US20140178343A1 - Supports and methods for promoting integration of cartilage tissue explants - Google Patents

Supports and methods for promoting integration of cartilage tissue explants Download PDF

Info

Publication number
US20140178343A1
US20140178343A1 US13/799,452 US201313799452A US2014178343A1 US 20140178343 A1 US20140178343 A1 US 20140178343A1 US 201313799452 A US201313799452 A US 201313799452A US 2014178343 A1 US2014178343 A1 US 2014178343A1
Authority
US
United States
Prior art keywords
tissue
cartilage
mm
piece
pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/799,452
Inventor
Jian Q. Yao
Hali Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zimmer Inc
Original Assignee
Zimmer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201261740787P priority Critical
Application filed by Zimmer Inc filed Critical Zimmer Inc
Priority to US13/799,452 priority patent/US20140178343A1/en
Assigned to ZIMMER, INC. reassignment ZIMMER, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YAO, JIAN Q, WANG, HALI
Publication of US20140178343A1 publication Critical patent/US20140178343A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3691Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by physical conditions of the treatment, e.g. applying a compressive force to the composition, pressure cycles, ultrasonic/sonication or microwave treatment, lyophilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3612Cartilage, synovial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3852Cartilage, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues ; Not used, see subgroups
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/426Immunomodulating agents, i.e. cytokines, interleukins, interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/43Hormones, e.g. dexamethasone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/90Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones

Abstract

The present disclosure provides tissue supports and methods for preparing a cartilage composition for repairing cartilage defects, which is prepared by expanding and integrating small cartilage tissue pieces derived from donor or engineered tissue. The methods and supports described herein promote cell migration and integration of neighboring tissue pieces in culture to form the cartilage composition. Methods of cartilage repair using the cartilage composition are also described.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority from U.S. Provisional Application No. 61/740,787, filed Dec. 21, 2012, the entire disclosure of which is herein incorporated by reference.
  • TECHNICAL FIELD
  • The present disclosure relates generally to methods and compositions for expanding cartilage tissue explants in vitro, and in particular to a tissue support for promoting expansion and integration of cartilage tissue particles or pieces, and related methods.
  • BACKGROUND OF THE INVENTION
  • Injury and degeneration of cartilage tissue is a major clinical challenge for several reasons. In the epidemiological sense, arthritis and other degenerative joint diseases afflict a large proportion of aging populations, which are growing at high rates in most developed nations. In the clinical sense, healing of cartilage tissue is compromised by a lack of direct blood supply. When cartilage tissue alone is damaged, i.e., in the case of a chondral lesion, local chondrocytes can only achieve limited repair. A full-thickness articular cartilage injury, or osteochondral lesion, will elicit a complete inflammatory response, but results in poor tissue reformation. As a result, a surgical approach to repair and prevention of further injury can be the only viable option. Total artificial joints have been developed and used as replacements for many years with reasonable success. Total joint replacement is nevertheless costly, invasive, carries certain risks such as blood clots, blood loss and infection, and may not provide complete restoration of function. Additionally, although significant advances have been made over the last few decades in designing robust artificial joints, they do wear out. Total joint replacement in patients younger than about 60 must be carefully considered, given the risk of the artificial joint wearing out.
  • Tissue engineering provides an alternative approach to joint repair. Engineered tissue, including cartilage tissue, can now be prepared in vitro and then implanted in an afflicted joint to replace damaged cartilage. The technical challenge has been how to engineer a tissue that has the biomechanical properties native to cartilage, and is also biocompatible. Various approaches have been tried with differing levels of success. One approach is to obtain cells from an acceptable donor source, and seed the cells onto some sort of scaffold that provides needed mechanical support, and then maintain the arrangement in culture with appropriate nutrients and growth factors with the expectation that the seeded cells will mature, or differentiate and mature, to the desired chondrocyte phenotype. While this approach generally holds promise, multiple technical obstacles remain, arising primarily from the difficulty in finding a suitably strong biocompatible material that also promotes chondrocyte differentiation, proliferation, phenotype retention and ability of chondrocytes to produce appropriate levels of cartilage-specific glycosoaminoglycans. Certain naturally-occurring and synthetic biopolymers have been investigated for such applications, with varying degrees of success.
  • While significant progress has been made in successfully engineering small amounts of certain types of cartilage, many substantial barriers remain. In particular, engineered cartilage tissue that is sufficiently robust to apply to weight-bearing joints, rather than merely to cosmetic applications, remains a continuing objective. For true functionality within a joint, the resulting tissue must demonstrate the cellular characteristics and architecture of native cartilage, while commercial viability requires that the tissue be readily generated from the relatively small amounts of source tissue that is reasonably available. The field therefore continues to search for improved methods for promoting and sustaining cartilage tissue expansion from small initial amounts of donor tissue.
  • SUMMARY OF THE INVENTION
  • In one aspect, the present disclosure provides a support for preparing a cartilage composition from a plurality of cartilage tissue pieces, the support comprising a biocompatible material having a surface defining a plurality of tissue anchors separated by a distance sufficient to secure the plurality of tissue pieces to the support at an inter-piece distance of 1 mm or less. Each tissue piece has a starting volume less than 1 mm3. The biocompatible material may comprise a solid material, such as for example at least one trabecular metal, or a semi-solid material such as for example a gel. The tissue anchors comprise a plurality of surface features such as pins, barbs, ridges, hooks, posts, recesses and/or apertures in the biocompatible material. The support may have a plurality of cartilage tissue pieces coupled to its surface, wherein each cartilage tissue piece is coupled to a tissue anchor on the support so that the tissue pieces are separated by an inter-piece distance of 1 mm or less. A cartilage adhesive is optionally applied to the surface defining the plurality of tissue anchors. The cartilage adhesive may be applied for example to a plurality of predetermined locations on the surface of tissue anchors, in such manner as to confine the cartilage adhesive to the predetermined locations.
  • Also provided is a kit including any support as described herein, and a first container holding a plurality of cartilage tissue pieces. The kit may further comprise instructions for securing the plurality of cartilage tissue pieces to the tissue anchors on the support. The kit may further comprise a cartilage adhesive, which may be supplied for example in a separate container together with instructions for applying the cartilage adhesive to the surface defining the plurality of tissue anchors on the support. Alternatively, the cartilage adhesive may be applied to the surface defining the plurality of tissue anchors on the support. The cartilage adhesive may be applied for example to a plurality of predetermined locations on the surface of tissue anchors such that the cartilage adhesive is confined to the predetermined locations.
  • In another aspect, the present disclosure provides a tissue culture system for preparing a cartilage composition for repair of a cartilage tissue defect, the tissue culture system including: a support including a biocompatible material having a surface defining a plurality of tissue anchors separated by a distance sufficient to secure a plurality of tissue pieces to the solid support at an inter-piece distance of 1 mm or less; and a plurality of cartilage tissue pieces, each cartilage tissue piece secured to a tissue anchor. In the tissue culture system, each cartilage tissue piece may have a volume of less than 1 mm3. The tissue culture system may comprise any support as described herein. The cartilage tissue pieces may comprise for example cartilage tissue obtained from a donor, which may be from a juvenile human donor. The cartilage tissue pieces may comprise engineered cartilage tissue.
  • In another aspect, the present disclosure provides a method for preparing a cartilage composition for repair of a cartilage tissue defect, including: a) dividing cartilage tissue into a plurality of tissue pieces, each portion having an initial volume of less than 1 mm3, and b) maintaining the tissue pieces in a culture medium for a time and under conditions sufficient for each tissue piece to attain an expanded volume of at least 1 mm3, wherein the cell culture conditions comprise securing each tissue piece to a support, wherein the support includes a biocompatible material having a surface defining a plurality of tissue anchors separated by a distance sufficient to secure the plurality of tissue pieces to the solid support at an inter-piece distance of 1 mm or less. In the method, the support may be any of those as described herein. The cartilage tissue pieces may comprise for example cartilage tissue obtained from a donor, which may be from a juvenile human donor. The cartilage tissue pieces may comprise engineered cartilage tissue.
  • In another aspect, the present disclosure provides a method for repair of a cartilage defect, including: a) dividing cartilage tissue into a plurality of tissue pieces, each portion having an initial volume of less than 1 mm3, and b) maintaining the tissue pieces in a culture medium for a time and under conditions sufficient for each tissue piece to attain an expanded volume of at least 1 mm3, wherein the cell culture conditions comprise securing each tissue piece to a support, wherein the support includes a biocompatible material having a surface defining a plurality of tissue anchors separated by a distance sufficient to secure the plurality of tissue pieces to the solid support at an inter-piece distance of 1 mm or less; c) removing the cartilage composition from the support; and d) implanting the cartilage composition into the cartilage defect. In the method, the support may be any of those as described herein. The cartilage tissue pieces may comprise for example cartilage tissue obtained from a donor, which may be from a juvenile human donor. The cartilage tissue pieces may comprise engineered cartilage tissue. The method may further comprise maintaining the tissue pieces in the culture medium for a time and under conditions sufficient for at least a first expanded tissue piece to attain an expanded volume sufficient for the first expanded tissue piece to contact at least a second expanded tissue piece. The culture conditions may comprise a culture medium including at least one additive from a class of agents selected from the group consisting of: chondrocytes, progenitor cells, stem cells, hormones, growth factors and cytokines.
  • In another aspect, the present disclosure provides a method for repair of a cartilage defect, including: a) dividing cartilage tissue into a plurality of tissue pieces, each portion having an initial volume of less than 1 mm3; b) maintaining the tissue pieces in a culture medium for a time and under conditions sufficient for each tissue piece to attain an expanded volume of at least 1 mm3, wherein the cell culture conditions comprise securing each tissue piece to a support, wherein the support includes a biocompatible material having a surface defining a plurality of tissue anchors separated by a distance sufficient to secure the plurality of tissue pieces to the solid support at an inter-piece distance of 1 mm or less; and c) implanting and fixing the cartilage composition together with the solid support into the cartilage defect. In the method, the support may be any of those as described herein. The cartilage tissue pieces may comprise for example cartilage tissue obtained from a donor, which may be from a juvenile human donor. The cartilage tissue pieces may comprise engineered cartilage tissue. The method may further comprise maintaining the tissue pieces in the culture medium for a time and under conditions sufficient for at least a first expanded tissue piece to attain an expanded volume sufficient for the first expanded tissue piece to contact at least a second expanded tissue piece. The culture conditions may comprise a culture medium including at least one additive from a class of agents selected from the group consisting of: chondrocytes, progenitor cells, stem cells, hormones, growth factors and cytokines.
  • In yet another aspect, the present disclosure provides a method for preparing a cartilage composition for repair of a cartilage tissue defect, including: a) dividing an amount of cartilage tissue into a plurality of tissue pieces defining a population, each portion having an initial volume of less than 1 mm3, and b) maintaining the tissue pieces in a culture medium for a time and under conditions sufficient for each tissue piece to expand so that the average volume of tissue pieces in the population is at least 1 mm3. In the method, the culture medium may comprise any of the additives as described herein. The cartilage tissue pieces may comprise for example cartilage tissue obtained from a donor, which may be from a juvenile human donor. The cartilage tissue pieces may comprise engineered cartilage tissue may be any of those as described herein. The method may further comprise maintaining the tissue pieces in the culture medium for a time and under conditions sufficient for each tissue piece to expand so that the average volume of tissue pieces in the population is at least 1.5 mm3. Alternatively, the tissue pieces may be maintained in the culture medium for a time and under conditions sufficient for each tissue piece to expand so that the average volume of tissue pieces in the population is at least 2.0 mm3. In the method, each tissue piece may be positioned on a culture surface at an inter-piece distance of 1 mm or less. The tissue piece may be secured to the culture surface at an inter-piece distance of 1 mm or less as it is positioned. The cartilage adhesive is optionally applied to an interface between each tissue piece and the culture surface.
  • The cartilage adhesive may be applied for example to a plurality of predetermined locations on the surface, in such manner as to confine the cartilage adhesive to the predetermined locations. The method may further comprise maintaining the tissue pieces in the culture medium for a time and under conditions sufficient for at least a first expanded tissue piece to attain an expanded volume sufficient for the first expanded tissue piece to contact at least a second expanded tissue piece. The culture conditions may comprise a culture medium including at least one additive from a class of agents selected from the group consisting of: chondrocytes, progenitor cells, stem cells, hormones, growth factors and cytokines.
  • In still another aspect, the present disclosure provides a cartilage composition for repair of a cartilage tissue defect, wherein the cartilage composition includes a plurality of expanded cartilage tissue pieces defining a population, wherein each tissue piece in the population is expanded from an initial volume of less than 1 mm3 to an expanded volume such that the population of expanded cartilage tissue pieces has an average expanded volume of at least 1 mm3. The average volume of expanded cartilage tissue pieces in the population is for example at least 1.5 mm3. Alternatively, the average volume of expanded cartilage tissue pieces in the population is at least 2.0 mm3. In the cartilage composition, each expanded tissue piece in the population contacts at least one other expanded tissue piece. The cartilage tissue pieces may comprise for example cartilage tissue obtained from a donor, which may be from a juvenile human donor. The cartilage composition may further comprise a culture medium including at least one additive from a class of agents selected from the group consisting of: chondrocytes, progenitor cells, stem cells, hormones, growth factors and cytokines. In the provided cartilage composition, the expanded cartilage tissue pieces are obtained by a) dividing an initial amount of cartilage tissue into a plurality of cartilage tissue pieces defining a population, each portion having an initial volume of less than 1 mm3, and b) and maintaining the cartilage tissue pieces in a culture medium for a time and under conditions sufficient for each tissue piece to expand so that the average volume of tissue pieces in the population is at least 1 mm3. For the cartilage composition, the step of obtaining the expanded tissue pieces further comprise before step (b), the step of positioning each tissue piece on a culture surface at an inter-piece distance of 1 mm or less. As a result, the present invention also provides use of the cartilage composition as disclosed herein to repair a cartilage defect in a subject in need thereof.
  • In yet another aspect, the present disclosure provides a method for repair of a cartilage defect, including: implanting and fixing into the cartilage defect a cartilage composition including a plurality of expanded cartilage tissue pieces defining a population, wherein each tissue piece in the population was expanded from an initial volume of less than 1 mm3 to an expanded volume such that the population of expanded cartilage tissue pieces has an average expanded volume of at least 1 mm3. In the method, the average volume of expanded cartilage tissue pieces in the population is at least 1.5 mm3. Alternatively, the average volume of expanded cartilage tissue pieces in the population is at least 2.0 mm3. In the population of expanded cartilage tissue pieces, at least a first expanded tissue piece contacts at least a second expanded tissue piece. In one example, each expanded cartilage tissue piece in the population contacts at least one other expanded tissue piece. The cartilage tissue pieces may comprise for example cartilage tissue obtained from a donor, which may be from a juvenile human donor. The cartilage tissue pieces may comprise engineered cartilage tissue may be any of those as described herein. The cartilage composition in the method may further comprise a culture medium including at least one additive from a class of agents selected from the group consisting of: chondrocytes, progenitor cells, stem cells, hormones, growth factors and cytokines.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective, top view of a first exemplary tissue support with enlarged view of tissue anchors in form of small pins projecting from the upper surface of the tissue support.
  • FIG. 2 is a cross-sectional view of a second exemplary tissue support, showing tissue anchors in the form of recessions on the upper surface of the tissue support.
  • FIG. 3 is a cross-sectional view of the first exemplary tissue support of FIG. 1, showing small tissue pieces placed on the pins.
  • FIG. 4 is a cross-sectional view of the second exemplary tissue support of FIG. 2, showing small tissue pieces placed in the recessions.
  • FIG. 5 is a series of photomicrographs showing expansion of calf and human juvenile cartilage explants in culture.
  • FIG. 6 is a series of photomicrographs showing non-uniform expansion of cultured cartilage explants.
  • FIG. 7 is a photomicrograph showing the structural interactions observed between cultured calf cartilage pieces at day 5 of culture (20×), when maintained at an inter-piece distance of 1 mm.
  • FIG. 8 is a photomicrograph showing the structural interactions observed between cultured human juvenile cartilage pieces at day 5 of culture (5×), when maintained at an inter-piece distance of 1 mm.
  • FIG. 9 is a photomicrograph showing results obtained with calf cartilage explants that were cultured with different inter-piece distances, showing structural integration of two neighboring pieces only when they the inter-piece distance was no greater than 1 mm.
  • FIG. 10 is a photomicrograph showing results obtained with calf cartilage explants during an initial culture phase in which inter-piece interactions including simultaneous cell migration into the inter-piece area and production of ECM. Newly formed ECM along with the cells embedded inside can be seen as a bridge between the two neighboring pieces which “glues” the cells together.
  • FIG. 11 is a series of photomicrographs showing the formation of inter-piece interactions of human juvenile cartilage explants. The cells migrated into the inter-piece area and produce ECM simultaneously. The newly formed ECM along, with the embedded cells, can be seen as a bridge between the two pieces which “glues” the cells together. Inter-piece interactions enclosed by the red circle in A (5×) are shown in B (20×). Inter-piece interactions enclosed by the red circles in C (5×) are shown in D and E (20×).
  • FIG. 12 is a pair of photomicrographs of calf cartilage explants showing structural inter-piece interactions over time, which became denser and stringer over time. The newly formed interactions contain both cells and ECM. A: day 24 of culture (20×), B: day 38 of culture (20×).
  • FIG. 13 is a series of photomicrographs of human juvenile cartilage explants showing the inter-piece interactions over time, which became denser and stronger over time. The newly formed interactions contain both cells and ECM. A: day 26 of culture (10×), B: day 64 of culture (10×). C: the newly formed inter-piece interactions on day 64 of culture (20×).
  • FIG. 14 is a pair of photomicrographs of calf cartilage explants showing structural inter-piece interactions over time, which became thicker and wider over time. Inter-piece interactions are highlighted by the red circle. A: day 42 of culture (5×), B: day 120 of culture (5×).
  • FIG. 15 is a series of photomicrographs of histologically stained cultured calf cartilage explants at 10 weeks of culture, in which newly formed inter-piece interaction areas are enclosed by the red circles. A: the two calf cartilage pieces at 10 weeks of culture before histology staining B: and C: Masson's trichrome staining, D: and E: H:-E: staining, F: Alcian blue staining and G: Safranin O Staining C: and E: show the cell migration out of the edges of the original calf cartilage pieces.
  • FIG. 16 is a pair of photomicrographs showing cultured cartilage pieces positioned at an inter-piece distance of greater than 1 mm were mainly surrounded by the migrated cells. A: calf cartilage explants (10×), B: human juvenile cartilage explants (10×).
  • FIG. 17 is a pair of photomicrographs of results after 10 weeks of culture, showing cells that migrated out of human juvenile cartilage explant proliferated and accumulated next to the original tissue pieces, where they piled up as multiple layers and reached approximately the same height of the cartilage pieces. A: 5×, B: 10×.
  • FIG. 18 is a series of photomicrographs showing effects of cartilage harvesting locations: A: trochlea, B: trochlea groove, C: femoral condyle, D: central tibial plateau and E: peripheral tibial plateau. Pictures were taken on day 35 of culture.
  • FIG. 19 is a photomicrograph showing results obtained with calf cartilage explants of different sizes.
  • FIG. 20 is a series of photomicrographs showing migrated cells from calf cartilage explants having different phenotypes, on TC and ULA plates. A: the bottom layers of cell attached to the bottom area of TC plates on day 35 of culture (10×). B: The initial formation of cell cluster from individual cells on ULA plates on day 35 of culture (10×). C: Multiple layers of cells formed on the bottom of TC plates on day 120 of culture. The top layer of cells showed un-stretched round shape (10×). D: More and bigger cell clusters were formed on ULA plates on day 120 of culture, the majority of cells inside the cluster showed round shape (20×).
  • DETAILED DESCRIPTION
  • The present disclosure is based in part on the surprising discovery that small cartilage tissue pieces, when maintained in vitro under culture conditions, will expand and structurally integrate with neighboring tissue pieces when maintained at an inter-piece distance of 1 mm or less than 1 mm. By “inter-piece distance” is meant that distance from an outside surface of one tissue piece to the closest outside surface of a second tissue piece adjacent to the first tissue piece. Exemplary tissue pieces have a volume of less than about 1 mm3, and may be of many possible shapes, e.g., cubes, cylinders, ovoids, and the like, which may be produced according to the method of preparing the pieces from a tissue source. An outside surface of a tissue piece may therefore be substantially linear or arcuate, depending on the shape of the tissue piece. For example, tissue pieces may be substantially cuboid, with substantially linear outer surfaces, and have a volume of less than about 1 mm3, e.g., dimensions of less than approximately 1 mm on each side. It has now been found that two neighboring cartilage pieces when placed no more than 1 mm apart, form new tissue through the activity of cells that migrate from each piece and interact to form a structurally integrated larger piece of tissue over time. In marked and surprising contrast, neighboring such tissue pieces that are placed more than 1 mm apart do not expand and integrate in the same way. Importantly, it has further now been demonstrated that when placed and maintained while in culture as described, cells from the initial tissue pieces will migrate into the area between two cartilage pieces and produce extracellular matrix (ECM) simultaneously. The newly formed ECM, along with cells embedded therein, forms new inter-piece tissue that binds neighboring pieces together. Additionally, more cells migrate over time onto the inter-piece tissue, and cells already embedded inside the ECM also continue to proliferate. As a result, the ECM becomes denser, and the volume of the inter-piece tissue, which consists of multiple layers of ECM and cells embedded therein, increases. The increase in tissue volume is reflected in an increase in height, width and/or length of the inter-piece tissue, which also becomes structurally integrated with the neighboring tissue pieces. Particularly surprising is the finding that the thus newly formed inter-piece tissue exhibits structure that is comparable to that of the original cartilage tissue, based on gross and histological evaluation. The expanded tissue thus provides a new source for a cartilage composition that can be used for cartilage repair.
  • A. DEFINITIONS
  • Section headings as used in this section and the entire disclosure herein are not intended to be limiting. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
  • As used herein, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. For the recitation of numeric ranges herein, each intervening number there between with the same degree of precision is explicitly contemplated. For example, for the range 6-9, the numbers 7 and 8 are contemplated in addition to 6 and 9, and for the range 6.0-7.0, the numbers 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 and 7.0 are explicitly contemplated.
  • As used herein, the term “about” refers to approximately a +/−10% variation from the stated value. It is to be understood that such a variation is always included in any given value provided herein, whether or not it is specifically referred to.
  • As used herein, the term “biocompatible material” or biomaterial refers to a synthetic or natural material that can be used to replace part of a living system or to function when in close contact with living tissue.
  • As used herein, the term “cartilage” refers to an avascular tissue, having chondrocytes encapsulated within an extracellular matrix. As used herein, cartilage tissue may be donor cartilage tissue or engineered cartilage tissue. “Cartilage,” as used herein, encompasses articular cartilage, hyaline cartilage, neocartilage (Adkisson, H. D. et al., Clin. Orthop. 391S: S280-S294, 2001; and U.S. Pat. Nos. 6,235,316 and 6,645,316), devitalized cartilage, auricular cartilage, cartilage including genetically modified chondrocytes, cartilage from an autogenous source, cartilage from an allogenic source, cartilage from a xenogeneic source, juvenile cartilage, or a combination thereof. In some configurations, cartilage can also comprise chondrocytes differentiated from precursor cells such as mesenchymal stem cells.
  • As used herein, the term “cartilage adhesive” refers to molecular species or mixtures of species which promote adhesion of cartilage tissue or chondrocytes of the cartilage tissue to a surface, by acting as a binding agent (e.g., a glue) and/or by promoting adhesion-forming activity of cells. A cartilage adhesive can be used as a binding agent (e.g., a glue) at the interface between cartilage or chondrocytes thereof and a surface.
  • The term “cartilage defect” refers to a structural and/or biological imperfection in cartilage tissue such as but not limited to a break, tear, void or other disintegration of the tissue, which is caused by a disease, injury or condition and which can benefit from cartilage repair, replacement, or augmentation, such as, in non-limiting example, athletic injury, traumatic injury, congenital disorders, osteoarthritis and joint degeneration from aging.
  • As used herein, the term “chondrogenic cell” as used herein refers to chondrogenic progenitor cells (CPCs), the further differentiation of which results in chondrocytes. Chondrogenic cells can come from a variety of sources. Generally, the chondrogenic cells can be isolated from an articular cartilage or a fibrocartilage. Chondrogenic cells from a fibrocartilage can be obtained from costal, nasal, auricular, tracheal, epiglottic, thyroid, arytenoid and cricoid cartilages. Alternatively, cells from fibrocartilage can be obtained from tendon, ligament, meniscus and intervertebral disc. Depending on the context, chondrogenic cells may refer to partially differentiated progenitor cells destined to be chondrocytes or chondrogenic stem cells that are more primitive. The chondrogenic stem cells can be derived from a tissue such as placenta, umbilical cord, bone marrow, skin, muscle, fat, periosteum, and perichondrium.
  • The term “subject” as used herein refers to a mammal, which may be a human or a non-human mammal such as but not limited to a horse, a dog, a cat, a non-human primate such as a monkey or ape, a rabbit, a rat, a mouse, or a pig.
  • The term “trabecular metal,” as used herein, encompasses any biocompatible metal or metal composite having interconnecting pores and at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 85% porosity by volume. Exemplary such metals have pores of about 200 μm-700 μm in diameter, and preferably 400 μm-600 μm in diameter. Descriptions of trabecular metal, as well as various methods of making trabecular metal of various pore sizes are known in the art. An exemplary such material is a tantalum composite sold as Trabecular Metal® by Zimmer, Inc.
  • B. TISSUE SUPPORTS
  • In one aspect, the present disclosure provides a support for preparing a cartilage composition from a plurality of cartilage tissue pieces, the support including a biocompatible material having a surface defining a plurality of tissue anchors separated by a distance sufficient to secure the plurality of tissue pieces to the support at an inter-piece distance of 1 mm or less. Tissue pieces of varying initial volumes may be used. A tissue piece may for example have a starting volume of about 1 mm3, or less than about 1 mm3, or more than about 1 mm3. For example, a population of tissue pieces having an initial average volume of less than 1 mm3, maintained at an inter-portion distance of 1 mm or less, can expand as described herein to attain an average volume of at least 1.5 mm3 or 2.0 mm3 and thereby integrate with surrounding pieces. It should nevertheless be appreciated that if the tissue pieces are cultured under more favorable expansion conditions, for example by the addition of growth factors to the culture system, the tissue pieces may attain a greater volume within a given period of time, and thereby integrate two neighboring pieces that are maintained at a distance of more than 1 mm apart.
  • Similarly, with respect to the initial volume of the tissue pieces, although an exemplary tissue piece size is about 1 mm3, or less than about 1 mm3, the initial tissue size (volume) could be larger than about 1 mm3 and still suitably expand as described herein.
  • Tissue pieces may vary in shape and may be for example substantially spherioid, cuboid, cylindrical, or ovoid. It should be understood that the shape of the tissue pieces will depend in part on the method used to prepare tissue pieces from the donor tissue. A non-limiting exemplary tissue piece is substantially cuboid and has a starting volume less than about 1 mm3, e.g., dimensions of less than approximately 1 mm on each side. The biocompatible material may comprise a solid material, such as for example at least one trabecular metal, or a semi-solid material such as for example a gel.
  • The tissue anchors comprise a plurality of surface features such as pins, barbs, ridges, hooks, posts, recesses and/or apertures in the biocompatible material. The support may have a plurality of cartilage tissue pieces coupled to its surface, wherein each cartilage tissue piece is coupled to a tissue anchor on the support so that the tissue pieces are separated by an inter-piece distance of 1 mm or less. A cartilage adhesive is optionally applied to the surface defining the plurality of tissue anchors. The cartilage adhesive may be applied for example to a plurality of predetermined locations on the surface of tissue anchors, in such manner as to confine the cartilage adhesive to the predetermined locations. Alternatively, the tissue anchors may be provided solely as adhesive spots in predetermined locations on an otherwise featureless surface of the support.
  • Accordingly, the present disclosure encompasses tissue supports for maintaining tissue pieces at an inter-piece distance of 1 mm or less. As shown in FIG. 1 for example, a tissue support 100 is generally made of a biocompatible material 102 having a surface 104 defining multiple tissue anchors 106 for securing tissue pieces to support 100. The tissue anchors may take the form of any of a number of suitable surface projections from surface 104. As shown in FIG. 1, for example, each tissue anchor is a pin 108. Other projecting forms suitable for securing tissue pieces can be used, such as but not limited to barbs, ridges, hooks, or straight or curved posts. Alternatively, the tissue anchors may generally take the form of depressions or recesses 110 in surface 104, as shown in FIG. 2, or they may consist of apertures through biocompatible material 102. Such depressions, recesses or apertures through biocompatible material 102 may for example be configured with a shape and/or dimensions approximately matched to the shape and/or dimensions of the tissue pieces. For example, apertures for receiving substantially spherical tissue pieces may be configured as round holes through biocompatible material 102, having a diameter approximating the average diameter of the tissue pieces. Alternatively, the tissue anchors may consist solely of defined adhesive locations (not shown) on surface 104, wherein the adhesive locations are created by applying a cartilage adhesive to defined locations, e.g., as “dots” or “spots” of adhesive, on surface 104, which is otherwise free of physical anchors such as projecting anchors, or depressions or apertures.
  • The multiple tissue anchors are distributed substantially uniformly across surface 104 in any configuration such that each anchor is positioned at a maximum distance of about 1 mm to about 2 mm from at least one neighboring tissue anchor. The distribution of tissue anchors across surface 104 may be according to any regular or irregular pattern, provided that each anchor is no more than a maximum distance of about 1 mm to about 2 mm from at least one neighboring anchor, so that each tissue piece is able to expand and integrate with at least one neighboring piece. It will be appreciated that any distribution pattern that maximizes packing of the initial tissue pieces across surface 104 within the specified maximum distance, and thus any regular, geometric distribution pattern of the tissue anchors, will be preferred.
  • It should further be appreciated that the tissue anchor dimensions may suitably vary depending on the size and/or density of the tissue piece(s), and on the shape of the anchor. Tissue anchors should be sized and shaped such that the act of applying and securing a tissue piece to an anchor will not obliterate most or all of the tissue piece. For example, a tissue piece having a generally cuboid shape of about 1 mm on a side, or a thinner tissue piece of about 1 mm in length and 1 mm in width, may be anchored to the support surface using an anchor configured as a straight pin, with a largest diameter of about 50-500 microns. Anchors for tissue pieces larger than about 1 mm on a side may be appropriately sized to have a larger diameter or other cross-sectional area.
  • It should further be appreciated that the tissue support shape may be varied to approximate the shape of an anatomical target, such that the tissue generated on the support in vitro will approximate the target anatomical shape. For example, a support may have an arcuate shape such that the resulting tissue is appropriately shaped to be implanted at the acetabulum, head of the femur or other curved anatomic surface. A support may have a generally pyramidal shape for implantation at a talar dome lesion or fracture. Other shapes suitably adapted for other anatomical targets are also contemplated.
  • Each tissue piece is secured to surface 104 by applying, e.g. manually, each piece at its approximate center onto a tissue anchor, as shown in FIG. 3 and FIG. 4. It should therefore be appreciated that with initial tissue particles having approximate dimensions of 1 mm on each side, using tissue anchors that are separated by a distance of about 1 mm will provide an inter-piece distance of about 0.0 mm, e.g., the initial tissue pieces are in contact or very close to contacting neighboring piece(s). Tissue anchors that are separated by a distance of about 2 mm will provide an inter-piece distance of about 1.0 mm, i.e., a distance at which the initial tissue pieces are at or close to the maximum inter-piece distance, according to the findings and methods disclosed herein. Each piece is secured in position on an anchor by piercing, lancing or hooking the piece onto a projecting anchor on surface 104, or by depositing (e.g., by manually pressing) each piece at least partially into an anchor that is a depression, recess or anchor in surface 104. To use a tissue support that has only adhesive locations as anchors, the cartilage adhesive is applied, e.g. by manually “dotting” or “spotting” the cartilage adhesive onto surface 104 in selected locations, applying a population of tissue pieces to surface 104, waiting for a period of time sufficient for a subset of the tissue pieces to bind or adhere to the selected locations, and then removing all unbound or non-adhered tissue pieces, e.g. by washing or rinsing the unbound pieces way.
  • A cartilage adhesive is optionally used to further secure each tissue piece in position on the tissue support, for example by the applying cartilage adhesive to an interface between each tissue piece and a tissue support surface. Depending on the configuration of the tissue support, e.g. the type of anchors being used, a cartilage adhesive may be applied to tissue anchor surfaces, or to inter-anchor regions of the tissue support, or to both. Use of a cartilage adhesive may be desired for example when the support has anchors that do not otherwise secure the tissue pieces to the support through physical means such as piercing or hooking, e.g. depressions or apertures. For avoidance of doubt, cartilage adhesive may be used with any of the anchor forms described herein. A cartilage adhesive may be any biologically compatible composition capable of adhering to both biocompatible material 102 and the tissue pieces. For example, a cartilage adhesive may be, but is not limited to, a fibrin-based adhesive, a collagen-based adhesive or a combination thereof. A cartilage adhesive can comprise for example tissue trans-glutaminase, hyaluronic acid, collagen type I, collagen type II, a chemically cross-linked collagen, fibrin, albumin, gelatin, elastin, silk, demineralized bone matrix, polyethylene oxide, polyethylene glycol, polyvinyl alcohol, polypropylene fumarate or a combination thereof as described elsewhere, or a hydrogel. (See, e.g., Jurgensen et al., J. Bone and Joint Surg. 79A: 185-193, 1997; U.S. Pat. No. 6,893,466 to Trieu; U.S. Pat. No. 6,835,277 to Goldberg et al). In various aspects, a vertebrate-derived component of a cartilage adhesive, such as tissue trans-glutaminase, hyaluronic acid, collagen type I, collagen type II, fibrin, albumin, gelatin, or elastin, or demineralized bone matrix, can be autologous, allogeneic, or xenogeneic to a mammalian recipient of an implant, such as a human patient in need of treatment. Furthermore, a protein or polypeptide component of a cartilage adhesive such as tissue trans-glutaminase, hyaluronic acid, collagen type I, collagen type II, fibrin, albumin, gelatin, or elastin, can be obtained from a naturally-occurring source such as an animal or human donor, or can be produced using molecular biological methods well known to skilled artisans, such as expression of a gene or cDNA encoding the protein in transformed or transfected cells (see, e.g., Sambrook, J., et al., Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001). A cartilage adhesive may also comprise one or more cell-attachment factors, such as collagen I or collagen IV, fibronectin, laminin, or poly-lysine, or another commercially available cell attachment factor, inasmuch as chondrocytes are exposed at a surface of a tissue piece.
  • The cartilage adhesive may be applied for example to a plurality of predetermined locations on the surface of tissue anchors, in such manner as to confine the cartilage adhesive to the predetermined locations. The cartilage adhesive may be applied for example directly to any projecting anchor such as a pin, hook or barb, to complement the physical coupling of each tissue piece to such an anchor. Alternatively, the cartilage adhesive may be applied to the surface of the support surrounding an anchor that is a depression, recess or aperture through the support, or to the depression or recess itself, or to the internal walls of an aperture, or any combination thereof.
  • Biocompatible material 102 may comprise any of a number of materials suitable for use in tissue culture and may comprise a material or materials that enhance cell migration, cell attachment and the formation of extracellular matrix of the cells. Such materials include for example a metal, either a single metal or a combination of metals. Accordingly, titanium, cobalt, chromium, platinum, iridium, niobium or tantalum may be used, or any alloy thereof, and also stainless steel. Any metal may be a trabecular metal. Ceramics may be used, such as but not limited to calcium hydroxylapatite (dense or porous), bioactive glass (e.g., Bioglass®, Ceravital®), bioactive glass-ceramics (A/W glass-ceramic such as Cerabone®, or dense or porous hydroxyapatite), and workable glass-ceramics and phosphates glasses such as Bioverit® I, II and III. Alternatively, suitable biocompatible materials also include biopolymers such as poly-lactic acid (PLA), poly-glycolic acid (PGA), Dacron, collagen, PET (poly-ethylene terephthalate), poly-carbonate, poly-tetrafluoroethylene, and co-polymers of PLA and PGA. Alternatively, the biocompatible material may comprise a semi-solid material such as for example a gel, such as a hydrogel, or a wax. A biocompatible material may include any combination of any of the above, for example but not limited to a layered configuration with one or more core layers of certain material(s) covered by a surface layer of a different material. Alternatively, protein layers may be attached to the surface of any material to promote cell attachment.
  • It will be appreciated that the tissue support, though illustrated in the accompanying drawings as a substantially flat surface with tissue anchors projecting therefrom, may alternatively be configured in any shape such as one specially adapted for implantation into a particular defect, provided only that the shape includes at least one surface capable of bearing multiple tissue anchors. It should be further recognized that certain biocompatible materials suitable as the support material and also having some amount of flexibility, such as gels, waxes and any composite material containing a gel or wax, may be especially suitable for in vitro applications.
  • Methods for manufacturing a tissue support as described will depend on the material(s) selected and desired shape of the support, and are well known in the art. Precision manufacturing services are provided by many contract manufacturing organizations specializing in the manufacture of medical devices which provide manufacturing services including casting, extrusion, molding, and precision machining including milling and micromachining techniques such as microfinishing (deburring and polishing).
  • C. METHODS
  • The present disclosure encompasses methods for preparing a cartilage composition by dividing cartilage tissue into a plurality of tissue pieces, each having an initial volume of less than 1 mm3, and maintaining the tissue pieces in a culture medium for a time and under conditions sufficient for each tissue piece to attain an expanded volume of at least 1 mm3 or more, e.g. at least 1.5 mm3 or at least 2 mm3. The present disclosure also provides a method for repair of a cartilage defect by implanting and fixing into the cartilage defect a cartilage composition including a plurality of expanded cartilage tissue pieces having an average expanded volume of at least 1 mm3, at least 1.5 mm3 or at least 2 mm3.
  • In the methods, sufficient time for each tissue piece to attain an expanded volume of at least 1 mm3 or more is at least about 4 days, and can be for example as long as 14 days. While each piece may not actually attain an expanded volume of at least 1 mm3 or more in the time period, it is contemplated that a minimum time of about 4 days under appropriate culture conditions is sufficient for at least 10%, 20%, 30%, 40%, 50%, 60, 70%, 80%, 90% or 100% of the tissue pieces to attain an expanded volume of at least 1 mm3 or more. It should be understood that due to variation among pieces including differences in the microclimate, not all pieces will expand and integrate with neighboring pieces at the same rate. Longer periods of time will result in more pieces attaining a minimum expanded volume, and also more pieces that attain an expanded volume greater the minimum expanded volume.
  • Tissue culture conditions suitable for expanding and maintaining cartilage tissue as described herein are well known in the art. Generally, tissue including actively dividing cells is grown and maintained at an appropriate temperature which for mammalian cells, is at or about 37° C., and using a gas mixture of 5% CO2. To help accurately control conditions, tissue may be maintained for example in an incubator, in a growth medium. It will be appreciated that the formulation for a suitable growth medium may be varied along several factors: pH, glucose concentration, number and amount of growth factors, and presence of other nutrients. Growth factors derived from a number of sources may be used, including whole animal serum such as bovine calf serum. A suitable growth medium is, in non-limiting example, DMEM/F12 medium supplemented with fetal bovine serum (FBS). Alternatively, a serum-free medium or a chemically defined medium may be used, which may be supplemented with ascorbate and/or glutamine. A suitable such growth medium is, in non-limiting example, HL-1 serum-free medium (Lonza Walkersville, Inc., Walkersville, Md.) supplemented with at least about 2 mM or more of glutamine, and about 50 to about 100 μg/ml ascorbate. A culture medium may include at least one additive from a class of agents selected from the group consisting of: chondrocytes, progenitor cells, stem cells, hormones, growth factors and cytokines, or any composition containing such an additive or additives such as platelet rich plasma (PRP). Progenitor cells and stem cells include for example cartilage progenitor cells or bone marrow cells. Growth factors and cytokines may be any from among the many known such agents, including but not limited to ECGF (Endothelial Cell Growth Factor), VEGF 168, VEGF 145, VEGF 121, aFGF (Fibroblast Growth Factor, acidic), bFGF (Fibroblast Growth Factor, basic), EGF (epidermal growth factor), PDGF (platelet derived growth factor), FGF-10, FGF-4, FGF-5, FGF-6, FGF-8b, FGF-9, IGF (insulin-like growth factor), KGF (Keratinocyte Growth Factor), TGF-β (transforming growth factor β), collagen, hypothemycin, interleukin-8 (IL-8), and IL-13. The hormones may be chosen from hydrocortisone, insulin, triiodothyronine, thyroxine, Retinyl acetate, Activin A, (2-Hydroxypropyl)-β-cyclodextrin, Methyl-β-cyclodextrin, and Hydrocortisone 21-hemisuccinate.
  • The cell culture conditions may include for example maintaining the tissue pieces at an inter-piece distance of 1 mm or less. This may be accomplished for example by securing each tissue piece to a tissue support as described herein. In use, as shown in FIGS. 3 and 4, tissue support 100 has a plurality of cartilage tissue pieces coupled to its surface via the tissue anchors on support 100, such that the tissue pieces are separated by an inter-piece distance of 1 mm or less. It should be understood however that other means for maintaining the inter-piece distance are encompassed by the present disclosure.
  • The methods further encompass methods for repairing a cartilage defect, for example in a subject. The cartilage expansion methods as described herein may be applied for example to methods to prepare a cartilage composition in vitro for subsequent implantation into a subject for repair of a cartilage tissue defect in the subject. Alternatively, the approach can be adapted to methods to generate a cartilage composition in vivo in the subject.
  • A method for repair of a cartilage defect may include for example producing in vitro a cartilage composition on a support, from cartilage pieces each having an initial volume of less than 1 mm3 as described herein, by expanding the initial cartilage pieces in vitro to an expanded volume of at least 1 mm3, followed by removing the resulting cartilage composition from the support, and then implanting and fixing the cartilage composition into the cartilage defect. Alternatively, a method for repair of a cartilage defect may include producing in vitro a cartilage composition on a support as described herein, and then implanting the cartilage composition together with the solid support into the cartilage defect, and closing the surgical opening such that the tissue pieces expand in vivo to an expanded volume of at least 1 mm3 or more. It will be appreciated that the latter alternative favors the use of a tissue support that is either prepared from a flexible material or materials, or is configured in a shape that fits closely with the defect being repaired.
  • Alternatively, a method for preparing a cartilage composition for repair of a cartilage tissue defect may involve a population of tissue pieces, wherein a) an amount of cartilage tissue is divided into a plurality of tissue pieces defining a population, each portion having an initial volume of less than 1 mm3, and b) the tissue pieces are maintained in a culture medium for a time and under conditions sufficient for each tissue piece to expand so that the average volume of tissue pieces in the population is at least 1 mm3. The tissue pieces may be maintained for a time and under conditions sufficient for each tissue piece to expand such that the average volume of tissue pieces in the population is greater than 1 mm3, for example at least 1.5 mm3, or at least 2.0 mm3. This approach may include positioning each tissue piece on a culture surface, such as a tissue support as described herein, at an inter-piece distance of 1 mm or less before the expansion step (b). Each such tissue piece may be secured to such a support by means of an anchor or a cartilage adhesive, both as described herein, or a combination thereof.
  • In any of the methods, the tissue pieces, which may be a population of tissue pieces, may be maintained for a time and under conditions sufficient for at least one, or more, of the tissue pieces to expand and thereby attain an expanded volume that is sufficient for the tissue piece(s) to contact at least one neighboring tissue piece that has also expanded. In an exemplary method, a starting population of tissue pieces is maintained for a time and under conditions sufficient for a simple majority if tissue pieces in the population, or for as many as all tissue pieces in the population, or for any number of tissue pieces in between a simple majority and the entire population, to expand and thereby attain an expanded volume that is sufficient for the tissue piece(s) to contact at least one neighboring tissue.
  • By repair is meant a surgical repair such as an open surgical procedure (arthrotomy) or an arthroscopic procedure by which the in vitro prepared cartilage composition is implanted into the defect, with or without the tissue support. The cartilage composition, or cartilage composition together with the support, may be fixed in the defect using a mechanical fastener such as a staple, screw, pin or the like, or a tissue adhesive such as for example any adhesive described elsewhere herein.
  • In any of the methods, cartilage tissue pieces or pieces may, without limitation, be prepared from donor or engineered cartilage tissue such as neocartilage, or a combination thereof. Source tissue may be allogeneic to, autologous to, and/or xenogeneic to a mammalian recipient such as a human patient. Cartilage tissue pieces may comprise for example, hyaline cartilage or any tissue including chondrocytes having the potential to generate hyaline cartilage, but not necessarily organized into histologically recognizable cartilage. Such tissue includes, for example, articular joint cartilage including knee joint and hip joint cartilage, tracheal cartilage, laryngeal cartilage, costal cartilage, epiphyseal plate cartilage, and any combination thereof. It will be understood that the methods and devices can be utilized to produce cartilage composition of various sources to meet the needs for treating cartilage defects of any origin. Donor cartilage tissue may be obtained from a live or a deceased donor. Donor cartilage tissue may be obtained for example from a juvenile donor, for example a donor less than fifteen years of age, preferably fourteen years of age or younger, and more preferably two years of age or younger. Donor cartilage tissue may be obtained for example from a prenatal or neonatal donor no older than about one (1) week of age. Donor cartilage tissue may be obtained from a cadaver of an individual of juvenile age at time of death.
  • Tissue pieces may be prepared from any donor or engineered source tissue by dividing the tissue into cuboids each having a volume less than 1 mm3, e.g cuboids of approximately 1 mm on each side. Dividing may be accomplished for example using a microcutter as known in the art. Multiple such tissue pieces may then be placed in culture, at an edge-to-edge distance of no more than 1 mm from at least one adjacent tissue piece.
  • Cartilage defects that may be treated with a cartilage composition as described herein encompass any cartilage defect caused by injury or disease including any acute, partial, or full-thickness chondral injury, osteochondral injuries, and defects resulting from degenerative diseases or processes. The cartilage defect can be, for example and without limitation, the result of osteochondritis dissecans (OCD), osteoarthritis, rheumatoid arthritis, or osteonecrosis.
  • D. KITS AND TISSUE CULTURE SYSTEMS
  • Also provided is a kit including a tissue support as described herein, and a first container holding a plurality of the pre-expansion cartilage tissue pieces as also described herein. The kit may be suitably used for investigative or therapeutic purposes to prepare a cartilage composition as described herein from tissue pieces. The kit may further contain, for example, instructions for securing the plurality of cartilage tissue pieces to the tissue anchors on the support. The kit may further comprise a cartilage adhesive, which may be supplied for example in a separate container together with instructions for applying the cartilage adhesive to the surface defining the plurality of tissue anchors on the support. Alternatively, the cartilage adhesive may be applied to the surface defining the plurality of tissue anchors on the support. The cartilage adhesive may be applied for example to a plurality of predetermined locations on the surface of tissue anchors such that the cartilage adhesive is confined to the predetermined locations.
  • A tissue culture system for preparing a cartilage composition for repair of a cartilage tissue defect may comprise a tissue support as described herein, and a plurality of cartilage tissue pieces, each cartilage tissue piece secured to a tissue anchor as also described herein. In the tissue culture system, each cartilage tissue piece has an initial volume of less than 1 mm3, and may reach an expanded volume of at least 1 mm3, at least 1.5 mm3 or at least 2 mm3. The cartilage tissue pieces in the system may comprise cartilage tissue pieces prepared from any donor or engineered source as described herein. The tissue culture medium may further any growth medium as described herein.
  • E. ADAPTATIONS OF THE METHODS OF THE PRESENT DISCLOSURE
  • Various embodiments of the present teachings can be illustrated by the following non-limiting examples. The following examples are illustrative, and are not intended to limit the scope of the claims.
  • Example 1 Integration of Cultured Cartilage Explants
  • Cartilage explants were obtained from calf and human juvenile donor tissue and prepared using a microcutter to a substantially cuboid shape of about 1.5 mm on a side. Four 1.5 mm diameter cartilage pieces were placed on a regular tissue culture plate at varying distances relative to each other: at 0, 0.5, 1.0, 2.0 and 3.0 mm and maintained in an incubator at 37° C., 5% CO2, in a growth medium as follows: all cultures were started with DMEM/F-12/FBS medium and switched to HL-1 serum-free medium after two weeks of culture. DMEM/F-12/FBS medium was prepared by supplementing DMEM/F12 medium with 10% (v/v) fetal bovine serum (FBS, Invitrogen) supplemented with ascorbate and L-glutamine as described above, 10,000 U/ml penicillin G, 10,000 U/ml streptomycin sulphate and 25 μg/ml amphotericin B (Invitrogen). Serum free HL-1 medium was prepared from HL-1 serum-free medium (Lonza Walkersville, Inc., Walkersville, Md.) supplemented with 1:100 diluted HL-1 supplement (Lonza Walkersille, Inc.) supplemented with ascorbate and L-glutamine as described above 10,000 U/ml penicillin G, 10,000 U/ml streptomycin sulphate and 25 μg/ml amphotericin B.
  • Both calf and human juvenile cartilage explants became bigger and thicker over time. On average, a calf cartilage piece with a 1.5 mm diameter and 1 mm thickness increased 0.6 mm to 1 mm in diameter, and 0.5 to 0.8 mm in thickness over eight weeks of culture (FIG. 5). The cultured cartilage explants did not expand uniformly (FIG. 6). At the surface of the explant adjacent to the surface of the culture plate (“bottom surface” of the explant), the explant expanded more rapidly than at the upper surface, resulting in an asymmetric, generally cylindrical shape with a smaller upper surface relative to a bigger bottom surface, resulting in newly formed tissue appearing as a ring-like structure surrounding the original piece. Spatial reorientation of an explant piece in culture resulted in the same effect on the former upper surface reoriented as the bottom surface. An explant piece flipped over following faster expansion of the initial bottom surface, resulted in comparably rapid expansion of the new bottom surface, so that the resulting explant ended up with two “bigger” surfaces on both sides. Spatial reorientation thus may provide a method of controlling/directing the orientation and shape of cartilage explant expansion.
  • Interactions among the cartilage pieces were generated as early as day 5 of calf cartilage culture (FIG. 7) or day 7 of human juvenile cartilage culture (FIG. 8). These tissue cultures demonstrated that two cartilage pieces were able to structurally integrate to each other only when they were in close proximity, 1 mm or less than 1 mm apart. This occurred in one of two ways: (a) the pieces were placed in contact with each other at the beginning, or (b) the pieces were placed no more than 1 mm apart and the newly formed tissue by the migrated cells integrated with both explants to form a larger piece of tissue over time (FIG. 9).
  • Initiation of Inter-Piece Interactions:
  • During cell migration, some cells migrated into the area between two cartilage pieces and produced extracellular matrix (ECM) simultaneously. The newly formed ECM along with the embedded cells generated the new inter-piece interactions which bind, adhere or “glue” these two pieces together (FIGS. 10 and 11). Over time, more and more cells migrated onto the bridge area between these two pieces. In addition, the cells that were already embedded inside the ECM continued to proliferated. As a result, the ECM became denser and the inter-piece interactions became thicker and wider, containing multiple layers of ECM and cells embedded therein (FIGS. 12, 13 and 14), and structurally integrated with the surrounding explanted tissue. The structure of the newly formed inter-piece interaction was found to be similar to the original cartilage tissue, based on the gross and histological observation (FIG. 15). In contrast, those cartilage explant pieces that were placed more than 1 mm apart were unable to integrate together. Instead, they were surrounded by the migrating and proliferating cells (FIG. 16). The cells accumulated next to the cartilage piece, where they piled up as multiple layers and reached almost the same height of the original piece at 10 weeks of culture (FIG. 17).
  • Example 2 Effect of Cartilage Harvesting Location and Implant Size
  • Calf cartilage explants were harvested from five different locations of knee joint: trochlea, trochlea groove, femoral condyle, central tibial plateau and peripheral tibial plateau. The pieces of calf cartilage from different sources were placed according to methods in Example 1. No significant difference was observed on cell migration, cartilage explant expansion and integration among the calf cartilage explants harvested from different locations of knee joint (FIG. 18). Further evaluation was carried out with different sizes of calf cartilage explants. Calf cartilage explants of 1.5 mm, 2 mm, 3 mm and 4 mm in diameter were prepared and cultured according to methods as otherwise described in Example 1. No significant difference was observed on cell migration, cartilage explant expansion and integration among different sizes of calf cartilage explants (FIG. 19).
  • While there was no significant difference between ULA (ultra low attachment) and TC (regular tissue culture) plates on cell migration, cartilage explant growth and integration, significant differences were observed between these two plates on the phenotype of the migrated cells: on TC plates, the migrated cells proliferated and attached to the bottom areas of the plates. The over confluent cells formed multiple layers. The cells on the bottom layers became stretched showing fibroblast-like phenotype, whereas the cells on the top layer still maintained their original round shape showing the typical phenotype of chondrocytes. On ULA plates, instead of attaching to the bottom of the plates, the migrated cells attached to each other and formed cell clusters. Even though some cells on the bottom of the clusters became stretched and attached to the plates, the majority of the cells in the cluster still maintain their original round shapes (FIG. 20).
  • One skilled in the art would readily appreciate that the methods described in the present disclosure are well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The methods, procedures, treatments, described herein are merely representative and exemplary, and are not intended as limitations on the scope of the invention. It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the present disclosure disclosed herein without departing from the scope and spirit of the invention.
  • All patents and publications mentioned in the specification are indicative of the levels of those skilled in the art to which the present disclosure pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.

Claims (18)

1-20. (canceled)
21. A method of making expanded cartilage tissue, the method comprising:
a) placing a plurality of cartilage tissue pieces on a solid support at an inter-piece distance of 1 mm or less, wherein each cartilage tissue piece has an initial volume of less than 1 mm3; and
b) culturing the plurality of cartilage tissue pieces on the solid support for a time and under conditions sufficient for each cartilage tissue piece to attain an expanded volume of at least 1 mm3.
22. The method of claim 21, wherein the average volume of expanded cartilage tissue pieces is at least 1.5 mm3.
23. The method of claim 21, wherein the average volume of expanded cartilage tissue pieces is at least 2.0 mm3.
24. The method of claim 21, wherein each expanded tissue piece contacts at least one other expanded tissue piece.
25. The method of claim 21, wherein the cartilage tissue pieces comprise donor cartilage tissue.
26. The method of claim 25, wherein the donor cartilage tissue is allogeneic to a mammalian recipient of the plurality of expanded cartilage tissue pieces.
27. The method of claim 21, wherein the cartilage tissue pieces comprise engineered cartilage tissue.
28. The method of claim 21, wherein the cartilage tissue pieces comprise human juvenile cartilage tissue.
29. The method of claim 21, wherein the culturing comprises culturing in a culture medium.
30. The method of claim 29, wherein the culture medium is serum-free.
31. The method of claim 29, wherein the culture medium comprises at least one additive.
32. The method of claim 31, wherein the at least one additive comprises cells.
33. The method of claim 32, wherein the cells are at least one of chondrocytes, progenitor cells, or stem cells.
34. The method of claim 31, wherein the at least one additive comprises at least one bioactive agent.
35. The method of claim 34, wherein the at least one bioactive agent is at least one of a hormone, a growth factor or a cytokine.
36. A method of making expanded cartilage tissue, the method comprising culturing a plurality of cartilage tissue pieces on a solid support, wherein each cartilage tissue piece has an initial volume of less than 1 mm3, for a time and under conditions sufficient for each tissue piece to attain an expanded volume of at least 1 mm3.
37. The expanded cartilage tissue made by the method of claim 21.
US13/799,452 2012-12-21 2013-03-13 Supports and methods for promoting integration of cartilage tissue explants Abandoned US20140178343A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201261740787P true 2012-12-21 2012-12-21
US13/799,452 US20140178343A1 (en) 2012-12-21 2013-03-13 Supports and methods for promoting integration of cartilage tissue explants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/799,452 US20140178343A1 (en) 2012-12-21 2013-03-13 Supports and methods for promoting integration of cartilage tissue explants
US14/299,314 US10167447B2 (en) 2012-12-21 2014-06-09 Supports and methods for promoting integration of cartilage tissue explants

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/299,314 Division US10167447B2 (en) 2012-12-21 2014-06-09 Supports and methods for promoting integration of cartilage tissue explants

Publications (1)

Publication Number Publication Date
US20140178343A1 true US20140178343A1 (en) 2014-06-26

Family

ID=50974896

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/799,452 Abandoned US20140178343A1 (en) 2012-12-21 2013-03-13 Supports and methods for promoting integration of cartilage tissue explants
US14/299,314 Active 2033-05-31 US10167447B2 (en) 2012-12-21 2014-06-09 Supports and methods for promoting integration of cartilage tissue explants

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/299,314 Active 2033-05-31 US10167447B2 (en) 2012-12-21 2014-06-09 Supports and methods for promoting integration of cartilage tissue explants

Country Status (1)

Country Link
US (2) US20140178343A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9138318B2 (en) 2007-04-12 2015-09-22 Zimmer, Inc. Apparatus for forming an implant
US10167447B2 (en) 2012-12-21 2019-01-01 Zimmer, Inc. Supports and methods for promoting integration of cartilage tissue explants

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050032015A1 (en) * 2003-08-07 2005-02-10 Mcsurdy David W. System and method for palatal expansion
US20070184550A1 (en) * 2005-08-02 2007-08-09 Satoshi Miyauchi Artificial cartilage tissue and production method thereof

Family Cites Families (503)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1347622A (en) 1919-03-29 1920-07-27 Arthur E Deininger Vaccine-injector
US2533004A (en) 1943-10-27 1950-12-05 John D Ferry Fibrin clots and methods for preparing the same
US2621145A (en) 1949-08-17 1952-12-09 Machteld E Sano Bone mat compositions
US3302289A (en) 1963-10-21 1967-02-07 Lawrence A Spaulding Impression and bite tray for dentistry
US3476855A (en) 1965-02-26 1969-11-04 Leslie L Balassa Sterilizing and enhancing activity of a finely divided cartilage powder
US3478146A (en) 1965-02-26 1969-11-11 Leslie L Balassa Wound-healing cartilage powder extracting process
US3400199A (en) 1965-02-26 1968-09-03 Leslie L. Balassa Wound-healing cartilage powder
US3474146A (en) 1967-01-03 1969-10-21 Stauffer Chemical Co Fluorine-containing ethyl disulfides
US3772432A (en) 1971-01-11 1973-11-13 Lescarden Ltd Cartilage compositions for dental use
US3966908A (en) 1973-11-29 1976-06-29 Lescarden Ltd. Method of treating degenerative joint afflictions
GB2023314B (en) 1978-06-15 1982-10-06 Ibm Digital data processing systems
US4350682A (en) 1979-05-11 1982-09-21 Lescarden Ltd. Cartilage extraction processes and products
US4440680A (en) 1980-09-24 1984-04-03 Seton Company Macromolecular biologically active collagen articles
DE3105624A1 (en) 1981-02-16 1982-09-02 Hormon Chemie Muenchen Material for sealing and healing of wounds
US4466435A (en) 1981-09-04 1984-08-21 Murray William M Bone cement nozzle and method
US4479271A (en) 1981-10-26 1984-10-30 Zimmer, Inc. Prosthetic device adapted to promote bone/tissue ingrowth
US5656587A (en) 1982-09-24 1997-08-12 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Promotion of cell proliferation by use of transforming growth factor beta (TGF-β)
US5002582A (en) 1982-09-29 1991-03-26 Bio-Metric Systems, Inc. Preparation of polymeric surfaces via covalently attaching polymers
DE3247387C2 (en) 1982-12-22 1984-11-22 Rolf Prof. Dr.Med. 7400 Tuebingen De Hettich
US4566138A (en) 1983-03-08 1986-01-28 Zimmer, Inc. Prosthetic device with spacers
US4911720A (en) 1983-03-10 1990-03-27 Collier John P Particular surface replacement prosthesis
IL68218A (en) 1983-03-23 1985-12-31 Univ Ramot Compositions for cartilage repair comprising embryonal chondrocytes
US4522096A (en) 1983-06-16 1985-06-11 R. J. Reynolds Tobacco Company Dicing apparatus for sheet material
GB8318483D0 (en) 1983-07-08 1983-08-10 Zimmer Deloro Surgical Ltd Skeletal implants
EP0133934A3 (en) 1983-07-29 1985-09-18 NIKEPHARMA S.r.l. Pharmacologically active 1,3,4-thiadiazol-(3,2-a)-thieno-(2,3-d)-pyrimidin-5-(h)one derivatives
JPH0341025B2 (en) 1983-08-09 1991-06-20
US4641651A (en) 1983-09-22 1987-02-10 Card George W Cartilage punch and modified prosthesis in tympanoplasty
JPS619076B2 (en) 1983-10-03 1986-03-19 Yoshizumi Asakura
AT389815B (en) 1984-03-09 1990-02-12 Immuno Ag A method of inactivating vermehrungsfaehigen filterable pathogens in blood products
US4609551A (en) 1984-03-20 1986-09-02 Arnold Caplan Process of and material for stimulating growth of cartilage and bony tissue at anatomical sites
GB8413319D0 (en) 1984-05-24 1984-06-27 Oliver Roy Frederick Biological material
US4863475A (en) 1984-08-31 1989-09-05 Zimmer, Inc. Implant and method for production thereof
US4627879A (en) 1984-09-07 1986-12-09 The Trustees Of Columbia University In The City Of New York Fibrin adhesive prepared as a concentrate from single donor fresh frozen plasma
US4928603A (en) 1984-09-07 1990-05-29 The Trustees Of Columbia University In The City Of New York Method of preparing a cryoprecipitated suspension and use thereof
US4678470A (en) 1985-05-29 1987-07-07 American Hospital Supply Corporation Bone-grafting material
US4660755A (en) 1985-09-09 1987-04-28 Zimmer, Inc. Method for constructing a surgical implant
US4656137A (en) 1985-09-12 1987-04-07 Lescarden Inc Method of processing animal cartilage
DE3686239D1 (en) 1985-11-14 1992-09-03 Ici Plc Faserverstaerkter composite material with metal matrix.
US5902741A (en) 1986-04-18 1999-05-11 Advanced Tissue Sciences, Inc. Three-dimensional cartilage cultures
US4714457A (en) 1986-09-15 1987-12-22 Robert Alterbaum Method and apparatus for use in preparation of fibrinogen from a patient's blood
US5254471A (en) 1986-10-06 1993-10-19 Toray Industries, Inc. Carrier for cell culture
US5041138A (en) 1986-11-20 1991-08-20 Massachusetts Institute Of Technology Neomorphogenesis of cartilage in vivo from cell culture
GB8708009D0 (en) 1987-04-03 1987-05-07 Clayton Found Res Injectable soft tissue augmentation materials
US5032508A (en) 1988-09-08 1991-07-16 Marrow-Tech, Inc. Three-dimensional cell and tissue culture system
US4963489A (en) 1987-04-14 1990-10-16 Marrow-Tech, Inc. Three-dimensional cell and tissue culture system
US4846835A (en) 1987-06-15 1989-07-11 Grande Daniel A Technique for healing lesions in cartilage
US4952403A (en) 1987-06-19 1990-08-28 President And Fellows Of Harvard College Implants for the promotion of healing of meniscal tissue
US5306311A (en) 1987-07-20 1994-04-26 Regen Corporation Prosthetic articular cartilage
US5681353A (en) 1987-07-20 1997-10-28 Regen Biologics, Inc. Meniscal augmentation device
US5018285A (en) 1987-08-24 1991-05-28 Zimmer, Inc. Method of constructing prosthetic implant with wrapped porous surface
US5013324A (en) 1987-08-24 1991-05-07 Zimmer, Inc. Prosthetic implant with wrapped porous surface
US4851354A (en) 1987-12-07 1989-07-25 Trustees Of The University Of Pennsylvania Apparatus for mechanically stimulating cells
US5139527A (en) 1987-12-17 1992-08-18 Immuno Aktiengesellschaft Biologic absorbable implant material for filling and closing soft tissue cavities and method of its preparation
US5840713A (en) 1995-04-03 1998-11-24 Weisz; Paul B. Therapy for tissue membrane insufficiency
GB8803697D0 (en) 1988-02-17 1988-03-16 Deltanine Research Ltd Clinical developments using amniotic membrane cells
US5219363A (en) 1988-03-22 1993-06-15 Zimmer, Inc. Bone implant
US4904259A (en) 1988-04-29 1990-02-27 Samuel Itay Compositions and methods for repair of cartilage and bone
US5053050A (en) 1988-04-29 1991-10-01 Samuel Itay Compositions for repair of cartilage and bone
ES2064439T3 (en) 1988-05-02 1995-02-01 Project Hear Surgical adhesive material.
US5290552A (en) 1988-05-02 1994-03-01 Matrix Pharmaceutical, Inc./Project Hear Surgical adhesive material
US4950483A (en) 1988-06-30 1990-08-21 Collagen Corporation Collagen wound healing matrices and process for their production
US5080674A (en) 1988-09-08 1992-01-14 Zimmer, Inc. Attachment mechanism for securing an additional portion to an implant
US5565519A (en) 1988-11-21 1996-10-15 Collagen Corporation Clear, chemically modified collagen-synthetic polymer conjugates for ophthalmic applications
US5475052A (en) 1988-11-21 1995-12-12 Collagen Corporation Collagen-synthetic polymer matrices prepared using a multiple step reaction
ES2044211T3 (en) 1989-03-23 1994-01-01 Straumann Inst Ag metal implants.
US5130418A (en) 1989-05-02 1992-07-14 California Biotechnology Inc. Method to stabilize basic fibroblast growth factor
US5226877A (en) 1989-06-23 1993-07-13 Epstein Gordon H Method and apparatus for preparing fibrinogen adhesive from whole blood
CA2020654A1 (en) 1989-07-07 1991-01-08 Yohko Akiyama Stabilized fgf composition and production thereof
JPH05501814A (en) 1989-08-10 1993-04-08
US5290558A (en) 1989-09-21 1994-03-01 Osteotech, Inc. Flowable demineralized bone powder composition and its use in bone repair
GB8927546D0 (en) 1989-12-06 1990-02-07 Ciba Geigy Process for the production of biologically active tgf-beta
US4997445A (en) 1989-12-08 1991-03-05 Zimmer, Inc. Metal-backed prosthetic implant with enhanced bonding of polyethylene portion to metal base
US5067964A (en) 1989-12-13 1991-11-26 Stryker Corporation Articular surface repair
US4997444A (en) 1989-12-28 1991-03-05 Zimmer, Inc. Implant having varying modulus of elasticity
US5030215A (en) 1990-01-03 1991-07-09 Cryolife, Inc. Preparation of fibrinogen/factor XIII precipitate
US5514153A (en) 1990-03-02 1996-05-07 General Surgical Innovations, Inc. Method of dissecting tissue layers
US5345927A (en) 1990-03-02 1994-09-13 Bonutti Peter M Arthroscopic retractors
US5217954A (en) 1990-04-04 1993-06-08 Scios Nova Inc. Formulations for stabilizing fibroblast growth factor
US5593425A (en) 1990-06-28 1997-01-14 Peter M. Bonutti Surgical devices assembled using heat bonable materials
US5269785A (en) 1990-06-28 1993-12-14 Bonutti Peter M Apparatus and method for tissue removal
US6464713B2 (en) 1990-06-28 2002-10-15 Peter M. Bonutti Body tissue fastening
US6990982B1 (en) 1990-06-28 2006-01-31 Bonutti Ip, Llc Method for harvesting and processing cells from tissue fragments
US5069881A (en) 1990-07-10 1991-12-03 Mobay Corporation Device and method for applying adhesives
US5067963A (en) 1990-08-21 1991-11-26 Washington University Method of making live autogenous skeletal replacement parts
US6919067B2 (en) 1991-09-13 2005-07-19 Syngenix Limited Compositions comprising a tissue glue and therapeutic agents
US5948384A (en) 1990-09-14 1999-09-07 Syngenix Limited Particulate agents
US5410016A (en) 1990-10-15 1995-04-25 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
CA2041430C (en) 1990-10-30 2002-11-26 Jack Eldon Parr Orthopaedic implant device
US5226914A (en) 1990-11-16 1993-07-13 Caplan Arnold I Method for treating connective tissue disorders
US5811094A (en) 1990-11-16 1998-09-22 Osiris Therapeutics, Inc. Connective tissue regeneration using human mesenchymal stem cell preparations
USRE39321E1 (en) 1990-11-27 2006-10-03 The American National Red Cross Supplemented and unsupplemented tissue sealants, methods of their production and use
JP3604688B2 (en) 1990-11-27 2004-12-22 アメリカ合衆国The United States of America Tissue sealant promotes healing of accelerated wound and growth factor-containing compositions
US6559119B1 (en) 1990-11-27 2003-05-06 Loyola University Of Chicago Method of preparing a tissue sealant-treated biomedical material
CA2071912C (en) 1990-11-30 2002-10-15 Hanne Bentz Use of a bone morphogenetic protein in synergistic combination with tgf-beta for bone repair
CA2055966C (en) 1990-12-19 1995-08-01 Oresta Natalia Fedun Cell culture insert
US5198308A (en) 1990-12-21 1993-03-30 Zimmer, Inc. Titanium porous surface bonded to a cobalt-based alloy substrate in an orthopaedic implant device
US5853746A (en) 1991-01-31 1998-12-29 Robert Francis Shaw Methods and compositions for the treatment and repair of defects or lesions in cartilage or bone using functional barrier
US5206023A (en) 1991-01-31 1993-04-27 Robert F. Shaw Method and compositions for the treatment and repair of defects or lesions in cartilage
AT402891B (en) 1991-06-20 1997-09-25 Immuno Ag A process for the preparation of an inactivated blood product
US5356629A (en) 1991-07-12 1994-10-18 United States Surgical Corporation Composition for effecting bone repair
US6773458B1 (en) 1991-07-24 2004-08-10 Baxter International Inc. Angiogenic tissue implant systems and methods
US5329846A (en) 1991-08-12 1994-07-19 Bonutti Peter M Tissue press and system
US5092887A (en) 1991-08-12 1992-03-03 El Gendler Artificial ligament produced from demineralized bone for the replacement and augmentation of ligaments, tendons and other fibrous connective tissue
US6503277B2 (en) 1991-08-12 2003-01-07 Peter M. Bonutti Method of transplanting human body tissue
US5270300A (en) 1991-09-06 1993-12-14 Robert Francis Shaw Methods and compositions for the treatment and repair of defects or lesions in cartilage or bone
US5281422A (en) 1991-09-24 1994-01-25 Purdue Research Foundation Graft for promoting autogenous tissue growth
CA2121040A1 (en) 1991-10-30 1993-05-13 James E. Stein Prevascularized polymeric implants for organ transplantation
US5482929A (en) 1991-12-26 1996-01-09 Kaken Pharmaceutical Co., Ltd. Composition of stabilized fibroblast growth factor
US6818008B1 (en) 1992-01-07 2004-11-16 Cch Associates, Inc. Percutaneous puncture sealing method
US5314476A (en) 1992-02-04 1994-05-24 Osteotech, Inc. Demineralized bone particles and flowable osteogenic composition containing same
US5876452A (en) 1992-02-14 1999-03-02 Board Of Regents, University Of Texas System Biodegradable implant
US5236457A (en) 1992-02-27 1993-08-17 Zimmer, Inc. Method of making an implant having a metallic porous surface
US5749968A (en) 1993-03-01 1998-05-12 Focal, Inc. Device for priming for improved adherence of gels to substrates
US5282861A (en) 1992-03-11 1994-02-01 Ultramet Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
US5326357A (en) 1992-03-18 1994-07-05 Mount Sinai Hospital Corporation Reconstituted cartridge tissue
DK83092D0 (en) 1992-06-24 1992-06-24 Unes As A process for recovering thrombin
US5312417A (en) 1992-07-29 1994-05-17 Wilk Peter J Laparoscopic cannula assembly and associated method
CN1091315A (en) 1992-10-08 1994-08-31 E·R·斯奎布父子公司 Fibrin sealant compositions and methods for utilizing same
US5275826A (en) 1992-11-13 1994-01-04 Purdue Research Foundation Fluidized intestinal submucosa and its use as an injectable tissue graft
US5387243A (en) 1992-11-23 1995-02-07 Zimmer, Inc. Method for converting a cementable implant to a press fit implant
US5443454A (en) 1992-12-09 1995-08-22 Terumo Kabushiki Kaisha Catheter for embolectomy
US5723011A (en) 1992-12-21 1998-03-03 Zimmer, Inc. Prosthetic implant and method of making same
US5330974A (en) 1993-03-01 1994-07-19 Fibratek, Inc. Therapeutic fibrinogen compositions
DE4306661C2 (en) 1993-03-03 1995-04-20 Michael Dipl Biol Sittinger A method for manufacturing an implant from cell cultures
US5443510A (en) 1993-04-06 1995-08-22 Zimmer, Inc. Porous coated implant and method of making same
US5709854A (en) 1993-04-30 1998-01-20 Massachusetts Institute Of Technology Tissue formation by injecting a cell-polymeric solution that gels in vivo
EP2025353A2 (en) 1993-04-30 2009-02-18 Massachusetts Institute of Technology Injectable polysaccharide-cell compositions
DE69531869D1 (en) 1994-07-21 2003-11-06 Sirus Pharmaceuticals Ltd A composition comprising a tissue adhesive and an immobilized therapeutic active substance
US5549904A (en) 1993-06-03 1996-08-27 Orthogene, Inc. Biological adhesive composition and method of promoting adhesion between tissue surfaces
US5795780A (en) 1993-06-23 1998-08-18 Bristol-Myers Squibb Company Method of use of autologous thrombin blood fraction in a cell culture with keratinocytes
US5405742A (en) 1993-07-16 1995-04-11 Cyromedical Sciences, Inc. Solutions for tissue preservation and bloodless surgery and methods using same
EP0641007A3 (en) 1993-08-31 1995-06-21 Samsung Display Devices Co Ltd Direct-heating-type dispenser cathode structure.
US5890898A (en) 1993-11-08 1999-04-06 Wada; Eric Minoru Infection control guard for dental air-water syringes
DE4338129A1 (en) 1993-11-08 1995-05-11 Zimmer Ag A process for the polymer melt filtration
US6312668B2 (en) 1993-12-06 2001-11-06 3M Innovative Properties Company Optionally crosslinkable coatings, compositions and methods of use
US5888491A (en) 1993-12-06 1999-03-30 Minnesota Mining And Manufacturing Company Optionally crosslinkable coatings, compositions and methods of use
IL112580D0 (en) 1994-02-24 1995-05-26 Res Dev Foundation Amniotic membrane graft of wrap to prevent adhesions or bleeding of internal organs
ES2219660T3 (en) 1994-03-14 2004-12-01 Cryolife, Inc Methods of preparing tissue for implantation.
US5461953A (en) 1994-03-25 1995-10-31 Mccormick; James B. Multi-dimension microtome sectioning device
US5504300A (en) 1994-04-18 1996-04-02 Zimmer, Inc. Orthopaedic implant and method of making same
US5618925A (en) 1994-04-28 1997-04-08 Les Laboratories Aeterna Inc. Extracts of shark cartilage having an anti-angiogenic activity and an effect on tumor regression; process of making thereof
US6025334A (en) 1994-04-28 2000-02-15 Les Laboratoires Aeterna Inc. Extracts of shark cartilage having anti-collagenolytic, anti-inflammatory, anti-angiogenic and anti-tumoral activities; process of making, methods of using and compositions thereof
US5723331A (en) 1994-05-05 1998-03-03 Genzyme Corporation Methods and compositions for the repair of articular cartilage defects in mammals
US5556429A (en) 1994-05-06 1996-09-17 Advanced Bio Surfaces, Inc. Joint resurfacing system
US6140452A (en) 1994-05-06 2000-10-31 Advanced Bio Surfaces, Inc. Biomaterial for in situ tissue repair
US5888220A (en) 1994-05-06 1999-03-30 Advanced Bio Surfaces, Inc. Articulating joint repair
US5906827A (en) 1994-06-03 1999-05-25 Creative Biomolecules, Inc. Matrix for the manufacture of autogenous replacement body parts
US5989888A (en) 1996-01-24 1999-11-23 Roche Diagnostics Corporation Purified mixture of collagenase I, collagenase II and two other proteases
EP0766733A4 (en) 1994-06-24 1998-06-10 Boehringer Mannheim Corp A purified mixture of collagenases and two other proteases obtained from clostridium histolyticum
AU3145795A (en) 1994-07-26 1996-02-22 Children's Medical Center Corporation Fibrin-cell suspension for construction of new tissue
US5516532A (en) 1994-08-05 1996-05-14 Children's Medical Center Corporation Injectable non-immunogenic cartilage and bone preparation
US5769899A (en) 1994-08-12 1998-06-23 Matrix Biotechnologies, Inc. Cartilage repair unit
CH689725A5 (en) 1994-09-08 1999-09-30 Franz Dr Sutter Condyle prosthesis.
US5496375A (en) 1994-09-14 1996-03-05 Zimmer, Inc. Prosthetic implant with circumferential porous pad having interlocking tabs
US5824093A (en) 1994-10-17 1998-10-20 Raymedica, Inc. Prosthetic spinal disc nucleus
US5654166A (en) 1994-11-09 1997-08-05 Kurth; Gerhard P. Process of preparing hormone-free bovine cartilage for dosage form
US6110212A (en) 1994-11-15 2000-08-29 Kenton W. Gregory Elastin and elastin-based materials
US5585007A (en) 1994-12-07 1996-12-17 Plasmaseal Corporation Plasma concentrate and tissue sealant methods and apparatuses for making concentrated plasma and/or tissue sealant
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
DE4445891A1 (en) 1994-12-22 1996-06-27 Boehringer Mannheim Gmbh Recombinant proteinase from Clostridium histolyticum and their use for the isolation of cells and cell
US6965014B1 (en) 1996-01-16 2005-11-15 Baxter International Inc. Fibrin material and method for producing and using the same
US6599515B1 (en) 1995-01-16 2003-07-29 Baxter International Inc. Fibrin porous structure
US5736396A (en) 1995-01-24 1998-04-07 Case Western Reserve University Lineage-directed induction of human mesenchymal stem cell differentiation
DE69609595D1 (en) 1995-01-27 2000-09-07 Coloplast A S Humlebaek Wound dressing with a three-dimensional part and process for its manufacture
US6080194A (en) 1995-02-10 2000-06-27 The Hospital For Joint Disease Orthopaedic Institute Multi-stage collagen-based template or implant for use in the repair of cartilage lesions
US6485723B1 (en) 1995-02-10 2002-11-26 Purdue Research Foundation Enhanced submucosal tissue graft constructs
US5695998A (en) 1995-02-10 1997-12-09 Purdue Research Foundation Submucosa as a growth substrate for islet cells
US5713374A (en) 1995-02-10 1998-02-03 The Hospital For Joint Diseases Orthopaedic Institute Fixation method for the attachment of wound repair materials to cartilage defects
US5879398A (en) 1995-02-14 1999-03-09 Zimmer, Inc. Acetabular cup
US20050186673A1 (en) 1995-02-22 2005-08-25 Ed. Geistlich Soehne Ag Fuer Chemistrie Industrie Collagen carrier of therapeutic genetic material, and method
US5782835A (en) 1995-03-07 1998-07-21 Innovasive Devices, Inc. Apparatus and methods for articular cartilage defect repair
US5723010A (en) 1995-03-31 1998-03-03 Toyo Boseki Kabushiki Kaisha Medical device and method for producing the same
US5643192A (en) 1995-04-06 1997-07-01 Hamilton Civic Hospitals Research Development, Inc. Autologous fibrin glue and methods for its preparation and use
US5554389A (en) 1995-04-07 1996-09-10 Purdue Research Foundation Urinary bladder submucosa derived tissue graft
US5714371A (en) 1995-05-12 1998-02-03 Schering Corporation Method for refolding insoluble aggregates of hepatitis C virus protease
US5902785A (en) 1995-06-06 1999-05-11 Genetics Institute, Inc. Cartilage induction by bone morphogenetic proteins
US5655546A (en) 1995-06-07 1997-08-12 Halpern; Alan A. Method for cartilage repair
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US5674292A (en) 1995-06-07 1997-10-07 Stryker Corporation Terminally sterilized osteogenic devices and preparation thereof
JP4246795B2 (en) 1995-07-25 2009-04-02 ノバルティス アクチエンゲゼルシャフト Crystal of β-type transforming growth factor
US5535810A (en) 1995-07-28 1996-07-16 Zimmer, Inc. Cast orthopaedic implant and method of making same
US5944755A (en) 1995-09-15 1999-08-31 Crosscart, Inc. Articular cartilage xenografts
US5782915A (en) 1995-09-15 1998-07-21 Stone; Kevin R. Articular cartilage heterografts
US6833408B2 (en) 1995-12-18 2004-12-21 Cohesion Technologies, Inc. Methods for tissue repair using adhesive materials
US6132674A (en) 1995-10-12 2000-10-17 Bristol-Myers Squibb Company Method of making an orthopaedic implant having a porous surface
US5734959A (en) 1995-10-12 1998-03-31 Zimmer, Inc. Method of making an orthopaedic implant having a porous surface using an organic binder
DE69631490D1 (en) 1995-11-09 2004-03-11 Univ Massachusetts Boston Restoration of the tissue surface with compositions of hydrogel-cell
PT876165E (en) 1995-12-18 2006-10-31 Angiotech Biomaterials Corp Crosslinked polymer compositions and processes for their use
US5639280A (en) 1996-02-02 1997-06-17 Zimmer, Inc. Constraining ring for a hip cup
US5842477A (en) 1996-02-21 1998-12-01 Advanced Tissue Sciences, Inc. Method for repairing cartilage
US6087553A (en) 1996-02-26 2000-07-11 Implex Corporation Implantable metallic open-celled lattice/polyethylene composite material and devices
US5755791A (en) 1996-04-05 1998-05-26 Purdue Research Foundation Perforated submucosal tissue graft constructs
JP2000509307A (en) 1996-04-30 2000-07-25 メドトロニック,インコーポレイテッド Manufacturing method of autologous fibrin sealant
WO2000062828A1 (en) 1996-04-30 2000-10-26 Medtronic, Inc. Autologous fibrin sealant and method for making the same
DE19617369A1 (en) 1996-04-30 1997-11-06 Immuno Ag Storage-stable fibrinogen preparations
EP1420833B1 (en) 2001-04-09 2010-06-09 Arteriocyte Medical Systems, Inc. System for the manufacturing of a gel made of autologous platelets
US6632648B1 (en) 1996-05-14 2003-10-14 Elan Drug Delivery Limited Methods of terminal sterilization of fibrinogen
CA2252860C (en) 1996-05-28 2011-03-22 1218122 Ontario Inc. Resorbable implant biomaterial made of condensed calcium phosphate particles
WO1997046665A1 (en) 1996-06-04 1997-12-11 Sulzer Orthopedics Ltd. Method for making cartilage and implants
WO1998000170A1 (en) 1996-07-01 1998-01-08 Universiteit Utrecht Hydrolysable hydrogels for controlled release
AU730749B2 (en) 1996-07-25 2001-03-15 Genzyme Corporation Chondrocyte media formulations and culture procedures
JP3492857B2 (en) 1996-07-30 2004-02-03 京セラ株式会社 Wear resistance of the polyvinyl alcohol hydrogel improved method
US6666892B2 (en) 1996-08-23 2003-12-23 Cook Biotech Incorporated Multi-formed collagenous biomaterial medical device
US6120514A (en) 1996-08-30 2000-09-19 Vts Holdings, Llc Method and kit for autologous transplantation
US5989269A (en) 1996-08-30 1999-11-23 Vts Holdings L.L.C. Method, instruments and kit for autologous transplantation
US5827217A (en) 1996-09-04 1998-10-27 Silver; Frederick H. Process and apparatus for harvesting tissue for processing tissue and process and apparatus for re-injecting processed tissue
US5964805A (en) 1997-02-12 1999-10-12 Stone; Kevin R. Method and paste for articular cartilage transplantation
US5921987A (en) 1996-09-13 1999-07-13 Depuy Orthopaedic Technology, Inc. Articular cartilage transplant instrument set
IT1284550B1 (en) 1996-09-18 1998-05-21 Flavio Tarantino A process for the preparation of autologous fibrin glue for surgical use
NL1004276C2 (en) 1996-10-15 1998-04-20 Willem Marie Ysebaert Methods for the production of skin islets, for moving skin or skin islets, for spreading skin islets and its application to a burn, as well as a container, cutting frame, cutting table, counter-carrier, clamping member, membrane, transport member and the distribution member to be used for such processes.
US5919702A (en) 1996-10-23 1999-07-06 Advanced Tissue Science, Inc. Production of cartilage tissue using cells isolated from Wharton's jelly
WO1998020939A2 (en) 1996-11-15 1998-05-22 Advanced Bio Surfaces, Inc. Biomaterial system for in situ tissue repair
DE59711812D1 (en) 1996-11-19 2004-09-02 Roche Diagnostics Gmbh Recombinant collagenase clostridium histolyticum type i made and its use for the isolation of cells and cell associations
US5928945A (en) 1996-11-20 1999-07-27 Advanced Tissue Sciences, Inc. Application of shear flow stress to chondrocytes or chondrocyte stem cells to produce cartilage
DE19648744A1 (en) 1996-11-25 1998-05-28 Basf Ag A process for preparing a polymer dispersion by free radical aqueous emulsion polymerization with an aqueous monomer emulsion prepared continuously
US5830741A (en) 1996-12-06 1998-11-03 Boehringer Mannheim Corporation Composition for tissue dissociation containing collagenase I and II from clostridium histolyticum and a neutral protease
FR2757770B1 (en) 1996-12-30 1999-02-26 Inoteb Method of preparing a biological glue capable of coagulating by simple addition of calcium ions
DE69813578D1 (en) 1997-01-26 2003-05-22 Mosshaim Horst Mosshammer Von Cooking with desktop or haushaltgeraet plate with hot
US6110209A (en) 1997-08-07 2000-08-29 Stone; Kevin R. Method and paste for articular cartilage transplantation
DE19708703C2 (en) 1997-02-24 2002-01-24 Co Don Ag surgical instruments
US6152142A (en) 1997-02-28 2000-11-28 Tseng; Scheffer C. G. Grafts made from amniotic membrane; methods of separating, preserving, and using such grafts in surgeries
GB9704749D0 (en) 1997-03-07 1997-04-23 Univ London Tissue Implant
US6733515B1 (en) 1997-03-12 2004-05-11 Neomend, Inc. Universal introducer
US5866415A (en) 1997-03-25 1999-02-02 Villeneuve; Peter E. Materials for healing cartilage and bone defects
DE19713011C2 (en) 1997-03-27 1999-10-21 Friadent Gmbh Film for medical
JP4394169B2 (en) 1997-04-04 2010-01-06 バーンズ − ジューウィッシュ・ホスピタルBarnes−Jewish Hospital New cartilage and methods of use
US6224893B1 (en) 1997-04-11 2001-05-01 Massachusetts Institute Of Technology Semi-interpenetrating or interpenetrating polymer networks for drug delivery and tissue engineering
US6979307B2 (en) 1997-06-24 2005-12-27 Cascade Medical Enterprises Llc Systems and methods for preparing autologous fibrin glue
IT1292410B1 (en) 1997-06-24 1999-02-08 Roberto Beretta ready to use container in order to obtain autologous fibrin glue
US6107085A (en) 1997-07-11 2000-08-22 Corning Incorporated Self contained cell growth system
US6162241A (en) 1997-08-06 2000-12-19 Focal, Inc. Hemostatic tissue sealants
DE69714035T2 (en) 1997-08-14 2003-03-06 Sulzer Innotec Ag Composition and apparatus for the repair of cartilage tissue in vivo comprising nanocapsules with osteoinductive and / or chondroinductive factors
US6511958B1 (en) 1997-08-14 2003-01-28 Sulzer Biologics, Inc. Compositions for regeneration and repair of cartilage lesions
CA2301545A1 (en) 1997-08-22 1999-03-04 Vincent Decrescito An apparatus for preventing loss of a composition during a medical procedure
US20050186283A1 (en) 1997-10-10 2005-08-25 Ed. Geistlich Soehne Ag Fuer Chemistrie Industrie Collagen carrier of therapeutic genetic material, and method
US6458095B1 (en) 1997-10-22 2002-10-01 3M Innovative Properties Company Dispenser for an adhesive tissue sealant having a housing with multiple cavities
US20030099620A1 (en) 1997-10-30 2003-05-29 The General Hospital Corporation Bonding of cartilaginous matrices using isolated chondrocytes
EP1030676B1 (en) 1997-10-30 2005-09-14 The General Hospital Corporation Bonding of cartilaginous matrices using isolated chondrocytes
US6080579A (en) 1997-11-26 2000-06-27 Charlotte-Mecklenburg Hospital Authority Method for producing human intervertebral disc cells
US6187329B1 (en) 1997-12-23 2001-02-13 Board Of Regents Of The University Of Texas System Variable permeability bone implants, methods for their preparation and use
US5964752A (en) 1998-02-02 1999-10-12 Stone; Kevin R. Articular cartilage surface shaping apparatus and method
US6437018B1 (en) 1998-02-27 2002-08-20 Musculoskeletal Transplant Foundation Malleable paste with high molecular weight buffered carrier for filling bone defects
US6143214A (en) 1998-03-09 2000-11-07 Board Of Regents Of The University Of Texas System Mixing and dispensing system for rapidly polymerizing materials
CA2324208C (en) 1998-03-18 2009-06-30 Massachusetts Institute Of Technology Vascularized perfused microtissue/micro-organ arrays
US6471958B2 (en) 1998-03-24 2002-10-29 University Of North Texas Health Science Center Non-contracting tissue equivalent
WO1999051164A1 (en) 1998-04-03 1999-10-14 Reprogenesis, Inc. Soft tissue reconstructor and method of use
US6886568B2 (en) 1998-04-08 2005-05-03 The Johns Hopkins University Method for fabricating cell-containing implants
US6378527B1 (en) 1998-04-08 2002-04-30 Chondros, Inc. Cell-culture and polymer constructs
US6637437B1 (en) 1998-04-08 2003-10-28 Johns Hopkins University Cell-culture and polymer constructs
US20040044408A1 (en) 1998-04-08 2004-03-04 Hungerford David S. Cell-culture and polymer constructs
US6514522B2 (en) 1998-04-08 2003-02-04 Chondros, Inc. Polymer constructs
US6662805B2 (en) 1999-03-24 2003-12-16 The Johns Hopkins University Method for composite cell-based implants
EP1084454B1 (en) 1998-04-21 2016-03-09 University of Connecticut Free-form nanofabrication using multi-photon excitation
US6171610B1 (en) 1998-04-24 2001-01-09 University Of Massachusetts Guided development and support of hydrogel-cell compositions
WO1999057817A2 (en) 1998-04-30 1999-11-11 Koninklijke Philips Electronics N.V. Code division multiple access transmitter and receiver
US6835377B2 (en) * 1998-05-13 2004-12-28 Osiris Therapeutics, Inc. Osteoarthritis cartilage regeneration
US6132465A (en) 1998-06-04 2000-10-17 Raymedica, Inc. Tapered prosthetic spinal disc nucleus
US6083383A (en) 1998-06-25 2000-07-04 Huang; Xun Yang Apparatus for production of fibrin ogen or fibrin glue
US6086593A (en) 1998-06-30 2000-07-11 Bonutti; Peter M. Method and apparatus for use in operating on a bone
US6045990A (en) 1998-07-09 2000-04-04 Baust; John M. Inclusion of apoptotic regulators in solutions for cell storage at low temperature
WO2000006216A1 (en) 1998-07-27 2000-02-10 Focal, Inc. Universal modular surgical applicator systems
US6274090B1 (en) 1998-08-05 2001-08-14 Thermogenesis Corp. Apparatus and method of preparation of stable, long term thrombin from plasma and thrombin formed thereby
AU5132199A (en) 1998-08-13 2000-03-06 Warner-Lambert Company Electroporation buffer with cryprotective capabilities
US6551355B1 (en) 1998-08-14 2003-04-22 Cambridge Scientific, Inc. Tissue transplant coated with biocompatible biodegradable polymer
KR20040081798A (en) 1998-08-14 2004-09-22 페리겐 트란스플란타치온 서비스 인터나치오날 (파우테에스이) 아게 Methods, instruments and materials for chondrocyte cell transplantation
US6099531A (en) 1998-08-20 2000-08-08 Bonutti; Peter M. Changing relationship between bones
US6530956B1 (en) * 1998-09-10 2003-03-11 Kevin A. Mansmann Resorbable scaffolds to promote cartilage regeneration
CA2344399A1 (en) 1998-09-18 2000-03-30 Massachusetts Institute Of Technology Use of growth factors and hormones for expansion of mammalian cells and tissue engineering
US6140123A (en) 1998-10-07 2000-10-31 Cedars-Sinai Medical Center Method for conditioning and cryopreserving cells
US6022361A (en) 1998-10-09 2000-02-08 Biointerventional Corporation Device for introducing and polymerizing polymeric biomaterials in the human body and method
US20030114936A1 (en) 1998-10-12 2003-06-19 Therics, Inc. Complex three-dimensional composite scaffold resistant to delimination
WO2000029484A1 (en) 1998-11-17 2000-05-25 Biocomposites, Llc Process for preparing high density mechanically resistant insoluble collagen material in pure and combined forms
US7276235B2 (en) 1998-11-18 2007-10-02 Zlb Behring Gmbh Tissue glue with improved antiadhesive properties
US6200330B1 (en) 1998-11-23 2001-03-13 Theodore V. Benderev Systems for securing sutures, grafts and soft tissue to bone and periosteum
DE19855890A1 (en) 1998-12-03 2000-06-08 Nerlich Michael Porous composite matrix, their preparation and use
WO2000048837A1 (en) 1999-02-16 2000-08-24 Dek Printing Machines Limited Apparatus and method for depositing a viscous material
US6264659B1 (en) 1999-02-22 2001-07-24 Anthony C. Ross Method of treating an intervertebral disk
US6436143B1 (en) 1999-02-22 2002-08-20 Anthony C. Ross Method and apparatus for treating intervertebral disks
DE19908628A1 (en) 1999-02-27 2000-08-31 Lurgi Zimmer Ag Catalyst, process for its production and use of the catalyst
US6395327B1 (en) 1999-03-12 2002-05-28 Zimmer, Inc. Enhanced fatigue strength orthopaedic implant with porous coating and method of making same
WO2000054797A2 (en) 1999-03-17 2000-09-21 Novartis Ag Pharmaceutical compositions comprising tgf-beta
US6110210A (en) 1999-04-08 2000-08-29 Raymedica, Inc. Prosthetic spinal disc nucleus having selectively coupled bodies
US6428576B1 (en) 1999-04-16 2002-08-06 Endospine, Ltd. System for repairing inter-vertebral discs
US6370920B1 (en) 1999-04-28 2002-04-16 Alcatel Apparatus to improve degree of cure for ultraviolet curable optical fiber coating by actively removing heat from the coating during irradiation
US6287340B1 (en) 1999-05-14 2001-09-11 Trustees Of Tufts College Bioengineered anterior cruciate ligament
US6645947B1 (en) 1999-05-20 2003-11-11 Chitogenics, Inc. Adhesive N, O-carboxymethylchitosan coatings which inhibit attachment of substrate-dependent cells and proteins
US6645316B1 (en) 1999-05-28 2003-11-11 Henkel Kommanditgesellschaft Auf Aktien Post-passivation of a phosphatized metal surface
US6472162B1 (en) 1999-06-04 2002-10-29 Thermogenesis Corp. Method for preparing thrombin for use in a biological glue
DE19926083A1 (en) 1999-06-08 2000-12-14 Universitaetsklinikum Freiburg Biological joint construct
US20040059416A1 (en) 1999-06-22 2004-03-25 Murray Martha M. Biologic replacement for fibrin clot
US6333029B1 (en) 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
US6632651B1 (en) 1999-07-06 2003-10-14 Ramot At Tel Aviv University Ltd. Tissue maintenance system that applies rhythmic pulses of pressure
US6652872B2 (en) 1999-07-06 2003-11-25 Ramat At Tel Aviv University Ltd. Scaffold formed of tissue treated to eliminate cellular and cytosolic elements
AT296122T (en) 1999-07-21 2005-06-15 Imedex Biomateriaux Protein foam adhesive for surgical and / or therapeutic use
ES2239608T3 (en) 1999-07-28 2005-10-01 Interface Biotech A/S In vitro repair of bone defects and / or cartilage.
GB9918884D0 (en) 1999-08-10 1999-10-13 Novarticulate Bv Method and apparatus for delivering cement to bones
US6425919B1 (en) 1999-08-18 2002-07-30 Intrinsic Orthopedics, Inc. Devices and methods of vertebral disc augmentation
US6280993B1 (en) 1999-08-24 2001-08-28 Ichiro Yamato Gene encoding class I collagenase
US6620169B1 (en) 1999-08-26 2003-09-16 Spineology Group, Llc. Tools and method for processing and injecting bone graft
US6322563B1 (en) 1999-09-17 2001-11-27 Genzyme Corporation Small tissue and membrane fixation apparatus and methods for use thereof
GB9922872D0 (en) 1999-09-28 1999-12-01 Depuy Int Ltd Bone tissue repair kit
US6576265B1 (en) 1999-12-22 2003-06-10 Acell, Inc. Tissue regenerative composition, method of making, and method of use thereof
US6579538B1 (en) 1999-12-22 2003-06-17 Acell, Inc. Tissue regenerative compositions for cardiac applications, method of making, and method of use thereof
US6425704B2 (en) 2000-01-07 2002-07-30 Closure Medical Corporation Adhesive applicators with improved applicator tips
US6626859B2 (en) 2000-01-18 2003-09-30 Coraflo Ltd. High performance cannulas
US6447514B1 (en) 2000-03-07 2002-09-10 Zimmer Polymer filled hip fracture fixation device
US6332894B1 (en) 2000-03-07 2001-12-25 Zimmer, Inc. Polymer filled spinal fusion cage
US6336930B1 (en) 2000-03-07 2002-01-08 Zimmer, Inc. Polymer filled bone plate
DE10013223C2 (en) 2000-03-13 2002-07-18 Co Don Ag A method for in vitro production of three-dimensional, vital cartilage or bone tissue and its use as a graft material
US6652883B2 (en) 2000-03-13 2003-11-25 Biocure, Inc. Tissue bulking and coating compositions
CA2403218C (en) 2000-03-13 2011-10-18 Biocure, Inc. Embolic compositions
US6632246B1 (en) 2000-03-14 2003-10-14 Chondrosite, Llc Cartilage repair plug
US6626945B2 (en) 2000-03-14 2003-09-30 Chondrosite, Llc Cartilage repair plug
DE20019809U1 (en) 2000-05-31 2001-07-12 Fraunhofer Ges Forschung Cartilage replacement and biomatrix for the cultivation of cells
US6533817B1 (en) 2000-06-05 2003-03-18 Raymedica, Inc. Packaged, partially hydrated prosthetic disc nucleus
US6991652B2 (en) 2000-06-13 2006-01-31 Burg Karen J L Tissue engineering composite
WO2001097872A1 (en) 2000-06-22 2001-12-27 Austin Sam L Bioadhesive compositions and methods of preparation and use
US6921532B1 (en) 2000-06-22 2005-07-26 Spinal Restoration, Inc. Biological Bioadhesive composition and methods of preparation and use
US9387094B2 (en) 2000-07-19 2016-07-12 Warsaw Orthopedic, Inc. Osteoimplant and method of making same
US20020068974A1 (en) 2000-07-21 2002-06-06 Kuslich Stephen D. Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone
US6653062B1 (en) 2000-07-26 2003-11-25 Wisconsin Alumni Research Foundation Preservation and storage medium for biological materials
AT420947T (en) 2000-07-29 2009-01-15 Smith & Nephew The tissue Plant to restore cartilage tissue of
MY130475A (en) 2000-08-25 2007-06-29 Contura As Polyacrylamide hydrogel and its use as an endoprosthesis
US7186419B2 (en) 2000-08-25 2007-03-06 Contura Sa Polyacrylamide hydrogel for arthritis
JP2004521666A (en) 2000-08-28 2004-07-22 アドバンスト バイオ サーフェイシズ,インコーポレイティド Method and system for enhancing mammalian joints
US6620196B1 (en) 2000-08-30 2003-09-16 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
WO2002024244A2 (en) 2000-09-20 2002-03-28 Regeneration Technologies, Inc. Method of preparing and processing transplant tissue
US6528052B1 (en) 2000-09-29 2003-03-04 The Board Of Trustees Of The Leland Stanford Junior University Method for in vivo ex vivo and in vitro repair and regeneration of cartilage and collagen and bone remodeling
US6610033B1 (en) 2000-10-13 2003-08-26 Incept, Llc Dual component medicinal polymer delivery system and methods of use
EP1339349A4 (en) 2000-11-14 2007-07-04 R Labs Inc Nv Cross-linked hyaluronic acid-laminin gels and use thereof in cell culture and medical implants
JP2002233567A (en) 2000-12-06 2002-08-20 Japan Science & Technology Corp Tissue equivalent for transplantation and its method of manufacture
DE10061195B4 (en) 2000-12-08 2004-12-02 3M Espe Ag Use of molding compositions for the production of treatment devices
US6852330B2 (en) 2000-12-21 2005-02-08 Depuy Mitek, Inc. Reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
CA2365376C (en) 2000-12-21 2006-03-28 Ethicon, Inc. Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US6697143B2 (en) 2001-02-12 2004-02-24 Viztec, Inc. Electrooptical displays constructed with polymerization initiating and enhancing elements positioned between substrates
US7666192B2 (en) 2001-02-16 2010-02-23 Kci Licensing, Inc. Skin grafting devices and methods
US7544196B2 (en) 2001-02-20 2009-06-09 Orthovita, Inc. System and kit for delivery of restorative materials
US20020151974A1 (en) 2001-02-23 2002-10-17 Bonassar Lawrence J. Tympanic membrane patch
AU2002252025A1 (en) 2001-02-23 2002-09-12 University Of Massachusetts Injection molding of living tissues
US6743232B2 (en) 2001-02-26 2004-06-01 David W. Overaker Tissue scaffold anchor for cartilage repair
IL142118D0 (en) 2001-03-20 2002-03-10 Prochon Biotech Ltd Method and composition for treatment of skeletal dysplasias
US7468192B2 (en) 2002-03-22 2008-12-23 Histogenics Corporation Method for repair of cartilage lesions
EP2522304B1 (en) 2001-03-23 2014-01-08 Histogenics Corporation Composition and methods for the production of biological tissues and tissue constructs
US20040151705A1 (en) 2002-03-22 2004-08-05 Shuichi Mizuno Neo-cartilage constructs and a method for preparation thereof
US7537780B2 (en) 2002-03-22 2009-05-26 Histogenics Corporation Method for preparing and implanting a cartilage construct to treat cartilage lesions
US6942880B1 (en) 2001-04-09 2005-09-13 Medtronic, Inc. Autologous platelet gel having beneficial geometric shapes and methods of making the same
US7615593B2 (en) 2001-04-23 2009-11-10 Wisconsin Alumni Research Foundation Bifunctional-modified hydrogels
WO2002089868A1 (en) 2001-05-09 2002-11-14 Baxter International Inc. Fibrin material and method for producing and using the same
KR20020088848A (en) 2001-05-21 2002-11-29 (주)코아바이오텍 Cell Culture Tube and Multiple Roller Tube Cell Culture System Using The Same
US8882847B2 (en) 2001-05-25 2014-11-11 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US20020183858A1 (en) 2001-06-05 2002-12-05 Contiliano Joseph H. Attachment of absorbable tissue scaffolds to scaffold fixation devices
AU2002345691C1 (en) 2001-06-13 2008-07-24 Massachusetts Institute Of Technology In vivo bioreactors
KR20020095842A (en) 2001-06-16 2002-12-28 삼성전자 주식회사 Ashing apparatus of semiconductor
US6626950B2 (en) 2001-06-28 2003-09-30 Ethicon, Inc. Composite scaffold with post anchor for the repair and regeneration of tissue
AT302844T (en) 2001-07-02 2005-09-15 Nordmark Arzneimittel Gmbh & C A process for the purification of an enzyme and thereafter produced, purified enzyme, as well as use of the enzyme
FR2827290B1 (en) 2001-07-13 2004-07-09 Pierre Jouan Biotechnologies Sa Method of obtaining a protein fraction enriched in TGF-beta activated form, protein fraction and therapeutic applications
IL144446D0 (en) 2001-07-19 2002-05-23 Prochon Biotech Ltd Plasma protein matrices and methods for their preparation
US20030039695A1 (en) 2001-08-10 2003-02-27 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Collagen carrier of therapeutic genetic material, and method
JP4015618B2 (en) 2001-08-25 2007-11-28 コンチュラ ソシエテ アノニム Polymer hydrogels for use in the prosthesis, use for the production of the prosthesis of the polymer hydrogel and powder polyacrylamide hydrogel
DE60232893D1 (en) 2001-10-02 2009-08-20 Rex Medical Lp implant
CA2463850C (en) 2001-10-18 2013-03-26 Lifecell Corporation Remodeling of tissues and organs
US7160725B2 (en) * 2001-11-13 2007-01-09 Curis, Inc. Hedgehog signaling promotes the formation of three dimensional cartilage matrices
EP1460982A4 (en) 2001-11-16 2010-04-14 Biocure Inc Methods for initiating in situ formation of hydrogels
JP2003180699A (en) 2001-12-20 2003-07-02 Kyocera Corp Implant for treating articular cartilage
JP4223961B2 (en) 2002-01-31 2009-02-12 Agcテクノグラス株式会社 Cryopreservation method of primate embryonic stem cells
US20020106625A1 (en) 2002-02-07 2002-08-08 Hung Clark T. Bioreactor for generating functional cartilaginous tissue
US7042803B2 (en) 2002-02-08 2006-05-09 Input/Output Inc. Marine seismic source towing apparatus and method
CA2476126A1 (en) 2002-02-15 2003-08-21 Ocean Nutrition Canada Limited Shark cartilage extracts and use thereof for immunomodulation
US6740186B2 (en) 2002-02-20 2004-05-25 Zimmer Technology, Inc. Method of making an orthopeadic implant having a porous metal surface
TWI290055B (en) 2002-03-14 2007-11-21 Tissuetech Inc Amniotic membrane covering for a tissue surface and devices facilitating fastening of membranes
US20030187515A1 (en) 2002-03-26 2003-10-02 Hariri Robert J. Collagen biofabric and methods of preparing and using the collagen biofabric
AU2003228808A1 (en) 2002-05-02 2003-11-17 Regents Of The University Of Minnesota Fibrin-based biomatrix
GB0211963D0 (en) 2002-05-24 2002-07-03 British American Tobacco Co An exposure device
US7299805B2 (en) 2002-06-07 2007-11-27 Marctec, Llc Scaffold and method for implanting cells
US7166133B2 (en) 2002-06-13 2007-01-23 Kensey Nash Corporation Devices and methods for treating defects in the tissue of a living being
US6797006B2 (en) 2002-06-18 2004-09-28 Zimmer Technology, Inc. Porous unicondylar knee
US6938939B2 (en) 2002-06-26 2005-09-06 Rbw Industries, Inc. Room expansion system
DE10261126A1 (en) 2002-08-13 2004-03-04 Aventis Behring Gmbh Storage stable, liquid fibrinogen formulation
US7494460B2 (en) 2002-08-21 2009-02-24 Medtronic, Inc. Methods and apparatus providing suction-assisted tissue engagement through a minimally invasive incision
JPWO2004018615A1 (en) 2002-08-23 2005-12-08 旭化成メディカル株式会社 Fibrin-containing compositions
US20040126881A1 (en) 2002-09-06 2004-07-01 Vincent Ronfard Fibrin cell supports and methods of use thereof
US7744651B2 (en) 2002-09-18 2010-06-29 Warsaw Orthopedic, Inc Compositions and methods for treating intervertebral discs with collagen-based materials
US20040054414A1 (en) 2002-09-18 2004-03-18 Trieu Hai H. Collagen-based materials and methods for augmenting intervertebral discs
US6840960B2 (en) 2002-09-27 2005-01-11 Stephen K. Bubb Porous implant system and treatment method
US7666134B2 (en) 2002-09-28 2010-02-23 Kci Licensing, Inc. System and method for transplantation of dermal tissue
AU2003265103A1 (en) 2002-09-30 2004-04-19 Bioland Ltd. Dermal substitute consisting of amnion and biodegradable polymer, the preparation method and the use thereof
US6800663B2 (en) 2002-10-18 2004-10-05 Alkermes Controlled Therapeutics Inc. Ii, Crosslinked hydrogel copolymers
US7824701B2 (en) 2002-10-18 2010-11-02 Ethicon, Inc. Biocompatible scaffold for ligament or tendon repair
US20040078090A1 (en) 2002-10-18 2004-04-22 Francois Binette Biocompatible scaffolds with tissue fragments
US6890295B2 (en) 2002-10-31 2005-05-10 Medtronic, Inc. Anatomical space access tools and methods
US7115100B2 (en) 2002-11-15 2006-10-03 Ethicon, Inc. Tissue biopsy and processing device
US6921633B2 (en) 2002-11-18 2005-07-26 Biolife Solutions Incorporated Methods and compositions for the preservation of cells, tissues or organs in the vitreous state
IL153699A (en) 2002-12-26 2008-11-26 Prochon Biotech Ltd Bone graft composite
JP2006517842A (en) 2003-02-14 2006-08-03 デピュイ スパイン、インコーポレイテッドDepuy Spine,Inc. Apparatus and method for in situ formation type intervertebral fusion
CA2516182A1 (en) 2003-02-28 2004-09-16 Bayer Pharmaceuticals Corporation Expression profiles for breast cancer and methods of use
GB0304799D0 (en) 2003-03-03 2003-04-09 Glaxosmithkline Biolog Sa Novel method
US20040175690A1 (en) 2003-03-03 2004-09-09 Kci Licensing, Inc. Tissue harvesting device and method
US7651507B2 (en) 2003-03-03 2010-01-26 Kci Licensing, Inc. Tissue processing system
US7067123B2 (en) 2003-04-29 2006-06-27 Musculoskeletal Transplant Foundation Glue for cartilage repair
US20050064042A1 (en) 2003-04-29 2005-03-24 Musculoskeletal Transplant Foundation Cartilage implant plug with fibrin glue and method for implantation
US20050123520A1 (en) 2003-05-05 2005-06-09 Eavey Roland D. Generation of living tissue in vivo using a mold
US20090291112A1 (en) 2003-05-16 2009-11-26 Truncale Katherine G Allograft osteochondral plug combined with cartilage particle mixture
US7488348B2 (en) 2003-05-16 2009-02-10 Musculoskeletal Transplant Foundation Cartilage allograft plug
US7901457B2 (en) 2003-05-16 2011-03-08 Musculoskeletal Transplant Foundation Cartilage allograft plug
WO2004110308A2 (en) 2003-06-11 2004-12-23 Osteotech, Inc. Osteoimplants and methods for their manufacture
US20070077236A1 (en) 2003-06-12 2007-04-05 Interface Biotech A/S Method for cell implantation
US20050124038A1 (en) 2003-07-14 2005-06-09 Pharmacia Corporation Transfection of cartilage and matrices thereof in vitro
CN100571791C (en) 2003-07-31 2009-12-23 岩本幸英;中山功一 Method of constructing artificial joint
GB0318125D0 (en) 2003-08-01 2003-09-03 Inst Of Cancer Res The Apparatus and methods for tissue preparation
WO2005016123A2 (en) 2003-08-11 2005-02-24 Chudik Steven C M D Devices and methods used for shoulder replacement
US20050038520A1 (en) 2003-08-11 2005-02-17 Francois Binette Method and apparatus for resurfacing an articular surface
US7217294B2 (en) 2003-08-20 2007-05-15 Histogenics Corp. Acellular matrix implants for treatment of articular cartilage, bone or osteochondral defects and injuries and method for use thereof
JP2007503222A (en) 2003-08-20 2007-02-22 ヒストジェニックス コーポレイション Protected by a biodegradable polymer which is modified to have an extended polymerization time, acellular matrix embedded in the non-cellular cartilage or the osteochondral lesion, their preparation and methods of use
US7897384B2 (en) 2003-09-08 2011-03-01 Ethicon, Inc. Chondrocyte therapeutic delivery system
US7375077B2 (en) 2003-09-19 2008-05-20 The Board Of Trustees Of The University Of Illinois In vivo synthesis of connective tissues
KR101001117B1 (en) 2003-09-19 2010-12-14 각고호우징 게이오기주크 Composition for coating support for preparation of cell sheet, support for preparation of cell sheet and process for producing cell sheet
CN1913929A (en) 2003-12-10 2007-02-14 细胞生物工程公司 Methods and composition for soft tissue feature reconstruction
EP1529543A1 (en) 2003-11-04 2005-05-11 Institut National De La Sante Et De La Recherche Medicale (Inserm) Use of a hydrogel for culturing chondrocytes
WO2005065079A2 (en) 2003-11-10 2005-07-21 Angiotech International Ag Medical implants and fibrosis-inducing agents
US8673021B2 (en) 2003-11-26 2014-03-18 Depuy Mitek, Llc Arthroscopic tissue scaffold delivery device
US7316822B2 (en) 2003-11-26 2008-01-08 Ethicon, Inc. Conformable tissue repair implant capable of injection delivery
US7901461B2 (en) 2003-12-05 2011-03-08 Ethicon, Inc. Viable tissue repair implants and methods of use
ES2404682T3 (en) 2003-12-11 2013-05-28 Isto Technologies Inc. Cartilage particulate system
EP2289567A3 (en) 2003-12-22 2011-06-22 Regentis Biomaterials Ltd. Matrix comprising naturally-occurring crosslinked protein backbone
KR100531922B1 (en) 2003-12-23 2005-11-29 주식회사 셀론텍 a composition for cartilage therapeutics and a using method thereof
US20050137600A1 (en) 2003-12-23 2005-06-23 Jacobs Andrew M. Articular cartilage repair implant delivery device and method of use
US6997381B2 (en) 2003-12-24 2006-02-14 Michael Arnouse Dual-sided smart card reader
US7435214B2 (en) 2004-01-29 2008-10-14 Cannuflow, Inc. Atraumatic arthroscopic instrument sheath
US7445596B2 (en) 2004-01-29 2008-11-04 Cannuflow, Inc. Atraumatic arthroscopic instrument sheath
US7500947B2 (en) 2004-01-29 2009-03-10 Cannonflow, Inc. Atraumatic arthroscopic instrument sheath
US7413542B2 (en) 2004-01-29 2008-08-19 Cannuflow, Inc. Atraumatic arthroscopic instrument sheath
US20050177249A1 (en) 2004-02-09 2005-08-11 Kladakis Stephanie M. Scaffolds with viable tissue
WO2005081870A2 (en) 2004-02-20 2005-09-09 Isto Technologies, Inc. Intervertebral disc repair, methods and devices therefor
US20060275273A1 (en) 2004-02-20 2006-12-07 Seyedin Mitchell S Intervertebral Disc Repair, Methods and Devices Therefor
EP1720459B1 (en) 2004-03-03 2014-07-16 Schwartz Biomedical, Llc Articular cartilage fixation device
US20050196460A1 (en) 2004-03-08 2005-09-08 Malinin Theodore I. Particulate cartilage compositions, processes for their preparation and methods for regenerating cartilage
US8043614B2 (en) 2004-03-09 2011-10-25 Ahlfors Jan-Eric W Autogenic living scaffolds and living tissue matrices: methods and uses thereof
EP1731177A4 (en) 2004-03-11 2009-07-22 Arblast Co Ltd Biological tissue sheet, method of forming the same and transplantation method by using the sheet
US20050209602A1 (en) 2004-03-22 2005-09-22 Disc Dynamics, Inc. Multi-stage biomaterial injection system for spinal implants
US20070292945A1 (en) 2004-03-25 2007-12-20 Lin Wenglong R Cell Culture Apparatus and Methods
US20050222687A1 (en) 2004-04-02 2005-10-06 Gordana Vunjak-Novakovic Cartilage implant assembly and method for implantation
US20060041270A1 (en) 2004-05-07 2006-02-23 Jay Lenker Medical access sheath
US7790458B2 (en) 2004-05-14 2010-09-07 Becton, Dickinson And Company Material and methods for the growth of hematopoietic stem cells
US20050287223A1 (en) 2004-06-23 2005-12-29 Peyman Gholam A Use of amniotic membrane as biocompatible devices
US20050288796A1 (en) 2004-06-23 2005-12-29 Hani Awad Native soft tissue matrix for therapeutic applications
US7789913B2 (en) 2004-06-29 2010-09-07 Spine Wave, Inc. Methods for injecting a curable biomaterial into an intervertebral space
CA2572603C (en) 2004-06-29 2013-01-15 Biocure, Inc. Spinal disc nucleus pulposus implant
EP1819290B1 (en) 2004-07-09 2011-03-02 William Marsh Rice University Scaffoldless constructs for tissue engineering of articular cartilage
US8512730B2 (en) 2004-07-12 2013-08-20 Isto Technologies, Inc. Methods of tissue repair and compositions therefor
CA2570521C (en) 2004-07-12 2013-06-25 Isto Technologies, Inc. Tissue matrix system
US20090181892A1 (en) 2004-07-16 2009-07-16 Spinal Restoration, Inc. Methods and kits for treating joints and soft tissues
US20090181093A1 (en) 2004-07-16 2009-07-16 Spinal Restoration, Inc. Methods for treating soft tissue damage associated with a surgical procedure
US20090181092A1 (en) 2004-07-16 2009-07-16 Spinal Restoration, Inc. Methods for Treating Joints and Discs with a Carrier Matrix and Cells
US7335508B2 (en) 2004-07-22 2008-02-26 Prochon Biotech Ltd. Porous plasma protein matrices and methods for preparation thereof
GB0421298D0 (en) 2004-09-24 2004-10-27 Univ Bristol Cellular bandage
US7273756B2 (en) 2004-10-01 2007-09-25 Isto Technologies, Inc. Method for chondrocyte expansion with phenotype retention
US8017394B2 (en) 2004-10-01 2011-09-13 Isto Technologies, Inc. Method for chondrocyte expansion with phenotype retention
US7618410B2 (en) 2004-10-05 2009-11-17 Cardia Access, Inc. Devices and methods for access through a tissue wall
US8435551B2 (en) 2007-03-06 2013-05-07 Musculoskeletal Transplant Foundation Cancellous construct with support ring for repair of osteochondral defects
KR20060052158A (en) 2004-10-12 2006-05-19 가부시키가이샤 사이보 카가쿠 겐큐쇼 Cell-preserving solution
AU2005301150B2 (en) 2004-10-18 2011-02-03 Covidien Lp Apparatus for applying wound treatment material using tissue-penetrating needles
US8357147B2 (en) 2005-08-17 2013-01-22 Spinal Restoration, Inc. Method for repairing intervertebral discs
US20070213660A1 (en) 2004-10-29 2007-09-13 Mark Richards Fibrin sealant delivery device including pressure monitoring, and method and kits thereof
WO2006050213A2 (en) 2004-10-29 2006-05-11 Michalow Alexander E Methods of promoting healing of cartilage defects and method of causing stem cells to differentiate by the articular chondrocyte pathway
US8419722B2 (en) 2004-10-29 2013-04-16 Spinal Restoration, Inc. Apparatus and method for injection of fibrin sealant in spinal applications
US9981063B2 (en) 2004-11-24 2018-05-29 Mayo Foundation For Medical Education And Research Biosynthetic composite for osteochondral defect repair
US8460178B2 (en) 2004-11-30 2013-06-11 Atul Kumar Method and system for minimizing leakage of a distending medium during endoscopic procedures
US20090155229A1 (en) 2004-12-06 2009-06-18 Avner Yayon Chondrocyte-based implant for the delivery of therapeutic agents
US20060153815A1 (en) 2004-12-21 2006-07-13 Agnieszka Seyda Tissue engineering devices for the repair and regeneration of tissue
US20060171930A1 (en) 2004-12-21 2006-08-03 Agnieszka Seyda Postpartum cells derived from umbilical cord tissue, and methods of making, culturing, and using the same
EP1847277A4 (en) 2005-01-14 2008-03-19 Arblast Co Ltd Sheet-shaped composition utilizing amnion and method of preparing the same
WO2006090372A2 (en) 2005-02-22 2006-08-31 I.M.T. Interface Multigrad Technology Ltd. Preserved viable cartilage, method for its preservation, and system and devices used therefor
JP2006230749A (en) 2005-02-25 2006-09-07 Kaneka Corp Material for fixing prosthesis to cartilage tissue
CA2606379A1 (en) 2005-04-18 2006-10-26 Duke University Three-dimensional fiber scaffolds for tissue engineering
WO2006121612A1 (en) 2005-05-05 2006-11-16 Isto Technologies, Inc. Treatment of joint disease, methods and apparatuses therefor
US20060264966A1 (en) 2005-05-12 2006-11-23 Med Institute, Inc. Vertebroplasty leak prevention sleeve and method
US20070038299A1 (en) 2005-08-12 2007-02-15 Arthrotek, Inc Multilayer microperforated implant
WO2007025290A2 (en) 2005-08-26 2007-03-01 Isto Technologies, Inc. Implants and methods for repair, replacement and treatment of joint disease
KR20080065606A (en) 2005-09-02 2008-07-14 인터페이스 바이오텍 에이/에스 A method for cell implantation
US8158141B2 (en) 2005-11-09 2012-04-17 Paul Hong-Dze Chen Cell transplant device for treatment of corneal wound
EP1945756A2 (en) 2005-11-10 2008-07-23 Carticure Ltd. Method for non-autologous cartilage regeneration
ES2700847T3 (en) 2005-11-18 2019-02-19 Lifescan Inc A method for creating groups of pancreatic cells
WO2007067637A2 (en) 2005-12-07 2007-06-14 Isto Technologies, Inc. Cartilage repair methods
US8524885B2 (en) 2006-03-07 2013-09-03 Prochon Biotech Ltd. Hydrazido derivatives of hyaluronic acid
AU2007234366A1 (en) 2006-04-05 2007-10-11 William Marsh Rice University Chondrocyte differentiation from human embryonic stem cells and their use in tissue engineering
US20070250164A1 (en) 2006-04-21 2007-10-25 Biomet Manufacturing Corp. Method for grafting whole superficial articular cartilage
US20070299517A1 (en) 2006-06-21 2007-12-27 Howmedica Osteonics Corp. Articular cartilage implant
JP5965572B2 (en) 2006-08-04 2016-08-10 エスティービー リミテッド Solid dressing for treating wounded tissue
WO2008021127A2 (en) 2006-08-08 2008-02-21 Howmedica Osteonics Corp. Expandable cartilage implant
US8449622B2 (en) 2006-09-11 2013-05-28 Warsaw Orthopedic, Inc. Multi-phase osteochondral implantable device
US8163549B2 (en) 2006-12-20 2012-04-24 Zimmer Orthobiologics, Inc. Method of obtaining viable small tissue particles and use for tissue repair
US7720533B2 (en) 2006-12-20 2010-05-18 Zimmer Orthobiologicals, Inc. Apparatus and method for delivering a biocompatible material to a surgical site
US20080154233A1 (en) 2006-12-20 2008-06-26 Zimmer Orthobiologics, Inc. Apparatus for delivering a biocompatible material to a surgical site and method of using same
US9592125B2 (en) 2006-12-22 2017-03-14 Laboratoire Medidom S.A. In situ system for intra-articular chondral and osseous tissue repair
US8329870B2 (en) 2007-01-04 2012-12-11 Hepacore Ltd. Water soluble reactive derivatives of carboxy polysaccharides and fibrinogen conjugates thereof
US7837740B2 (en) 2007-01-24 2010-11-23 Musculoskeletal Transplant Foundation Two piece cancellous construct for cartilage repair
WO2009111069A1 (en) 2008-03-05 2009-09-11 Musculoskeletal Transplant Foundation Cancellous constructs, cartilage particles and combinations of cancellous constructs and cartilage particles
CA2684040C (en) 2007-04-12 2016-12-06 Isto Technologies, Inc. Method of forming an implant using a mold that mimics the shape of the tissue defect site and implant formed therefrom
CA2708147A1 (en) 2007-12-05 2009-06-18 Musculoskeletal Transplant Foundation Cancellous bone implant for cartilage repair
US9017378B2 (en) * 2009-06-29 2015-04-28 Aesculap Ag Surgical thread comprising cells and method of manufacturing the thread
US20100168856A1 (en) 2008-12-31 2010-07-01 Howmedica Osteonics Corp. Multiple piece tissue void filler
US20100274362A1 (en) 2009-01-15 2010-10-28 Avner Yayon Cartilage particle tissue mixtures optionally combined with a cancellous construct
US20140178343A1 (en) 2012-12-21 2014-06-26 Jian Q. Yao Supports and methods for promoting integration of cartilage tissue explants

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050032015A1 (en) * 2003-08-07 2005-02-10 Mcsurdy David W. System and method for palatal expansion
US20070184550A1 (en) * 2005-08-02 2007-08-09 Satoshi Miyauchi Artificial cartilage tissue and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9138318B2 (en) 2007-04-12 2015-09-22 Zimmer, Inc. Apparatus for forming an implant
US10167447B2 (en) 2012-12-21 2019-01-01 Zimmer, Inc. Supports and methods for promoting integration of cartilage tissue explants

Also Published As

Publication number Publication date
US10167447B2 (en) 2019-01-01
US20140335612A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
Cao et al. Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling
Radice et al. Hyaluronan‐based biopolymers as delivery vehicles for bone‐marrow‐derived mesenchymal progenitors
Risbud et al. Tissue engineering: advances in in vitro cartilage generation
Barrere et al. Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions
Shao et al. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model
Nukavarapu et al. Osteochondral tissue engineering: current strategies and challenges
Wang et al. Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study
Ikada Challenges in tissue engineering
Chang et al. Gelatin–chondroitin–hyaluronan tri-copolymer scaffold for cartilage tissue engineering
AU2009212946B2 (en) Autologous cells on a support matrix for tissue repair
Sittinger et al. Current strategies for cell delivery in cartilage and bone regeneration
Hench et al. Bioactive glasses for in situ tissue regeneration
Li et al. Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot study
AU715282B2 (en) Method for making and/or repairing cartilage
JP5334800B2 (en) Plasma protein matrix, and a manufacturing method thereof
US6949252B2 (en) Method for preparing an implantable multilayer tissue construct
US5197985A (en) Method for enhancing the implantation and differentiation of marrow-derived mesenchymal cells
Fan et al. Cartilage regeneration using mesenchymal stem cells and a PLGA–gelatin/chondroitin/hyaluronate hybrid scaffold
Nehrer et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro
US5226914A (en) Method for treating connective tissue disorders
Hutmacher et al. Periosteal cells in bone tissue engineering
Nöth et al. In vitro engineered cartilage constructs produced by press-coating biodegradable polymer with human mesenchymal stem cells
Hui et al. In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration
EP0739631B1 (en) Laminar bone support for cartilage growth
Jakob et al. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro

Legal Events

Date Code Title Description
AS Assignment

Owner name: ZIMMER, INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAO, JIAN Q;WANG, HALI;SIGNING DATES FROM 20130809 TO 20130820;REEL/FRAME:031636/0482