven Dämpfen erfordern in vielen Fällen eine Substrattemperatur von mehreren hundert Grad Celsius.
Nach dem Stand der Technik wird diese Temperatur erzeugt, indem die Substrate z.B. auf einem entsprechend heißen Träger aufliegen. Die Wärme wird dabei sowohl durch Wärmestrahlung als auch durch Wärmeleitung vom Träger auf das Substrat übertragen. Nachteilig ist dabei, dass der Träger selbst heiß sein muss und der Wärmeübergang durch die für den Prozess häufig notwendigen Vakuumbedingungen nur sehr langsam abläuft. Bei Durchlauf erfahren mit bewegten Substraten muss der Substratträger entweder permanent auf hoher Temperatur gehalten oder beim Beschicken der Anlage schnell aufgeheizt werden.
Dünne Substrate von geringer Wärmekapazität werden nach dem Stand der Technik direkt durch Wärmestrahlung aus einer separaten Strahlungsquelle aufgeheizt, wobei es vorteilhaft ist, wenn die Substrate der Strahlungsquelle durch geeignete Aufnahmevorrichtungen eine möglichst große, freiliegende Absorptionsfläche anbieten. Die Strahlungsquelle oder Teile davon, wie z.B. Strahlungsfenster, und die Substrataufnahmen befinden sich direkt im Reaktionsraum. Diese Teile werden im Behandlungsprozess durch Beschichtung oder Modifizierung in ihren Eigenschaften oft in unerwünschter Weise verändert, z.B. in ihrer Durchlässigkeit für Wärmestrahlung oder ihrem Wärmeabsorptionsvermögen.
Zur Erzeugung einer hohen Reaktionsrate ist es vorteilhaft, ggf. auch unerlässlich, die Reaktionsgase bei niedrigem
Druck in den Plasmazustand zu überführen. Dabei wird durch die Wechselwirkung der Substrate mit den energiereichen Plasmateilchen Energie übertragen. Die damit verbundene Erwärmung reicht jedoch im Allgemeinen nicht zur Erzeugung und Aufrechterhaltung der notwendigen Substrattemperatur aus .
Die Plasmaerzeugung erfolgt auf elektrischem Wege, wobei an eine geeignete Elektrodenanordnung eine Spannung angelegt wird, die eine elektrische Gasentladung zündet. Eine hohe Wirkung des Plasmas wird dann erreicht, wenn die mit der
Reaktionsgeschwindigkeit direkt verbundene Plasmadichte im Reaktionsgebiet unmittelbar vor dem Substrat hohe Werte besitzt. Es wurde deshalb bereits vorgeschlagen, die Substrate selbst zu Elektroden einer Plasmastrecke zu machen. Unter geeigneten Plasmaanregungsbedingungen erreicht die Plasmadichte in Elektrodennähe die höchsten Werte.
Beispielsweise gibt die DE 198 53 121 Cl ein Verfahren zur Behandlung einer Oberfläche in einem Hochfrequenzplasma an. Die zu behandelnde Oberfläche wird als eine Elektrode der Hochfrequenz-Entladung geschaltet, wobei auf der Oberfläche eine dünne elektrisch leitfähige Schicht ausgebildet wird und die Energiezufuhr zur leitfähigen Schicht mittels einer Kopplungselektrode erfolgt, welche an der Seite dicht am Substrat angeordnet wird, die sich von der zu beschichtenden Oberfläche aus hinter dem Substrat befindet.
Die plasmachemische Stoffwandlung erfordert ein ausreichend hohes Angebot an Prozessgas oder Reaktivgas im Plasmagebiet. Das muss durch die Zufuhr von frischem Gasgemisch und die Ableitung inaktiver, gasförmiger Folgeprodukte der Reaktion sichergestellt werden. Eine gleichmäßige Reaktion, z.B. eine flächenhaft homogene Beschichtungs-, Ätz- oder
Modifizierungsrate wird erreicht, wenn die Prozessgase das Plasmagebiet und die Substratoberfläche gleichmäßig anströmen und gasförmige Reaktionsprodukte flächenhaft gleichmäßig aus dem Reaktionsgebiet vor der Substratober- fläche abgeleitet werden. Das kann durch entsprechende
Gasführungseinrichtungen bewirkt werden. Solche Einrichtungen beeinflussen jedoch die Plasmaerzeugung in ihrer Wirksamkeit und Gleichmäßigkeit oft nachteilig. Die Gasführungseinrichtungen verändern die elektrischen und magneti- sehen Feldverhältnisse in der Umgebung der Plasmaquelle und umgekehrt werden die Strömungsverhältnisse der Prozessgase durch die Elektrodeneinbauten gestört. Bei allen bekannten reaktiven plasmagestützen CVD- und PVD- Verfahren ist besonders nachteilig, dass sich die Reaktionsprodukte im gesamten Plasmaraum mehr oder weniger gleichmäßig niederschlagen. Die entsprechenden unerwünsch- ten Beschichtungen der Plasmakammer sind mit einem hohen Reinigungsaufwand verbunden. Besonders nachteilig ist dabei, dass auch die Elektroden der Plasmaquelle beschichtet werden, was sehr schnell zu einer Isolation der Elektroden führen kann und in der Folge zur Behinderung oder zum Erlöschen der Plasmaentladung.
Bei Beschichtungseinrichtungen mit unten angeordneten Substraten sowie oben liegender Behandlungs- oder Beschich- tungsoberflache (face up) besteht die Gefahr, dass Partikel von darüber befindlichen Bauelementen auf die Behandlungs- Oberfläche herabfallen. Umgekehrte Einrichtungen (face down) erfordern meist aufwändige Substrathalterungen und die Partikelabscheidung auf der Behandlungsoberfläche ist durch Gasströmungen dennoch nicht vollständig zu verhindern.
Darstellung der Erfindung
Der Erfindung liegt damit als Aufgabe zugrunde, eine Einrichtung zur reaktiven plasmagestützen Plasmabehandlung von mindestens einem Substrat zu schaffen, die eine sichere homogene Plasmaerzeugung über der zu behandelnden Oberflä- ehe sowie eine gleichmäßige Temperierung und Reaktivgasfüh- rung gewährleistet. Weiterhin soll eine Verschmutzung der Einrichtung durch Reaktionsprodukte weitgehend vermieden werden. Die Einrichtung soll insbesondere auch als Durchlaufanlage betrieben werden können. Eine weitere Aufgabe besteht darin, ein Verfahren zur Anwendung der Einrichtung anzugeben. Die Erfindung löst die Aufgabe für die Einrichtung durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale. Für das Verfahren wird die Aufgabe durch die Merkmale des Anspruchs 9 gelöst. Vorteilhafte Weiterbildun- gen der Erfindung sind in den jeweiligen Unteransprüchen gekennzeichnet und werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführung der Erfindung, einschließlich der Zeichnung, näher dargestellt.
Der Kern der Erfindung besteht darin, dass der Prozessraum innerhalb einer Vakuumkammer im Wesentlichen auf das unmittelbare Plasmagebiet mit den zu behandelnden Oberflächen der Substrate und den erforderlichen Bauelementen zur Prozessgaszuführung und -Verteilung begrenzt wird. Die Elektroden der Plasma-Erzeugungseinrichtung sowie die Substrat-Heizeinrichtung werden in einem gesonderten Raum, getrennt vom Plasmaraum, innerhalb der Vakuumkammer angeordnet. In der Erfindung werden diese Räume als erster Raum, in dem sich die Substratanordnung und der Reaktivgas- einlass befinden, und als zweiter Raum, in dem die Elek- troden der Plasmaquelle und die Substrat-Heizeinrichtung angeordnet sind, bezeichnet.
Beide Räume befinden sich innerhalb der Vakuumkammer, wobei sie mittels einer Trennwand voneinander getrennt werden. Die Trennwand ist durchlässig für die elektrischen und magnetischen Felder der Plasmaelektroden und die Wärmestrahlung der Substrat-Heizeinrichtung. Erfindungsgemäß wird eine Trennwand aus Glas oder Keramik beansprucht. Unter den Schutz der Erfindung fallen aber auch anderen Werkstoffe, wie Quarz oder Kunststoffe, die bei den gegebe- nen technologischen Bedingungen die erforderliche Stabilität sowie Durchlässigkeit für elektrische und magnetische Felder und die Wärmestrahlung gewährleisten. Zur Plasmaerzeugung können hochfrequente Wechselspannungen (HF) oder Mikrowellenanordnungen (MW) eingesetzt werden, wobei in der Praxis eine Hochfrequenz-Plasmaquelle oft vorteilhafter ist. So können Elektroden einer HF-Plasma- quelle flächig ausgebildet sein und Durchbrüche aufweisen. Derartige Elektroden können sehr vorteilhaft unmittelbar an der Trennwand angeordnet sein, derart dass die Plasmaentladung durch die Trennwand hindurch innerhalb des ersten Raumes ausgebildet wird.
Die Substratanordnung kann vorteilhaft unmittelbar auf der Trennwand aufliegen, so dass insbesondere flache Substrate direkt innerhalb des Zentrums der Plasmaentladung angeordnet werden können. Der Reaktivgaseinlass kann in vorteilhafter Weise flächig in Form einer Gasdusche gegenüber der Trennwand unmittelbar über der Substratanordnung angeordnet sein.
Die Substrat-Heizeinrichtung zur Aufheizung der Substratanordnung kann bei den beschriebenen flächigen und Durchbrechungen aufweisenden Elektroden einer HF-Plasmaquelle in vorteilhafter Weise gegenüber der Trennwand mit der Substratanordnung hinter den Elektroden angeordnet sein. Die Wärmestrahlung kann dabei durch die Durchbrüche der Elektroden und die Trennwand hindurch flächig auf die Substratanordnung einwirken. In vorteilhafter Weise sollen die Durchbrüche in der Elektrodenfläche mit hoher Flächendichte angeordnet und nicht größer als einige Millimeter im Durchmesser sein. Damit wird ein flächenhaft homogenes Plasma mit hoher Strahlungsdurchlässigkeit erreicht. Möglich sind auch gitterförmige Drahtnetze.
Nach Anspruch 8 kann die Einrichtung auch als Durchlaufanlage ausgebildet sein. Dabei besteht die erfindungsgemäße Trennwand aus einer statischen, die Elektroden vom ersten Raum trennenden Platte und einer zweiten Platte, die über einen möglichst engen Vakuumspalt getrennt von der ersten beweglich angeordnet ist und die Substrate trägt. Die zweite bewegliche Platte kann als Transportband ausgeführt sein. Eine derartige Anlage kann in besonders vorteilhafter Weise zur plasmagestützten Beschichtung und Behandlung von Halbleiterscheiben eingesetzt werden.
Bei der verfahrensgemäßen Anwendung der Einrichtung wird in der Praxis die gesamte Vakuumkammer evakuiert. Die Trennwand muss dabei nicht vakuumdicht sein, sondern es kann ein gewisser Gasaustausch möglich sein, wobei durch eine geeignete Steuerung der Zuführung der Reaktivgase und Abführung der inaktiven Folgeprodukte in bzw. aus dem ersten Raum vermieden werden sollte, dass eine unerwünscht wirksame Menge reaktiver Gase vom ersten Raum in den zweiten Raum eindringen können. Im zweiten Raum sollte eine neutrale Atmosphäre eingestellt werden.
Nach der Positionierung der Substratanordnung im ersten Raum und Aufheizung derselben mittels der Substrat-Heizeinrichtung auf eine erforderliche technologisch vorgegebene Temperatur wird ein Prozessgas eingelassen und die Plasmaquelle gezündet, so dass im ersten Raum im Bereich der Substratanordnung eine Plasmaentladung stattfindet, unter deren Wirkung sich Reaktivprodukte auf den Substraten abscheiden oder die Oberflächen durch die Plasmaentladung behandelt, z.B. geätzt, werden.
Die Reaktionsprodukte des Plasmaprozesses schlagen sich in bekannter Weise nicht nur auf den Substraten nieder, son- dern im gesamten ersten Raum. Im zweiten Raum mit den
Elektroden der Plasmaquelle, in dem sich kein Reaktivgas befindet, werden die mechanischen Einbauten wie die Elektroden praktisch nicht mit störenden Abscheidungen beschichtet. Damit bleibt dieser Teil der Einrichtung sauber und insbesondere die Elektroden der Plasmaquelle und die Substrat-Heizeinrichtung sind störungsfrei betriebsfähig. Der erforderliche Wartungsaufwand der Einrichtung, insbesondere für Reinigungsarbeiten, wird wesentlich gemindert. Die Vorteile sind im gleichen Maße bei Chargenanlagen wie bei Durchlaufanlagen wirksam.
Die Erfindung wird nachstehend an einem Ausführungsbeispiel näher erläutert werden.
Die Zeichnung zeigt eine schematische Darstellung einer erfindungsgemäßen Durchlaufanläge in der Seitenansicht.
Die Zeichnung zeigt eine Vakuumkammer 1 mit einer Substrat- Eintrittsschleuse 2 und einer Substrat-Austrittsschleuse 3. Substrate 4 in Form von Halbleiterscheiben liegen auf einer Vielzahl aneinander gereihter Substratträger 5 aus Glas, die gemeinsam mittels eines nicht dargestellten Transportsystems in Pfeilrichtung durch die Vakuumkammer 1 hindurch bewegt werden können.
Die Substratträger 5 bestehen aus Glastafeln im Ausführungsbeispiel mit einer Dicke von 6 mm. Die Substratträger 5 teilen die Vakuumkammer 1 in der Art einer erfindungsgemäßen Trennwand in einen ersten Raum 6 und einen zweiten Raum 7. Die Substratträger 5 sind elektrisch isolierend, dielektrisch verlustarm und damit durchlässig für hochfrequente, plasmaerzeugende elektrische und magnetische Felder, sowie Wärmestrahlung. Unmittelbar unterhalb der Substratträger 5, nur durch einen engen Vakuumspalt getrennt, befinden sich zwei Elektroden 8 und 9, welche aus Metall-Lochplatten hergestellt und mit einem HF-Generator 12 zur Erzeugung der Betriebsspannung für die Plasmaentladung verbunden sind.
Die Elektroden 8 und 9 sind durch zwei Glasplatten 10 und 11 isoliert, eben, symmetrisch und in einer Ebene parallel zu den Substratträgern 5 gehaltert. Zur Vermeidung von parasitären Entladungen ist an der von den Substratträgern abgewandten Seite der Elektrodenanordnung eine auf Massepotential liegende, strahlungsdurchlässige, metallische Abschirmung 13, im Beispiel in Form eines grobmaschigen Metallnetzes, vorgesehen.
Gegenüber den Substratträgern 5 unterhalb der Abschirmung 13 befindet sich ein flächiger Wärmestrahler 14, dessen
Strahlungsspektrum so festgelegt ist, dass ein hoher Anteil der ausgestrahlten Wärmeenergie die Anordnungen zwischen ihm und den Substraten 4 weitgehend verlustarm durchdringen kann, so dass die Strahlungsabsorbierenden Substrate opti- mal aufgeheizt werden können.
Im ersten Raum 6 befinden sich entgegen der Substratträger 5 als Trennwand über den Substraten 4 flächig mehrere Austrittsöffnungen eines Reaktivgaseinlasses 15, durch die ein Reaktivgas eingelassen werden kann.
Nachfolgend soll die Anwendung der Einrichtung unter Anwendung des erfindungsgemäßen Verfahrens beschrieben werden. Auf die bereits erwähnten Halbleiterscheiben als Substrate 4 soll eine Si3N4-Schutzschicht nach einem CVD-Verfahren aufgebracht werden. Dazu werden die Substrate 4 durch die Substrat-Eintrittsschleuse 2 in den ersten Raum 6 der Vakuumkammer 1 eingeschleust. Die Substrate 4 liegen direkt auf den Substratträgern 5 auf. Die Vakuumkammer ist evakuiert und in den ersten Raum 6 wird permanent als Reaktivgas ein Gemisch aus Silan und Ammoniak eingelassen und über eine nicht dargestellte Abgasleitung werden die gasförmigen inaktiven Folgeprodukte aus dem ersten Raum 6 entfernt. Der Wärmestrahler 14 ist in Betrieb und heizt von unten durch die Substratträger 5 hindurch die Substrate 4 auf die erforderliche Prozesstemperatur von ca. 300°C auf. Zwischen den Elektroden 8 und 9 wird eine Plasmaentladung aufrecht erhalten, wobei der Haupt-Entladungsstrom durch die Substratträger 5 hindurch unmittelbar oberhalb der Substrate 4 verläuft. Zur Ausbildung der Plasmaentladung werden die Elektroden 8 und 9 über den HF-Generator 12 mit einer hochfrequenten Spannung mit einer Frequenz im Bereich von 100 kHz beaufschlagt, wobei in der Vakuumkammer 1 ein Druck von ca. 0,01 bis 1 mbar eingestellt wird. Die Plasmalei- stung bezogen auf die Elektrodenfläche beträgt beispielhaft zwischen 0, 1 und 1 W/cm2-
Die Substratträger 5 mit den Substraten 4 werden langsam durch die Vakuumkammer 1 geschleust, dabei schnell auf die Reaktionstemperatur von ca. 300°C aufgeheizt und unter der Wirkung des Plasmas und des Reaktivgases aus Silan und Ammoniak scheidet sich kontinuierlich eine Si3N4-Schutzschicht ab.
Die Erfindung ist selbstverständlich nicht auf das beschriebene Ausführungsbeispiel beschränkt. So ist es ohne weiteres möglich, spezifische Abwandlungen sowohl bei
Chargenanlagen wie bei Durchlaufanlagen anzubringen oder weitere technologische Elemente vorzusehen. Als Plasmaquel- le kann auch eine geeignete Mikrowellen-Plasmaquelle eingesetzt werden. Es kann auch eine Substrat-Heizeinrichtung eingesetzt werden, bei der die Wärmestrahlung über Fenster in den ersten Raum eingeleitet wird. Unter die Erfindung fallen selbstverständlich auch solche Einrichtungen, bei denen für spezifische Anwendungsfälle statt einem Reaktivgas ein Inertgas eingesetzt wird.

Claims

Ansprüche
1. Einrichtung zur reaktiven Plasmabehandlung von Substraten (4) bestehend aus einer Vakuumkammer (1) mit mindestens einer Substratanordnung, einer Plasmaquelle, einem Reaktivgaseinlass (15) und einer Substrat-Heizeinrichtung, dadurch gekennzeichnet, dass die Vakuumkammer (1) aus einem ersten Raum (6) und einem zweiten Raum (7) besteht, die mittels einer Trennwand aus Glas oder Keramik voneinander getrennt sind, dass im ersten Raum (6) die Substratanordnung sowie der Reaktivgaseinlass (15) und im zweiten Raum (7) die Elektroden (8, 9) der Plasmaquelle und die Substrat-Heizeinrichtung angeordnet sind.
2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Substratanordnung und die Elektroden (8, 9) der Plasmaquelle parallel zueinander angeordnet sind.
3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Plasmaquelle eine Hochfrequenz- Plasmaquelle mit flächigen Elektroden (8, 9) ist, die Durchbrüche aufweisen.
4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Elektroden (8, 9) der Plasmaquelle beidseitig mit elektrisch isolierenden und wärmestrahlungsdurchlässigen Platten, insbesondere aus Glas (10, 11), abgedeckt sind.
5. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, dass an den Elektroden (8, 9) der Plasmaquelle auf der der Trennwand abgewandten Seite eine wärmestrahlungsdurchlässige elektrische Abschirmung (13) vorhanden ist.
6. Einrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Substrat-Heizeinrichtung eine flächige Stahlungs-Heizeinrichtung ist, die gegenüber der Trennwand hinter der Plasmaquelle angeordnet ist.
7. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Reaktivgaseinlass (15) flächig ausgebildet ist und ausgehend von der Trennwand hinter der Substratanordnung angeordnet ist.
8. Einrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Trennwand aus einer Vielzahl
Substratträger (5) besteht, die mittels einer Führungseinrichtung über eine Substrat-Eintrittsschleuse (2) in die Vakuumkammer (1) eingebracht und über eine Substrat-Austrittsschleuse (3) aus der Vakuumkammer (1) ausgebracht werden können.
9. Verfahren zur Anwendung einer Einrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mindestens ein Substrat (4) als Substratanordnung in den ersten Raum (6) der Vakuumkammer (1) eingebracht wird, dass die Vakuumkammer (1) evakuiert wird, dass das Substrat (4) mittels der Substrat-Heizeinrichtung auf eine technologisch vorgegebene Temperatur aufgeheizt wird und dass in der Folge zur reaktiven Behandlung der Substrate mittels der Plasmaquelle im ersten Raum (6) ein Plasma erzeugt wird und ein Reaktivgas eingelassen wird.
0. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass unter andauernder Aufheizung der Substrate (4), der Plasmaentladung und der Reaktivgaszufuhr eine Vielzahl von Substraten (4) mittels der als Trennwand wirkenden Substratträger (5) über die Substrat-Eintrittsschleuse (2) in die Vakuumkammer (1) eingeschleust und über die Substrat-Austrittsschleuse (3) aus der Vakuumkammer (1) ausgeschleust werden.
PCT/DE2002/003131 2001-08-24 2002-08-23 Einrichtung zur reaktiven plasmabehandlung von substraten und verfahren zur anwendung WO2003018870A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02760136A EP1421227A2 (de) 2001-08-24 2002-08-23 Einrichtung zur reaktiven plasmabehandlung von substraten und verfahren zur anwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001141142 DE10141142B4 (de) 2001-08-24 2001-08-24 Einrichtung zur reaktiven Plasmabehandlung von Substraten und Verfahren zur Anwendung
DE10141142.1 2001-08-24

Publications (2)

Publication Number Publication Date
WO2003018870A2 true WO2003018870A2 (de) 2003-03-06
WO2003018870A3 WO2003018870A3 (de) 2003-05-22

Family

ID=7696245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/003131 WO2003018870A2 (de) 2001-08-24 2002-08-23 Einrichtung zur reaktiven plasmabehandlung von substraten und verfahren zur anwendung

Country Status (3)

Country Link
EP (1) EP1421227A2 (de)
DE (1) DE10141142B4 (de)
WO (1) WO2003018870A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2409313A1 (de) * 2009-03-17 2012-01-25 Roth & Rau AG Substratbearbeitungsanlage und substratbearbeitungsverfahren
WO2012073142A2 (de) * 2010-11-30 2012-06-07 Roth & Rau Ag Verfahren und vorrichtung zur ionenimplantation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976996A (en) * 1987-02-17 1990-12-11 Lam Research Corporation Chemical vapor deposition reactor and method of use thereof
US5976258A (en) * 1998-02-05 1999-11-02 Semiconductor Equipment Group, Llc High temperature substrate transfer module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244574A (ja) * 1985-08-20 1987-02-26 Fujitsu Ltd 化学気相成長方法
JPH0737670B2 (ja) * 1991-04-26 1995-04-26 株式会社日本生産技術研究所 ライン式プラズマcvd装置
US6170428B1 (en) * 1996-07-15 2001-01-09 Applied Materials, Inc. Symmetric tunable inductively coupled HDP-CVD reactor
DE19853121C1 (de) * 1998-11-18 2000-02-24 Poll Hans Ulrich Verfahren und Einrichtung zur Behandlung eines Substrates in einem Hochfrequenzplasma und Anwendung der Einrichtung
DE69919499T2 (de) * 1999-01-14 2005-09-08 Vlaamse Instelling Voor Technologisch Onderzoek, Afgekort V.I.T.O. Vorrichtung zum Aufbringen von Beschichtungen auf ein Substrat durch eine induktiv-angekoppelte magnetisch-begrenzte Plasmaquelle
DE19955671B4 (de) * 1999-11-19 2004-07-22 Muegge Electronic Gmbh Vorrichtung zur Erzeugung von Plasma

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976996A (en) * 1987-02-17 1990-12-11 Lam Research Corporation Chemical vapor deposition reactor and method of use thereof
US5976258A (en) * 1998-02-05 1999-11-02 Semiconductor Equipment Group, Llc High temperature substrate transfer module

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 232 (C-437), 29. Juli 1987 (1987-07-29) & JP 62 044574 A (FUJITSU LTD), 26. Februar 1987 (1987-02-26) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 167 (C-1043), 31. März 1993 (1993-03-31) & JP 04 325687 A (NIHON SEISAN GIJIYUTSU KENKIYUUSHIYO:KK;OTHERS: 01), 16. November 1992 (1992-11-16) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2409313A1 (de) * 2009-03-17 2012-01-25 Roth & Rau AG Substratbearbeitungsanlage und substratbearbeitungsverfahren
WO2012073142A2 (de) * 2010-11-30 2012-06-07 Roth & Rau Ag Verfahren und vorrichtung zur ionenimplantation
WO2012073142A3 (de) * 2010-11-30 2012-11-15 Roth & Rau Ag Verfahren und vorrichtung zur ionenimplantation
CN103237918A (zh) * 2010-11-30 2013-08-07 德国罗特·劳股份有限公司 用于离子注入的方法和装置

Also Published As

Publication number Publication date
DE10141142A1 (de) 2003-03-27
EP1421227A2 (de) 2004-05-26
WO2003018870A3 (de) 2003-05-22
DE10141142B4 (de) 2004-11-11

Similar Documents

Publication Publication Date Title
DE4029268C2 (de) Verfahren zur gleichspannungs-bogenentladungs-unterstützten, reaktiven Behandlung von Gut und Vakuumbehandlungsanlage zur Durchführung
EP2311066B1 (de) Vorrichtung und Verfahren zur Erzeugung dielektrischer Schichten im Mikrowellenplasma
DE69032691T2 (de) Verfahren und Gerät zur Plasmabehandlung unter atmosphärischem Druck
DE3402971C2 (de)
EP1325509B1 (de) Verfahren und vorrichtung zur behandlung von oberflächen mit hilfe eines glimmentladungs-plasmas
DE102010060762B4 (de) Plasmabearbeitungsvorrichtung
CH687987A5 (de) Verfahren zur Erhoehung der Beschichtungsrate in einem Plasmaentladungsraum und Plasmakammer.
DE69820041T2 (de) Verfahren und geraet zur ueberwachung von niederschlaege auf der innenoberflaeche einer plasmabarbeitungskammer
CH687986A5 (de) Plasmabehandlungsanlage und Verfahren zu deren Betrieb.
EP2459767A1 (de) Reinigen einer prozesskammer
DE4132560C1 (en) Plasma-aided deposition of film for integrated semiconductor circuit - using neutral particles, activated by microwave in separate chamber, and non-excited reaction gas, etc.
DE69603569T2 (de) Verfahren zur Substratschadensreduzierung bei PECVD
DE69831602T2 (de) Zweiseitige Shower-Head-Magnetron, Plasmaerzeugungsapparat und Substratbeschichtungsmethode
DE102010056020A1 (de) Verfahren und Vorrichtung zum Ausbilden einer dielektrischen Schicht auf einem Substrat
EP1038306B1 (de) Verfahren und vorrichtung zum vergüten von oberflächen
DE10141142B4 (de) Einrichtung zur reaktiven Plasmabehandlung von Substraten und Verfahren zur Anwendung
DE19631407A1 (de) Vorrichtung zur plasmachemischen Abscheidung von polykristallinem Diamant
EP0257620B1 (de) Verfahren und Vorrichtung zum Ausbilden einer Schicht durch plasmachemischen Prozess
DE102018109738B3 (de) Haltevorrichtung für Wafer, Verfahren zur Temperierung einer Haltevorrichtung und Vorrichtung zur Behandlung von Wafern
EP1854907B1 (de) Vorrichtung zur plasmagestützten chemischen Oberflächenbehandlung von substraten im Vakuum
DE29800950U1 (de) Plasmarektor mit Prallströmung zur Oberflächenbehandlung
DE102013107659A1 (de) Plasmachemische Beschichtungsvorrichtung
EP0036061B1 (de) Verfahren und Rohrreaktor zur Dampfphasenabscheidung und zum Plasmaätzen
DE102011004749B4 (de) Plasmabearbeitungsvorrichtung und Plasmabearbeitungsverfahren
DE19853121C1 (de) Verfahren und Einrichtung zur Behandlung eines Substrates in einem Hochfrequenzplasma und Anwendung der Einrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

Kind code of ref document: A2

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002760136

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002760136

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002760136

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP