WO2003015235A1 - Sistema y metodo de distribucion electrica para un vehiculo con dos redes a diferentes niveles de tension - Google Patents

Sistema y metodo de distribucion electrica para un vehiculo con dos redes a diferentes niveles de tension Download PDF

Info

Publication number
WO2003015235A1
WO2003015235A1 PCT/ES2002/000373 ES0200373W WO03015235A1 WO 2003015235 A1 WO2003015235 A1 WO 2003015235A1 ES 0200373 W ES0200373 W ES 0200373W WO 03015235 A1 WO03015235 A1 WO 03015235A1
Authority
WO
WIPO (PCT)
Prior art keywords
converters
networks
loads
network
converter
Prior art date
Application number
PCT/ES2002/000373
Other languages
English (en)
French (fr)
Inventor
Carles Borrego Bel
Joan Fontanilles Piñas
Gabriel Figuerola
Original Assignee
Lear Automotive (Eeds) Spain, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lear Automotive (Eeds) Spain, S.L. filed Critical Lear Automotive (Eeds) Spain, S.L.
Priority to EP02751192A priority Critical patent/EP1422803A1/en
Publication of WO2003015235A1 publication Critical patent/WO2003015235A1/es

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention concerns in general the electrical distribution systems for motor vehicles and more particularly those systems of supply and distribution of electrical energy comprising two networks at different voltage levels, known in the sector as “dual voltage” and hereinafter referred to in this specification as DV, applied in a car.
  • the invention also relates to a method for implementing said system.
  • Such DV systems typically comprise a first 14V network used to power low-consumption loads, for example for lighting and control signal supply, in turn, usually fed from the second higher voltage network, typically 42V, to through a DC / DC electric converter or from a first B1 battery.
  • Said second 42V network is used to power high consumption loads such as the starter motor, heating system, control of electromagnetic valves, motors, such as those of the windows, position adjustments, fans, etc. and is fed from a generator G (vehicle alternator) or from a second battery B2.
  • the invention also falls within the architectures implemented in the automobile sector to achieve a power sectorization according to which principle a series of zones are defined in the vehicle in each of which there is an intelligent node that, locally controls loads and switches and detectors, sending and receiving information through a multiplexed data bus, which allows a great reduction not only in the number of cables but also in their length, not forgetting the decrease in the number of cables that they pass from one to another area of the vehicle, whose parameter has a significant impact on the ease of wiring assembly.
  • Patent application GB 2 342 515 describes a DV architecture with two networks fed from two batteries B1, B2, for motor vehicles, where it is proposed to use, in addition to the classic DC / DC converter, in general unidirectional to power the low voltage network from the network to higher voltage of a second bidirectional converter to control the state of charging of the two batteries B1 and B2 in order to adjust the power flows between their inputs / outputs.
  • Said second converter is used when, in addition to normal operation (supplying the lower voltage network from the network at the higher voltage level), the low voltage network is fed from the battery connected to the higher voltage branch, the network to Higher voltage is fed from the two batteries B1, B2 or when the battery B1 that feeds the low voltage branch is charged from the network to higher voltage.
  • the invention is thus based on an architecture in which the DC / DC conversion between the two networks at different voltage levels is subdivided into several parallel DC / DC converters, each of them intended to supply a given group of loads, of A car sector.
  • Such DC / DC converters are protected against short circuits according to the typical characteristic curve Vl (foldback curve), so that if on any load (not controlled by a commanded switch device such as a SMART FET, relay or similar device) there is a short circuit that affects said DC / DC converter, this will protect the network by zeroing the voltage and not allowing the rest of the loads to be supplied. It is clear that in such a situation the fuses lose their specific role due to the behavior of the DC / DC converter.
  • the invention proposes to have a plurality of DC / DC converters in parallel, connected to a common point, whose point is also connected to the low voltage battery that will act, in case of short circuit, on the fuse of the grounded load.
  • the power to be supplied is shared by the different converters into which it has been divided and the battery that will supply current is also shared, helping the network if necessary.
  • the different DC / DC converters dynamically change their working point to share the same current.
  • a central control for example according to a master / slave architecture (master / slavtsi, uyu uunuui uney ⁇ and a master microcontroller will adjust the different voltage values and the information of the intensity values required by each load group at the expense of a corresponding DC / DC converter (acquired from a detector or socket for each load group) will be exchanged with said control center using a CAN bus or similar.
  • each of the converters is intended to power a series or group of differentiated loads located in different areas of the vehicle, either in the network at a higher voltage level or at a lower level, according to at the principle of power sectorization explained above, with the particularity that the DC / DC converters used have been designed so that the power that each of them can supply is lower than the maximum consumption of all the aforementioned loads in the sector concrete that supplies, so that the power supply to each group of loads is carried out, at certain times at the expense of at least more than one of said different DC / DC converters.
  • This is due to the consideration that in general, on very rare occasions consumption will be produced by all system loads, and in particular from different sectors, which allows converters to be sized to a lower value than would be necessary. considering a simultaneous and continuous consumption by all charges.
  • the power supplied by said battery can be divided by a factor of n (depending on the number of DC / DC converters of the vehicle), so that the converters can be identical and share the same output current.
  • the battery will be responsible for supplying the charge to blow the fuses. But this architecture will also divide the power conversion as required.
  • a master structure In a dynamic situation (a rapid transient or power fluctuation) and in general with frequencies higher than 100 Hz (eg response to a sharp rise or fall of the windows, light bursts, etc.), a master structure will be required. slave (master / slave) with support in a microprocessor so that all DC / DC converters share the same current. Because the DC / DC converters are located in different areas of the vehicle, a bus such as CAN or VAN can report the current requested by the loads and processed by the different DC / DC converters, so that the current can be shared with a transitory phenomenon The speed of the bus and the communication protocol controlled by the microprocessor are critical factors as well as the method of current detection to configure the system according to the proposal of this invention.
  • Such a configuration with several DC / DC converters will also allow them to share the same thermal overloads due to dissipation, and can be modular.
  • Fig. 1 schematically shows an example of architecture according to the principles of the present invention, with the loads to be supplied by the system distributed and serviced each group of them from a converter.
  • Fig. 2 illustrates the known Vl curve of the converter (foldback curve) that explains the protection against circuit breakers inherent in the converter so that in case of a request for intensity greater than a certain level the converter will quickly tend to protect itself by passing the output voltage of the same to zero
  • Fig. 3 illustrates an architecture with control of the operating point of the various converters from a control center according to the preferred embodiment of the invention detailed in its claims.
  • Fig. 1 illustrates an electrical distribution system, where a series of charges Q1 to Q6, to be supplied are sectorized both in a first network r1, of voltage at a higher level, and in particular of 42 V, fed from a generator G (vehicle alternator) and which supplies a starter motor S, as in a network r2 at lower voltage level, providing 14 V.
  • a series of converters C1, C2, C3 are arranged in parallel between the two cited networks r1, R2, with its outputs connected to a common point or output, powered from one or the other of the aforementioned batteries B1, B2.
  • the voltage network at the upper level of 42 V is connected, in addition to the B2 battery, to a generator G (vehicle alternator) and is intended to supply a starter motor S.
  • G vehicle alternator
  • Fig. 2 the typical curve Vl of a converter, or of protection against short circuits, is shown according to which if in any load connected to the converter and not protected by a commanded switch device such as a SMART FET, relay or similar) a short circuit occurs that affects said DC / CDC converter, this will protect the network by immediately setting the voltage to zero and not allowing the supply of the rest of the loads.
  • the parallel arrangement illustrated in Fig. 1, of converters C1, C2, C3, connected to a common point to which one of the batteries B1 or B2 is also connected solves this problem, when the battery acts by melting the fuse of the load connected to ground and in this way the power to be supplied is shared by the different converters C1, C2, C3.
  • the DC / DC converters change their working point to share the same current, for which purpose a central control M will adjust the different voltage values in the nodes to which the respective outputs of the DC / DC, C1, C2, C3 converters and the information about the currents requested in each of said nodes will be exchanged using for example a CAN bus.
  • the system is simply in a master / slave architecture where said control center M integrating the microprocessor is constituted as master and each of the converters C1, C2, C3 as a slave Detectors D1, D2, D3 are provided to capture the requested current at one or the other of the outputs of each DC / DC converter, C1, C2, C3, which informs about the control, where the microcontroller is loaded, for example, in a suitable, programmable memory, a management algorithm, for power distribution to be supplied between the different DC / DC converters, C1-C3 in order to achieve an equalized output thereof.

Abstract

Consiste en una arquitectura con una red r1 alimentada desde otra red r2 o viceversa por un convertidor CC/CC, con la red r2 conectada a un generador G y alimentando un motor S, y ambas redes r1,r2 conectadas a correspondientes baterías B1, B2, comprendiendo varios convertidores CC/CC C1, C2, C3 iguales, en paralelo entre r1 y r2, conexionados a un punto común y cada uno abasteciendo un grupo de cargas Q1-Q6, diferenciadas, siendo la potencia de cada convertidor inferior a la del máximo consumo de las cargas asignadas, cuyos convertidores C1, C2, C3 están integrados en una arquitectura maestro/esclavo gobernados desde un centro de control M con microcontrolador que gestiona la potencia a entregar a las cargas por parte de cada uno de los citados convertidores de manera sincronizada.

Description

SISTEMA Y MÉTODO DE DISTRIBUCIÓN ELÉCTRICA PARA UN VEHÍCULO CON DOS REDES A DIFERENTES NIVELES DE TENSIÓN
Ámbito de la invención
La presente invención concierne en general a los sistemas de distribución eléctrica para vehículos a motor y más en particular a aquellos sistemas de suministro y distribución de energía eléctrica que comprenden dos redes a diferentes niveles de tensión, conocidos en el sector como "dual voltage" y en adelante referidos en esta memoria descriptiva como DV, aplicados en un automóvil.
La invención se refiere asimismo a un método para implementación del citado sistema.
Tales sistemas DV comprenden típicamente una primera red a 14 V utilizada para alimentar cargas de bajo consumo, por ejemplo para iluminación y suministro de señales de control, alimentada a su vez, usualmente, desde la segunda red a tensión superior, típicamente de 42V, a través de un convertidor eléctrico CC/CC o desde una primera batería B1. Dicha segunda red de 42 V es utilizada para alimentar cargas de elevado consumo tales como el motor de arranque, sistema de calefacción, control de válvulas electromagnéticas, motores, tales como los de los elevalunas, ajustes de posición, ventiladores, etc. y es alimentada desde un generador G (alternador del vehículo) o desde una segunda batería B2.
La invención se inscribe además dentro de las arquitecturas implementadas en el sector del automóvil para conseguir una sectorización de la potencia según cuyo principio se definen en el vehículo una serie de zonas en cada una de las cuales existe un nodo inteligente que, de forma local controla las cargas y los interruptores y detectores, enviando y recibiendo información a través de un bus de datos multiplexado, lo cual permite una gran reducción no sólo en el número de cables sino también en su longitud, sin olvidar la disminución en el número de cables que pasan de una a otra zona del vehículo, cuyo parámetro incide de forma destacada de cara a la facilidad de montaje del cableado. Antecedentes de la invención
Los sistemas DV para vehículos a motor se hallan descritos en numerosos documentos de patente y solicitudes de patente, pudiendo citar así los siguientes: US 5 334 926, US 6 232 674, EP 337155, EP 539982, EP 1033804, WO 99/22434 y WO 00/76812.
Se considera también relevante para una comprensión de la tecnología DV el documento de Joan Fontanilles, Jordi Giró, Javier Maixé y otros "New requirements for dual voltage CC/CC converter and power distribution System", United Technologies Automotive MAI S.A. y Rovira Virgili University Electrical and Automatic Control Engineering Department, Tarragona (España) publicado en el Congreso del EAEC (European Automobile Engineers Cooperation) , Barcelona 1999. La solicitud de patente GB 2 342 515 describe una arquitectura DV con dos redes alimentadas desde sendas baterías B1 , B2, para vehículo a motor, en donde se propone la utilización, además del convertidor clásico CC/CC, en general unidireccional para alimentar la red de baja tensión desde la red a tensión superior de un segundo convertidor bidireccional para controlar el estado de carga de las dos baterías B1 y B2 con el fin de ajustar los flujos de potencia entre sus entradas/salidas. Dicho segundo convertidor es utilizado cuando, además del funcionamiento normal (alimentar la red de menor nivel de tensión desde la red a nivel de tensión superior), la red de baja tensión es alimentada desde la batería conectada al ramal a tensión superior, la red a tensión superior es alimentada desde las dos baterías B1 , B2 o cuando la batería B1 que alimenta el ramal de baja tensión es cargada desde la red a tensión superior.
Aunque el uso de dos convertidores en paralelo, según expresa este último documento es una característica que en principio es común con la arquitectura que propone la presente invención, esta última, conforme se detallará a continuación, se basa en la utilización, en general, de más de dos convertidores CC/CC uni o bi-direccionales y en una específica forma de controlarlos para alcanzar una finalidad singular, cual es la ecualización de las salidas de todos los convertidores, la integración del citado conjunto de convertidores en un diseño de sectorización ut¡ ict puitüiuia uei verucuio y un dimensionado de dichos convertidores, por debajo de las exigencias del grupo de cargas del sector que abastece cada uno de ellos. Ello es determinante de unas condiciones de funcionamiento del sistema de distribución de energía eléctrica en donde unos y otros convertidores CC/CC cooperan, todo ello inexistente en las reglas técnicas expuestas por el citado documento de la solicitud de patente GB 2 342 515.
Breve descripción de la invención
La invención se basa así en una arquitectura en la cual la conversión CC/CC entre las dos redes a niveles distintos de tensión se subdivide en varios convertidores CC/CC en paralelo, cada uno de ellos destinado a abastecer un grupo de cargas determinado, de un sector del automóvil. Tales convertidores CC/CC, como es bien conocido, están protegidos contra cortocircuitos conforme a la típica curva característica V-l (foldback curve), de manera que si en cualquier carga (no controlada por un dispositivo interruptor comandado tal como un SMART FET, relé o dispositivo similar) se produce un cortocircuito que afecte a dicho convertidor CC/CC, éste protegerá la red poniendo la tensión a cero y no permitiendo el suministro del resto de las cargas. Es evidente que en tal situación los fusibles pierden su papel específico debido al comportamiento del convertidor CC/CC.
Para evitar tal problema, conforme a la invención, se propone disponer una pluralidad de convertidores CC/CC en paralelo, conectados a un punto común, cuyo punto está asimismo conexionado a la batería de baja tensión que actuará, en caso de cortocircuito, sobre el fusible de la carga conectada a tierra. De esta manera la potencia a suministrar se comparte por los diferentes convertidores en los que se ha dividido y también se comparte la batería que suministrará corriente ayudando a la red en caso de ser necesario. En una realización preferida de la invención que es donde la misma evidencia su plena potencialidad, se ha previsto que los diferentes convertidores CC/CC cambien dinámicamente su punto de trabajo para llegar a compartir la misma corriente. A tal efecto un control central, por ejemplo según una arquitectura maestro/esclavo (master/slavtsi, uyu uunuui uneyí i un microcontrolador maestro ajustará los diferentes valores de tensión y la información de los valores de intensidad requeridos por cada grupo de cargas a expensas de un correspondiente convertidor CC/CC (adquirida desde un detector o toma para cada grupo de cargas) se intercambiará con dicho centro de control utillizando un bus CAN o similar.
Es característico también de la invención que cada uno de los convertidores esté destinado a alimentar una serie o grupo de cargas diferenciadas y localizadas en distintas zonas del vehículo, ya sea en la red a mayor nivel de tensión o en la de un nivel inferior, conforme al principio de sectorización de potencia antes explicado, con la particularidad de que los convertidores CC/CC empleados se han diseñado de manera que la potencia que puede suministrar cada uno de los mismos es inferior a la del máximo consumo de todas las citadas cargas del sector concreto que abastece, de manera que el suministro de energía a cada grupo de cargas se realiza, en determinados momentos a expensas de al menos más de uno de dichos distintos convertidores CC/CC. Ello obedece a la consideración de que en general, en muy raras ocasiones se llegará a producir un consumo por parte de todas las cargas del sistema, y en particular de los distintos sectores lo que permite dimensionar los convertidores en un valor inferior al que sería necesario considerando un consumo simultáneo y continuado por parte de todas las cargas.
Por otro lado, si varios convertidores están conectados en el mismo punto y tienen por Ejemplo la batería B1 que alimenta la red de baja tensión como una carga, la potencia suministrada por dicha batería puede ser dividida por un factor de n (dependiendo del número de convertidores CC/CC del vehículo), de manera que los convertidores pueden ser idénticos y compartir la misma corriente de salida. La batería se encargará de suministrar la carga para fundir los fusibles. Pero esta arquitectura también dividirá la conversión de potencia de la manera que se precise.
Por ejemplo, si se dispone de un convertidor de 500 W CC/CC en el compartimiento del vehículo pero sus cargas más próximas solicitan 600 W, el convertidor empezará a autoprotegerse reduciendo la tensión de salida (conforme a una curva V-l del convertidor u ^..^α ..yi c. ^^ luiuuα Λy, cu eme momento el convertidor CC/CC más próximo y con una menor resistencia de conexión al nodo de distribución inteligente suministrará el resto de la potencia necesaria. De este modo puede decirse que en situación estática los n convertidores CC/CC utilizados (por ejemplo 3, uno para la parte del compartimiento motor, otro para el habitáculo de pasajeros y un tercero para la parte trasera del vehículo) tratarán de compartir la misma cantidad de potencia, cuando la potencia demandada esté próxima al máximo de cada uno de dichos convertidores CC/CC. En el caso eventual de que la potencia máxima de todos los convertidores se exceda entonces la batería B1 , o en su caso la batería B2 proporcionará el resto de la potencia requerida.
En situación dinámica (un rápido transitorio o fluctuación de potencia) y en general con frecuencias superiores a los 100 Hz (por Ej. respuesta a una subida o bajada brusca de las ventanillas, ráfagas de luz, etc), se precisará una estructura maestro/esclavo (master/slave) con soporte en un microprocesador con el fin de que todos los convertidores CC/CC compartan la misma corriente. Debido a que los convertidores CC/CC se hallan emplazados en diferentes áreas del vehículo un bus tal como CAN o VAN puede informar de la corriente solicitada por las cargas y procesada por los diferentes convertidores CC/CC ,para que pueda compartirse la corriente ante un fenómeno transitorio. La velocidad del bus y del protocolo de comunicación controlado por el microprocesador son factores críticos así como el método de detección de corriente para configurar el sistema conforme a la propuesta de esta invención.
Una tal configuración con varios convertidores CC/CC permitirá también que los mismos compartan las mismas sobrecargas térmicas debidas a disipación, pudiendo ser modulares.
Para una mejor comprensión de la invención se describirá ahora la misma con referencia a unas láminas de dibujos, en los que se ilustran unos ejemplos de ejecución que deben de tomarse a título meramente indicativo y no limitativo del alcance de la regla técnica propuesta. Se han representado en dichos dibujos, a efectos de simplificar la exposición, dos redes a distinto nivel de tensión, cada una de ellas soportando una serie de cargas sectorizadas, asociadas a la salida de un correspondiente convertidor CC/CC, si bien otras disposiciones, por Ej. con solamente cargas seo.ui i-cduαs cu cι i cunen ue icn&iun a nivel inferior, o con únicamente una parte de las cargas del ramal de tensión superior sectorizadas, entran dentro de la propuesta de sistema de distribución de energía al que se está haciendo referencia.
Breve descripción de los dibujos
La Fig. 1 muestra esquemáticamente un ejemplo de arquitectura conforme a los principios de la presente invención, con las cargas a abastecer por el sistema distribuidas y atendidas cada grupo de ellas desde un convertidor.
La Fig. 2 ilustra la conocida curva V-l del convertidor (curva foldback) que explica la protección contra cortacircuitos inherente al convertidor por lo que ante una solicitud de intensidad superior a un determinado nivel el convertidor tenderá rápidamente a autoprotegerse pasando la tensión de salida del mismo a cero.
La Fig. 3 ¡lustra una arquitectura con control del punto de funcionamiento de los distintos convertidores desde un centro de control conforme a la ejecución preferida de la invención que se detalla en sus reivindicaciones.
Descripción en detalle de unos ejemplos de realización
La Fig. 1 ilustra un sistema de distribución eléctrica, en donde una serie de cargas Q1 a Q6, a abastecer se hallan sectorizadas tanto en una primera red r1 , de tensión a nivel superior, y en concreto de 42 V, alimentada desde un generador G (alternador del vehículo) y que abastece un motor de arranque S, como en una red r2 a nivel de tensión inferior, proporcionando 14 V. Una serie de convertidores C1 , C2, C3 están dispuestos en paralelo entre las dos citadas redes r1 , r2, con sus salidas conectadas a un punto o salida común, alimentado desde una u otra de las citadas baterías B1 , B2. Una tal disposición es determinante de que al estar los distintos convertidores C1 , C2 y C3 conectados en el mismo punto y al tener, por Ejemplo la batería B1 , que alimenta la red de baja tensión como una carga, la potencia suministrada por dicha batería B1 puede ser dividida por un factor de 3, de manera que los convertidores C1-C3, pueden ser idénticos y compartir la misma ^I MCMUJ σ oαnuα. ι_cι ucuei id ae encargará de suministrar la carga para fundir los fusibles. Pero esta arquitectura también dividirá la conversión de potencia de la manera que se precise.
Tal como indica esta Fig.1 la red de tensión a nivel superior de 42 V, está conectada además de a la batería B2, a un generador G (alternador del vehículo) y está prevista para abastecer un motor de arranque S.
En la Fig. 2 se ha representado la curva típica V-l de un convertidor, o de protección frente a cortocircuitos, según la cual si en cualquier carga conectada al convertidor y no protegida por un dispositivo de interruptor comandado tal como un SMART FET , relé o similar) se produce un cortociruito que afecte a dicho convertidor CC/CDC, éste protegerá la red poniendo inmediatamente la tensión a cero y no permitiendo el suministro del resto de las cargas. La disposición en paralelo ilustrada en la Fig. 1 , de los convertidores C1 , C2, C3 , conectados a un punto común al que también está conectada una de las baterías B1 o B2 resuelve este problema, al actuar la batería fundiendo el fusible de la carga conectada a tierra y de esta manera la potencia a suministrar se comparte por los diferentes convertidores C1 , C2, C3.
En el ramal a tensión inferior de las cargas se han esquematizado, en el primer grupo varias de ellas,, debiendo de entender que su protección puede se por fusibles, por dispositivos interruptores controlados tales como SMART FET o por una combinación de ambos sistemas.
Conforme a la realización preferida de la invención que se ilustra en la Fig. 3, se ha previsto que los convertidores CC/CC cambien su punto de trabajo para compartir la misma corriente, a cuyo efecto un control central M ajustará los diferentes valores de tensión en los nodos a los que quedan conectadas las respectivas salidas de los convertidores CC/CC, C1 , C2, C3 y la información acerca de las intensidades solicitadas en cada uno de dichos nodos se intercambiará utilizando por Ejemplo un bus CAN. Más en concreto, se ha previsto que el sistema se ¡mplemente en una arquitectura de maestro/esclavo (master/slave) en donde dicho centro de control M integrando el microprocesador se constituye como maestro y cada uno de los convertidores C1 , C2, C3 como esclavo. Se han previsto unos detectores D1 , D2, D3, para captación de la corriente solicitada en una u otra de las salidas de cada convertidor CC/CC, C1 , C2, C3, cuya informa iun ca envi u ndui eι eimu ue control, en donde el microcontrolador tiene cargado, por Ej. en una memoria adecuada, programable, un algoritmo de gestión, para reparto de la potencia a suministrar entre los diferentes convertidores CC/CC, C1-C3 con el fin de conseguir una salida ecualizada de los mismos. De este modo todos los convertidores CC/CC utilizados pueden ser iguales, (principio de modularización, que redunda en una economía de fabricación) y por ejemplo de una potencia inferior a la del grupo de cargas que han de abastecer, tal como se indica en las cifras dadas en este ejemplo. Para una plena implementación del sistema de distribución de energía eléctrica expuesto, con cargas sectorizadas en ambas redes r1 y r2, es preciso que al menos dos de los convertidores C1-C3 sean bi-direccionales.
Aunque la disposición ilustrada en el ejemplo de realización descrito hasta este punto de tres convertidores C1 , C2, C3 ha sido concebida para una sectorización de las cargas de un vehículo automóvil en: parte delantera o zona del motor, habitáculo y parte trasera o maletero, que puede resultar muy conveniente, en la práctica podrán sectorizarse las cargas de forma distinta, en un menor o mayor número de grupos y utilizar igualmente un mayor o menor número de convertidores CC/CC.

Claims

REIVINDICACIONES
1.- Sistema de distribución eléctrica para un vehículo con dos redes a diferentes niveles de tensión y una arquitectura en donde al menos una primera de dichas redes es susceptible de ser alimentada desde la segunda red de suministro de tensión a través de un convertidor CC/CC, estando conectada una de dichas dos redes a un generador y al menos una de dichas dos redes está alimentada por unos medios de almacenamiento de energía tal como una batería, caracterizado por comprender varios convertidores CC/CC en paralelo, conectando dichas primera y segunda redes a distintos niveles de tensión, todos ellos conexionados a un punto o salida común, cada uno de cuyos convertidores CC/CC tiene asignadas una serie o grupo de cargas diferenciadas y localizadas en distintas zonas del vehículo, pertenecientes a al menos la red a tensión inferior, siendo la potencia que puede suministrar cada uno de los citados convertidores inferior a la del máximo consumo de todas las citadas cargas que tiene asignadas, de manera que el suministro de energía a cada grupo de cargas se realizará, en determinados momentos, a expensas de al menos más de uno de dichos distintos convertidores CC/CC o de una batería y porque los citados convertidores, para abastecer distintos grupos de cargas, localizadas en distintas zonas del vehículo están integrados en una arquitectura maestro/esclavo (master/slave) gobernados desde un centro de control o maestro, que incluye un microcontrolador con capacidad de gestionar la potencia a entregar en cada momento a las cargas por parte de cada uno de los citados convertidores de una manera sincronizada, incluyendo la conexión entre convertidores CC/CC, esclavos, y centro de control al menos un bus de comunicación tal como un bus CAN o VAN a cuyo través se informa de las necesidades de cada grupo de cargas.
2.- Sistema, según la reivindicación 1 , caracterizado porque cada uno de los convertidores CC/CC dispone de al menos una toma para detección de la corriente de suministro solicitada por parte de las cargas a abastecer y procesada por cada convertidor CC/CC, cuya información es enviada a dicho centro de control que integra el master, a través del citado bus de comunicación.
3.- Sistema, según la reivindicación 2, uciiciuLfc!iι¿duu pui ue ιυuυs ios citados convertidores en paralelo son iguales.
4.- Sistema, según la reivindicación 1 , caracterizado porque cada una de dichas dos redes incluye un punto de conexión o salida común de los distintos convertidores y está alimentada asimismo desde una batería y cada uno de los grupos de cargas cuyo abastecimiento tiene asignado un correspondiente convertidor, incluye una protección basada en fusibles en al menos alguna de las cargas de cada grupo.
5.- Sistema, según la reivindicación 1 , caracterizado porque cada una de dichas dos redes incluye un punto de conexión o salida común de los distintos convertidores y está alimentada asimismo desde una batería y cada uno de los grupos de cargas cuyo abastecimiento tiene asignado un correspondiente convertidor, incluye una protección basada en dispositivos interruptores controlados tales como transistores FET en al menos alguna de las cargas de cada grupo.
6.- Sistema, según la reivindicación 1 , caracterizado porque cada una de dichas dos redes incluye un punto de conexión o salida común de los distintos convertidores y está alimentada asimismo desde una batería y cada uno de los grupos de cargas cuyo abastecimiento tiene asignado un correspondiente convertidor, incluye una protección basada en fusibles para alguna de las cargas y basada en dispositivos interruptores controlados tales como transistores FET para otras de dichas cargas de cada grupo de las mismas.
7.- Sistema, según la reivindicación 1 , caracterizado porque dicha primera red es una red a un nivel de tensión inferior alimentada desde una primera batería y dicha segunda red es una red a un nivel de tensión superior alimentada desde una segunda batería.
8.- Sistema, según la reivindicación 2, caracterizado porque al menos dos de los citados varios convertidores de tensión CC/CC son bi-direccionales.
9.- Sistema, según la reivindicación 2, caracterizado porque dicha red a tensión más elevada abastece una serie de cargas, también sectorizadas y asociadas a cada uno de los citados convertidores.
10.- Método para distribución eléctrica para un vehículo a motor con dos redes a diferentes niveles de tensión, en donde al menos una primera de dichas redes es alimentada desde la segunda red de ϋuuιuιι&uu ue tensiu a uctvt;s ue un convertidor CC/CC, estando conectada una de dichas dos redes a un generador y al menos una de las dos redes está alimentada por unos medios de almacenamiento de energía tal como una batería, caracterizado por entregar la potencia a las cargas a través de una pluralidad de convertidores CC/CC dispuestos en paralelo entre dichas dos redes a diferentes niveles de tensión con ecualización de sus salidas por gobierno de la salida de cada convertidor desde un centro de control actuando en funciones de maestro (master) de una arquitectura maestro/esclavo (master/slave), con los diversos convertidores CC/CC como esclavos, integrando un microcontrolador con capacidad de gestionar la potencia a entregar en cada momento a las cargas por parte de cada uno de los citados convertidores de una manera sincronizada e incluyendo el enlace entre convertidores CC/CC y centro de control al menos un bus de comunicación tal como un bus CAN.
11.- Método, según la reivindicación 10, caracterizado por realizar una detección permanente de la intensidad requerida por cada grupo de cargasy procesada por parte del correspondiente convertidor que dicho grupo tiene asignado, cuya información es remitida a través del citado bus al centro de control o maestro del sistema.
PCT/ES2002/000373 2001-08-08 2002-07-24 Sistema y metodo de distribucion electrica para un vehiculo con dos redes a diferentes niveles de tension WO2003015235A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02751192A EP1422803A1 (en) 2001-08-08 2002-07-24 Electrical distribution system and method for a vehicle with two networks having different voltage levels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200101869A ES2181606B1 (es) 2001-08-08 2001-08-08 Sistema y metodo de distribucion electrica para un vehiculo con dos redes a diferentes niveles de tension.
ESP200101869 2001-08-08

Publications (1)

Publication Number Publication Date
WO2003015235A1 true WO2003015235A1 (es) 2003-02-20

Family

ID=8498683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000373 WO2003015235A1 (es) 2001-08-08 2002-07-24 Sistema y metodo de distribucion electrica para un vehiculo con dos redes a diferentes niveles de tension

Country Status (4)

Country Link
US (1) US20040163858A1 (es)
EP (1) EP1422803A1 (es)
ES (1) ES2181606B1 (es)
WO (1) WO2003015235A1 (es)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479488B2 (ja) * 2004-12-01 2010-06-09 株式会社デンソー 排気発電装置
KR100991084B1 (ko) * 2005-12-15 2010-10-29 주식회사 엘지화학 멀티 전지 팩 시스템 및 그 제어방법, 및 이를 이용한 전지팩
JP4812529B2 (ja) * 2006-06-14 2011-11-09 トヨタ自動車株式会社 電源装置および車両
US7591653B2 (en) * 2006-09-08 2009-09-22 Aees, Inc. Modular power distribution center
GB2443002A (en) * 2006-10-16 2008-04-23 Converteam Ltd dc power distribution system
DE102007004279A1 (de) * 2007-01-23 2008-07-24 Bayerische Motoren Werke Aktiengesellschaft Mehrspannungsbordnetz für ein Kraftfahrzeug
US20090033155A1 (en) * 2007-06-08 2009-02-05 Renesas Technology Corp. Semiconductor integrated circuits
US8447436B2 (en) 2010-06-29 2013-05-21 Harley-Davidson Motor Company Group, LLC Handlebar control system
DE102013214835A1 (de) 2013-07-30 2015-02-05 Robert Bosch Gmbh Überspannungsschutz für ein Mehrspannungsbordnetz
US9745038B2 (en) * 2014-07-11 2017-08-29 General Electric Company DC power system for marine applications
DE102014012154A1 (de) * 2014-08-14 2016-02-18 Man Truck & Bus Ag Bordnetz für ein Kraftfahrzeug, insbesondere für ein Nutzfahrzeug
DE102015101241A1 (de) * 2015-01-28 2016-07-28 Bayerische Motoren Werke Aktiengesellschaft Elektrisches Energieverteilungssystem und Verfahren zum Betreiben eines elektrischen Energieverteilungssystems
DE102015212623A1 (de) 2015-07-07 2017-01-12 Robert Bosch Gmbh Verfahren zum Betrieb parallel geschalteter Generatoreinheiten
DE102017200232A1 (de) * 2017-01-10 2018-07-12 Audi Ag Energiekoppler für ein elektrisch antreibbares Kraftfahrzeug
US11332039B2 (en) * 2019-07-12 2022-05-17 Tusimple, Inc. Vehicle power distribution architecture
CN113173134B (zh) * 2021-06-04 2022-09-09 中国人民解放军96901部队24分队 一种用于混合动力电驱底盘的分布式配电系统和控制方法
EP4113774A1 (en) * 2021-07-02 2023-01-04 AptivTechnologies Limited Vehicle power supply circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19546495A1 (de) * 1995-12-13 1997-06-19 Aeg Stromversorgungs Syst Gmbh Schaltungsanordnung und Verfahren für eine gleichmäßige Aufteilung der elektrischen Leistung
WO1999041816A1 (de) * 1998-02-13 1999-08-19 Robert Bosch Gmbh Vorrichtung und verfahren zum gesteuerten parallelbetrieb von gleichspannungswandlern
US6166934A (en) * 1999-06-30 2000-12-26 General Motors Corporation High efficiency power system with plural parallel DC/DC converters
US6232674B1 (en) * 1996-11-07 2001-05-15 Robert Bosch Gmbh Control device for a vehicle electric system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703652B1 (de) * 1994-09-21 1998-06-03 Inventio Ag Verfahren und Einrichtung zur variablen Zuteilung von in Betrieb stehenden Umrichtern auf mindestens eine Last
US6756885B1 (en) * 1996-08-22 2004-06-29 Omega Patents, L.L.C. Multi-vehicle compatible control system for reading from a data bus and associated methods
US6201678B1 (en) * 1999-03-19 2001-03-13 Lear Automotive Dearborn, Inc. High-voltage switch gear protection circuit
JP2000318545A (ja) * 1999-05-12 2000-11-21 Yazaki Corp 車両用配電函及び車両用配電システム
EP1458083B1 (en) * 1999-06-09 2012-04-04 Lear Corporation Holding Spain S.L. Dual voltage electrical distribution system
US6344985B1 (en) * 2000-12-05 2002-02-05 Heart Transverter S.A. Multiple port bi-directional power converter
DE10119985A1 (de) * 2001-04-24 2002-10-31 Bosch Gmbh Robert Vorrichtung zur Energieeinspeisung in ein Mehrspannungsbordnetz eines Kraftfahrzeugs
JP3749143B2 (ja) * 2001-06-14 2006-02-22 矢崎総業株式会社 車両用電源装置
US20030036823A1 (en) * 2001-08-15 2003-02-20 A. Pascal Mahvi Method and system for a vehicle monitoring and control system
US7032695B2 (en) * 2002-01-16 2006-04-25 Rockwell Automation Technologies, Inc. Vehicle drive module having improved terminal design

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19546495A1 (de) * 1995-12-13 1997-06-19 Aeg Stromversorgungs Syst Gmbh Schaltungsanordnung und Verfahren für eine gleichmäßige Aufteilung der elektrischen Leistung
US6232674B1 (en) * 1996-11-07 2001-05-15 Robert Bosch Gmbh Control device for a vehicle electric system
WO1999041816A1 (de) * 1998-02-13 1999-08-19 Robert Bosch Gmbh Vorrichtung und verfahren zum gesteuerten parallelbetrieb von gleichspannungswandlern
US6166934A (en) * 1999-06-30 2000-12-26 General Motors Corporation High efficiency power system with plural parallel DC/DC converters

Also Published As

Publication number Publication date
US20040163858A1 (en) 2004-08-26
EP1422803A1 (en) 2004-05-26
ES2181606B1 (es) 2004-08-16
ES2181606A1 (es) 2003-02-16

Similar Documents

Publication Publication Date Title
WO2003015235A1 (es) Sistema y metodo de distribucion electrica para un vehiculo con dos redes a diferentes niveles de tension
CN107415867B (zh) 车辆电源控制装置
US6340848B1 (en) On-vehicle distribution box and distribution system
US9806522B2 (en) Method for the controlled connection of a plurality of on-board power system branches of a vehicle, control unit for carrying out the method and on-board power system
US8489266B2 (en) Vehicle power system
JP6426956B2 (ja) 車両用電力供給システム
US10576919B2 (en) Vehicle power supply control device
ATE354500T1 (de) Mehrspannungsbordnetz
US10442376B2 (en) Vehicle power supply control device
EP1469575A1 (en) System and method for the controlled transfer of energy in networks comprising sectors that are powered by two different batteries
US10604091B2 (en) Vehicle power supply control device
SE1750026A1 (en) On-board electrical system for a vehicle
US20050140209A1 (en) Power distribution web node and power management process
JP6426955B2 (ja) 車両用電力供給システム
WO2003056683A1 (es) Circuito y método de control de la carga de las baterias de un vehiculo
WO2003053746A1 (es) Sistema y método de protección contra cortocircuitos en arquitecturas de distribución de energía eléctrica a dos niveles de tensión
US20220185209A1 (en) Power network for a motor vehicle and method for operating a power network for a motor vehicle
US5703746A (en) Electric junction box and electric current distribution system
ES2295715T3 (es) Circuito electrico para vehiculos con acumulacion de corriente del generador independiente de la bateria.
ES2204462T3 (es) Sistema de regulacion de tension para cargar a bordo de un vehiculo automovil.
ES2267610T3 (es) Proteccion contra sobretensiones para la derivacion de 14v de una red de a borno de 42v/14v de un automovil.
JP7334614B2 (ja) 車載中継装置
DE10208982A1 (de) Kraftfahrzeug mit zwei Bordnetzen
CN109890648B (zh) 用于防止接触器断电的电路
JP3388985B2 (ja) 自動車電源システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002751192

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002751192

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP