WO2003007873A2 - Plasma protein matrices and methods for their preparation - Google Patents
Plasma protein matrices and methods for their preparation Download PDFInfo
- Publication number
- WO2003007873A2 WO2003007873A2 PCT/IL2002/000589 IL0200589W WO03007873A2 WO 2003007873 A2 WO2003007873 A2 WO 2003007873A2 IL 0200589 W IL0200589 W IL 0200589W WO 03007873 A2 WO03007873 A2 WO 03007873A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- matrix
- plasma proteins
- sponge
- sulfate
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3839—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
- A61L27/3843—Connective tissue
- A61L27/3852—Cartilage, e.g. meniscus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/225—Fibrin; Fibrinogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3804—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
- A61L27/3834—Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/36—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
- A61L27/38—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
- A61L27/3839—Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/56—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/04—Drugs for skeletal disorders for non-specific disorders of the connective tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/08—Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0655—Chondrocytes; Cartilage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/50—Proteins
- C12N2533/56—Fibrin; Thrombin
Definitions
- the present invention concerns biomatrices comprising freeze-dried plasma proteins useful for clinical applications including as implants for tissue engineering as well as in biotechnology.
- the matrices according to the present invention may be used clinically, per se or as cell-bearing implants.
- Tissue engineering may be defined as the art of reconstructing mammalian tissues, both structurally and functionally (Hunziker, 2002).
- In vitro tissue engineering generally includes the delivery of a polymeric scaffold that serves as an architectural support onto which cells may attach, proliferate, and synthesize new tissue to repair a wound or defect.
- articular cartilage one of several types of cartilage in the body, found at the articular surfaces of bones. Damage to cartilage may result from an inflammatory disease such as rheumatoid arthritis, from a degenerative process such as osteoarthritis or from trauma such as intraarticular fracture or following ligament injuries. Cartilage lesions are often associated with pain and reduced function and generally do not heal without medical intervention.
- transplantation of chondral or osteochondral tissue from either autologous or allogeneic sources.
- the rationale behind transplantation lies in the notion that the proliferative and tissue-differentiation activities of these cells would result in the formation of neocartilage. In fact, this technique shows high variability and limited clinical success.
- Matrices useful for tissue regeneration and/or as biocompatible surfaces useful for tissue culture are well known in the art. These matrices may therefore be considered as substrates for cell growth either in vitro or in vivo. Suitable matrices for tissue growth and/or regeneration include both biodegradable and biostable entities. Among the many candidates that may serve as useful matrices claimed to support tissue growth or regeneration, are included gels, foams, sheets, and numerous porous particulate structures of different forms and shapes. Porous materials formed from synthetic and/or naturally occurring biodegradable materials have been used in the past as wound dressings or implants. The porous material provides structural support and a framework for tissue in-growth while healing progresses.
- the porous material is gradually absorbed as the tissue around the wound regenerates.
- Typical bioabsorbable materials for use in the fabrication of porous wound dressings or implants include both synthetic polymers and biopolymers such as structural proteins and polysaccharides.
- the biopolymers may be either selected or manipulated in ways that affect their physico-chemical properties. For example biopolymers may be cross linked either enzymatically, chemically or by other means, thereby providing greater or lesser degrees of flexibility or susceptibility to degradation.
- fibronectin various constituents of the extracellular matrix including fibronectin, various types of collagen, and laminin, as well as keratin, fibrin and fibrinogen, hyaluronic acid, heparan sulfate, chondroitin sulfate and others.
- Fibrin is a major plasma protein which participates in the blood coagulation process.
- the coagulation of blood is a complex process including the sequential interaction of a number of plasma proteins, in particular of fibrinogen (factor I), factor II, factor N, factor N ⁇ , factor NTH, factor IX, factor X, factor XI, factor XII and factor XIII.
- Other plasma proteins such as Non Willebrand factor (vWF), albumin, immunoglobulin, coagulation factors, and complement components may also play a part in the formation of protein networks or clots in the blood.
- Fibrin is known in the art as a tissue adhesive medical device and can be used in wound healing and tissue repair.
- Lyophilized plasma-derived protein concentrate (containing Factor XTII, fibronectin, and fibrinogen), in the presence of thrombin and calcium forms an injectable biological glue.
- US Patent No. 5,411,885 discloses a method of embedding and culturing tissue employing fibrin glue.
- US Patent No. 4,642,120 discloses the use of fibrinogen glue in combination with autologous mesenchymal or chondrocytic cells to promote repair of cartilage and bone defects.
- US Patent No. 5,260,420 discloses a method for preparation and usage of biological glue comprising fibrin for injection at the site of injury.
- US Patent No. 6,074,663 discloses a cross-linked fibrin sheet-like material for the prevention of adhesion formation.
- US Patent No. 6,310,267 discloses a specific process for preparing a biodegradable flexible fibrin web for wound healing. The process necessitates dialyzing a fibrinogen solution with a solution containing chelators and forming the flexible web by the addition of a thrombin solution, freeze drying and lyophilizing the web.
- US Patent No. 5,972,385 discloses a cross-linked collagen-polysaccharide matrix that is administered alone or in combination with other therapeutics, such as growth factors, for tissue repair.
- the invention also discloses the cross-linked collagen- polysaccharide matrix in combination with fibrin.
- the matrix preparation steps include freezing and lyophilization as well as adding fibrinogen and thrombin to form fibrin in said matrix.
- a freeze-dried fibrin web for wound healing has been disclosed in US Patent No. 6,310,267.
- the preparation of the web, as disclosed, requires a single- or multistage dialysis of the fibrinogen solution.
- the single-stage or multistage dialysis of the fibrinogen solution crucially changes its composition and the concentration of salts and amino acids customarily contained in it are considerably reduced.
- the dialysis is carried out in an aqueous solution of a physiologically compatible inorganic salt such as NaCl and an organic complexing agent such as alkali metal salts of EDTA, of oxalic acid or of citric acid.
- a fibrin sponge containing a blood clotting activator for hemostasis, tissue adhesion, wound healing and cell culture support is disclosed in WO 99/15209. According to that disclosure, the restoration of moisture or water content following lyophilization is crucial for obtaining a soft, adaptable, highly absorbent sponge.
- US Patent Nos. 5,955,438 and 4,971,954 disclose collagen-based matrices cross- linked by sugars, useful for tissue regeneration.
- US Patent No.5,700,476 provides a bioabsorbable implant material containing pharmacologically active agents, suitable for use in wound repair. The method describes the mixture of two biopolymer components, freeze dried to form a heteromorphic sponge, that allows a phased release of a pharmacologically active agent.
- US Patent No. 5,736,372 discloses a biodegradable synthetic polymeric fibrous matrix containing chondrocytes for in vivo production of a functional cartilaginous structure to be used in joint lining.
- US Patent No. 5,948,429 discloses a method of preparing a biopolymer foam comprising forming a biopolymer solution, cross-linking said solution with ultraviolet radiation and subsequently freeze-drying to form a lattice.
- US Patent No. 5,443,950 relates to a method for implantation of a variety of cell types growing on a three dimensional cell matrix which has been inoculated with stromal cells to form a three dimensional stromal matrix. Further disclosed in US Patent No.
- 5,842,477 is a method of in vivo cartilage repair by implanting a biocompatible three dimensional scaffold in combination with periosteal/perichondrial tissue and stromal cells, with or without bioactive agents, for the production of new cartilage at the site of implantation.
- the scaffold used is selected from a group consisting of biodegradable or non-biodegradable materials.
- matrices of the invention are useful for cellular growth, as an implant per se and/or as a cell-bearing implant suitable for transplantation.
- porous matrix also referred to as a sponge, has attributes that make it particularly advantageous for supporting and promoting cell growth both in vivo and in vitro.
- the matrices can be formed successfully with partially purified proteins, such as crude fractions of plasma proteins.
- the plasma proteins can be retrieved from autologous material thereby obviating the need for pooled blood sources with the attendant health risks.
- the matrices have superior mechanical properties, controlled by varying auxiliary components used in the composition. Desirable properties include tensile strength, elasticity, compressibility, resistance to shear, moldability.
- the matrices have superior physical properties, controlled by varying auxiliary components used in the composition. Desirable properties include texture, pore size and uniformity of pores, charge and charge distribution, hydrophilicity, adhesion, wettability.
- the matrices have superior biological properties, controlled by varying auxiliary components used in the composition. Desirable properties include biodegradability, lack of immunogenicity, the capacity to maintain and promote cell growth, proliferation, differentiation and migration. It is now disclosed for the first time that the attributes and desirable properties of the matrices can be controlled by the use of auxiliary components, some of which might be considered detrimental to the subsequent support of cell growth and proliferation. It is therefore explicitly intended to be understood that these components be utilized in the processes of generating and formation of the freeze dried matrices, and then removed as necessary.
- the lyophilized matrices may be rehydrated and washed to remove any such additives that are deleterious to cell growth, thereby providing optimized plasma protein matrices with the desired mechanical and biological properties for the intended use, essentially free of the components detrimental to cell growth.
- the washed matrices can be used directly or re-lyophilized prior to use.
- the essential constituents of the matrices of the invention are fibrin, obtained by the interaction of fibrinogen and thrombin, in the presence of calcium ions and Factor XIII; anti-fibrinolytic agents, as are well known in the art, selected from serine protein inhibitors, especially plasmin inhibitors, particularly tranexamic acid. Other antifibrinolytics may be used, alone or in combination, including aprotinin, ⁇ -2- macroglobulin, ⁇ -2-plasmin inhibitor, plasminogen activator inhibitor and other natural or synthetic agents. These essential components, with or without any optional additives, are freeze-dried to obtain a resilient sponge-like matrix, substantially in the absence of organic chelating agents, with no minimal requirement of residual water content.
- the auxiliary components include various polymers that impart the desired properties as detailed above.
- the preferred polymers may be selected from: polysaccharides, currently more preferred hyaluronic acid; anionic polysaccharides, currently more preferred being sulfated polysaccharides, currently most preferred being dextran sulfate; glycosaminoglycans, or other polymers such as polyethylene glycols or combinations thereof.
- glycerol may be added in conjunction with one or more of the above components.
- the present invention provides an inexpensive, biodegradable, non-immunogenic three-dimensional matrix of plasma-derived proteins.
- the matrix comprises plasma proteins from allogeneic plasma, more preferably from autologous plasma.
- at least one of the plasma proteins used for preparing the matrix is derived from autologous plasma.
- all of plasma proteins are derived from autologous plasma.
- plasma proteins from any immunologically or otherwise suitable source may be used, as well as engineered proteins or peptides having the capability to form, upon reaction with thrombin and factor XIII, a plasma protein clot.
- the plasma proteins utilized in the present invention include at least fibrinogen and factor XTJI. These components may be purified from a plasma source or may be used from a commercially available source, including native or recombinant proteins.
- the plasma protein matrix is a sponge having tensile strength of at least 0.2 kPa and 2 mm deformation, measured as described herein below.
- the sponge matrix of the invention may have irregular pores or substantially regular pores.
- substantially regular pores means that the majority of the pores or more preferably substantially all the pores are in the same size range.
- More preferred matrices according to the invention have pores of a diameter in the range of 50-300 microns.
- most preferred embodiments according to the present invention are plasma protein sponge matrices with pore sizes in the range of 100-200 ⁇ m.
- the plasma protein matrix having the above specified structural and mechanical properties may be obtained by any appropriate method, the currently preferred method being freeze drying a plasma protein clot.
- the plasma matrix is prepared by mixing plasma proteins with thrombin in the presence of calcium chloride under conditions suitable for achieving clotting; casting or molding the mixture of plasma proteins and thrombin in a solid support prior to achieving clotting; freezing the clotted mixture; and lyophilizing the clotted mixture.
- the thrombin solution may be poured into a mold, the fibrinogen solution added and mixed to blend; the clotted mixture frozen and lyophilized.
- the method for preparing a matrix of plasma proteins useful as a scaffold for growing cells, as a scaffold for implantation in vivo or in situ comprises the following steps: mixing plasma proteins with thrombin in the presence of calcium ions and at least one anti-fibrinolytic agent under conditions suitable for achieving clotting, in the substantial absence of organic chelating agents, and optionally adding at least one auxiliary component; casting the mixture of plasma proteins and thrombin in a solid support prior to achieving clotting; freezing the clotted mixture; and lyophilizing the clotted mixture, to obtain a sponge having no more than 3% residual moisture .
- plasma proteins at a concentration of 30- 50 mg/ml are mixed with at least 0.5 units, preferably 1.5 units of thrombin per mg total plasma protein, and then the mixture is frozen at -70°C for approximately 16 hours and lyophilized for at least 16 hours, preferably 24 hours.
- the sponge In its final form prior to use with cells the sponge is substantially dry and contains less than 10% residual moisture, more preferably less than 5% residual moisture and most preferably less than 3% residual moisture.
- the sponge of the present invention contains auxiliary components which may modify certain properties of the sponge including physical, mechanical and/or biological properties. The addition of the auxiliary components, imparts superior characteristics to the sponge.
- the auxiliary components are added to the plasma proteins prior to the formation of a clot.
- a currently preferred embodiment in accordance with the present invention is a sponge comprising dextran sulfate.
- a currently more preferred embodiment in accordance with the present invention is a sponge comprising hyaluronic acid.
- a currently most preferred embodiment in accordance with the present invention is a sponge comprising hyaluronic acid and glycerol.
- the additives which impart beneficial properties to the sponge are removed and the sponge lyophilized to remove all moisture. Once the sponge is cast and lyophilized, the additives are no longer required and may be removed from the sponge.
- a currently preferred embodiment provides a sponge prepared containing at least one as described above, wherein the sponge is washed following the freezing-lyophilization step and the sponge re- lyophilized to remove residual moisture.
- the present invention also provides for the introduction of additional synthetic polymers into the sponge, during the preparation procedure. These polymers may change the physical, mechanical and or biological properties of the sponge.
- the polymers may be non-biodegradable or biodegradable.
- non-degradable materials include polytetrafluoroethylene, perfluorinated polymers such as fluorinated ethylene propylene, polypropylene, polyethylene, polyethylene terapthalate, silicone, silicone rubber, polysufone, polyurethane, non-degradable polycarboxylate, non- degradable polycarbonate, non-degradable polyester, polyacrylic, polyhydroxymethacrylate, polymethylmethacrylate, polyamide such as polyesteramide, and copolymers, block copolymers and blends of the above materials.
- degradable materials include hydrolyzable polyesters such as polylactic acid and polyglycolic acid, polyorthoesters, degradable polycarboxylates, degradable polycarbonates, degradable polycaprolactones, polyanhydride, and copolymers, block copolymers and blends of the above materials.
- Other components include surfactants including lecithin.
- the plasma protein matrix of the invention is useful, inter alia, as an unexpectedly advantageous support for cellular growth.
- the matrix of the present invention is a biocompatible surface useful for tissue culture, such as for growing mesenchymal cells, chondrocytes, osteocytes and osteoblasts, epithelial cells, neuronal cells, hepatic, renal, pancreatic and any other cell types which it is desired to culture within a three dimensional support.
- the matrix is a sponge comprising plasma proteins able to support the proliferation of a variety of cell types.
- the sponge is inoculated with cells and the cells allowed to proliferate in vitro prior to in vivo implantation.
- the sponge is allowed to absorb cells that have been cultured or harvested and the sponge comprising the cells is implanted in vivo.
- an auxiliary component which is a bioactive agent selected from growth factors, cytokines, enzymes, anti-microbials, anti-inflammatory agents.
- the bioactive agents for example, growth factors, angiogenic factors, and the like, are advantageous to encourage a more rapid growth of the cells within the implant, or a more rapid vascularization of the implant.
- the implant consists of a plasma protein scaffold bearing cells at a density that is at least 10 4 (ten thousand) cells per cm 3 , preferably 10 5 cells per cm 3 , more preferably 10 cells per cm .
- an implant for transplanting chondrocytes to a site of cartilage damage consists of a 300 ⁇ l plasma protein scaffold having an approximate volume of 0.2 cm 3 ' having 10 4 chondrocytes seeded therein prior to a 2 - 3 day incubation period.
- a plasma protein scaffold for transplanting chondrocytes comprising autologous plasma proteins and autologous chondrocytes is used as an implant for transplantation.
- a plasma protein scaffold for transplanting chondrocytes comprises a fibrin sponge having a substantially regular pore size of 50-300 ⁇ m and a 0.2 kPa.
- the plasma protein matrix of the invention may be cut into sections of desired size and shape to fit the affected area prior to seeding with cells or prior to implantation.
- the plasma protein scaffold may also be used as an implant per se, for providing mechanical support to a defective or injured site in situ and/or for providing a matrix within which cells from the defective or injured site proliferate and differentiate.
- the plasma protein matrix may be used in conjunction with other therapeutic procedures including chondral shaving, laser or abrasion chondroplasty, drilling or microfracture techniques.
- the plasma protein matrix of the invention may further be utilized in vivo in reconstructive surgery, for example as a matrix for regenerating cells and tissue including neuronal cells, cardiovascular tissue, urothelial cells and breast tissue. Some typical orthopedic applications include joint resurfacing, meniscus repair, craniofacial reconstruction or repair of an invertebral disc.
- the plasma protein matrix may be used as a coating on synthetic or other implants such as pins and plates, for example, in hip replacement procedures.
- the present invention further provides implants or medical devices coated with the comprising the plasma protein matrix of the invention.
- Figures 1A - D show a fibrin sponge prepared according to an embodiment of the invention prior to being freeze dried, after freeze drying, prepared using low fibrinogen concentration or high fibrinogen concentration and compared to a commercially collagen sponge;
- Figure 2A and 2B represent mechanical properties of the sponges
- Figure 3 A and 3B shows the dissolution rate of fibrin sponges in urea
- FIGS. 4A - D show chondrocytes grown on the plasma protein matrix in accordance with an embodiment of the invention
- Figure 5 is a graph showing the glycosaminoglycan (GAG) content of cells grown on a plasma protein sponge according to an embodiment of the invention compared with cells grown on a fibrin clot and on a commercially available collagen sponge;
- GAG glycosaminoglycan
- Figure 6 shows the proliferation of articular chondrocytes in the presence of the plasma protein sponge and collagenase
- Figure 7 shows the results of the plasma protein sponge implantation into goats.
- the present invention relates to a freeze-dried, biocompatible, biodegradable matrix of plasma-derived proteins.
- the matrix according to an embodiment of the invention is useful in methods for regenerating and/or repairing various tissues in vivo, for example in tissue engineering methods, and for growing cells in vitro.
- the matrix of the present invention can be utilized in reconstructive surgery methods for regenerating and/or repairing tissue that have been damaged for example by trauma, surgical procedures or disease.
- the present invention provides a matrix for use as an implantable scaffold per se for tissue regeneration.
- the matrix serves both as a physical support and an adhesive substrate for isolated cells during in vitro culture and subsequent implantation.
- ECM extracellular matrix
- the scaffold polymer is selected to degrade as the need for an artificial support diminishes.
- Scaffold applications include the regeneration of tissues such as neuronal, musculoskeletal, cartilaginous, tendenous, hepatic, pancreatic, renal, ocular, arteriovenous, urinary or any other tissue forming solid or hollow organs.
- stem cells derived from any tissue or induced to differentiate into a specific tissue type may be utilized.
- the cells are derived from autologous tissue.
- chondrocytes or mesenchymal stem cells may be seeded on the matrix.
- chondrocytes or chondrocyte progenitor cells can be seeded on the matrix prior to implantation or at the site of implantation in vivo.
- the cell of interest may be engineered to express a gene product which would exert a therapeutic effect, for example anti-inflammatory peptides or proteins, growth factors having angiogenic, chemotactic, osteogenic or proliferative effects.
- a gene product which would exert a therapeutic effect
- anti-inflammatory peptides or proteins growth factors having angiogenic, chemotactic, osteogenic or proliferative effects.
- a non- limitative example of genetically engineering cells to enhance healing is disclosed in US Patent No. 6,398,816.
- the matrix can be utilized as a coating of synthetic or other implants or medical devices.
- the matrix of the invention may be applied to implants such as pins or plates by coating or adhering methods known to persons skilled in the art.
- the matrix coating which is capable of supporting and facilitating cellular growth, can thus be useful in providing a favorable environment for the implant.
- Pulma refers to the fluid, non-cellular portion of the blood of humans or animals as found prior to coagulation.
- Protein refers to the soluble proteins found in the plasma of normal humans or animals. These include but are not limited to coagulation proteins, albumin, lipoproteins and complement proteins.
- Matrix-forming materials may require addition of a polymerizing agent to form a matrix, such as addition of thrombin to a solution containing fibrinogen to form a fibrin matrix.
- the plasma protein matrix of the present invention may be denoted herein as a scaffold or as a sponge, for the culturing of cells, as a tissue replacement implant or as a cell-bearing tissue replacement implant.
- biocompatible refers to materials which have low toxicity, acceptable foreign body reactions in the living body, and affinity with living tissues.
- cell-bearing refers to the capacity of the matrix to allow cells to be maintained within the structure being refe ⁇ ed to. Preferably, the cells are able to proliferate and invade the pores of the matrix.
- implantation refers to the insertion of a sponge of the invention into a patient, whereby the implant serves to replace, fully or partially, tissue that has been damaged or removed.
- Another aspect of implantation is also taken to mean the use of the sponge as a vehicle to transport therapeutic drugs to a certain site in a patient.
- an auxiliary component which is a bioactive agent selected from growth factors, cytokines, enzymes, anti-microbials, anti-inflammatory agents.
- the bioactive agents for example, growth factors, angiogenic factors, and the like, are advantageous to encourage a more rapid growth of the cells within the implant, or a more rapid vascularization of the implant. Such factors may be too small to be effectively retained within the sponge and hence are introduced in the form of slow- release or controlled-release microcapsules into the sponge to provide for their effectivity.
- the "pore wall thickness' is a parameter that characterizes the distance between the pores within a sponge and is indicative of the microstructure of the sponges. It is determined by measurement at the microscopic level.
- “Surfactant” refers to a substance that alters energy relationship at interfaces, such as, for example, synthetic organic compounds displaying surface activity, including, inter alia, wetting agents, detergents, penetrants, spreaders, dispersing agents, and foaming agents.
- surfactants useful in the present invention are hydrophobic compounds, and include phospholipids, oils, and fluorosurfactants.
- dry refers to a physical state that is dehydrated or anhydrous, i.e., substantially lacking liquid.
- the plasma protein matrices of the invention preferably having less than 10% residual moisture, more preferably having less that 5% residual moisture, most preferably having less that 5% residual moisture.
- lyophilize or “freeze drying” refer to the preparation of a composition in dry form by rapid freezing and dehydration in the frozen state (sometimes referred to as sublimation). This process may take place under vacuum at reduced air pressure resulting in drying at a lower temperature than required at full pressure.
- anionic polysaccharide is a polysaccharide, including non- modified as well as chemical derivatives thereof, that contains one negatively charged group (e.g., carboxyl groups at pH values above about 4.0) and includes salts thereof, such as sodium or potassium salts, alkaline earth metal salts such as calcium or magnesium salts.
- anionic polysaccharides include pectin, alginate, galactans, galactomannans, glucomannans and polyuronic acids.
- sulfated polysaccharides examples include heparin, chondroitin sulfate, dextran sulfate, dermatan sulfate, heparan sulfate, keratan sulfate, hexuronyl hexosaminoglycan sulfate, inositol hexasulfate, sucrose octasulfate.
- Derivatives and mimetics of the above are intended to be included in the invention.
- cartilage refers to a specialized type of connective tissue that contains chondrocytes embedded in an extracellular matrix.
- the biochemical composition of cartilage differs according to type but in general comprises collagen, predominantly type II collagen along with other minor types, e.g., types IX and XI, proteoglycans, other proteins, and water.
- types of cartilage are recognized in the art, including, for example, hyaline cartilage, articular cartilage, costal cartilage, fibrous cartilage, meniscal cartilage, elastic cartilage, auricular cartilage, and yellow cartilage. The production of any type of cartilage is intended to fall within the scope of the invention.
- chondrocytes refers to cells which are capable of producing components of cartilage tissue.
- a “substantial absence of organic chelating agents” refers to a concentration less than 1 mm, for example less than lmm EDTA.
- a plasma protein matrix is provided.
- the matrix of this type may be produced according to the invention by exposing a plasma protein solution containing an anti-fibrinolytic agent to a thrombin solution, subjecting said mixture to freezing and lyophilization to produce a sponge-like matrix.
- US Patent No. 6,310,267 discloses a specific process for preparing a biodegradable flexible fibrin web for wound healing. The process necessitates dialyzing a fibrinogen solution with a solution containing chelators and forming the flexible web by the addition of a thrombin solution, freeze drying and lyophilizing the web.
- a biocompatible, three-dimensional (3D) sponge-like matrix may be prepared from a crude plasma protein solution.
- a plasma protein scaffold or sponge with advantageous properties including adherence to tissue, pore size and biocompatibility is obtained following dialyzing out any organic complexing agents.
- the plasma protein solution derives from allogeneic plasma.
- At least one of the components, preferably the plasma proteins, used for preparing the matrix is derived from autologous plasma.
- all of the components used in preparing the matrix are autologous.
- the plasma proteins may be isolated by a variety of methods, as known in the art and exemplified herein below, resulting in a plasma protein matrix having substantially similar properties, as measured by pore size, elasticity, compression and cell bearing capabilities.
- a stable thrombin component may be isolated from autologous plasma, according to methods known in the art for example those disclosed in US Patent No. 6,274,090 and Haisch et al (Med Biol Eng Comput 38:686-9, 2000).
- the resulting plasma protein matrix exhibits advantageous properties including biocompatibility, pore size compatible with cell invasion and proliferation and ability to be molded or cast into definite shapes.
- blood is drawn from a patient in need of tissue repair or regeneration, plasma proteins are isolated from the autologous plasma and a matrix prepared thereof.
- the matrix of the present invention may serve as a support or scaffold per se or as a cell-bearing scaffold for in vivo implantation.
- the substantial absence of organic complexing agents may provide the matrix of the present invention with properties beneficial to the proliferation and metabolism of certain cell types.
- the matrix of the present invention supports the proliferation of cartilage cells in both in vivo and in vitro systems.
- a fibrin sponge produced from a fibrinogen solution wherein the fibrinogen solution is subjected to dialysis with a solution not requiring a complexing agent, serves as a scaffold for the growth of cells in vitro and in vivo.
- the fibrin sponge is formed by the action of a thrombin solution on the dialyzed fibrinogen solution and subsequently subjected to freeze-drying.
- the fibrin sponge is seeded with desired cells, the cells allowed to proliferate and the sponge comprising the cells implanted at a site in need of tissue repair or regeneration. More preferably the cells are seeded on the sponge in combination with bioactive agents beneficial for the proliferation of said cells.
- the plasma matrix formed can be produced to assume a specific shape including a sphere, cube, rod, tube or a sheet.
- the shape is determined by the shape of a mold or support which may be made of any inert material and may be in contact with the matrix on all sides, as for a sphere or cube, or on a limited number of sides as for a sheet.
- the matrix may be shaped in the form of body organs or parts and constitute prostheses. Removing portions of the matrix with scissors, a scalpel, a laser beam or any other cutting instrument can create any refinements required in the three-dimensional structure.
- the polymer matrix must be configured to provide both adequate sites for attachment and adequate diffusion of nutrients from the cell culture to maintain cell viability and growth until the matrix is implanted and vascularization has occu ⁇ ed.
- Cellular invasion is required by cells which can lay down the tissue to replace the implant and thus repair any defect which the implant is intended to repair. Failure to invade the structure of the implant in an efficient manner prevents vascularization which is required for new tissue to be able to sustain its life.
- the plasma protein matrix according to further embodiments of the invention can be used as a matrix for growing cells or tissue culture in vitro.
- the matrix of the invention is a plasma protein sponge. In its wet form, before drying, the matrix is a clot. In a dried form the matrix is a sponge.
- the matrices of the invention provide a relatively large surface area for cells to grow on and a mechanically improved scaffold for implantation.
- the matrices of the invention are useful as products for in vitro and in vivo applications.
- the plasma protein matrix in its dry form, adheres exceptionally well to tissue surfaces.
- a dry sponge of the invention is placed on the area where tissue regeneration is desired.
- a second sponge, onto which particular cells were cultured, is placed on top of the dry sponge.
- the wetted sponge of the invention adheres well to the dry sponge of the invention.
- the cells from the sponge onto which the cells were originally cultured migrate into the sponge adhering directly to the area of tissue regeneration. This system obviates the need for biological glue in instances where the wetted sponge does not adhere well.
- the plasma protein matrix is used as a support for chondrocyte growth and as a scaffold for neo cartilage formation.
- the plasma matrix of the invention may be used as a surface useful for tissue culture for any suitable cells, such as mesenchymal cells or other tissue forming cells at different levels of potency.
- cells typically referred to as “stem cells” or “mesenchymal stem cells” are pluripotent, or lineage- uncommitted cells, which are potentially capable of an unlimited number of mitotic divisions to either renew a line or to produce progeny cells with the capacity to differentiate into any cell type can be grown on the matrix of the invention.
- lineage-committed progenitor cells can be grown on the matrix of the invention.
- a lineage-committed progenitor cell is generally considered to be incapable of an unlimited number of mitotic divisions and will eventually differentiate only into a specific cell type.
- the matrix of the invention can support the growth and/or implantation of any type of cartilage or other suitable tissue.
- the invention is directed predominantly to methods for growth and/or implantation of tissue in humans, the invention may also include methods for growth and/or implantation of tissues in any mammal.
- the methods for seeding cells on the matrix are manifold.
- the cells are adsorbed by placing the cells on the surface of the matrix or absorbed into the matrix by placing the sponge in a solution containing cells.
- the matrix is seeded with the desired cells by surface seeding, at a density of 10 cells per cm 3 , more preferably 10 cells per cm 3 .
- the matrix of the invention may further include one or more antiseptics, such as methylene blue, and/or one or more drugs including antimicrobials such as antibiotics and antiviral agents; chemotherapeutic agents; anti- rejection agents; analgesics and analgesic combinations; anti-inflammatory agents and hormones such as steroids.
- antiseptics such as methylene blue
- drugs including antimicrobials such as antibiotics and antiviral agents; chemotherapeutic agents; anti- rejection agents; analgesics and analgesic combinations; anti-inflammatory agents and hormones such as steroids.
- the plasma protein matrix includes components which modulate the mechanical, physical and biological properties including elasticity, pore size, surface adhesion and ability to maintain cell growth and proliferation.
- these include materials belonging to the family of polysaccharides, anionic polysaccharides, glycosaminoglycans, or synthetic polymers, including hyaluronic acid, pectin, alginate, galactans, galactomannans, glucomannans, polyuronic acids, heparin, chondroitin sulfate, dextran sulfate, dermatan sulfate, heparan sulfate, keratan sulfate, hexuronyl hexosaminoglycan sulfate, inositol hexasulfate, sucrose octasulfate and PEG.
- the sponge is prepared with such auxiliary components such as dextran sulfate, PEG,
- anti-fibrinogenic agents including tranexamic acid may be included in the matrix of the invention. These compounds prevent fibrinolysis and thus can be used for controlling the rate of degradation of fibrin in vivo.
- Tranexamic acid may be added to a final concentration ranging between 1% to 10%, preferably preferably 5%.
- Bioactive agents such as cytokines, growth factors and their activators etc.
- Incorporation of such agents into the sponge of the present invention provides a slow-release or sustained- release mechanism.
- growth factors, structural proteins or cytokines which enhance the temporal sequence of wound repair, alter the rate of proliferation or increase the metabolic synthesis of extracellular matrix proteins are useful additives to the matrix of the present invention.
- Representative proteins include bone growth factors (BMPs, IGF) and fibroblast growth factors, including FGF2, FGF9 and FGF18 for bone and cartilage healing, cartilage growth factor genes (CGF, TGF- ⁇ ) for cartilage healing, nerve growth factor genes (NGF) and certain FGFs for nerve healing, and general growth factors such as platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-1), keratinocyte growth factor (KGF), endothelial derived growth supplement (EDGF), epidermal growth factor (EGF) and other proteins which may enhance the action of the growth factors including heparin sulfate proteoglycans (HSPGs) their mimetics such as dextran sulfate, sucrose octa sulfate or heparin, and fragments thereof.
- Other factors shown to act on cells forming bone, cartilage or other connective tissue include retinoids, growth hormone (GH), and transferrin.
- the proteins of the invention are polypeptides or derivatives or variants thereof, obtained from natural, synthetic or recombinant sources, which exhibit the ability to stimulate DNA synthesis and cell division in vitro of a variety of cells, including primary fibroblasts, chondrocytes, vascular and corneal endothelial cells, osteoblasts, myoblasts, smooth muscle and neuronal cells.
- cartilage repair uses periosteal cells, mesenchymal stem cells or chondrocytes per se or transfected with cartilage growth factor genes selected from a group including transforming growth factor- ⁇ (TGF- ⁇ ), certain FGFs or CGF; bone repair uses periosteal or other mesenchymal stem cells or osteocytes/osteoblasts per se or transfected with bone growth factor genes selected from a group including bone morphogenetic protein (BMP) family genes or fibroblast growth factor family genes; for nerve repair uses neural cells and neural support cells per se or transfected with genes selected from a group including nerve growth factor (NGF) gene or specific FGFs.
- TGF- ⁇ transforming growth factor- ⁇
- BMP bone morphogenetic protein
- NGF nerve growth factor
- chondrocytes of the cartilage are ' embedded in the thick extracellular matrix (ECM) of the joint.
- ECM extracellular matrix
- Enzymes known in the art including collagenase, hyaluronidase, trysin, chymotrypsin, chondroitinase of the various types, degrade the ECM of the surface of the joint, thereby releasing chondrocytes that are able to invade the sponge of the invention to promote cartilage regeneration
- the plasma matrix of the mvention is demonstrated as a fibrin sponge support for growing various cell types for implantation at a site of diseased or traumatized tissue.
- the matrix is a sponge comprising other plasma proteins and may be used per se, as an implanted scaffold on to which proximal cells in vivo may perfuse and grow, or as a scaffold for cell growth that is used for transplantation of cells to an injured tissue, or to any other suitable site in vivo.
- a person skilled in the art can adjust the procedures exemplified below in accordance with specific tissue requirements.
- Example 1 Isolation of Plasma Proteins from Whole Plasma Fresh frozen plasma was received from the blood bank (Tel-Hashomer, Israel). The plasma (220 ml) was thawed in a 4°C incubator over night, followed by centrifugation at 4°C at approximately 1900g for 30 min. The pellet was resuspended in 2.5ml PBS with gentle rolling until a homogenized solution was seen. Tranexamic acid (anti-fibrinolytic; final 10%) and arginine (final 2%) were optionally added to the plasma protein fraction.
- the total protein concentration was approximately 42-50 mg/ml as estimated by Bradford assay and SDS-PAGE (comparing to a standard).
- Phosphate-EDTA buffer 50 mM phosphate, 10 mM EDTA, pH 6.6
- Tris-NaCl buffer 50 mM Tris, 150 mM NaCl, pH 7.4
- One bag of blood from the blood bank contained 450 ml and contained sodium citrate.
- 50 ml of a 3.8% sodium citrate solution was added and the solution was mixed gently.
- the blood-sodium citrate was distributed to 50 ml tubes (40 ml/tube) and centrifuged at 2,100g for 20 min.
- the supernatant plasma was collected into 50 ml tubes and re-centrifuged at 5000g for 15 min. at 4°C.
- the supernatant plasma was collected into a flask, put on ice, and saturated ammonium sulfate solution was added at a ratio of one volume ammonium sulfate to 3 volumes of supernatant (1 :3 volume ratio).
- a typical amount was 75 ml ammonium sulfate to 225 ml plasma.
- the solution was kept at 4°C for 1.5 hrs with occasional mild shaking (magnetic stirring is not allowed).
- the supernatant plasma was divided into 50 ml tubes (40 ml/tube) and centrifuged at 5000g for 15 min at 4°C. The supernatant was discarded and each pellet washed with 10 ml 25% ammonium sulfate solution (pellet not dissolved).
- Each pellet was dissolved in 6-7 ml of the phosphate-EDTA buffer.
- a sample typically 100 ⁇ l of the solution, was kept for SDS-PAGE and clotting analyses.
- the dissolved pellets were pooled and the ammonium sulfate precipitation was repeated by adding saturated ammonium sulfate to the plasma sample to achieve a 1 :3 volume ratio (Typically, 25 ml ammonium sulfate to 75 ml plasma).
- the solution was kept at 4°C for 1.5 hrs with occasional mild shaking, divided into 50 ml tubes and centrifuged at 5000g for 15 min.
- the supernatant was discarded and the pellets were dissolved in a volume of Tris- NaCl buffer that was equal to or less than the volume of phosphate-EDTA buffer used above.
- a typical total amount was about 45 ml.
- the sample was dialyzed (SnakeSkinTM dialysis tubes, 3.5 kD cutoff, Pierce) for 3-4 hours or overnight at 4°C in 1.5 liters of Tris-NaCl buffer.
- the dialyzed sample was centrifuged in high-speed resistant tubes at 21,000g for 15 min at 4°C to remove any insoluble material.
- the supernatant was collected and kept on ice.
- the supernatant plasma was divided into 50 ml tubes. Chilled (EtOH) was added to a final concentration of 7%. (for example: 3.7 ml EtOH to 49 ml supernatant) and kept on ice for 30 min. It is essential that the solutions be chilled for the precipitate to form.
- the solution was centrifuged at 5000g for 15 min, the supernatant discarded and the pellet dissolved in the same volume (typically amount 45 ml) Tris-NaCl buffer.
- the solution was dialyzed overnight at 4°C in 1.5 liter of Tris-NaCl Buffer. The dialyzed solution was centrifuged at 21,000, at 4°C for 15 min, to eliminate any non-dissolved material.
- Protein concentrations were determined using the Bradford method (Bradford (1976) Anal. Biochem. 72:248-254). The protein yields ranged from 0.2 to 0.6 mg per ml of full blood, with typical results of 0.4 to 0.5 mg/ml.
- Clot formation ability was determined by adding 30 ⁇ l thrombin (100 U/ml; Omrix) to 70 ⁇ l plasma product (10 mg/ml), clotting should occur within 30 sec. Protein purity was determined by electrophoretic analysis of 50 ⁇ g of the sample on a 5% SDS-polyacrylamide gel and staining using Coommassie blue.
- Results- 1 Sponges were analyzed by comparison of dry and wet physical properties.
- the sponge made with 5 mg/ml protein shrank significantly upon freeze-drying.
- the sponges made with 10 or 20 mg/ml protein kept their structure after 24 hours in tissue culture medium, whereas the others were slightly deformed. This does not interfere with their use.
- the concentration of thrombin determines the reaction time for the polymerization of the fibrin monomers.
- the concentration of 0.5 U thrombin mg plasma proteins yielded a sponge with good physical and biological properties.
- the concentration of 1.5 U thrombin mg plasma proteins was chosen because it gave a fast reaction but allowed the two solutions enough time to mix thoroughly before the reaction completes, but other concentrations are acceptable for obtaining a matrix with substantially similar properties.
- Sponges were made by mixing a plasma protein solution with a thrombin solution, casting, freezing and lyophilizing.
- Human plasma proteins from different sources: allogeneic or autologous, with various levels of plasma proteins, were used having a protein concentration between 20-50 mg/ml.
- Commercial fibrinogen (Omrix) was tested , as well, at a concentration of 20mg/ml.
- Thrombin 1000 U/ml was diluted 1 : 10 in a 5mM calcium chloride solution.
- the final sponge formulation included tranexamic acid at a concentration of 5% or 10% depending on the plasma protein source.
- the above two solutions were mixed together in a ratio of 21:9 respectively (for example 210 ⁇ l plasma protein and 90 ⁇ l thrombin solution), in the following order: A 48 well ELISA plate was coated with 90 ⁇ l of thrombin solution, and the plasma protein solution was added. The mixture was incubated at room temperature ( ⁇ 25°C) for 10 minutes or until the clot formed, followed by freezing at -70 °C overnight ( ⁇ 16 h), and lyophilization under sterile conditions, -85 °C until dry for at least 16 hours and up to 24h. Note that the final concentration of thrombin was 1.5 U/mg plasma proteins. The amount of thrombin may be varied depending on the desired polymerization rate of the matrix.
- Matrices for tissue engineering in general are characterized according to several criteria, including chemical nature, porosity, adhesion, biocompatibility and elasticity, amongst others (Hunziker, Osteoart. Cart., 10:432-465, 2002). Table II of the aforementioned reference lists several of the properties and the biological basis of these properties.
- Porosity important for cell migration was investigated by geometrical measurements using the light microscope by sectioning the scaffold into thick specimens. Specimens were mounted on slides and were stained by hematoxylin/eosin. An optical micrometer measured the pore size and the distance between neighboring pores.
- FIG. 1 A shows the plasma protein clot (10 mg plasma protein/ml) before drying.
- the pore size is in the ⁇ m (micron) size range.
- the plasma protein sponge (Fig. IB) (10 mg plasma protein/ml, after drying) the pores are in the 100 ⁇ m size range.
- the difference between the pore size of a plasma protein sponge of 20 mg protein/ml (Fig. ID) and a plasma protein sponge of 10 mg fibrinogen/ml (Fig, IB) is not notable and no difference was found in the cellular growth on the two scaffolds.
- the plasma protein sponges of the invention have a network of substantially regular pores compared with a collagen gel (Fig. IC). In its final form prior to use with cells the sponge is substantially dry and contains less than 10% residual moisture, more preferably less than 5% residual moisture and most preferably less than 3% residual moisture. This feature is measured by methods known in the art.
- Deformation represents the elasticity of the sponge, i.e. the amount of pull as measured in millimeters (mm) that may be exerted until the sponge tears. Force is calculated in kPa and represents the amount of energy required to tear the sponge strips. The thickness is incorporated in to the calculation.
- Figure 2A represents the tensile strength measured in kPa in sponges comprising the different auxiliary components.
- Figure 2B represents deformation of the same type of sponges. Shown is the average value of testing three sponges.
- the collagen (Col) sponge is commercially available (Ortec); the crude plasma sponge (crude) was prepared from crude plasma according to the protocol in example 1 (10 mg/ml fibrinogen).
- the sponges prepared from purified fibrinogen (Fbr) and those prepared from crude plasma proteins (crude) exhibit substantially identical mechanical properties.
- the sponges comprising both HA and PEG exhibit greatest tensile strength and elasticity.
- the sponges comprising dextran sulfate alone shows an increase in tensile strength, with no increase in elasticity.
- Each auxiliary agent appears to impart certain properties to the sponge. Microscopic analysis is performed to determine the pore size and pore uniformity of the sponges comprising the different components. Procedure for preparing sponges with additives is presented herein below.
- the matrix of the present invention may be prepared with certain additives, or auxiliary components.
- Additives including dextran sulfate, glycerol and hyaluronate (hyaluronic acid) were added to the sponges to alter certain mechanical and biological properties. Mechanical and physical parameters were shown to be controlled by incorporating auxiliary components or additives. The additives may be removed after the matrix is formed in order to improve the biological properties of the matrix.
- concentrations of the additives were 0.25% glycerol, 1.5% PEG, 0.0024% hyaluronic acid or 1% dextran sulfate.
- concentrations of the auxiliary components yielding good physical properties in terms of pore size, tensile strength and elasticity were 0.25% glycerol, 1.5% PEG, 0.0024% hyaluronic acid or 1% dextran sulfate.
- concentrations of the auxiliary components yielding good physical properties in terms of pore size, tensile strength and elasticity were 0.25% glycerol, 1.5% PEG, 0.0024% hyaluronic acid or 1% dextran sulfate.
- One preferred combination of two or more components is listed in table 2.
- a currently most preferred embodiment in accordance with the present invention is a sponge comprising dextran sulfate.
- the sponge is rehydrated by washing in sterile, distilled water or PBS and is used per se or may be relyophilized to remove all moisture.
- a currently preferred embodiment provides a sponge prepared containing one or more additives as described above, wherein the sponge is washed following the freezing-lyophilization step and the sponge relyophilized to remove all residual moisture.
- the rate of sponge dissolution measures the level of crosslinking that the plasma protein have undergone.
- Figure 3B shows that the sponges exposed to air undergo cross-linking at faster rates than those stored under inert conditions.
- Example 7 Cell Seeding Different methods of seeding cells onto the sponge may be used. Important to seeding is cell adherence, migratory capacity and proliferation of cells within the matrix. Cells may be suspended in medium, PBS, or any biocompatible buffer alone or in the presence of bioactive agents. Cells may be seeded by placing a drop of liquid containing cells on the sponge and allowing the cells to adsorb into the sponge. Alternatively, the cells in the liquid may be absorbed into the sponge by placing the sponge in a container holding a suspension of cells.
- Cultured cells are prepared in growth medium (MEM), and placed on top of a sponge at a density of between cells per standard 300ul plasma protein sponge (approximately 0.2 cm 3 ) in a microtiter plate having 48 wells. Different volumes of growth media are added and the cells allowed to grow for various time periods. It is to be understood that the sponge of may be of varying sizes, shapes and thickness. Following three-days, lweek and three week incubation for the seeded sponges, the sponges are sectioned and the cell invasion and proliferation observed. Cell proliferation is determined as described in Example 9.
- MEM growth medium
- MEM Memal Essential Medium
- FBS Fetal Bovine Serum
- Gibco BRL Cat: 16000-044
- L- Glutamine Solution Gibco BRL (cat: 25030-024) Complete medium: Minimal Essential Medium (MEM ) supplemented with 10% fetal calf serum (FCS), 2mM L-Glutamine and lOOU/ml penicillin, and lOO ⁇ g/ml streptomycin
- the sponge of the present invention may be used as a cell bearing scaffold for tissue repair and regeneration.
- the cells are cultured on the sponge in vitro prior to implantation.
- the sponge is seeded with cells immediately before implantation and the cells allowed to grow and proliferate in vivo.
- Cartilage biopsies from fresh pig cartilage were sectioned into small pieces, approximately of 3-4 mm thick, washed aseptically with PBS and placed in a new tube containing 3 ml MEM medium.
- the cartilage may be obtained from any vertebrate species, and is preferably allogeneic or autologous.
- Collagenase type II was diluted 1:5 and 1 ml was added to the cartilage pieces and the mixture was shaken gently in a 37 °C incubator over night. When most of the sample was digested, the suspension was poured through sterile gauze to remove matrix debris and undigested material. The filtrate was centrifuged and washed twice to remove residual enzyme. The number of cells was determined by a hemocytometer and viability was determined by trypan blue exclusion. The cells were plated in 150 cm tissue culture flasks in 30 ml of culture medium at a concentration of 5x10 6 cells/ml. Flasks were placed in a 37°C incubator at 5% CO 2 atmosphere and 95% humidity. The culture medium was changed every three to four days. The cells adhere and become confluent following one week incubation.
- the cell medium was removed and 3ml trypsin-EDTA solution were added. Thirty ml MEM+ FBS was added, the solution was centrifuged at 800g for 10 minutes. The supernatant was removed, the pellet dispersed and the cells were counted.
- 10 2 -10 6 cells were seeded on a plasma protein scaffold of 9mm in diameter and a thickness of 2mm (approximately 0.2 cm 3 ). The matrices were placed in a 37 °C incubator for 1 hour and 1ml of fresh medium was added to each. The medium was replaced with fresh medium and every few days the matrices were taken to cell proliferation and differentiation analysis.
- Figures 4A -D show that the plasma matrix is able to support calf chondrocyte proliferation.
- a 3 to 5 fold increase in cell number was observed from an initial state (Fig. 4 A) up to cell confluence (Figs. 4B through 4D).
- a histological section of a one month collagen implant for hematoxylin and eosin showed that the cells on the surface of the collagen sponge are smaller and retain their spherical shape (see Figs. 4C and 4D).
- Figs. 4C and 4D In the interior part of the collagen sponge cells re-organized in tissue which resembles fibro-cartilage, whereas in the plasma protein sponge (Fig.
- the fibrin sponge according to an embodiment of the invention is shown to be a superior matrix for cartilage tissue formation than the collagen sponge.
- chondrocyte differentiation markers part of the cell population grown on the above matrices expressed several of the chondrocyte differentiation markers.
- One of several phenotypes expressed during chondrocyte differentiation is glycosaminoglycan (GAG) production.
- GAG glycosaminoglycan
- the production of GAGs was identified in histological staining using Acian blue and quatitated using the DMB (3,3'-dimethoxybenzidine dihydrochloride) Dye method.
- Fig. 5 shows the results of the GAG content in calf chondrocytes grown on three different matrices; collagen sponges, fibrin clot (10 mg/ml) and plasma protein sponges (20 mg/ml). It is apparent from the graphs presented in Fig. 5 that cells grown on the plasma protein sponge and/or fibrin clot show a significantly higher GAG content than cells grown on the collagen sponge matrix. This experiment demonstrates the ability of cells to undergo differentiation on the plasma protein sponge.
- Proliferation of the cartilage cells on the matrix of the invention was quantitated by one of two methods, CyQUANT® (Molecular Probes) or XTT reagent (Biological Industries, Co.).
- the plasma protein matrix was dissolved in collagenase or other enzymes and the cells collected by centrifugation and subjected to analysis according to manufacturer's protocols.
- human articular chondrocytes (10 cells/ 100 ul) were grown in the presence of the matrix of the invention and collagenase in microwell plates. The cells were grown overnight in MEM, 34 U collagenase was added and the cells or cells+sponge incubated for four hours. XTT reagent was added for 3-4 hours and the plates were read in an ELISA reader at A490 mm. Results are shown in Figure 6. As can be seen the proliferation rate of the cells was not impaired by the presence of the sponge nor by the addition of the collagenase.
- Example 10 Goat Articular Cartilage Repair Model
- the goals of the study were to compare freshly prepared sponges to aged spones and a commercial collagen matrix in terms of inflammatory response, ability to adhere to the injured surface, to test the capacity of the sponges to induce the growth of hyaline cartilage.
- the different sponges (matrices) tested include:
- the lyophilized matrices were implanted and adhered to the defect.
- a fibrin-based biological glue may be used.
- the patella was relocated and the sinovia and skin closed using Nicryll sutures.
- the skin was cleaned with an iodine ointment.
- Analgesia 0.05mg/kg buprenorphine was injected SC (subcutaneous) just before the procedure and at the end of the same day
- Histological evaluation was performed to measure the following parameters: Characteristics of the neo-formed tissue, regularity of the joint surface of the regenerated tissue, structural integrity and thickness of the regenerated tissue, endochondral ossification and state of the cells in the remaining cartilage.
- Table 3 presents a description of the experiment and the results of the histology analysis.
- Figure 7 shows the knee joints of the goats following the experiment.
- Example 11 One-Step Procedure for Treating Damaged Cartilage: Suitable For Arthroscopy or Hemi-Arthrotomy
- a variation of this technique provides incorporation of cells into a biodegradable material, including the matrix of the present invention.
- a less traumatic method is presented herein, wherein the patient undergoes a single surgical procedure for cartilage repair.
- a patient with a cartilage defect is called to the physician's office for a consultation several days prior to the arthroscopy or hemi-arthrotomy.
- Blood (approximately 100-250 ml) is drawn and plasma proteins are isolated.
- a plasma protein matrix, or several matrices, is prepared, labeled and stored aseptically until the day of the surgery.
- the surgeon will treat the defective region of the joint by removing damaged tissue, cleansing and preparing the area for an implant.
- the prepared matrix is removed from its container and cut to fit the defective domain.
- the cells and small pieces of cartilage are spun down in a tabletop centrifuge, rinsed in PBS and resuspended in a small amount (50ul-1000ul) of PBS.
- the surgeon seeds the cells onto the sponge, in situ.
- the cells are absorbed into the sponge and the cell-bearing sponge implanted into the defective joint region.
- extracellular matrix degrading enzymes and or other bioactive agents including growth factors and/or anti- inflammatory compounds are added to the sponge.
- surgeon will place a dry sponge directly onto the injured area, optionally add enzyme solution to said sponge and place a second, cell-bearing sponge on top of the first sponge.
- the joint is closed and is treated as customary for an arthroscopic or hemi- arthrotomy procedure and the patient is released to recover.
- kits comprising the components useful for practicing the method of the invention, will allow for the convenient practice of the method of the invention in a surgical setting.
- a kit of the invention will provide sterile components suitable for easy use in the surgical environment including, sterile solutions (saline, enzymes) a sterile, cell-free matrix material suitable for supporting autologous chondrocytes that are to be implanted into an articular joint surface defect and instructions for use.
- the matrix may be of any material that is biocompatible, non-immunogenic and has the ability to maintain cell growth and proliferation, the matrix is preferably prepared from allogeneic plasma, more preferably from autologous plasma.
- Example 12 Release of Bioactive Agents
- One factor which may facilitate the development of tissues on the matrices is the delivery of growth factors or other biological agents into the local environment.
- the incorporation and release of growth factors from these matrices is assessed in vitro or in vivo using radiolabeled or tagged growth factors, for example fluorescent- labeled, alkaline phosphatase labeled or horseradish peroxidase-labeled growth factor.
- the fraction and rate of released agent is measured by following the radioactivity, fluorescence, enzymatic activity or other attributes of the tag.
- release of enzymes from the matrix is determined by analyzing enzymatic activity into the microenvironment in an in vitro or in vivo assay.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cell Biology (AREA)
- Dermatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Botany (AREA)
- Rheumatology (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Vascular Medicine (AREA)
- Physical Education & Sports Medicine (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Dispersion Chemistry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Diabetes (AREA)
- Developmental Biology & Embryology (AREA)
- Materials For Medical Uses (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL15992002A IL159920A0 (en) | 2001-07-19 | 2002-07-18 | Plasma protein matrices and methods for their preparation |
JP2003513482A JP2004534615A (en) | 2001-07-19 | 2002-07-18 | Plasma protein matrix and method for producing the same |
AT02749270T ATE489119T1 (en) | 2001-07-19 | 2002-07-18 | PLASMA PROTEIN MATRICE AND METHOD FOR THE PRODUCTION THEREOF |
CA2454341A CA2454341C (en) | 2001-07-19 | 2002-07-18 | Plasma protein matrices and methods for their preparation |
EP02749270A EP1423082B1 (en) | 2001-07-19 | 2002-07-18 | Plasma protein matrices and methods for their preparation |
AU2002319888A AU2002319888B2 (en) | 2001-07-19 | 2002-07-18 | Plasma protein matrices and methods for their preparation |
DE60238416T DE60238416D1 (en) | 2001-07-19 | 2002-07-18 | PLASMA PROTEIN MATRITZES AND METHOD FOR THEIR PRODUCTION |
IL159920A IL159920A (en) | 2001-07-19 | 2004-01-18 | Plasma protein matrices and methods for their preparation |
US10/761,615 US7009039B2 (en) | 2001-07-19 | 2004-01-20 | Plasma protein matrices and methods for their preparation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL144446 | 2001-07-19 | ||
IL14444601A IL144446A0 (en) | 2001-07-19 | 2001-07-19 | Plasma protein matrices and methods for their preparation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/761,615 Continuation US7009039B2 (en) | 2001-07-19 | 2004-01-20 | Plasma protein matrices and methods for their preparation |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003007873A2 true WO2003007873A2 (en) | 2003-01-30 |
WO2003007873A3 WO2003007873A3 (en) | 2004-03-11 |
Family
ID=11075624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IL2002/000589 WO2003007873A2 (en) | 2001-07-19 | 2002-07-18 | Plasma protein matrices and methods for their preparation |
Country Status (10)
Country | Link |
---|---|
US (1) | US7009039B2 (en) |
EP (1) | EP1423082B1 (en) |
JP (3) | JP2004534615A (en) |
AT (1) | ATE489119T1 (en) |
AU (1) | AU2002319888B2 (en) |
CA (1) | CA2454341C (en) |
DE (1) | DE60238416D1 (en) |
ES (1) | ES2357224T3 (en) |
IL (2) | IL144446A0 (en) |
WO (1) | WO2003007873A2 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1706132A1 (en) * | 2003-12-23 | 2006-10-04 | Sewon Cellontech Co., Ltd. | A composition for cartilage therapeutics and using method thereof |
EP1773984A2 (en) * | 2004-07-22 | 2007-04-18 | ProChon Biotech Ltd. | Porous plasma protein matrices and methods for preparation thereof |
US7335508B2 (en) * | 2004-07-22 | 2008-02-26 | Prochon Biotech Ltd. | Porous plasma protein matrices and methods for preparation thereof |
EP1890713A1 (en) * | 2005-06-13 | 2008-02-27 | Sewon Cellontech Co., Ltd. | Osteoblast composition of semi-solidified mixed fibrin for bone fracture agglutination and its manufacturing method |
EP1896044A1 (en) * | 2005-06-13 | 2008-03-12 | Sewon Cellontech Co., Ltd. | Bone formation composition composed of mixture of osteoblast and bio-matrix and its manufacturing method |
WO2008112170A1 (en) * | 2007-03-09 | 2008-09-18 | Corning Incorporated | Three dimensional gum matrices for cell culture, manufacturing methods and methods of use |
WO2008112163A1 (en) * | 2007-03-09 | 2008-09-18 | Corning Incorporated | Gum coatings for cell culture, methods of manufacture and methods of use |
US20080286329A1 (en) * | 2002-03-18 | 2008-11-20 | Carnegie Mellon University | Methods and Apparatus for Manufacturing Plasma Based Plastics and Bioplastics Produced Therefrom |
WO2009020650A2 (en) * | 2007-08-08 | 2009-02-12 | Pervasis Therapeutics, Inc. | Materials and methods for treating and managing wounds and the effects of trauma |
WO2009020651A2 (en) * | 2007-08-08 | 2009-02-12 | Pervasis Therapeutics, Inc. | Materials and methods for treating skeletal system damage and promoting skeletal system repair and regeneration |
US7714107B2 (en) | 2003-01-30 | 2010-05-11 | Prochon Biotech Ltd. | Freeze-dried fibrin matrices and methods for preparation thereof |
US7815926B2 (en) | 2005-07-11 | 2010-10-19 | Musculoskeletal Transplant Foundation | Implant for articular cartilage repair |
US7901457B2 (en) | 2003-05-16 | 2011-03-08 | Musculoskeletal Transplant Foundation | Cartilage allograft plug |
USRE42208E1 (en) | 2003-04-29 | 2011-03-08 | Musculoskeletal Transplant Foundation | Glue for cartilage repair |
US8292968B2 (en) | 2004-10-12 | 2012-10-23 | Musculoskeletal Transplant Foundation | Cancellous constructs, cartilage particles and combinations of cancellous constructs and cartilage particles |
US8329870B2 (en) | 2007-01-04 | 2012-12-11 | Hepacore Ltd. | Water soluble reactive derivatives of carboxy polysaccharides and fibrinogen conjugates thereof |
US8435551B2 (en) | 2007-03-06 | 2013-05-07 | Musculoskeletal Transplant Foundation | Cancellous construct with support ring for repair of osteochondral defects |
US8906110B2 (en) | 2007-01-24 | 2014-12-09 | Musculoskeletal Transplant Foundation | Two piece cancellous construct for cartilage repair |
EP3011981A1 (en) * | 2014-10-24 | 2016-04-27 | Histocell, S.L. | A biomaterial scaffold for regenerating the oral mucosa |
US9610357B2 (en) | 2011-04-12 | 2017-04-04 | Hepacore Ltd. | Conjugates of carboxy polysaccharides with fibroblast growth factors and variants thereof |
US9701940B2 (en) | 2005-09-19 | 2017-07-11 | Histogenics Corporation | Cell-support matrix having narrowly defined uniformly vertically and non-randomly organized porosity and pore density and a method for preparation thereof |
WO2018042438A3 (en) * | 2016-09-01 | 2018-05-17 | Plas-Free Ltd | Human blood-derived products having decreased fibrinolytic activity and uses thereof in hemostatic disorders |
US10077420B2 (en) | 2014-12-02 | 2018-09-18 | Histogenics Corporation | Cell and tissue culture container |
Families Citing this family (515)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050043234A1 (en) * | 1996-10-16 | 2005-02-24 | Deisher Theresa A. | Novel FGF homologs |
EP1404297B1 (en) | 2001-06-12 | 2011-04-27 | The Johns Hopkins University School Of Medicine | Reservoir device for intraocular drug delivery |
US8293530B2 (en) | 2006-10-17 | 2012-10-23 | Carnegie Mellon University | Method and apparatus for manufacturing plasma based plastics and bioplastics produced therefrom |
US20040136970A1 (en) * | 2002-10-07 | 2004-07-15 | Ellsworth Jeff L. | Methods for administering FGF18 |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US20050124038A1 (en) * | 2003-07-14 | 2005-06-09 | Pharmacia Corporation | Transfection of cartilage and matrices thereof in vitro |
ES2403357T3 (en) | 2003-12-11 | 2013-05-17 | Isto Technologies Inc. | Particle Cartilage System |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
JP2006230817A (en) * | 2005-02-25 | 2006-09-07 | Tokyo Medical & Dental Univ | Biological tissue compensation material, and method of manufacturing the same |
JP5292533B2 (en) | 2005-08-26 | 2013-09-18 | ジンマー・インコーポレイテッド | Implant and joint disease treatment, replacement and treatment methods |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US7673781B2 (en) | 2005-08-31 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with staple driver that supports multiple wire diameter staples |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US9861359B2 (en) | 2006-01-31 | 2018-01-09 | Ethicon Llc | Powered surgical instruments with firing system lockout arrangements |
US8236010B2 (en) | 2006-03-23 | 2012-08-07 | Ethicon Endo-Surgery, Inc. | Surgical fastener and cutter with mimicking end effector |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US8298528B2 (en) * | 2006-04-17 | 2012-10-30 | Hepacore Ltd. | Methods for bone regeneration using endothelial progenitor cell preparations |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US20080078802A1 (en) | 2006-09-29 | 2008-04-03 | Hess Christopher J | Surgical staples and stapling instruments |
US10130359B2 (en) | 2006-09-29 | 2018-11-20 | Ethicon Llc | Method for forming a staple |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
DE102006047248B4 (en) * | 2006-10-06 | 2012-05-31 | Celgen Ag | Three-dimensional artificial callus distraction |
US8529959B2 (en) | 2006-10-17 | 2013-09-10 | Carmell Therapeutics Corporation | Methods and apparatus for manufacturing plasma based plastics and bioplastics produced therefrom |
US8163549B2 (en) | 2006-12-20 | 2012-04-24 | Zimmer Orthobiologics, Inc. | Method of obtaining viable small tissue particles and use for tissue repair |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8827133B2 (en) | 2007-01-11 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling device having supports for a flexible drive mechanism |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US8590762B2 (en) | 2007-03-15 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Staple cartridge cavity configurations |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
WO2008128075A1 (en) | 2007-04-12 | 2008-10-23 | Isto Technologies, Inc. | Compositions and methods for tissue repair |
US11672531B2 (en) | 2007-06-04 | 2023-06-13 | Cilag Gmbh International | Rotary drive systems for surgical instruments |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US8308040B2 (en) | 2007-06-22 | 2012-11-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulatable end effector |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US7905381B2 (en) | 2008-09-19 | 2011-03-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with cutting member arrangement |
US8561870B2 (en) | 2008-02-13 | 2013-10-22 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
RU2493788C2 (en) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Surgical cutting and fixing instrument, which has radio-frequency electrodes |
US8657174B2 (en) | 2008-02-14 | 2014-02-25 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument having handle based power source |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US9585657B2 (en) | 2008-02-15 | 2017-03-07 | Ethicon Endo-Surgery, Llc | Actuator for releasing a layer of material from a surgical end effector |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
PL3476312T3 (en) | 2008-09-19 | 2024-03-11 | Ethicon Llc | Surgical stapler with apparatus for adjusting staple height |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US20100274362A1 (en) | 2009-01-15 | 2010-10-28 | Avner Yayon | Cartilage particle tissue mixtures optionally combined with a cancellous construct |
US8623395B2 (en) | 2010-01-29 | 2014-01-07 | Forsight Vision4, Inc. | Implantable therapeutic device |
PL2391419T3 (en) * | 2009-01-29 | 2019-12-31 | Forsight Vision4, Inc. | Posterior segment drug delivery |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
US8453907B2 (en) | 2009-02-06 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with cutting member reversing mechanism |
JP2012517287A (en) | 2009-02-06 | 2012-08-02 | エシコン・エンド−サージェリィ・インコーポレイテッド | Improvement of driven surgical stapler |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
WO2010137043A1 (en) * | 2009-05-27 | 2010-12-02 | Baxter Manufacturing S.P.A. | Haemostatic biomaterial from waste fractions of human plasma fractionation process |
US8377432B2 (en) * | 2009-09-02 | 2013-02-19 | Khay-Yong Saw | Method and composition for neochondrogenesis |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US10166142B2 (en) | 2010-01-29 | 2019-01-01 | Forsight Vision4, Inc. | Small molecule delivery with implantable therapeutic device |
WO2012012507A2 (en) * | 2010-07-23 | 2012-01-26 | Biomatrx Llc | Methods, inserts, and systems useful for endodontic treatment |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
WO2012019136A2 (en) | 2010-08-05 | 2012-02-09 | Forsight Vision 4, Inc. | Injector apparatus and method for drug delivery |
WO2012019139A1 (en) | 2010-08-05 | 2012-02-09 | Forsight Vision4, Inc. | Combined drug delivery methods and apparatus |
SI2600812T1 (en) | 2010-08-05 | 2021-12-31 | ForSight Vision4, Inc., | Apparatus to treat an eye |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9232941B2 (en) | 2010-09-30 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a reservoir |
US9332974B2 (en) | 2010-09-30 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Layered tissue thickness compensator |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US9204880B2 (en) | 2012-03-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising capsules defining a low pressure environment |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9220501B2 (en) | 2010-09-30 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensators |
US9414838B2 (en) | 2012-03-28 | 2016-08-16 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprised of a plurality of materials |
US9314246B2 (en) | 2010-09-30 | 2016-04-19 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent |
US9788834B2 (en) | 2010-09-30 | 2017-10-17 | Ethicon Llc | Layer comprising deployable attachment members |
US9241714B2 (en) | 2011-04-29 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator and method for making the same |
BR112013007717B1 (en) | 2010-09-30 | 2020-09-24 | Ethicon Endo-Surgery, Inc. | SURGICAL CLAMPING SYSTEM |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9307989B2 (en) | 2012-03-28 | 2016-04-12 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorportating a hydrophobic agent |
US8740038B2 (en) | 2010-09-30 | 2014-06-03 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising a releasable portion |
US9055941B2 (en) | 2011-09-23 | 2015-06-16 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck |
US9480476B2 (en) | 2010-09-30 | 2016-11-01 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising resilient members |
US9320523B2 (en) | 2012-03-28 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising tissue ingrowth features |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
US20140031769A1 (en) | 2010-11-19 | 2014-01-30 | Forsight Vision4, Inc. | Therapeutic agent formulations for implanted devices |
CA2834649C (en) | 2011-04-29 | 2021-02-16 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising staples positioned within a compressible portion thereof |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US10398592B2 (en) | 2011-06-28 | 2019-09-03 | Forsight Vision4, Inc. | Diagnostic methods and apparatus |
RS61758B1 (en) | 2011-09-16 | 2021-05-31 | Forsight Vision4 Inc | Fluid exchange apparatus |
US9050084B2 (en) | 2011-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck arrangement |
CA2857283C (en) | 2011-11-29 | 2021-04-27 | The Regents Of The University Of California | Glucomannan scaffolding for three-dimensional tissue culture and engineering |
WO2013116061A1 (en) | 2012-02-03 | 2013-08-08 | Forsight Vision4, Inc. | Insertion and removal methods and apparatus for therapeutic devices |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
AU2013231321B2 (en) | 2012-03-13 | 2017-05-25 | Octapharma Ag | Improved process for production of fibrinogen and fibrinogen produced thereby |
RU2014143258A (en) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS |
CN104334098B (en) | 2012-03-28 | 2017-03-22 | 伊西康内外科公司 | Tissue thickness compensator comprising capsules defining a low pressure environment |
CN104379068B (en) | 2012-03-28 | 2017-09-22 | 伊西康内外科公司 | Holding device assembly including tissue thickness compensation part |
US9198662B2 (en) | 2012-03-28 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator having improved visibility |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
BR112014032776B1 (en) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM |
CN104487005B (en) | 2012-06-28 | 2017-09-08 | 伊西康内外科公司 | Empty squeeze latching member |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US9101385B2 (en) | 2012-06-28 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Electrode connections for rotary driven surgical tools |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
US20140001234A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Coupling arrangements for attaching surgical end effectors to drive systems therefor |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
CN104703612B (en) | 2012-09-26 | 2021-03-19 | 骨治疗公司 | Formulations comprising solvent/detergent treated plasma (S/D plasma) and uses thereof |
US20140178343A1 (en) | 2012-12-21 | 2014-06-26 | Jian Q. Yao | Supports and methods for promoting integration of cartilage tissue explants |
US9386984B2 (en) | 2013-02-08 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Staple cartridge comprising a releasable cover |
BR112015021082B1 (en) | 2013-03-01 | 2022-05-10 | Ethicon Endo-Surgery, Inc | surgical instrument |
US9700309B2 (en) | 2013-03-01 | 2017-07-11 | Ethicon Llc | Articulatable surgical instruments with conductive pathways for signal communication |
MX368026B (en) | 2013-03-01 | 2019-09-12 | Ethicon Endo Surgery Inc | Articulatable surgical instruments with conductive pathways for signal communication. |
US20140263552A1 (en) | 2013-03-13 | 2014-09-18 | Ethicon Endo-Surgery, Inc. | Staple cartridge tissue thickness sensor system |
CA2905496A1 (en) | 2013-03-14 | 2014-09-25 | Forsight Vision4, Inc. | Systems for sustained intraocular delivery of low solubility compounds from a port delivery system implant |
US9332987B2 (en) | 2013-03-14 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Control arrangements for a drive member of a surgical instrument |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US20160022861A1 (en) * | 2013-03-15 | 2016-01-28 | Martin MacPhee | Compositions having absorbable materials, methods, and applicators for sealing injuries |
US9332984B2 (en) | 2013-03-27 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Fastener cartridge assemblies |
US9795384B2 (en) | 2013-03-27 | 2017-10-24 | Ethicon Llc | Fastener cartridge comprising a tissue thickness compensator and a gap setting element |
US9572577B2 (en) | 2013-03-27 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a tissue thickness compensator including openings therein |
CN105246438B (en) | 2013-03-28 | 2018-01-26 | 弗赛特影像4股份有限公司 | For conveying the ophthalmic implant of therapeutic substance |
WO2014169250A1 (en) * | 2013-04-11 | 2014-10-16 | President And Fellows Of Harvard College | Prefabricated alginate-drug bandages |
BR112015026109B1 (en) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | surgical instrument |
US10405857B2 (en) | 2013-04-16 | 2019-09-10 | Ethicon Llc | Powered linear surgical stapler |
US9574644B2 (en) | 2013-05-30 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Power module for use with a surgical instrument |
CN106028966B (en) | 2013-08-23 | 2018-06-22 | 伊西康内外科有限责任公司 | For the firing member restoring device of powered surgical instrument |
US20150053737A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | End effector detection systems for surgical instruments |
KR101561744B1 (en) | 2013-12-19 | 2015-10-20 | 단국대학교 천안캠퍼스 산학협력단 | 3D cell implant patch and process for preparing the same |
US20150173756A1 (en) | 2013-12-23 | 2015-06-25 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling methods |
US9839428B2 (en) | 2013-12-23 | 2017-12-12 | Ethicon Llc | Surgical cutting and stapling instruments with independent jaw control features |
US9724092B2 (en) | 2013-12-23 | 2017-08-08 | Ethicon Llc | Modular surgical instruments |
US9687232B2 (en) | 2013-12-23 | 2017-06-27 | Ethicon Llc | Surgical staples |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
JP6462004B2 (en) | 2014-02-24 | 2019-01-30 | エシコン エルエルシー | Fastening system with launcher lockout |
US9693777B2 (en) | 2014-02-24 | 2017-07-04 | Ethicon Llc | Implantable layers comprising a pressed region |
US10013049B2 (en) | 2014-03-26 | 2018-07-03 | Ethicon Llc | Power management through sleep options of segmented circuit and wake up control |
US10028761B2 (en) | 2014-03-26 | 2018-07-24 | Ethicon Llc | Feedback algorithms for manual bailout systems for surgical instruments |
US9913642B2 (en) | 2014-03-26 | 2018-03-13 | Ethicon Llc | Surgical instrument comprising a sensor system |
US9820738B2 (en) | 2014-03-26 | 2017-11-21 | Ethicon Llc | Surgical instrument comprising interactive systems |
BR112016021943B1 (en) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE |
US20150297223A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
CN106456159B (en) | 2014-04-16 | 2019-03-08 | 伊西康内外科有限责任公司 | Fastener cartridge assembly and nail retainer lid arragement construction |
CN106456158B (en) | 2014-04-16 | 2019-02-05 | 伊西康内外科有限责任公司 | Fastener cartridge including non-uniform fastener |
BR112016023698B1 (en) | 2014-04-16 | 2022-07-26 | Ethicon Endo-Surgery, Llc | FASTENER CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
US10327764B2 (en) | 2014-09-26 | 2019-06-25 | Ethicon Llc | Method for creating a flexible staple line |
US10045781B2 (en) | 2014-06-13 | 2018-08-14 | Ethicon Llc | Closure lockout systems for surgical instruments |
RU2695563C2 (en) | 2014-07-15 | 2019-07-24 | Форсайт Вижн4, Инк. | Method and device for eye implant delivery |
CN107106551A (en) | 2014-08-08 | 2017-08-29 | 弗赛特影像4股份有限公司 | The stabilization of receptor tyrosine kinase inhibitors and solvable preparation and its preparation method |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
US9757128B2 (en) | 2014-09-05 | 2017-09-12 | Ethicon Llc | Multiple sensors with one sensor affecting a second sensor's output or interpretation |
BR112017004361B1 (en) | 2014-09-05 | 2023-04-11 | Ethicon Llc | ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
CN107427300B (en) | 2014-09-26 | 2020-12-04 | 伊西康有限责任公司 | Surgical suture buttress and buttress material |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
RU2708958C2 (en) | 2014-11-10 | 2019-12-12 | Форсайт Вижн4, Инк. | Expandable drug delivery devices and methods of use |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US10117649B2 (en) | 2014-12-18 | 2018-11-06 | Ethicon Llc | Surgical instrument assembly comprising a lockable articulation system |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
BR112017012996B1 (en) | 2014-12-18 | 2022-11-08 | Ethicon Llc | SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US9993258B2 (en) | 2015-02-27 | 2018-06-12 | Ethicon Llc | Adaptable surgical instrument handle |
US10159483B2 (en) | 2015-02-27 | 2018-12-25 | Ethicon Llc | Surgical apparatus configured to track an end-of-life parameter |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US9895148B2 (en) | 2015-03-06 | 2018-02-20 | Ethicon Endo-Surgery, Llc | Monitoring speed control and precision incrementing of motor for powered surgical instruments |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
JP2020121162A (en) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10045776B2 (en) | 2015-03-06 | 2018-08-14 | Ethicon Llc | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US10390825B2 (en) | 2015-03-31 | 2019-08-27 | Ethicon Llc | Surgical instrument with progressive rotary drive systems |
US10368861B2 (en) | 2015-06-18 | 2019-08-06 | Ethicon Llc | Dual articulation drive system arrangements for articulatable surgical instruments |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
US10166026B2 (en) | 2015-08-26 | 2019-01-01 | Ethicon Llc | Staple cartridge assembly including features for controlling the rotation of staples when being ejected therefrom |
RU2725081C2 (en) | 2015-08-26 | 2020-06-29 | ЭТИКОН ЭлЭлСи | Strips with surgical staples allowing the presence of staples with variable properties and providing simple loading of the cartridge |
MX2022009705A (en) | 2015-08-26 | 2022-11-07 | Ethicon Llc | Surgical staples comprising hardness variations for improved fastening of tissue. |
US10357252B2 (en) | 2015-09-02 | 2019-07-23 | Ethicon Llc | Surgical staple configurations with camming surfaces located between portions supporting surgical staples |
MX2022006189A (en) | 2015-09-02 | 2022-06-16 | Ethicon Llc | Surgical staple configurations with camming surfaces located between portions supporting surgical staples. |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10085751B2 (en) | 2015-09-23 | 2018-10-02 | Ethicon Llc | Surgical stapler having temperature-based motor control |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10076326B2 (en) | 2015-09-23 | 2018-09-18 | Ethicon Llc | Surgical stapler having current mirror-based motor control |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US10478188B2 (en) | 2015-09-30 | 2019-11-19 | Ethicon Llc | Implantable layer comprising a constricted configuration |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10433846B2 (en) | 2015-09-30 | 2019-10-08 | Ethicon Llc | Compressible adjunct with crossing spacer fibers |
MX2018006234A (en) | 2015-11-20 | 2018-08-14 | Forsight Vision4 Inc | Porous structures for extended release drug delivery devices. |
WO2017106782A1 (en) * | 2015-12-18 | 2017-06-22 | Tega Therapeutics, Inc. | Cellular glycosaminoglycan compositions and methods of making and using |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
BR112018016098B1 (en) | 2016-02-09 | 2023-02-23 | Ethicon Llc | SURGICAL INSTRUMENT |
US10245030B2 (en) | 2016-02-09 | 2019-04-02 | Ethicon Llc | Surgical instruments with tensioning arrangements for cable driven articulation systems |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10314582B2 (en) | 2016-04-01 | 2019-06-11 | Ethicon Llc | Surgical instrument comprising a shifting mechanism |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
MX2018012021A (en) | 2016-04-05 | 2019-01-24 | Forsight Vision4 Inc | Implantable ocular drug delivery devices. |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10478181B2 (en) | 2016-04-18 | 2019-11-19 | Ethicon Llc | Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US10702270B2 (en) | 2016-06-24 | 2020-07-07 | Ethicon Llc | Stapling system for use with wire staples and stamped staples |
USD826405S1 (en) | 2016-06-24 | 2018-08-21 | Ethicon Llc | Surgical fastener |
USD850617S1 (en) | 2016-06-24 | 2019-06-04 | Ethicon Llc | Surgical fastener cartridge |
USD847989S1 (en) | 2016-06-24 | 2019-05-07 | Ethicon Llc | Surgical fastener cartridge |
CN109310431B (en) | 2016-06-24 | 2022-03-04 | 伊西康有限责任公司 | Staple cartridge comprising wire staples and punch staples |
CN109880795A (en) * | 2016-09-14 | 2019-06-14 | 四川蓝光英诺生物科技股份有限公司 | Artificial organ precursor and the method for preparing it |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US10945727B2 (en) | 2016-12-21 | 2021-03-16 | Ethicon Llc | Staple cartridge with deformable driver retention features |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US10687810B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Stepped staple cartridge with tissue retention and gap setting features |
US11684367B2 (en) | 2016-12-21 | 2023-06-27 | Cilag Gmbh International | Stepped assembly having and end-of-life indicator |
US10537324B2 (en) | 2016-12-21 | 2020-01-21 | Ethicon Llc | Stepped staple cartridge with asymmetrical staples |
US10568624B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
BR112019011947A2 (en) | 2016-12-21 | 2019-10-29 | Ethicon Llc | surgical stapling systems |
JP6983893B2 (en) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | Lockout configuration for surgical end effectors and replaceable tool assemblies |
MX2019007295A (en) | 2016-12-21 | 2019-10-15 | Ethicon Llc | Surgical instrument system comprising an end effector lockout and a firing assembly lockout. |
US10588632B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical end effectors and firing members thereof |
US10993715B2 (en) | 2016-12-21 | 2021-05-04 | Ethicon Llc | Staple cartridge comprising staples with different clamping breadths |
US10682138B2 (en) | 2016-12-21 | 2020-06-16 | Ethicon Llc | Bilaterally asymmetric staple forming pocket pairs |
US10736629B2 (en) | 2016-12-21 | 2020-08-11 | Ethicon Llc | Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems |
US10758229B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument comprising improved jaw control |
US11090048B2 (en) | 2016-12-21 | 2021-08-17 | Cilag Gmbh International | Method for resetting a fuse of a surgical instrument shaft |
JP7010956B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | How to staple tissue |
US20180168618A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
US10667811B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Surgical stapling instruments and staple-forming anvils |
US20180168609A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Firing assembly comprising a fuse |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10758230B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument with primary and safety processors |
US10485543B2 (en) | 2016-12-21 | 2019-11-26 | Ethicon Llc | Anvil having a knife slot width |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US20180368844A1 (en) | 2017-06-27 | 2018-12-27 | Ethicon Llc | Staple forming pocket arrangements |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US11020114B2 (en) | 2017-06-28 | 2021-06-01 | Cilag Gmbh International | Surgical instruments with articulatable end effector with axially shortened articulation joint configurations |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US11678880B2 (en) | 2017-06-28 | 2023-06-20 | Cilag Gmbh International | Surgical instrument comprising a shaft including a housing arrangement |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
CN111447944A (en) * | 2017-07-13 | 2020-07-24 | 血栓治疗公司 | Compositions and methods for wound closure |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
WO2019103906A1 (en) | 2017-11-21 | 2019-05-31 | Forsight Vision4, Inc. | Fluid exchange apparatus for expandable port delivery system and methods of use |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US20190192147A1 (en) | 2017-12-21 | 2019-06-27 | Ethicon Llc | Surgical instrument comprising an articulatable distal head |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11241235B2 (en) | 2019-06-28 | 2022-02-08 | Cilag Gmbh International | Method of using multiple RFID chips with a surgical assembly |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
CN110354003B (en) * | 2019-07-08 | 2022-05-27 | 广州贝研生物科技有限公司 | Application of tranexamic acid as freeze-dried powder excipient and freeze-drying process |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
US20220031350A1 (en) | 2020-07-28 | 2022-02-03 | Cilag Gmbh International | Surgical instruments with double pivot articulation joint arrangements |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11944825B2 (en) | 2021-01-06 | 2024-04-02 | Medtronic, Inc | Surgical system and methods of use |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11998201B2 (en) | 2021-05-28 | 2024-06-04 | Cilag CmbH International | Stapling instrument comprising a firing lockout |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
USD1033637S1 (en) | 2022-01-24 | 2024-07-02 | Forsight Vision4, Inc. | Fluid exchange device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998043686A1 (en) * | 1997-04-03 | 1998-10-08 | California Institute Of Technology | Enzyme-mediated modification of fibrin for tissue engineering |
WO2002018546A2 (en) * | 2000-09-01 | 2002-03-07 | Virginia Commonwealth University Intellectual Property Foundation | Plasma-derived-fibrin-based matrices and tissue |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4442655A (en) * | 1981-06-25 | 1984-04-17 | Serapharm Michael Stroetmann | Fibrinogen-containing dry preparation, manufacture and use thereof |
DE3171072D1 (en) * | 1981-06-25 | 1985-07-25 | Stroetmann M Serapharm | Enriched plasma derivative for promoting wound sealing and wound covering |
AT369990B (en) * | 1981-07-28 | 1983-02-25 | Immuno Ag | METHOD FOR PRODUCING A TISSUE ADHESIVE |
IL68218A (en) | 1983-03-23 | 1985-12-31 | Univ Ramot | Compositions for cartilage repair comprising embryonal chondrocytes |
EP0166263A1 (en) * | 1984-05-31 | 1986-01-02 | Green Cross Corporation | Filler composition for filling in defect or hollow portion of bone and kit or set for the preparation of the filler composition |
US5266480A (en) | 1986-04-18 | 1993-11-30 | Advanced Tissue Sciences, Inc. | Three-dimensional skin culture system |
US5736372A (en) | 1986-11-20 | 1998-04-07 | Massachusetts Institute Of Technology | Biodegradable synthetic polymeric fibrous matrix containing chondrocyte for in vivo production of a cartilaginous structure |
US5260420A (en) | 1987-07-30 | 1993-11-09 | Centre Regional De Transfusion Sanguine De Lille | Concentrate of thrombin coagulable proteins, the method of obtaining same and therapeutical use thereof |
US4971954A (en) | 1988-11-23 | 1990-11-20 | University Of Medicine And Dentistry Of New Jersey | Collagen-based matrices ribose cross-linked |
SE9101853D0 (en) * | 1991-06-17 | 1991-06-17 | Jonas Wadstroem | IMPROVED TISSUE ASHESIVE |
GB9206509D0 (en) | 1992-03-25 | 1992-05-06 | Jevco Ltd | Heteromorphic sponges containing active agents |
US6019993A (en) * | 1993-03-30 | 2000-02-01 | Omrix Biopharmaceuticals S.A. | Virus-inactivated 2-component fibrin glue |
US5411885A (en) | 1993-12-17 | 1995-05-02 | New York Blood Center, Inc. | Methods for tissue embedding and tissue culturing |
IL110367A (en) | 1994-07-19 | 2007-05-15 | Colbar Lifescience Ltd | Collagen-based matrix |
US5709934A (en) | 1994-11-22 | 1998-01-20 | Tissue Engineering, Inc. | Bipolymer foams having extracellular matrix particulates |
US6599515B1 (en) | 1995-01-16 | 2003-07-29 | Baxter International Inc. | Fibrin porous structure |
US5776193A (en) * | 1995-10-16 | 1998-07-07 | Orquest, Inc. | Bone grafting matrix |
US5842477A (en) | 1996-02-21 | 1998-12-01 | Advanced Tissue Sciences, Inc. | Method for repairing cartilage |
US5974663A (en) | 1996-10-25 | 1999-11-02 | Honda Giken Kogya Kabushiki Kaisha | Method of manufacturing connecting rod |
US5866165A (en) * | 1997-01-15 | 1999-02-02 | Orquest, Inc. | Collagen-polysaccharide matrix for bone and cartilage repair |
JPH10234844A (en) * | 1997-02-25 | 1998-09-08 | Gunze Ltd | Base material for regenerating cartilaginous tissue and regenerating method of cartilaginous tissue using the same |
US6090996A (en) * | 1997-08-04 | 2000-07-18 | Collagen Matrix, Inc. | Implant matrix |
US6077987A (en) | 1997-09-04 | 2000-06-20 | North Shore-Long Island Jewish Research Institute | Genetic engineering of cells to enhance healing and tissue regeneration |
AT407117B (en) * | 1997-09-19 | 2000-12-27 | Immuno Ag | FIBRINE SPONGE |
DE69732247T2 (en) | 1997-10-30 | 2005-10-06 | Ec-Showa Denko K.K. | COMPOSITE RESIN COMPOSITION |
US6056970A (en) * | 1998-05-07 | 2000-05-02 | Genzyme Corporation | Compositions comprising hemostatic compounds and bioabsorbable polymers |
US6293970B1 (en) * | 1998-06-30 | 2001-09-25 | Lifenet | Plasticized bone and soft tissue grafts and methods of making and using same |
US6274090B1 (en) | 1998-08-05 | 2001-08-14 | Thermogenesis Corp. | Apparatus and method of preparation of stable, long term thrombin from plasma and thrombin formed thereby |
BE1012536A3 (en) * | 1998-11-04 | 2000-12-05 | Baxter Int | Element with a layer fibrin its preparation and use. |
DE19851334C2 (en) | 1998-11-06 | 2000-09-28 | Aventis Behring Gmbh | Flexible fibrin-based wound dressing and process for its manufacture |
-
2001
- 2001-07-19 IL IL14444601A patent/IL144446A0/en unknown
-
2002
- 2002-07-18 WO PCT/IL2002/000589 patent/WO2003007873A2/en active IP Right Grant
- 2002-07-18 DE DE60238416T patent/DE60238416D1/en not_active Expired - Lifetime
- 2002-07-18 AU AU2002319888A patent/AU2002319888B2/en not_active Ceased
- 2002-07-18 JP JP2003513482A patent/JP2004534615A/en active Pending
- 2002-07-18 EP EP02749270A patent/EP1423082B1/en not_active Expired - Lifetime
- 2002-07-18 AT AT02749270T patent/ATE489119T1/en active
- 2002-07-18 CA CA2454341A patent/CA2454341C/en not_active Expired - Fee Related
- 2002-07-18 ES ES02749270T patent/ES2357224T3/en not_active Expired - Lifetime
-
2004
- 2004-01-18 IL IL159920A patent/IL159920A/en not_active IP Right Cessation
- 2004-01-20 US US10/761,615 patent/US7009039B2/en not_active Expired - Lifetime
-
2009
- 2009-11-04 JP JP2009253050A patent/JP5334800B2/en not_active Expired - Fee Related
-
2013
- 2013-06-07 JP JP2013120912A patent/JP5695131B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998043686A1 (en) * | 1997-04-03 | 1998-10-08 | California Institute Of Technology | Enzyme-mediated modification of fibrin for tissue engineering |
WO2002018546A2 (en) * | 2000-09-01 | 2002-03-07 | Virginia Commonwealth University Intellectual Property Foundation | Plasma-derived-fibrin-based matrices and tissue |
Non-Patent Citations (2)
Title |
---|
GORODETSKY ET AL.: 'Fibrin microbeads (FMB) as biodegradable carriers for culturing cells and for accelerating wound healing' JOURNAL OF INVESTIGATIVE DERMATOLOGY vol. 112, no. 6, 1999, pages 866 - 872, XP002961571 * |
See also references of EP1423082A2 * |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080286329A1 (en) * | 2002-03-18 | 2008-11-20 | Carnegie Mellon University | Methods and Apparatus for Manufacturing Plasma Based Plastics and Bioplastics Produced Therefrom |
US8529956B2 (en) * | 2002-03-18 | 2013-09-10 | Carnell Therapeutics Corporation | Methods and apparatus for manufacturing plasma based plastics and bioplastics produced therefrom |
US8193317B2 (en) | 2003-01-30 | 2012-06-05 | Prochon Biotech Ltd. | Freeze-dried fibrin matrices and methods for preparation thereof |
US8618258B2 (en) | 2003-01-30 | 2013-12-31 | Prochon Biotech Ltd. | Freeze-dried fibrin matrices and methods for preparation thereof |
US7714107B2 (en) | 2003-01-30 | 2010-05-11 | Prochon Biotech Ltd. | Freeze-dried fibrin matrices and methods for preparation thereof |
USRE43258E1 (en) | 2003-04-29 | 2012-03-20 | Musculoskeletal Transplant Foundation | Glue for cartilage repair |
USRE42208E1 (en) | 2003-04-29 | 2011-03-08 | Musculoskeletal Transplant Foundation | Glue for cartilage repair |
US8221500B2 (en) | 2003-05-16 | 2012-07-17 | Musculoskeletal Transplant Foundation | Cartilage allograft plug |
US7901457B2 (en) | 2003-05-16 | 2011-03-08 | Musculoskeletal Transplant Foundation | Cartilage allograft plug |
EP1706132A4 (en) * | 2003-12-23 | 2009-07-15 | Sewon Cellontech Co Ltd | A composition for cartilage therapeutics and using method thereof |
JP2007513730A (en) * | 2003-12-23 | 2007-05-31 | セウォン セロンテック カンパニー リミテッド | Cartilage therapeutic agent composition and method of using the same |
EP1706132A1 (en) * | 2003-12-23 | 2006-10-04 | Sewon Cellontech Co., Ltd. | A composition for cartilage therapeutics and using method thereof |
AU2005264168B2 (en) * | 2004-07-22 | 2010-08-26 | Prochon Biotech Ltd. | Porous plasma protein matrices and methods for preparation thereof |
WO2006008748A3 (en) * | 2004-07-22 | 2009-05-07 | Prochon Biotech Ltd | Porous plasma protein matrices and methods for preparation thereof |
EP1773984A4 (en) * | 2004-07-22 | 2012-04-11 | Prochon Biotech Ltd | Porous plasma protein matrices and methods for preparation thereof |
EP1773984A2 (en) * | 2004-07-22 | 2007-04-18 | ProChon Biotech Ltd. | Porous plasma protein matrices and methods for preparation thereof |
US7335508B2 (en) * | 2004-07-22 | 2008-02-26 | Prochon Biotech Ltd. | Porous plasma protein matrices and methods for preparation thereof |
US8292968B2 (en) | 2004-10-12 | 2012-10-23 | Musculoskeletal Transplant Foundation | Cancellous constructs, cartilage particles and combinations of cancellous constructs and cartilage particles |
EP1896044A4 (en) * | 2005-06-13 | 2009-07-15 | Sewon Cellontech Co Ltd | Bone formation composition composed of mixture of osteoblast and bio-matrix and its manufacturing method |
EP1890713A4 (en) * | 2005-06-13 | 2009-07-08 | Sewon Cellontech Co Ltd | Osteoblast composition of semi-solidified mixed fibrin for bone fracture agglutination and its manufacturing method |
EP1890713A1 (en) * | 2005-06-13 | 2008-02-27 | Sewon Cellontech Co., Ltd. | Osteoblast composition of semi-solidified mixed fibrin for bone fracture agglutination and its manufacturing method |
EP1896044A1 (en) * | 2005-06-13 | 2008-03-12 | Sewon Cellontech Co., Ltd. | Bone formation composition composed of mixture of osteoblast and bio-matrix and its manufacturing method |
US7815926B2 (en) | 2005-07-11 | 2010-10-19 | Musculoskeletal Transplant Foundation | Implant for articular cartilage repair |
US9701940B2 (en) | 2005-09-19 | 2017-07-11 | Histogenics Corporation | Cell-support matrix having narrowly defined uniformly vertically and non-randomly organized porosity and pore density and a method for preparation thereof |
US8329870B2 (en) | 2007-01-04 | 2012-12-11 | Hepacore Ltd. | Water soluble reactive derivatives of carboxy polysaccharides and fibrinogen conjugates thereof |
US8906110B2 (en) | 2007-01-24 | 2014-12-09 | Musculoskeletal Transplant Foundation | Two piece cancellous construct for cartilage repair |
US8435551B2 (en) | 2007-03-06 | 2013-05-07 | Musculoskeletal Transplant Foundation | Cancellous construct with support ring for repair of osteochondral defects |
US8080418B2 (en) | 2007-03-09 | 2011-12-20 | Corning Incorporated | Method of making a three dimensional cell culture matrix |
WO2008112163A1 (en) * | 2007-03-09 | 2008-09-18 | Corning Incorporated | Gum coatings for cell culture, methods of manufacture and methods of use |
WO2008112170A1 (en) * | 2007-03-09 | 2008-09-18 | Corning Incorporated | Three dimensional gum matrices for cell culture, manufacturing methods and methods of use |
AU2008284277B2 (en) * | 2007-08-08 | 2011-04-28 | Shire Regenerative Medicine, Inc. | Materials and methods for treating skeletal system damage and promoting skeletal system repair and regeneration |
US20110070282A1 (en) * | 2007-08-08 | 2011-03-24 | Pervasis Therapeutics, Inc. | Materials and Methods for Treating Skeletal System Damage and Promoting Skeletal System Repair and Regeneration |
WO2009020651A3 (en) * | 2007-08-08 | 2010-01-21 | Pervasis Therapeutics, Inc. | Materials and methods for treating skeletal system damage and promoting skeletal system repair and regeneration |
EP2535063A1 (en) * | 2007-08-08 | 2012-12-19 | Pervasis Therapeutics, Inc. | Materials and methods for treating skeletal system damage and promoting skeletal system repair and regeneration |
WO2009020650A3 (en) * | 2007-08-08 | 2009-04-02 | Pervasis Therapeutics Inc | Materials and methods for treating and managing wounds and the effects of trauma |
WO2009020651A2 (en) * | 2007-08-08 | 2009-02-12 | Pervasis Therapeutics, Inc. | Materials and methods for treating skeletal system damage and promoting skeletal system repair and regeneration |
WO2009020650A2 (en) * | 2007-08-08 | 2009-02-12 | Pervasis Therapeutics, Inc. | Materials and methods for treating and managing wounds and the effects of trauma |
US9610357B2 (en) | 2011-04-12 | 2017-04-04 | Hepacore Ltd. | Conjugates of carboxy polysaccharides with fibroblast growth factors and variants thereof |
WO2016062862A1 (en) | 2014-10-24 | 2016-04-28 | Histocell, S.L. | A biomaterial scaffold for regenerating the oral mucosa |
KR20170073673A (en) * | 2014-10-24 | 2017-06-28 | 히스토셀, 에세.엘레. | A biomaterial scaffold for regenerating the oral mucosa |
EP3011981A1 (en) * | 2014-10-24 | 2016-04-27 | Histocell, S.L. | A biomaterial scaffold for regenerating the oral mucosa |
CN107073170A (en) * | 2014-10-24 | 2017-08-18 | 赫斯特细胞有限公司 | Biomaterial scaffolds for regenerating oral mucosa |
AU2015334897B2 (en) * | 2014-10-24 | 2019-08-01 | Histocell, S.L. | A biomaterial scaffold for regenerating the oral mucosa |
US11241516B2 (en) | 2014-10-24 | 2022-02-08 | Histocell, S.L. | Biomaterial scaffold for regenerating the oral mucosa |
KR102489773B1 (en) * | 2014-10-24 | 2023-01-17 | 히스토셀, 에세.엘레. | A biomaterial scaffold for regenerating the oral mucosa |
US10077420B2 (en) | 2014-12-02 | 2018-09-18 | Histogenics Corporation | Cell and tissue culture container |
US11555172B2 (en) | 2014-12-02 | 2023-01-17 | Ocugen, Inc. | Cell and tissue culture container |
WO2018042438A3 (en) * | 2016-09-01 | 2018-05-17 | Plas-Free Ltd | Human blood-derived products having decreased fibrinolytic activity and uses thereof in hemostatic disorders |
CN109789162A (en) * | 2016-09-01 | 2019-05-21 | 普拉斯富瑞有限公司 | Human blood product-derived with reduced fibrinolytic and its purposes in disorder of hemostasis |
US11491186B2 (en) | 2016-09-01 | 2022-11-08 | Plas-Free Ltd | Human blood-derived products having decreased fibrinolytic activity and uses thereof in hemostatic disorders |
Also Published As
Publication number | Publication date |
---|---|
WO2003007873A3 (en) | 2004-03-11 |
CA2454341A1 (en) | 2003-01-30 |
EP1423082B1 (en) | 2010-11-24 |
DE60238416D1 (en) | 2011-01-05 |
IL159920A (en) | 2011-04-28 |
EP1423082A4 (en) | 2006-02-08 |
US7009039B2 (en) | 2006-03-07 |
EP1423082A2 (en) | 2004-06-02 |
JP5695131B2 (en) | 2015-04-01 |
US20040209359A1 (en) | 2004-10-21 |
JP2013166079A (en) | 2013-08-29 |
JP5334800B2 (en) | 2013-11-06 |
CA2454341C (en) | 2012-10-30 |
AU2002319888B2 (en) | 2007-08-02 |
ATE489119T1 (en) | 2010-12-15 |
ES2357224T3 (en) | 2011-04-20 |
IL144446A0 (en) | 2002-05-23 |
JP2010057942A (en) | 2010-03-18 |
JP2004534615A (en) | 2004-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1423082B1 (en) | Plasma protein matrices and methods for their preparation | |
AU2002319888A1 (en) | Plasma protein matrices and methods for their preparation | |
AU2004208038B2 (en) | Freeze-dried fibrin matrices and methods for preparation thereof | |
US7335508B2 (en) | Porous plasma protein matrices and methods for preparation thereof | |
US8137696B2 (en) | Biomimetic composition reinforced by a polyelectrolytic complex of hyaluronic acid and chitosan | |
CA2574644C (en) | Porous plasma protein matrices and methods for preparation thereof | |
IL154208A (en) | Plasma protein matrices and methods for preparation thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 159920 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2454341 Country of ref document: CA Ref document number: 2003513482 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10761615 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002319888 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002749270 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 2002749270 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002319888 Country of ref document: AU |