WO2003011482A1 - Signal horn with adaptively modifiable operating variables - Google Patents

Signal horn with adaptively modifiable operating variables Download PDF

Info

Publication number
WO2003011482A1
WO2003011482A1 PCT/DE2002/002483 DE0202483W WO03011482A1 WO 2003011482 A1 WO2003011482 A1 WO 2003011482A1 DE 0202483 W DE0202483 W DE 0202483W WO 03011482 A1 WO03011482 A1 WO 03011482A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
excitation current
signal horn
voltage
horn
Prior art date
Application number
PCT/DE2002/002483
Other languages
German (de)
French (fr)
Inventor
Antonio Pérez BALLALTAS
Jacinto Martin Acero
Fernando Nozal Martin
Matias J. Garrido Gonzalez
Juan M. Meneses Chaus
César RODRIGUEZ LACRUZ
César SANZ ALVARO
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE50205530T priority Critical patent/DE50205530D1/en
Priority to EP02758078A priority patent/EP1414590B1/en
Priority to JP2003516705A priority patent/JP4076161B2/en
Publication of WO2003011482A1 publication Critical patent/WO2003011482A1/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B3/00Audible signalling systems; Audible personal calling systems
    • G08B3/10Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0253Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken directly from the generator circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/50Application to a particular transducer type
    • B06B2201/52Electrodynamic transducer
    • B06B2201/53Electrodynamic transducer with vibrating magnet or coil

Definitions

  • the present invention relates to a horn with a control loop for adaptively tuning an operating variable of the signaling horn to a predefinable setpoint value, with a controlled from a pulse generator circuit with respect to its pulse frequency and / or its pulse-duty factor controls a current flowing through the horn excitation current "and wherein the control circuit Has circuit means which detect an operating variable of the signal horn and depending on it control the pulse generator so that the operating variable of the signal horn assumes the target value.
  • Such a signal horn with a control loop for adaptive tuning of its resonance frequency is known from US 5,414,406.
  • the actual switching frequency of the signal horn is measured by means of an acoustic sound sensor (microphone) and the phase offset between this measured actual signal and the pulse sequence controlling the signal horn and generated by a pulse generator is determined.
  • the pulse frequency of the pulse generator is adjusted so that the phase shift is minimal. With this activation of the signal horn, it reaches its optimal working frequency, namely its Resonanzrfrequenz.
  • the detection of the actual operating variable of the signal horn by means of an acoustic sound sensor is technically relatively complex.
  • the function of an acoustic sound sensor is very much dependent on temperature and aging influences; that is, the sound frequency of the signal horn measured by the sound sensor is falsified due to temperature and aging influences. The control loop will then no longer be able to correctly tune the signal horn to its resonance frequency.
  • the invention is therefore based on the object of specifying a signal horn of the type mentioned at the outset which can be implemented as simply as possible in terms of production technology and in which external influences have as little effect on the operating behavior.
  • circuit means are present which detect one or more characteristic quantities of the excitation current flowing through the signal horn and in that further circuit means are present which result from the difference between the excitation current (s) derived characteristic variable (s) and one or more setpoints provide one or more manipulated variables for a pulse generator which controls a switch which controls the excitation current with respect to its pulse frequency and / or its pulse duty cycle. Because the actual operating variable of the signal horn is derived from the excitation current in the control loop, a noise sensor susceptible to failure, which measures the sound frequency of the signal horn, can be dispensed with.
  • the resonance frequency or a variable proportional to it - preferably the excitation current - for the control process is expedient to use the resonance frequency or a variable proportional to it - preferably the excitation current - for the control process as the operating variable of the horn.
  • the characteristic variable (s) of the excitation current is (are) preferably the relative phase position of harmonic spectral components of the excitation current and / or the spectral distribution of the excitation current. These characteristic quantities of the excitation current can be detected by a frequency analyzer.
  • An advantageous arrangement is that there is a current-voltage converter that converts the excitation current into a voltage, that there is an analog-to-digital converter that digitizes the voltage, and that there is a digital frequency analyzer that a or several characteristic quantities of the digitized voltage curve derived from the excitation current are determined.
  • a signal processor is expediently used which compares the characteristic quantity (s) of the excitation current or the voltage derived therefrom ascertained by the frequency analyzer with one or more nominal values and from the deviations between the characteristic quantity (s) ) and the setpoint (s) provides one or more manipulated variables for the pulse generator.
  • the signal processor can carry out the setpoint comparison at periodically repeating time intervals.
  • One or more setpoints which correspond to a fixed operating variable of the signal horn, can be stored, or one or more changeable setpoints can be supplied to the signal processor.
  • the signal horn can be varied in its sound.
  • FIG. 1 shows a block diagram of a control circuit for adaptively tuning an operating variable of a signal horn, the control circuit being set to a fixed resonance frequency of the signal horn, and
  • FIG. 2 shows a control circuit for adaptively adjusting an operating variable of a signal horn, the sound of the signal horn being variable.
  • FIG. 1 shows a block diagram of a control circuit for adaptively tuning an operating variable of a signal horn.
  • the signal horn 1 has a structure as described, for example, in US Pat. No. 5,414,406, of which only one excitation coil 2 is shown in FIG. 1, which causes a membrane of the signal horn to vibrate when current flows through it.
  • the excitation coil 2 of the signal horn 1 is fed by an energy source 3, for example a vehicle battery.
  • an energy source 3 for example a vehicle battery.
  • a switch 4 In the supply line between the energy source 3 and the excitation coil 2 there is a switch 4, the actuation of which activates the signal horn.
  • the current I flowing through the excitation coil 2 is controlled by an electrically controllable switch 5 inserted into the circuit of the excitation coil 2.
  • the control signal for the electrically controllable switch 5 comes from a pulse generator 6 which emits a pulse train with a specific pulse repetition frequency and with a specific pulse duty cycle.
  • a driver 7 connected between the pulse generator 6 and the electrically controllable switch 5 brings the pulse sequence emitted by the pulse generator 6 to a suitable one for the electrically controllable switch 5
  • the electrically controllable switch 5 is preferably a semiconductor switch, e.g. a field effect transistor.
  • the electrically controllable switch 5 is therefore switched on and off in accordance with the pulse sequence generated by the pulse generator 6, and as a result the excitation current I flowing through the excitation coil 2 takes the form of a pulse sequence with the pulse frequency and pulse duty cycle predetermined by the pulse generator 6.
  • the operating variable of the signal horn 1 is recorded as the controlled variable.
  • the operating variable of the signal horn 1 is advantageously its resonant frequency or a variable proportional to it, namely the excitation current I flowing through the excitation coil 2 and the electrically controllable switch 5.
  • the excitation current I itself is not supplied to the control loop as a control variable, but rather one from the excitation current I. derived voltage.
  • U the conversion of the excitation current I into the voltage U takes place by means of a current-voltage converter, which in the simplest case is an ohmic resistor 8.
  • the voltage U is brought to a signal level suitable for a subsequent analog-digital converter 10.
  • the analog-to-digital converter 10 is required if the further signal processing in the control loop is to take place digitally. In the case of analog signal processing, the analog-to-digital converter 10 can be dispensed with.
  • the digitized controlled variable namely the voltage U, is fed to a digital frequency analyzer 11.
  • the frequency analyzer 11 determines one or more characteristic quantities of the voltage signal U. Characteristic quantities can be, for example, relative phase positions of certain harmonic spectral components and / or the spectral distribution of the signal U.
  • the frequency analyzer 11 from the determined one or more characteristic quantities of the signal U a signal processor 12 are supplied.
  • the signal processor 12 are stored desired values of these characteristic sizes, namely corresponding to a desired operation of a desired size 'excitation current profile I of the horn. 1
  • the signal processor 12 determines deviations between the variable (s) determined by the frequency analyzer 11 and the target value (s) stored in the signal processor 12.
  • the signal processor 12 provides one or more manipulated variables proportional to these deviations for the pulse generator 6.
  • the one or more manipulated variables serve to control the pulse frequency and / or the pulse duty cycle of the pulse generator 6.
  • the pulse rate and / or the pulse rate are Duty cycle of the pulse generator 6 is coordinated in such a way that "the deviations between the actual values and setpoints determined in the signal processor 12 become minimal, and thus the signal horn 1 is operated at its optimal frequency, namely the resonance frequency.
  • the signal processor 12 receives a start signal S when the switch 4 is actuated to activate the signal horn.
  • the signal processor 12 preferably carries out the comparison between one or more stored nominal values and one or more actual values supplied by the frequency analyzer 11; i.e. the control process is not started permanently but at certain repeating intervals. Every time a control process is initiated by the signal processor 12, the latter reports to the
  • Analog-digital converter 10 from a start signal A, whereupon the analog-digital converter converts the analog input signal U into a digital signal for the frequency analyzer 11.
  • the analog-to-digital converter 10 need not necessarily only in the times of the signal processor 12 initiated
  • Control process can be activated, but can carry out the analog-digital conversion continuously.
  • control circuit has the same circuit parts as in the previously described exemplary embodiments in FIG. 1. Therefore, all switching blocks in FIG. 2 also have the same reference numerals as in FIG. 1.
  • the exemplary embodiment in FIG. 2 differs from that in FIG. 1 only in that the signal processor 12 has a separate signal input 13.
  • the signal processor 12 has a separate signal input 13.
  • one or more predefined setpoints are stored in the signal processor 12.
  • Signal input 13 for the signal processor 12 now makes it possible to supply setpoints from outside which allow the frequency of the signal horn 1 to be changed in deviation from its resonance frequency.
  • the tone generated by the bugle 1 can be frequency and also in frequency
  • the changeable setpoints given to the signal input 13 of the signal processor 12 can come, for example, from a central control unit in the motor vehicle.
  • the switch 4 shown in the exemplary embodiment in FIG. 1 is also omitted.
  • the signal processor 12 also receives a start signal for the activation of the signal horn 1 via the signal input 13.
  • the signal horn 1 is switched on in this case starting from the signal processor 12 via the pulse generator 6 and the electrically controllable switch 5, which closes the circuit of the excitation coil 2 ,
  • circuit blocks 5, 6, 7 and 8, 9, 10, 11, 12 described above do not have to be separate circuits, but they can also be integrated with one another in a suitable manner.

Abstract

The invention relates to a signal horn upon which external influences have an effect which is as minor as possible. The inventive signal horn comprises a control circuit for adaptively modifying an operating variable in order to bring it into line with a predefinable set-point value. A switch (6);controlled by a pulse generator (6); is used to control an excitation current (I) flowing through the signal horn in relation to the pulse frequency and/or pulse-scan ratio. Switching means (11) which detect one or several characteristic variables of the excitation current (I) are provided, in addition to other switching means (12) which provide one or several manipulated variables for the pulse generator (6) from the deviation between the characteristic variable(s) derived from the excitation current (I) and one or several set-point values.

Description

Signalhorn mit adaptiv abstimmbarer BetriebsgrößeSignal horn with adaptively adjustable operating size
Stand der TechnikState of the art
Die vorliegende Erfindung betrifft ein Signalhorn mit einem Regelkreis zum adaptiven Abstimmen einer Betriebsgröße des Signalhorns auf einen vorgebbaren Sollwert, wobei ein von einem Pulsgenerator gesteuerter Schalter einen durch das Signalhorn fließenden Erregerstrom bezüglich seiner Pulsfrequenz und/oder seines Puls-Tastverhältnisses steuert" und wobei der Regelkreis Schaltungsmittel aufweist, welche eine Betriebsgröße des Signalhorns erfassen und in Abhängigkeit davon den Pulsgenerator so steuern, dass die Betriebsgröße des Signalhorns den Sollwert annimmt.The present invention relates to a horn with a control loop for adaptively tuning an operating variable of the signaling horn to a predefinable setpoint value, with a controlled from a pulse generator circuit with respect to its pulse frequency and / or its pulse-duty factor controls a current flowing through the horn excitation current "and wherein the control circuit Has circuit means which detect an operating variable of the signal horn and depending on it control the pulse generator so that the operating variable of the signal horn assumes the target value.
Ein derartiges Signalhorn mit einem Regelkreis zum adaptiven Abstimmen seiner Resonanzfrequenz ist aus der US 5,414,406 bekannt. Dabei wird mittels eines akustischen Schallsensors (Mikrofon) die Ist-Schaltfrequenz des Signalhorns gemessen und die Phasenablage zwischen diesem gemessenen Ist-Signal und der das Signalhorn steuernden, von einem Pulsgenerator erzeugten Pulsfolge ermittelt. Die Pulsfrequenz des Pulsgenerators wird so nachgestimmt, dass die Phasenablage minimal wird. Bei dieser Ansteuerung des Signalshorns erreicht es seine optimale Arbeitsfrequenz, nämlich seine Resonanzrfrequenz. Die Erfassung der Ist-Betriebsgröße des Signalhorns mittels eines akustischen Schallsensors ist technisch relativ aufwendig. Hinzu kommt, dass die Funktion eines akustischen Schallsensors sehr stark von Temperatur- und Alterungseinflüssen abhängig ist; d.h. aufgrund von Temperatur- und Alterungseinflüssen wird die von dem Schallsensor gemessene Schallfrequenz des Signalhorns verfälscht. Der Regelkreis wird dann das Signalhorn nicht mehr korrekt auf seine Resonanzfrequenz abstimmen können.Such a signal horn with a control loop for adaptive tuning of its resonance frequency is known from US 5,414,406. The actual switching frequency of the signal horn is measured by means of an acoustic sound sensor (microphone) and the phase offset between this measured actual signal and the pulse sequence controlling the signal horn and generated by a pulse generator is determined. The pulse frequency of the pulse generator is adjusted so that the phase shift is minimal. With this activation of the signal horn, it reaches its optimal working frequency, namely its Resonanzrfrequenz. The detection of the actual operating variable of the signal horn by means of an acoustic sound sensor is technically relatively complex. In addition, the function of an acoustic sound sensor is very much dependent on temperature and aging influences; that is, the sound frequency of the signal horn measured by the sound sensor is falsified due to temperature and aging influences. The control loop will then no longer be able to correctly tune the signal horn to its resonance frequency.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Signalhorn der eingangs genannten Art anzugeben, dass fertigungstechnisch möglichst einfach realisierbar ist und bei dem sich äußere Einflüsse möglichst wenig auf das Betriebsverhalten auswirken.The invention is therefore based on the object of specifying a signal horn of the type mentioned at the outset which can be implemented as simply as possible in terms of production technology and in which external influences have as little effect on the operating behavior.
Vorteile der ErfindungAdvantages of the invention
Die genannte Aufgabe wird mit den Merkmalen des Anspruchs 1 dadurch gelöst, dass Schaltungsmittel vorhanden sind, welche ein oder mehrere charakteristische Größen des durch das Signalhorn fließenden Erregerstroms erfassen und dass weitere Schaltungsmittel vorhanden sind, welche aus der Abweichung zwischen der (den) aus dem Erregerstrom abgeleiteten charakteristischen Größe (n) und ein oder mehreren Sollwerten ein oder mehrere Stellgrößen für einen Pulsgenerator bereitstellen, der einen Schalter ansteuert, welcher den Erregerstrom bezüglich seiner Pulsfrequenz und/oder seines Puls-Tastverhältnisses steuert. Dadurch dass in dem Regelkreis die Ist-Betriebsgröße des Signalhorns aus dem Erregerstrom ableitet wird, kann auf einen störanfälligen Schallsensor verzichtet werden, der die Schallfrequenz des Signalhorns misst. Vorteilhafte Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.The stated object is achieved with the features of claim 1 in that circuit means are present which detect one or more characteristic quantities of the excitation current flowing through the signal horn and in that further circuit means are present which result from the difference between the excitation current (s) derived characteristic variable (s) and one or more setpoints provide one or more manipulated variables for a pulse generator which controls a switch which controls the excitation current with respect to its pulse frequency and / or its pulse duty cycle. Because the actual operating variable of the signal horn is derived from the excitation current in the control loop, a noise sensor susceptible to failure, which measures the sound frequency of the signal horn, can be dispensed with. Advantageous developments of the invention emerge from the subclaims.
Es ist zweckmäßig, für den Regelprozess als Betriebsgröße des Signalhorns dessen Resonanzfrequenz oder eine dazu proportionale Größe - vorzugsweise den Erregerstrom - zu verwenden.It is expedient to use the resonance frequency or a variable proportional to it - preferably the excitation current - for the control process as the operating variable of the horn.
Vorzugsweise ist (sind) die charakteristische (n) Größe (n) des Erregerstroms die relative Phasenlage von harmonischen Spektralanteilen des Erregerstroms und/oder die Spektralverteilung des Erregerstroms. Dabei können diese charakteristischen Größen des Erregerstroms von einem Frequenzanalysator erfasst werden.The characteristic variable (s) of the excitation current is (are) preferably the relative phase position of harmonic spectral components of the excitation current and / or the spectral distribution of the excitation current. These characteristic quantities of the excitation current can be detected by a frequency analyzer.
Eine vorteilhafte Anordnung besteht darin, dass ein Strom- Spannungs-Wandler vorhanden ist, der den Erregerstrom in eine Spannung konvertiert, dass -ein Analog-Digital-Umsetzer vorhanden ist, der die Spannung digitalisiert, und dass ein digitaler Frequenzanalysator vorhanden ist, der ein oder mehrere charakteristische Größen des aus dem Erregerstrom abgeleiteten digitalisierten Spannungsverlaufs ermittelt. Zweckmäßiger Weise wird ein Signalprozessor verwendet, der die vom Frequenzanalysator ermittelte (n) charakteristische (n) Größe (n) des Erregerstroms bzw. der daraus abgeleiteten Spannung mit ein oder mehreren Sollwerten vergleicht und aus den Abweichungen zwischen der (den) charakteristischen Größe (n) und dem (den) Sollwert (en) ein oder mehrere Stellgrößen für den Pulsgenerator bereitstellt. Dabei kann der Signalprozessor den Sollwert- Vergleich in periodisch sich wiederholenden Zeitabständen durchführen .An advantageous arrangement is that there is a current-voltage converter that converts the excitation current into a voltage, that there is an analog-to-digital converter that digitizes the voltage, and that there is a digital frequency analyzer that a or several characteristic quantities of the digitized voltage curve derived from the excitation current are determined. A signal processor is expediently used which compares the characteristic quantity (s) of the excitation current or the voltage derived therefrom ascertained by the frequency analyzer with one or more nominal values and from the deviations between the characteristic quantity (s) ) and the setpoint (s) provides one or more manipulated variables for the pulse generator. The signal processor can carry out the setpoint comparison at periodically repeating time intervals.
Im Signalprozessor können ein oder mehrere Sollwerte, die einer festen Betriebsgröße des Signalhorns entsprechen, abgespeichert sein, oder es können dem Signalprozessor ein oder mehrere veränderbare Sollwerte zugeführt werden. Mit dieser zuletzt genannten Ausführung kann das Signalhorn in seinem Klang variiert werden.One or more setpoints, which correspond to a fixed operating variable of the signal horn, can be be stored, or one or more changeable setpoints can be supplied to the signal processor. With this last-mentioned version, the signal horn can be varied in its sound.
Zeichnungdrawing
Anhand zweier in der Zeichnung dargestellter Ausführungsbeispiele wird nachfolgend die Erfindung näher erläutert. Es zeigen:The invention is explained in more detail below with the aid of two exemplary embodiments shown in the drawing. Show it:
Figur 1 ein Blockschaltbild eines Regelkreises zum adaptiven Abstimmen einer Betriebsgröße eines Signalhorns, wobei der Regelkreis auf eine feste Resonanzfrequenz des Signalhorns eingestellt ist, und1 shows a block diagram of a control circuit for adaptively tuning an operating variable of a signal horn, the control circuit being set to a fixed resonance frequency of the signal horn, and
Figur 2 einen Regelkreis zum adaptiven Abstimmen einer Betriebsgröße eines Signalhorns, wobei der Klang des Signalhorns variierbar ist.FIG. 2 shows a control circuit for adaptively adjusting an operating variable of a signal horn, the sound of the signal horn being variable.
Beschreibung von AusführungsbeispielenDescription of exemplary embodiments
In der Figur 1 ist ein Blockschaltbild eines Regelkreises zur adaptiven Abstimmung einer Betriebsgröße eines Signalhorns dargestellt. Das Signalhorn 1 hat einen z.B. in der US 5,414,406 beschriebenen Aufbau, von dem in der Figur 1 lediglich eine Erregerspule 2 dargestellt ist, die bei Stromdurchfluss eine Membran des Signalhorns in Schwingung versetzt. Gespeist wird die Erregerspule 2 des Signalhorns 1 von einer Energiequelle 3, z.B. einer Fahrzeugbatterie. In der Zuleitung zwischen der Energiequelle 3 und der Erregerspule 2 befindet sich ein Schalter 4, durch dessen Betätigung das Signalhorn aktiviert wird. Der die Erregerspule 2 durchfließende Strom I wird durch einen in den Stromkreislauf der Erregerspule 2 eingesetzten elektrisch steuerbaren Schalter 5 gesteuert. Das Steuersignal für den elektrisch steuerbaren Schalter 5 kommt von einem Pulsgenerator 6, der eine Pulsfolge mit einer bestimmten Pulsfolgefrequenz und mit einem bestimmten Puls- Tastverhältnis abgibt. Ein zwischen den Pulsgenerator 6 und den elektrisch steuerbaren Schalter 5 geschalteter Treiber 7 bringt die vom Pulsgenerator 6 abgegebene Pulsfolge auf einen für den elektrisch steuerbaren Schalter 5 geeignetenFIG. 1 shows a block diagram of a control circuit for adaptively tuning an operating variable of a signal horn. The signal horn 1 has a structure as described, for example, in US Pat. No. 5,414,406, of which only one excitation coil 2 is shown in FIG. 1, which causes a membrane of the signal horn to vibrate when current flows through it. The excitation coil 2 of the signal horn 1 is fed by an energy source 3, for example a vehicle battery. In the supply line between the energy source 3 and the excitation coil 2 there is a switch 4, the actuation of which activates the signal horn. The current I flowing through the excitation coil 2 is controlled by an electrically controllable switch 5 inserted into the circuit of the excitation coil 2. The control signal for the electrically controllable switch 5 comes from a pulse generator 6 which emits a pulse train with a specific pulse repetition frequency and with a specific pulse duty cycle. A driver 7 connected between the pulse generator 6 and the electrically controllable switch 5 brings the pulse sequence emitted by the pulse generator 6 to a suitable one for the electrically controllable switch 5
Pegel. Der elektrisch steuerbare Schalter 5 ist vorzugsweise ein Halbleiterschalter, z.B. ein Feldeffekttransistor. Der elektrisch steuerbare Schalter 5 wird also entsprechend der vom Pulsgenerator 6 erzeugten Pulsfolge ein- und ausgeschaltet, und in Folge dessen hat der die Erregerspule 2 durchfließende Erregerstrom I die Form einer Pulsfolge mit der vom Pulsgenerator 6 vorgegebenen Pulsfrequenz und Puls- Tastverhältnis.Level. The electrically controllable switch 5 is preferably a semiconductor switch, e.g. a field effect transistor. The electrically controllable switch 5 is therefore switched on and off in accordance with the pulse sequence generated by the pulse generator 6, and as a result the excitation current I flowing through the excitation coil 2 takes the form of a pulse sequence with the pulse frequency and pulse duty cycle predetermined by the pulse generator 6.
Aufgabe des nachfolgend beschriebenen Regelkreises ist es, das Signalhorn unabhängig von Alterungserscheinungen oder Temperatureinflüssen oder sonstigen äußeren Einwirkungen konstant bei seiner Resonanzfrequenz zu betreiben, die vom gesamten Aufbau des Signalhorns, der Erregerspule, einem Magnetkern, einer Membran, dem Gehäuse und weiteren Teilen des Horns, abhängt. Als Regelgröße wird eine Betriebsgröße des Signalhorns 1 erfasst. Die Betriebsgröße des Signalhorns 1 ist vorteilhafter Weise dessen Resonanzfrequenz bzw. eine dazu proportionale Größe, nämlich der die Erregerspule 2 und den elektrisch steuerbaren Schalter 5 durchfließende Erregerstrom I.It is the task of the control loop described below to operate the signal horn constantly at its resonance frequency regardless of signs of aging or temperature influences or other external influences, which is caused by the entire structure of the signal horn, the excitation coil, a magnetic core, a membrane, the housing and other parts of the horn, depends. An operating variable of the horn 1 is recorded as the controlled variable. The operating variable of the signal horn 1 is advantageously its resonant frequency or a variable proportional to it, namely the excitation current I flowing through the excitation coil 2 and the electrically controllable switch 5.
In dem in der Figur 1 dargestellten Ausführungsbeispiel wird nicht der Erregerstrom I selbst als Regelgröße dem Regelkreis zugeführt, sondern eine aus dem Erregerstrom I abgeleitete Spannung. U. die Konvertierung de'S" Erregerstroms I in die Spannung U erfolgt mittels eines Strom-Spannungs- Wandlers, der im einfachsten Fall ein ohmscher Widerstand 8 ist.In the exemplary embodiment shown in FIG. 1, the excitation current I itself is not supplied to the control loop as a control variable, but rather one from the excitation current I. derived voltage. U. the conversion of the excitation current I into the voltage U takes place by means of a current-voltage converter, which in the simplest case is an ohmic resistor 8.
In einem auf den Strom-Spannungs-Wandler 8 folgenden Schaltungsteil 9 wird die Spannung U auf einen für einen nachfolgenden Analog-Digital-Umsetzer 10 geeigneten Signalpegel gebracht. Der Analog-Digital-Umsetzer 10 ist dann erforderlich, wenn die weitere Signalverarbeitung in dem Regelkreis digital erfolgen soll. Bei analoger Signalverarbeitung kann auf den Analog-Digital-Umsetzer 10 verzichtet werden. Die digitalisierte Regelgröße, nämlic die Spannung U, wird einem digitalen Frequenzanalysator 11 zugeführt. Der Frequenzanalysator 11 bestimmt ein oder mehrere charakteristische Größen des Spannungssignals U. charakteristische Größen können beispielsweise relative Phasenlagen von bestimmten harmonischen Spektralanteilen und/oder die Spektralverteilung des Signals U sein.In a circuit part 9 following the current-voltage converter 8, the voltage U is brought to a signal level suitable for a subsequent analog-digital converter 10. The analog-to-digital converter 10 is required if the further signal processing in the control loop is to take place digitally. In the case of analog signal processing, the analog-to-digital converter 10 can be dispensed with. The digitized controlled variable, namely the voltage U, is fed to a digital frequency analyzer 11. The frequency analyzer 11 determines one or more characteristic quantities of the voltage signal U. Characteristic quantities can be, for example, relative phase positions of certain harmonic spectral components and / or the spectral distribution of the signal U.
'Die vom Frequenzanalysator 11 ermittelten ein oder mehreren charakteristischen Größen des Signals U werden einem Signalprozessor 12 zugeführt. In dem Signalprozessor 12 sind Sollwerte dieser charakteristischen Größen abgespeichert, die einer gewünschten Betriebsgröße, nämlich einem gewünschten' Erregerstromverlauf I des Signalhorns 1 entsprechen. Der Signalprozessor 12 ermittelt Abweichungen zwischen der (den) vom Frequenzanalysator 11 bestimmten Größe (n) und dem (den) im Signalprozessor 12 abgespeicherten Sollwert (en) . Der Signalprozessor 12 stellt ein oder mehrere zu diesen ermittelten Abweichungen proportionale Stellgrößen für den Pulsgenerator 6 bereit. Die eine oder mehreren Stellgrößen dienen dazu, die Pulsfrequenz und/oder das Puls- Tastverhältnis des Pulsgenerators 6 zu steuern. Durch den Regelprozess werden die Pulsfrequenz und/oder das Puls- Tastverhältnis des Pulsgenerators 6 so abgestimmt, dass" die im Signalprozessor 12 ermittelten Abweichungen zwischen Ist- Größen und Sollwerten minimal werden und somit das Signalhorn 1 bei seiner optimalen Frequenz, nämlich der Resonanzfrequenz, betrieben wird. 'The frequency analyzer 11 from the determined one or more characteristic quantities of the signal U a signal processor 12 are supplied. In the signal processor 12 are stored desired values of these characteristic sizes, namely corresponding to a desired operation of a desired size 'excitation current profile I of the horn. 1 The signal processor 12 determines deviations between the variable (s) determined by the frequency analyzer 11 and the target value (s) stored in the signal processor 12. The signal processor 12 provides one or more manipulated variables proportional to these deviations for the pulse generator 6. The one or more manipulated variables serve to control the pulse frequency and / or the pulse duty cycle of the pulse generator 6. The pulse rate and / or the pulse rate are Duty cycle of the pulse generator 6 is coordinated in such a way that "the deviations between the actual values and setpoints determined in the signal processor 12 become minimal, and thus the signal horn 1 is operated at its optimal frequency, namely the resonance frequency.
Der Signalprozessor 12 erhält ein Startsignal S, wenn der Schalter 4 betätigt wird, um das Signalhorn zu aktivieren. Vorzugsweise führt der Signalprozessor 12 den Vergleich zwischen ein oder mehreren abgespeicherten Sollwerten und einem oder mehreren vom Frequenzanalysator 11 gelieferten Ist-Größen durch; d.h. der Regelprozess wird nicht dauerhaft sondern in bestimmten sich wiederholenden Zeitabständen in Gang gesetzt. Jedes Mal, wenn ein Regelprozess vom Signalprozessor 12 eingeleitet wird, gibt dieser an denThe signal processor 12 receives a start signal S when the switch 4 is actuated to activate the signal horn. The signal processor 12 preferably carries out the comparison between one or more stored nominal values and one or more actual values supplied by the frequency analyzer 11; i.e. the control process is not started permanently but at certain repeating intervals. Every time a control process is initiated by the signal processor 12, the latter reports to the
Analog-Digital-Umsetzer 10 ein Startsignal A ab, worauf der Analog-Digital-Umsetzer das analoge Eingangssignal U in ein digitales Signal für den Frequenzanalysator 11 konvertiert. Der Analog-Digital-Umsetzer 10 muss nicht unbedingt nur in den Zeiten des vom Signalprozessor 12 initiiertenAnalog-digital converter 10 from a start signal A, whereupon the analog-digital converter converts the analog input signal U into a digital signal for the frequency analyzer 11. The analog-to-digital converter 10 need not necessarily only in the times of the signal processor 12 initiated
Regelprozesses aktiviert werden, sondern kann die Analog- Digital-Umsetzung laufend durchführen.Control process can be activated, but can carry out the analog-digital conversion continuously.
Bei dem in der Figur 2 dargestellten Ausführungsbeispiel besitzt der Regelkreis die gleichen Schaltungsteile wie bei dem zuvor beschriebenen Ausführungsbeispielen der Figur 1. Deshalb besitzen alle Schaltblöcke in Figur 2 auch die gleichen Bezugszeichen wie in Figur 1. DasIn the exemplary embodiment shown in FIG. 2, the control circuit has the same circuit parts as in the previously described exemplary embodiments in FIG. 1. Therefore, all switching blocks in FIG. 2 also have the same reference numerals as in FIG
Ausführungsbeispiel in Figur 2 unterscheidet sich gegenüber dem in Figur 1 lediglich dadurch, dass der Signalprozessor 12 einen getrennten Signaleingang 13 aufweist. Bei der Beschreibung des in der Figur 1 dargestellten Ausführungsbeispiels ist erwähnt worden, dass im Signalprozessor 12 ein oder mehrere fest vorgegebene Sollwerte abgespeichert sind. Der in der Figur 2 angedeutete Signaleingang 13 für den Signalprozessor 12 ermöglicht es nun, von außen Sollwerte zuzuführen, die es erlauben, die Frequenz das Signalhorn 1 abweichend von seiner Resonanzfrequenz zu verändern. Somit kann der vom Signalhorn 1 erzeugte Ton in seiner Frequenz und auch in seinerThe exemplary embodiment in FIG. 2 differs from that in FIG. 1 only in that the signal processor 12 has a separate signal input 13. In the description of the exemplary embodiment shown in FIG. 1, it was mentioned that one or more predefined setpoints are stored in the signal processor 12. The one indicated in FIG. 2 Signal input 13 for the signal processor 12 now makes it possible to supply setpoints from outside which allow the frequency of the signal horn 1 to be changed in deviation from its resonance frequency. Thus, the tone generated by the bugle 1 can be frequency and also in frequency
Lautstärke variiert werden. Die auf den Signaleingang 13 des Signalprozessors 12 gegebenen veränderbaren Sollwerte können beispielsweise aus einer zentralen Steuereinheit im Kraftfahrzeug kommen. In diesem Fall entfällt auch der beim Ausführungsbeispiel in Figur 1 eingezeichnete Schalter 4.Volume can be varied. The changeable setpoints given to the signal input 13 of the signal processor 12 can come, for example, from a central control unit in the motor vehicle. In this case, the switch 4 shown in the exemplary embodiment in FIG. 1 is also omitted.
Denn über den Signaleingang 13 erhält der Signalprozessor 12 auch ein Startsignal für die Aktivierung des Signalhorns 1. Die Einschaltung des Signalhorn 1 erfolgt in diesem Fall ausgehend vom Signalprozessor 12 über den Pulsgenerator 6 und den elektrisch steuerbaren Schalter 5, der den Stromkreis der Erregerspule 2 schließt.This is because the signal processor 12 also receives a start signal for the activation of the signal horn 1 via the signal input 13. The signal horn 1 is switched on in this case starting from the signal processor 12 via the pulse generator 6 and the electrically controllable switch 5, which closes the circuit of the excitation coil 2 ,
Die zuvor beschriebenen Schaltungsblöcke 5, 6, 7 und 8, 9, 10, 11, 12 müssen keine voneinander getrennte Schaltungen sein, sondern sie können auch in geeigneter Weise miteinander integriert werden. The circuit blocks 5, 6, 7 and 8, 9, 10, 11, 12 described above do not have to be separate circuits, but they can also be integrated with one another in a suitable manner.

Claims

Ansprüche Expectations
1. Signalhorn mit einem Regelkreis zum adaptiven Abstimmen einer Betriebsgröße des Signalhorns (1) auf einen vorgebbaren Sollwert, wobei ein von einem Pulsgenerator (6) gesteuerter Schalter (5) einen durch das Signalhorn (1) fließenden Erregerstrom (I) bezüglich seiner1. Signal horn with a control circuit for adaptively adjusting an operating variable of the signal horn (1) to a predeterminable target value, a switch (5) controlled by a pulse generator (6) having an excitation current (I) flowing through the signal horn (1) with respect to it
Pulsfrequenz und/oder seines Puls-Tastverhältnisses steuert und wobei der Regelkreis Schaltungsmittel (8, 9, 10, 11, 12) aufweist, welche eine Betriebsgröße des Signalhorns (1) erfassen und in Abhängigkeit davon den Pulsgenerator (6) so steuern, dass die Betriebsgröße desControls pulse frequency and / or its pulse duty cycle and the control circuit has circuit means (8, 9, 10, 11, 12) which detect an operating variable of the signal horn (1) and, depending on this, control the pulse generator (6) so that the Company size of the
Signalhorns (1) den Sollwert annimmt, dadurch gekennzeichnet, dass Schaltungsmittel (11) vorhanden sind, welche ein oder mehrere charakteristische Größen des Erregerstroms (I) erfassen, und dass weitere Schaltungsmittel (12) vorhanden sind, welche aus derSignal horn (1) assumes the target value, characterized in that there are circuit means (11) which detect one or more characteristic quantities of the excitation current (I), and that there are further circuit means (12) which consist of the
Abweichung zwischen der (den) aus dem Erregerstrom (I) abgeleiteten karakteristischen Größe (n) und ein oder mehreren Sollwerten ein oder mehrere- Stellgrößen für den Pulsgenerator (6) bereitstellen.Deviation between the characteristic variable (s) derived from the excitation current (I) and one or more setpoints provide one or more manipulated variables for the pulse generator (6).
2. Signalhorn nach Anspruch 1, dadurch gekennzeichnet, dass die Betriebsgröße des Signalhorns (1) dessen Resonanzfrequenz oder eine dazu proportionale Größe - vorzugsweise der Erregerstrom (I) - ist. 2. Signal horn according to claim 1, characterized in that the operating variable of the signal horn (1) is its resonance frequency or a variable proportional to it - preferably the excitation current (I).
3. Signalhorn nach Anspruch 1, dadurch gekennzeichnet, dass die charakteristische (n) Größe (n) des Erregerstroms (I) die relative Phasenlage von harmonischen Spektalanteilen des Erregerstroms (I) oder einer daraus abgeleiteten Spannung (U) und/oder die Spektralverteilung des3. Signal horn according to claim 1, characterized in that the characteristic (n) size (s) of the excitation current (I), the relative phase position of harmonic spectral components of the excitation current (I) or a voltage derived therefrom (U) and / or the spectral distribution of the
Erre'gerstroms (I) oder einer daraus abgeleiteten Spannung (U) ist (sind) .Erre 'gerst roms (I) or a voltage (U) derived from it is (are).
4. Signalhorn nach einem der Ansprüche 1 oder 3, dadurch gekennzeichnet, dass ein Frequenzanalysator (11) die charakteristische (n) Größe (n) des Erregerstroms (I) oder einer daraus abgeleiteten Spannung (U) erfasst.4. Signal horn according to one of claims 1 or 3, characterized in that a frequency analyzer (11) detects the characteristic (n) size (s) of the excitation current (I) or a voltage (U) derived therefrom.
5. Signalhorn nach Anspruch 1, dadurch gekennzeichnet, dass ein Strom-Spannungs-Wandler (8) vorhanden ist, der den5. Signal horn according to claim 1, characterized in that a current-voltage converter (8) is present, which
Erregerstrom (I) in eine Spannung (U) konvertiert, dass ein Analog-Digital-Umsetzer (10) vorhanden ist, der die Spannung (U) digitalisiert, und das ein digitaler Frequenzanalysator (11) vorhanden ist, der ein oder mehrere karakteristische Größen - vorzugsweise die relative Phasenlage von harmonischen Spektalanteilen und/oder die Spektalverteilung - des aus dem Erregerstrom (I) abgeleiteten digitalen Spannungsverlaufs (U) ermittelt.Excitation current (I) is converted into a voltage (U), that there is an analog-to-digital converter (10) that digitizes the voltage (U), and that a digital frequency analyzer (11) is available that has one or more characteristic quantities - preferably the relative phase position of harmonic spectral components and / or the spectral distribution - of the digital voltage curve (U) derived from the excitation current (I) is determined.
6. Signalhorn nach einem der Ansprüche 1, 4 oder 5, dadurch gekennzeichnet, dass ein Signalprozessor (12) vorhanden ist, der die vom Frequenzanalysator (11) ermittelte (n) charakteristische (n) Größe (n) der Erregerstroms (I) bzw. der daraus abgeleiteten Spannung (ü) mit ein oder mehreren Sollwerten vergleicht und aus den Abweichungen zwischen der (den) charakteristischen Größe (n) und dem (den) Sollwert (en) ein oder mehrere Stellgrößen für den Pulsgenerator (6) bereitstellt. 6. Signal horn according to one of claims 1, 4 or 5, characterized in that a signal processor (12) is present, which is determined by the frequency analyzer (11) (n) characteristic (n) size (s) of the excitation current (I) or compares the voltage (ü) derived therefrom with one or more target values and provides one or more manipulated variables for the pulse generator (6) from the deviations between the characteristic variable (s) and the target value (s).
7. Signalhorn nach einem der Ansprüche 1 oder 6, dadurch gekennzeichnet, dass der Signalprozessor (12) den Sollwert-Vergleich in periodisch sich wiederholenden Zeitabständen durchführt.7. Signal horn according to one of claims 1 or 6, characterized in that the signal processor (12) carries out the setpoint comparison at periodically repeating time intervals.
8. Signalhorn nach einem der Ansprüche 1 oder 6, dadurch gekennzeichnet, dass im Signalprozessor (12) ein oder mehrere Sollwerte, die einer festen Betriebsgröße des Signalhorns (1) entsprechen, abgespeichert sind.8. Signal horn according to one of claims 1 or 6, characterized in that one or more setpoints which correspond to a fixed operating variable of the signal horn (1) are stored in the signal processor (12).
9. Signalhorn nach einem der Ansprüche 1 oder 6, dadurch gekennzeichnet, dass dem Signalprozessor (12) ein oder mehrere veränderbare Sollwerte zuführbar sind. 9. Signal horn according to one of claims 1 or 6, characterized in that the signal processor (12) one or more variable setpoints can be supplied.
PCT/DE2002/002483 2001-07-25 2002-07-06 Signal horn with adaptively modifiable operating variables WO2003011482A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE50205530T DE50205530D1 (en) 2001-07-25 2002-07-06 SIGNAL HORN WITH ADAPTIVELY TUNING OPERATOR SIZE
EP02758078A EP1414590B1 (en) 2001-07-25 2002-07-06 Signal horn with adaptively modifiable operating variables
JP2003516705A JP4076161B2 (en) 2001-07-25 2002-07-06 Horn with adaptively adjustable movement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10136182A DE10136182C1 (en) 2001-07-25 2001-07-25 Signaling horn for adapting an operating value tune-in to a preset set point value has a switch to control an exciter current regarding pulse frequency/pulse duty factor and a control circuit to detect an operating value.
DE10136182.3 2001-07-25

Publications (1)

Publication Number Publication Date
WO2003011482A1 true WO2003011482A1 (en) 2003-02-13

Family

ID=7693013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/002483 WO2003011482A1 (en) 2001-07-25 2002-07-06 Signal horn with adaptively modifiable operating variables

Country Status (7)

Country Link
EP (1) EP1414590B1 (en)
JP (1) JP4076161B2 (en)
CN (1) CN1301803C (en)
AT (1) ATE314893T1 (en)
DE (2) DE10136182C1 (en)
ES (1) ES2254716T3 (en)
WO (1) WO2003011482A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4026107A4 (en) * 2019-09-03 2023-09-27 Ramasamy Krishnaswamy Electronically operated forward and reverse warning / sound signalling device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4692111B2 (en) * 2005-07-06 2011-06-01 富士電機ホールディングス株式会社 Dosimeter
DE102008040468A1 (en) 2008-07-16 2010-01-21 Clarton Horn S.A. sound generator
DE102008041505A1 (en) 2008-08-25 2010-03-04 Clarton Horn S.A. sound generator
JP6314496B2 (en) * 2014-01-21 2018-04-25 浜名湖電装株式会社 Alarm sound generator
JP5850124B2 (en) * 2014-11-14 2016-02-03 浜名湖電装株式会社 Vehicle approach notification device
JP5850123B2 (en) * 2014-11-14 2016-02-03 浜名湖電装株式会社 Vehicle approach notification device
KR101693195B1 (en) * 2015-09-15 2017-01-06 주식회사 인팩 Sound pressure compensation horn device and method for compensating a pressure of sound using a voltage level
ES2632260B1 (en) * 2016-03-09 2018-05-04 Clarton Horn, S.A.U. Control procedure of an acoustic warning, and acoustic warning performing said control procedure
US20190172441A1 (en) * 2017-12-05 2019-06-06 GM Global Technology Operations LLC Passive sound enhancement system for a vehicle
JP6872723B2 (en) * 2017-12-27 2021-05-19 パナソニックIpマネジメント株式会社 Acoustic devices, acoustic control devices, and programs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0389860A2 (en) * 1989-03-29 1990-10-03 ELECTRONSYSTEM S.p.A. Electronically controlled horn for motor vehicles
US5414406A (en) * 1992-04-21 1995-05-09 Sparton Corporation Self-tuning vehicle horn
US5635619A (en) * 1994-07-12 1997-06-03 Iowa State University Research Foundation, Inc. Apparatus and method for driving an ultrasonic transducer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227559U (en) * 1988-08-11 1990-02-22
DE4409279A1 (en) * 1994-03-18 1995-09-21 Fer Fahrzeugelektrik Gmbh Acoustic signal source for vehicle horn
CN1162875A (en) * 1996-02-23 1997-10-22 哈里公司 Current-controlled carrier tracking filter for improved spurious signal suppression

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0389860A2 (en) * 1989-03-29 1990-10-03 ELECTRONSYSTEM S.p.A. Electronically controlled horn for motor vehicles
US5414406A (en) * 1992-04-21 1995-05-09 Sparton Corporation Self-tuning vehicle horn
US5635619A (en) * 1994-07-12 1997-06-03 Iowa State University Research Foundation, Inc. Apparatus and method for driving an ultrasonic transducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4026107A4 (en) * 2019-09-03 2023-09-27 Ramasamy Krishnaswamy Electronically operated forward and reverse warning / sound signalling device

Also Published As

Publication number Publication date
DE50205530D1 (en) 2006-03-30
EP1414590A1 (en) 2004-05-06
ES2254716T3 (en) 2006-06-16
DE10136182C1 (en) 2002-12-12
EP1414590B1 (en) 2006-01-04
ATE314893T1 (en) 2006-02-15
CN1301803C (en) 2007-02-28
CN1535187A (en) 2004-10-06
JP4076161B2 (en) 2008-04-16
JP2004536355A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
DE10136182C1 (en) Signaling horn for adapting an operating value tune-in to a preset set point value has a switch to control an exciter current regarding pulse frequency/pulse duty factor and a control circuit to detect an operating value.
DE4009819C2 (en) HF surgery device
DE69733955T2 (en) CONTROL SYSTEM FOR ACOUSTIC DETECTORS
EP2171739B1 (en) Control apparatus for a switching device with a pull-in coil and/or a holding coil and method for controlling the current flowing through the coil
EP2867629B1 (en) Method of controlling a solenoid current of an electromagnetic flowmeter
DE2827032A1 (en) DETECTOR CIRCUIT
DE102012102789B4 (en) Circuit for determining an average value
DE102006042391A1 (en) Switching regulator with overcurrent protection
WO2012028401A1 (en) Measuring apparatus, particularly measuring apparatus for sensing metal articles
DE4036618C3 (en) Device for driving a piezoelectric vibrator
EP3269038B1 (en) Oscillator and inductive proximity switch
DE10105207B4 (en) Method and control unit for speed control of a DC motor for model vehicles
DE102006057523A1 (en) Control method for controlling electrical final controlling element, particularly for volumetric flow regulation valve in fuel injection system for internal-combustion engine, allowing nominal value for manipulated variable
EP1031182B1 (en) Method and circuit for generating a pulse-width modulated actuating signal for a direct current actuator
EP2011577B1 (en) Method for operating a dental ultrasonic device and dental ultrasonic device
WO2009115483A1 (en) Method and device for operating a circuit arrangement
EP1198885B1 (en) Electronic drive control mechanism
EP3375018A1 (en) Control circuit and method for controlling a piezoelectric transfomer
EP1825931B1 (en) Method for operating a dental ultrasonic device and dental ultrasonic device
DE102004003837A1 (en) Circuit arrangement and method for generating a control signal for an engine control unit for controlling fuel injectors
WO2001089070A1 (en) Device for maintaining a power supply voltage
EP1570243B1 (en) Device for operating a vibrating unit of a vibration resonator
DE2929646C2 (en) Ultrasonic generator
EP2151672A1 (en) Method for measuring a fill level or limit level, fill level or limit level measuring device control and fill level or limit level measuring device
EP1587121A1 (en) Method and electronic circuit for the actuation of a relay with different supply voltages

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2002758078

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

Kind code of ref document: A1

Designated state(s): CN JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003516705

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20028147855

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002758078

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002758078

Country of ref document: EP