WO2003006926A1 - Positionsmesseinrichtung - Google Patents

Positionsmesseinrichtung Download PDF

Info

Publication number
WO2003006926A1
WO2003006926A1 PCT/EP2002/007453 EP0207453W WO03006926A1 WO 2003006926 A1 WO2003006926 A1 WO 2003006926A1 EP 0207453 W EP0207453 W EP 0207453W WO 03006926 A1 WO03006926 A1 WO 03006926A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
scanning
measuring device
signal
reference mark
Prior art date
Application number
PCT/EP2002/007453
Other languages
English (en)
French (fr)
Inventor
Alexander Gruber
Michael Hermann
Wolfgang Holzapfel
Markus KÜHLER
Herbert Pronold
Sebastian Tondorf
Original Assignee
Dr. Johannes Heidenhain Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr. Johannes Heidenhain Gmbh filed Critical Dr. Johannes Heidenhain Gmbh
Priority to JP2003512646A priority Critical patent/JP4150337B2/ja
Priority to ES02764630T priority patent/ES2376656T3/es
Priority to US10/483,971 priority patent/US7057161B2/en
Priority to AT02764630T priority patent/ATE538365T1/de
Priority to EP02764630A priority patent/EP1407231B1/de
Publication of WO2003006926A1 publication Critical patent/WO2003006926A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/366Particular pulse shapes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2455Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
    • G01D5/2457Incremental encoders having reference marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Definitions

  • the invention relates to a position measuring device according to the preamble of patent claim 1.
  • Such position measuring devices are used in particular in processing machines for measuring the relative position of a tool with respect to a workpiece to be machined, in coordinate measuring machines for determining the position and dimensions of test objects, and more recently in the semiconductor industry, for example in wafer steppers.
  • the position measuring device is an angle or length measuring device in which the scale is attached directly to the drive unit (rotary motor or linear motor), or the scale is attached to a component driven by the drive unit.
  • the scale of such a position measuring device has a periodic measuring division for generating count signals and a reference marking for generating a reference mark signal.
  • This reference mark signal is used to establish an absolute reference for the position measurement for the position of the reference mark by setting a counter to a predetermined counter reading.
  • area markings are applied on the scale, by means of which a distinction can be made as to whether the scanning device is located on one side or on the other side of the reference marking.
  • This area marking is formed on one side of the reference marking as a continuous opaque strip.
  • the area marking is designed as a transparent area.
  • Reichsmark isten a common photo receiver is arranged in the scanner. The distinction as to whether the scanning device is located on one or the other side of the reference marking is made on the basis of a measurement signal from this photo receiver.
  • the object of the invention is therefore to provide a position measuring device in which several measuring ranges can be differentiated more reliably in addition to the reference marking.
  • the position measuring device designed according to the invention has the particular advantage that the security for clearly distinguishing whether the scanning device is located on one or the other side of the reference marking is relatively high. Interference immunity is increased.
  • Figure 1 is a schematic sectional view of a
  • FIG. 2 shows the top view of the scale of the position measuring device according to FIG. 1,
  • FIG. 3 shows the top view of the photo receiver arrangement
  • FIG. 4 shows the top view of the scanning plate
  • FIG. 5 shows the scanning beam path in the area of the reference marking
  • FIG. 6 reference mark signals
  • FIG. 7 the scanning beam path on one side of the reference marking
  • FIG. 8 the scanning beam path on the other side of the reference marking
  • FIG. 9 shows a circuit arrangement
  • Figure 10 shows the area signal
  • Figure 11 shows the limit signal
  • FIG. 1 shows a photoelectric incremental position measuring device in the form of a length measuring device with a scale 1, which can be displaced in the measuring direction X relative to a scanning device 2.
  • a periodic incremental measurement graduation 3 is applied in a first track and a reference marking 4 and area markings 5 and 6 are applied in a second track.
  • the scanning device 2 comprises a light source 7, the light of which is collimated by a collimator 8 and directed onto the scale 1 by a scanning plate 9.
  • the light striking the scale 1 is measured at the graduation 3, the reference mark 4 and the area markings 5 and 6 reflect depending on the position and strikes a photo receiver arrangement 10.
  • the scale 1 is shown in FIG. 2 in a top view and the photo receiver arrangement 10 in FIG. 3. How the light at the individual areas 4, 5 and 6 influences position-dependent is shown in Figures 5, 7 and 8.
  • a scanning beam 12 is directed in the region of the reference mark 4 from the reflecting fields of the reference mark 4 to the scanning plate 9.
  • the scanning plate 9 has a scanning field 13 which consists of an aperiodic grating with transparent fields 13.1 and transversely deflecting fields 13.2 (FIG. 4). Since the light passes through this field 13 both on the way there and on the way back from scale 1, there is a transverse splitting.
  • a push-pull reference mark signal R1 can be generated from the light that reaches receiver 131 (FIG. 6).
  • FIG. 6 Another part is deflected into transverse first orders, one of which is detected with the photoreceptor 132, with which a clock reference mark signal is generated (FIG. 6).
  • the configuration of the scanning plate 9 for scanning the reference mark 4 is shown in FIG. 4 and the scanning beam path in FIG. 5. This scanning principle is explained in detail in EP 0 669 518 B1, the disclosure of which is expressly incorporated by reference.
  • a first segment of the collimator 8 is used to collimate the scanning beam 12 of the upper track onto the photo receivers 131, 132, 133, 134 and a second segment of the collimator 8 is used to collimate the scanning beam 11 of the lower track onto the photo receivers 111, 112, 113.
  • the segments are shown only schematically in FIG. 1.
  • the reference mark 4 in the form of an aperiodic phase grating extends over several graduation periods of the measurement graduation 3. If the scanning field 13 is exactly opposite the reference mark 4, the photo receivers 131, 132 generate a reference mark signal which is clearly assigned to an incremental count pulse. This count pulse uniquely defines a path section which, due to the interpolation, is smaller than a division period of the measurement graduation 3.
  • the scale 1 On the left side of the reference mark 4, the scale 1 is uniformly reflective. If the scanning device 2 is located opposite this reflecting area marking 5, the impinging scanning beam bundle 12 is directed onto the photo receiver 131 in accordance with the scanning beam path in FIG.
  • a diffraction grating 6 is arranged on the right side of the reference marking 4 as a region marking on the scale 1.
  • This diffraction grating 6 is a phase grating which largely suppresses the 0th diffraction order and deflects the impinging scanning beam bundle 12 into the + 1st diffraction orders.
  • These diffraction orders reflected on the diffraction grating 6 and deflected in the measuring direction X are concentrated by the collimator 8 onto the photo receivers 133, 134. This scanning beam path is shown in FIG. 8.
  • Light is thus deflected in its direction at the area markings 5, 6 depending on the scale position.
  • Lattices with their properties of the lattice constant and / or the lattice orientation are particularly suitable for directional deflection.
  • the information of the directional deflection is coded out in the focal plane of the lens 8, since each grating constant and a point in the focal plane of the lens 8 is assigned to each grating direction, where suitable photo elements 131, 133, 134 can be placed.
  • the measuring graduation 3, the reference marking 4 and the area marking 6 are advantageously phase gratings, which has the advantage that these gratings 3, 4, 6 can be produced in common method steps and thus ensures the correct assignment of the gratings 3, 4, 6 to one another is.
  • the phase grating 6 has the same grating parameters as the measuring graduation 3.
  • the scanning beam bundle 12 is either reflected in one direction and directed at the photo receiver 131 or reflected in a different direction from the photo receivers 133, 134.
  • a clear area signal B (FIG. 10) is thus available in both positions.
  • an area signal greater than zero is available on both sides of the reference marking 4, so that an interruption of the scanning beam path, for example due to contamination, can also be detected.
  • the measure according to the invention makes it possible to arrange the reference mark 4 and the area markings 5, 6 one behind the other in a common track, that is to say in the measuring direction X, so that the areas 4, 5, 6 are scanned by a common light beam 12.
  • the deflection to the photoreceptor 131 or the photoreceptors 133, 134 takes place through the directionally selective reflection function of the areas 5 and 6 on the scale 1.
  • This directionally selective reflection of the areas 5 and 6 can also take place in a different way, for example through differently inclined reflecting surfaces or wedge-shaped glass surfaces with transmitted light scanning principle or through different deflecting grating areas in the form of longitudinal (in the X direction) or transversely (in the Y direction) deflecting amplitude or phase grating.
  • the output signal R1 of the photo receiver 131 and the output signal B1 of the photo receiver 133, 134 are fed to a differential circuit 20. It can be clearly distinguished from the amplitude of the area signal B whether the scanning device 2 is located on the right or the left side of the reference marking 4. It can be seen that the mutual distance between the levels is relatively large. By forming the difference, the area signal B is largely independent of the illuminance.
  • FIG. 9 shows a particularly advantageous evaluation unit for forming the area signal B in detail.
  • the area signal B is fed to a comparator 22 in which the area signal B is compared with a reference quantity B0. If the area signal B is larger than the reference quantity B0, this means that the scanning device 2 is located on the right side of the reference marking 4. If the area signal B is smaller than the reference variable BO, this means that the scanning device 2 is located on the left side of the reference marking 4.
  • control marks are attached to the ends of the scale in addition to the area markings to the left and right of the reference marking. These control marks define the extreme positions of the scanning device and are also referred to as limit switches or limit markings. Position measuring devices with such limit switches or limit markings are also described in DE 41 11 873 C2 and EP 0 145 844 B1. In the case of a position measuring device with the area markings designed according to the invention, the function of limit position switches can be implemented particularly advantageously by partially covering the area markings 5, 6 in the limit areas 50, 60. As shown in FIG. 2, diaphragms 51, 61 are applied to scale 1 for this purpose.
  • diaphragms 51, 61 can be realized in the form of displaceable clips of spring sheet encompassing the scale 1, or they can also be vapor-deposited, glued onto the surface of the scale 1 or designed in the form of filter glasses.
  • the diaphragms 51, 61 in particular influence the output signals B1; R1 of the photo receivers 133, 134; 131 and thus also the level of the area signal B in the limit areas 50, 60.
  • four different areas of the scale 1 can be distinguished, namely the left limit area 50, the left area 5 from the reference mark 4, the right area 6 from the Reference mark 4 and right limit area 60. Since the different deflection of the scanning beam 12 is retained in the limit areas 50, 60, the direction information - right side and left side of the reference mark 4 - is also contained in the limit areas 50, 60.
  • FIG. 9 shows a particularly advantageous circuit arrangement with which a limit signal L can be generated, as shown in FIG. 11.
  • the limit signal L thus generated has a relatively high level difference between the limit areas 50, 60 and the rest of the area.
  • the signal-to-noise ratio is therefore relatively large.
  • the limit signal L is fed to a comparator 26 in which the Limit signal L is compared with a reference variable BO.
  • the limit signal L is greater than the reference variable BO, this means that the scanning device 2 is in the permissible range. If the limit signal L is smaller than the reference variable BO, this means that the scanning device 2 is in one of the limit areas 50 or 60.
  • the area signal B detects whether the scanning device 2 is in the right or left limit area.
  • the scanning signals R1, B1 are combined to form the range signal B in a circuit arrangement according to a first linking rule and to form the limit signal L according to a second linking rule which deviates therefrom, the first linking rule forming a difference between the scanning signals (R1-B1) and the second linking rule contains an addition (R1 + B1). If the scale 1 is contaminated or the scanning beam path is interrupted, the limit signal L drops below the reference variable B0. In the case of an error, the same information is generated in this example as when a limit range was reached.
  • the limit markings can also be formed by varying the intensity of the diffraction orders, the grating parameters line-gap ratio and the phase depth for phase grating used for this. With this alternative, the direction of the deflected light and thus the area information is also retained.
  • the limit markings can also be formed by further deflecting regions which differ from the region markings 5, 6 in such a way that they direct the incident light in a different direction onto further photo receivers.
  • the scale 2 is designed to be reflective.
  • the scale can also be made transparent, so that the gratings 3 and 6 are designed as transparent diffraction gratings.
  • the invention can therefore be implemented in the case of incident light and transmitted light scanning.
  • the different photo receivers 131, 133, 134 are discrete individual elements or elements of an array.
  • the area markings for differentiating a number of measurement areas along the scale are grids with different grating parameters in the advantageous example shown above, the grating parameters changing abruptly from one measurement area to the other measurement area.
  • the grating parameters can also change continuously in order to make a larger number of measuring ranges distinguishable from one another.
  • An area signal can thus be generated in areas on both sides of the reference mark, which indicates the upcoming reference mark during the position measurement and the travel speed can then be reduced if necessary.
  • the invention therefore consists in specifying a position measuring device with a scale and a scanning device that is movable relative to it in the measuring direction, wherein
  • the scale has a measuring graduation and periodic measuring signals can be generated by scanning the measuring graduation, the scale has at least one reference mark and a reference mark signal can be generated by scanning the reference mark,
  • the scale has optically scannable area markings and an area signal can be generated by photoelectric scanning of the area marks with a scanning beam, by means of which
  • the area markings are optically differently deflecting elements, which deflects the impinging scanning beam bundle in the several measuring areas onto different photo receivers.

Abstract

Bei einer inkrementalen Positionsmesseinrichtung ist auf einem Massstab (1) neben einer inkrementalen Messteilung (3) eine Spur mit einer Referenzmarkierung (4) sowie Bereichsmarkierungen (5, 6) aufgebracht. Durch Abtastung der Bereichsmarkierungen (5, 6) kann eindeutig unterschieden werden, ob sich die Abtasteinrichtung (2) auf der rechten oder der linken Seite der Referenzmarkierung (4) befindet. Die Bereichsmarkierungen (5, 6) lenken hierzu ein auftreffendes Abtaststrahlenbündel (12) in unterschiedliche Richtungen auf unterschiedliche Fotodetektoren (131; 133, 134). An den Enden des Massstabs (1) sind die Bereichsmarkierungen (5, 6) zur Bildung von Limitbereichen (50, 60) durch Blenden (51, 61) teilweise abgedeckt.

Description

Positionsmesseinrichtung
Die Erfindung betrifft eine Positionsmesseinrichtung nach dem Oberbegriff des Patentanspruchs 1.
Derartige Positionsmesseinrichtungen werden insbesondere bei Bearbei- tungsmaschinen zur Messung der Relativlage eines Werkzeugs bezüglich eines zu bearbeitenden Werkstücks, bei Koordinatenmessmaschinen zur Ermittlung von Lage und Abmessungen von Prüfobjekten sowie in letzter Zeit vermehrt auch in der Halbleiterindustrie, beispielsweise in Waferstep- pern eingesetzt. Dabei ist die Positionsmesseinrichtung eine Winkel- oder Längenmesseinrichtung, bei der der Maßstab an der Antriebseinheit (rotato- rischer Motor oder Linearmotor) direkt angebaut wird, oder der Maßstab an einem durch die Antriebseinheit angetriebenen Bauteil angebaut wird.
Der Maßstab einer derartigen, beispielsweise aus der DE 92 09 801 U1 be- kannten Positionsmesseinrichtung, weist eine periodische Messteilung zur Erzeugung von Zählsignalen sowie eine Referenzmarkierung zur Erzeugung eines Referenzmarkensignals auf. Über dieses Referenzmarkensignal wird für die Position der Referenzmarkierung ein Absolutbezug der Positionsmessung hergestellt werden, indem ein Zähler auf einen vorgegebenen Zählerstand gesetzt wird.
Zu Beginn einer Positionsmessung, nach Betriebsunterbrechung durch Ausfall der Versorgungsenergie sowie zur Korrektur und Kontrolle des Zählerstands ist es oft erforderlich, von einer beliebigen Position ausgehend die Referenzmarkierung anzufahren. Hierzu sind Bereichsmarkierungen auf dem Maßstab aufgebracht, durch die unterschieden werden kann, ob sich die Abtasteinrichtung auf der einen oder auf der anderen Seite der Referenzmarkierung befindet. Diese Bereichsmarkierung ist auf einer Seite der Referenzmarkierung als durchgehender lichtundurchlässiger Streifen aus- gebildet. Auf der anderen Seite der Referenzmarkierung ist die Bereichsmarkierung als transparenter Bereich ausgeführt. Zur Abtastung beider Be- reichsmarkierungen ist ein gemeinsamer Fotoempfänger in der Abtasteinrichtung angeordnet. Die Unterscheidung, ob sich die Abtasteinrichtung auf der einen oder der anderen Seite der Referenzmarkierung befindet, wird anhand eines Messsignals dieses Fotoempfängers getroffen.
Es hat sich gezeigt, dass diese Unterscheidung anhand der Signalpegel dieses Messsignals problematisch ist, da der gegenseitige Abstand der Pegel relativ gering ist. Dieses Messsignal kann auch leicht durch partielle Verschmutzungen des Maßstabes beeinflusst werden, so dass eine fehlerhafte Stellung der Abtasteinrichtung detektiert wird.
Aufgabe der Erfindung ist es daher, eine Positionsmesseinrichtung anzugeben, bei der mehrere Messbereiche neben der Referenzmarkierung sicherer unterschieden werden können.
Diese Aufgabe wird durch eine Positionsmesseinrichtung mit den Merkmalen des Patentanspruchs 1 gelöst.
Vorteilhafte Ausgestaltungen sind in den abhängigen Patentansprüchen an- gegeben.
Die erfindungsgemäß ausgestaltete Positionsmesseinrichtung hat insbesondere den Vorteil, dass die Sicherheit zur eindeutigen Unterscheidung, ob sich die Abtasteinrichtung auf der einen oder der anderen Seite der Refe- renzmarkierung befindet, relativ hoch ist. Die Störsicherheit ist erhöht.
Mit Hilfe eines Ausführungsbeispiels wird die Erfindung nachstehend anhand der Zeichnungen näher erläutert.
Dabei zeigt
Figur 1 eine schematische Schnittdarstellung einer
Positionsmesseinrichtung, Figur 2 die Draufsicht auf den Maßstab der Positionsmesseinrichtung gemäß Figur 1 ,
Figur 3 die Draufsicht auf die Fotoempfängeranord- nung,
Figur 4 die Draufsicht auf die Abtastplatte,
Figur 5 den Abtaststrahlengang im Bereich der Refe- renzmarkierung,
Figur 6 Referenzmarkensignale,
Figur 7 den Abtaststrahlengang auf einer Seite der Referenzmarkierung,
Figur 8 den Abtaststrahlengang auf der anderen Seite der Referenzmarkierung,
Figur 9 eine Schaltungsanordnung,
Figur 10 das Bereichssignal und
Figur 11 das Limitsignal.
Figur 1 zeigt eine lichtelektrische inkrementale Positionsmesseinrichtung in Form einer Längenmesseinrichtung mit einem Maßstab 1, der relativ zu einer Abtasteinrichtung 2 in Messrichtung X verschiebbar ist. Auf dem Maßstab 1 ist in einer ersten Spur eine periodische inkrementale Messteilung 3 und in einer zweiten Spur eine Referenzmarkierung 4 sowie Bereichsmarkierungen 5 und 6 aufgebracht. Zur lichtelektrischen Abtastung des Maßstabs 1 umfasst die Abtasteinrichtung 2 eine Lichtquelle 7, deren Licht von einem Kollimator 8 gebündelt und durch eine Abtastplatte 9 auf den Maßstab 1 gerichtet wird. Das am Maßstab 1 auftreffende Licht wird an der Messteilung 3, der Referenzmarkierung 4 sowie den Bereichsmarkierungen 5 und 6 positionsabhängig reflektiert und trifft auf eine Fotoempfängeranordnuπg 10. Der Maßstab 1 ist in Figur 2 in Draufsicht dargestellt und die Fotoempfängeranordnung 10 in Figur 3. Wie das Licht an den einzelnen Bereichen 4, 5 und 6 positionsabhängig beeinflusst wird, ist in den Figuren 5, 7 und 8 dargestellt.
Ein Abtaststrahlenbundel 11 , welches auf das reflektierende Phasengitter 3 trifft, wird positionsabhängig moduliert, indem es in verschiedene Teilstrahlenbündel gebeugt wird, die anschließend miteinander zur Interferenz ge- bracht werden und und auf die drei Fotoempfänger 111, 112, 113 treffen, welche in bekannter Weise durch ein interferentielles Abtastprinzip gegeneinander phasenverschobene analoge periodische Messsignale M1 , M2, M3 erzeugen, aus welchen in bekannter Weise durch Interpolation hochauflösende Zählsignale generiert werden.
Ein Abtaststrahlenbundel 12 wird im Bereich der Referenzmarkierung 4 von den reflektierenden Feldern der Referenzmarkierung 4 zur Abtastplatte 9 gelenkt. Die Abtastplatte 9 weist in dem Bereich, an dem dieses reflektierte Licht auftrifft ein Abtastfeld 13 auf, das aus einem aperiodischen Gitter mit transparenten Feldern 13.1 und transversal ablenkenden Feldern 13.2 besteht (Figur 4). Da das Licht sowohl beim Hin- als auch beim Rückweg vom Maßstab 1 dieses Feld 13 durchtritt, kommt es zu einer transversalen Aufspaltung. Durch geeignete Wahl der Gitterparameter kann aus dem Licht, welches auf den Empfänger 131 gelangt, ein Gegentakt-Referenzmarken- signal R1 generiert werden (Figur 6). Ein anderer Teil wird in transversale erste Ordnungen abgelenkt, davon wird eine mit dem Fotoempfänger 132 detektiert, womit ein Takt-Referenzmarkensignal erzeugt wird (Figur 6). Ein resultierendes Referenzmarkensignal R wird durch Überlagerung (R=R2-R1) des Takt-Referenzmarkensignals R2 mit dem Gegentakt-Referenzmarken- signal R1 generiert. Die Ausgestaltung der Abtastplatte 9 zur Abtastung der Referenzmarkierung 4 ist in Figur 4 und der Abtaststrahlengang in Figur 5 dargestellt. Dieses Abtastprinzip ist ausführlich in der EP 0 669 518 B1 erläutert, auf dessen Offenbarung ausdrücklich Bezug genommen wird. Zur Kollimation des Abtaststrahlenbündels 12 der oberen Spur auf die Fotoempfänger 131, 132, 133, 134 dient ein erstes Segment des Kollimators 8 und zur Kollimation des Abtaststrahlenbündels 11 der unteren Spur auf die Fotoempfänger 111, 112, 113 dient ein zweites Segment des Kollimators 8. Die Segmente sind in Figur 1 nur schematisch dargestellt.
Die Referenzmarkierung 4 in Form eines aperiodischen Phasengitters erstreckt sich über mehrere Teilungsperioden der Messteilung 3. Wenn das Abtastfeld 13 der Referenzmarkierung 4 exakt gegenübersteht, generieren die Fotoempfänger 131, 132 ein, einem inkrementalen Zählimpuls eindeutig zugeordnetes Referenzmarkensignal. Dieser Zählimpuls definiert einen Wegabschnitt eindeutig, der durch die Interpolation kleiner ist als eine Teilungsperiode der Messteilung 3.
Auf der linken Seite der Referenzmarkierung 4 ist der Maßstab 1 gleichmäßig reflektierend. Befindet sich die Abtasteinrichtung 2 dieser reflektierenden Bereichsmarkierung 5 gegenüberliegend, wird das auftreffende Abtaststrahlenbundel 12 gemäß dem Abtaststrahlengang in Figur 7 auf den Fotoempfänger 131 gerichtet.
Auf der rechten Seite der Referenzmarkierung 4 ist ein Beugungsgitter 6 als Bereichsmarkierung am Maßstab 1 angeordnet. Dieses Beugungsgitter 6 ist ein Phasengitter, welches die 0. Beugungsordnung weitgehend unterdrückt und das auftreffende Abtaststrahlenbundel 12 in die + 1. Beugungsordnun- gen ablenkt. Diese am Beugungsgitter 6 reflektierten und in Messrichtung X abgelenkten Beugungsordnungen werden vom Kollimator 8 auf die Fotoempfänger 133, 134 konzentriert. Dieser Abtaststrahlengang ist in Figur 8 dargestellt.
Licht wird also an den Bereichsmarkierungen 5, 6 abhängig von der Maßstabsposition in seiner Richtung abgelenkt. Besonders geeignet für die Richtungsablenkung sind Gitter mit ihren Eigenschaften der Gitterkonstante und/oder der Gitterausrichtung. Die Information der Richtungsablenkung wird in der Brennebene der Linse 8 auscodiert, da jeder Gitterkonstante und jeder Gitterrichtung ein Punkt in der Brennebene der Linse 8 zugeordnet ist, wo geeignete Photoelemente 131, 133, 134 plaziert werden können.
Die Messteilung 3, die Referenzmarkierung 4 und die Bereichsmarkierung 6 sind vorteilhafterweise Phasengitter, was den Vorteil mit sich bringt, dass diese Gitter 3, 4, 6 in gemeinsamen Verfahrensschritten hergestellt werden können und somit die korrekte Zuordnung der Gitter 3, 4, 6 zueinander gewährleistet ist. Im Beispiel hat das Phasengitter 6 die gleichen Gitterparameter wie die Messteilung 3.
Durch die optisch unterschiedliche Ausgestaltung der rechten und linken Seite der Referenzmarkierung 4 wird das Abtaststrahlenbundel 12 entweder in eine Richtung reflektiert und auf den Fotoempfänger 131 gerichtet oder in eine davon abweichende Richtung reflektiert auf die Fotoempfänger 133, 134 gerichtet. In beiden Positionen steht somit ein eindeutiges Bereichssignal B (Figur 10) zur Verfügung. Im Gegensatz zum Stand der Technik steht auf beiden Seiten der Referenzmarkierung 4 ein Bereichssignal größer Null zur Verfügung, so dass auch eine Unterbrechung des Abtaststrahlenganges, beispielsweise durch Verschmutzung, erkannt werden kann.
Durch die erfindungsgemäße Maßnahme ist es möglich, die Referenzmarkierung 4 und die Bereichsmarkierungen 5, 6 in einer gemeinsamen Spur, also in Messrichtung X hintereinander anzuordnen, so dass die Bereiche 4, 5, 6 von einem gemeinsamen Lichtstrahlenbündel 12 abgetastet werden. Die Umlenkung auf den Fotoempfänger 131 oder den Fotoempfängern 133, 134 erfolgt durch die richtungsselektive Reflexionsfunktion der Bereiche 5 und 6 am Maßstab 1. Diese richtungsselektive Reflexion der Bereiche 5 und 6 kann auch in anderer Weise erfolgen, beispielsweise durch unterschiedlich geneigte reflektierende Flächen oder keilige Glasflächen bei Durchlicht-Ab- tastprinzip oder durch verschiedene ablenkende Gitterbereiche in Form von longitudinal (in X-Richtung) oder transversal (in Y-Richtung) ablenkende Amplituden- oder Phasengitter. Zur Erzeugung des in Figur 10 dargestellten Bereichssignals B wird das Ausgangssignal R1 des Fotoempfängers 131 und das Ausgangssignal B1 des Fotoempfängers 133, 134 einer Differenzschaltung 20 zugeführt. Aus der Amplitude des Bereichssignals B ist eindeutig unterscheidbar, ob sich die Abtasteinrichtung 2 auf der rechten oder der linken Seite der Referenzmarkierung 4 befindet. Es ist ersichtlich, dass der gegenseitige Abstand der Pegel relativ groß ist. Durch die Differenzbildung wird das Bereichssignal B weitgehend unabhängig von der Beleuchtungsstärke.
In Figur 9 ist im Detail eine besonders vorteilhafte Auswerteeinheit zur Bildung des Bereichssignals B dargestellt. Das Gegentakt-Referenzmarkensignal R1 und das Takt-Referenzmarkensignal R2 werden in einem Addierer 21 unterschiedlich gewichtet zu dem Signal B2 = R1 + 1 ,45 * R2 aufsummiert. Dadurch wird im Bereich der Referenzmarkierung 4 eine Glättung des an- sonsten relativ stark oszillierenden Bereichssignals B erreicht. Das Ausgangssignal B2 des Addierers 21 sowie das Signal B1 werden der Differenzschaltung 20 zur Bildung des Bereichssignals B = B2 - 3 • B1 zugeführt. Das Bereichssignal B wird einem Vergleicher 22 zugeführt, in dem das Bereichssignal B mit einer Referenzgröße B0 verglichen wird. Ist das Bereichs- signal B größer als die Referenzgröße B0, bedeutet dies, dass sich die Abtasteinrichtung 2 auf der rechten Seite der Referenzmarkierung 4 befindet. Ist das Bereichssignal B kleiner als die Referenzgröße BO, bedeutet dies, dass sich die Abtasteinrichtung 2 auf der linken Seite der Referenzmarkierung 4 befindet.
Bei dem in der Einleitung genannten Stand der Technik (DE 92 09 801 U1) sind zusätzlich zu den Bereichsmarkierungen links und rechts von der Referenzmarkierung sogenannte Steuermarken an den Enden des Maßstabs angebracht. Diese Steuermarken definieren die Extremlagen der Abtastein- richtung und werden auch als Endlagenschalter oder Limitmarkierung bezeichnet. Positionsmesseinrichtungen mit derartigen Endlagenschaltern bzw. Limitmarkierungen sind auch in der DE 41 11 873 C2 und der EP 0 145 844 B1 beschrieben. Bei einer Positionsmesseinrichtung mit den erfindungsgemäß ausgestalteten Bereichsmarkierungen ist die Funktion von Grenzlagenschaltern besonders vorteilhaft realisierbar, indem die Bereichsmarkierungen 5, 6 in den Limitbereichen 50, 60 teilweise abgedeckt werden. Wie in Figur 2 dargestellt ist, sind hierzu Blenden 51, 61 am Maßstab 1 aufgebracht. Diese Blenden 51, 61 können in Form von verschiebbaren, den Maßstab 1 umgreifenden aus Federblech bestehenden Klammern realisiert sein, oder sie können auch auf die Oberfläche des Maßstabs 1 aufgedampft, aufgeklebt oder in Form von Filtergläsern ausgeführt sein. Die Blenden 51, 61 beeinflussen insbesondere die Ausgangssignale B1; R1 der Fotoempfänger 133, 134; 131 und somit auch den Pegel des Bereichssignals B in den Limitbereichen 50, 60. Anhand des Verlaufs des Bereichssignals B können vier verschiedene Bereiche des Maßstabs 1 unterschieden werden, nämlich linker Limitbereich 50, linker Bereich 5 von der Referenzmarkierung 4, rechter Bereich 6 von der Refe- renzmarkierung 4 sowie rechter Limitbereich 60. Da die unterschiedliche Ablenkung des Abtaststrahlenbündels 12 in den Limitbereichen 50, 60 erhalten bleibt, ist auch in den Limitbereichen 50, 60 die Richtungsinformation - rechte Seite bzw. linke Seite von der Referenzmarkierung 4- enthalten.
In Figur 9 ist eine besonders vorteilhafte Schaltungsanordnung dargestellt, mit der ein Limitsignal L erzeugbar ist, wie es in Figur 11 dargestellt ist. Das damit erzeugte Limitsignal L weist eine relativ hohe Pegeldifferenz zwischen den Limitbereichen 50, 60 und dem übrigen Bereich auf. Der Störabstand ist somit relativ groß.
Zur Erzeugung des Limitsignals L weist die Schaltungsanordnung einen Addierer 21 auf, der das Gegentakt-Referenzmarkensignal R1 und das Takt- Referenzmarkensignal R2 unterschiedlich gewichtet zu dem Signal B2 = R1 + 1,45 . R2 aufsummiert. Das Ausgangssignal B2 des Addierers 21 sowie das Signal B1 werden einem weiteren Addierer 23 zur Bildung des Signals L1 = B2 + 3 * B1 zugeführt. Das Signal L1 wird einer Differenzschaltung 24 zur Bildung des Limitsignals L = L1 - M zugeführt, wobei M die Summe der in einem Addierer 25 aufsummierten Messsignale M1, M2, M3 der Messteilung 3 ist. Das Limitsignal L wird einem Vergleicher 26 zugeführt, in dem das Limitsignal L mit einer Referenzgröße BO verglichen wird. Ist das Limitsignal L größer als die Referenzgröße BO, bedeutet dies, dass sich die Abtasteinrichtung 2 im zulässigen Bereich befindet. Ist das Limitsignal L kleiner als die Referenzgröße BO, bedeutet dies, dass sich die Abtasteinrichtung 2 in einem der Limitbereich 50 oder 60 befindet. Ob sich die Abtasteinrichtung 2 im rechten oder im linken Limitbereich befindet wird anhand des Bereichssignals B erkannt.
Durch die optische Beeinflussung der Bereichsmarkierungen 5, 6 in den Li- mitbereichen 50, 60 bleibt die richtungsselektive Ablenkung auf die Fotoempfänger 131 bzw. 133, 134 erhalten, so dass keine zusätzlichen Fotoempfänger zur Abtastung der Limitbereiche 50, 60 erforderlich sind. Weiterhin ist eine platzsparende Anordnung der Bereichsmarkierungen 5, 6 und der Limitbereiche gewährleistet. Vorteilhaft ist, wenn die Abtastsignale R1 , B1 zur Bildung des Bereichssignals B in einer Schaltungsanordnung nach einer ersten Verknüpfungsregel und zur Bildung des Limitsignals L nach einer zweiten davon abweichenden Verknüpfungsregel kombiniert werden, wobei die erste Verknüpfungsregel eine Differenzbildung der Abtastsignale (R1-B1) und die zweite Verknüpfungsregel eine Addition (R1+B1) enthält. Bei einer Verschmutzung des Maßstabes 1 bzw. Unterbrechung des Abtaststrahlenganges sinkt das Limitsignal L unter die Referenzgröße B0. Bei einem Fehler wird in diesem Beispiel die gleiche Information erzeugt, wie bei Erreichen eines Limitbereichs.
Alternativ können die Limitmarkierungen auch gebildet werden, indem die Intensität der Beugungsordnungen variiert wird, dazu dienen die Gitterparameter Strich-Lücken-Verhältnis und bei Phasengitter die Phasentiefe. Bei dieser Alternative bleibt die Richtung des abgelenkten Lichtes und somit die Bereichsinformation ebenfalls erhalten.
Die Limitmarkierungen können auch durch weitere ablenkende Bereiche gebildet sein, die sich von den Bereichsmarkierungen 5, 6 derart unterscheiden, dass sie das auftreffende Licht in eine andere Richtung auf weitere Fotoempfänger lenken. Insbesondere sind dann die Limitmarkierungen Git- ter mit anderen Gitterparametern (Teilungsperiode und/oder Gitterrichtung) als die Gitter der Bereichsmarkierungen 5, 6. Werden die ersten Beugungsordnungen detektiert, dann stehen den Limitbereichen unterschiedliche Orte in der Brennebene der Linse und damit unterschiedliche Fotoelemente zur Verfügung.
Anhand des dargestellten Beispiels ist der Maßstab 2 reflektierend ausgebildet. In nicht dargestellter Weise kann der Maßstab auch transparent ausgeführt sein, so dass die Gitter 3 und 6 als transparente Beugungsgitter aus- gebildet sind. Die Erfindung ist also bei Auflicht- sowie bei Durchlicht-Abtastung realisierbar.
Die unterschiedlichen Fotoempfänger 131, 133, 134 sind diskrete Einzelelemente oder Elemente eines Arrays.
Die Bereichsmarkierungen zur Unterscheidung mehrerer Messbereiche entlang des Maßstabs sind in dem oben dargestellten vorteilhaften Beispiel Gitter mit unterschiedlichen Gitterparametern, wobei sich die Gitterparameter von einem Messbereich zum anderen Messbereich sprunghaft ändern. Alternativ dazu können sich die Gitterparameter auch kontinuierlich ändern, um eine größere Anzahl von Messbereichen voneinander unterscheidbar auszugestalten.
Eine weitere Anwendung von Bereichsmarkierungen ist das Markieren des Umfeldes beidseits der Referenzmarke. In Bereichen beidseits der Referenzmarke kann somit ein Bereichssignal erzeugt werden, das bei der Positionsmessung auf die kommende Referenzmarkierung hinweist und daraufhin kann gegebenenfalls die Verfahrgeschwindigkeit reduziert werden.
Zusammenfassend besteht die Erfindung also darin, eine Positionsmesseinrichtung mit einem Maßstab und einer relativ dazu in Messrichtung beweglichen Abtasteinrichtung anzugeben, wobei
- der Maßstab eine Messteilung aufweist und durch Abtastung der Messteilung periodische Messsignale erzeugbar sind, - der Maßstab zumindest eine Referenzmarkierung aufweist und durch Abtastung der Referenzmarkierung ein Referenzmarkensignal erzeugbar ist,
- der Maßstab optisch abtastbare Bereichsmarkierungen aufweist und durch lichtelektrische Abtastung der Bereichsmarkierungen mit einem Abtaststrahlenbundel ein Bereichssignal erzeugbar ist, durch dessen
Charakteristik mehrere Messbereiche neben der Referenzmarke unterscheidbar sind, und
- die Bereichsmarkierungen optisch unterschiedlich ablenkende Elemente sind, welche das auftreffende Abtaststrahlenbundel in den mehreren Messbereichen auf unterschiedliche Fotoempfänger ablenkt.

Claims

Patentansprüche
1. Positionsmesseinrichtung mit einem Maßstab (1) und einer relativ dazu in Messrichtung (X) beweglichen Abtasteinrichtung (2), wobei der Maßstab (1) eine Messteilung (3) aufweist und durch Abtastung der Messteilung (3) periodische Messsignale (M1, M2, M3) erzeug- bar sind, der Maßstab (1) zumindest eine Referenzmarkierung (4) aufweist und durch Abtastung der Referenzmarkierung (4) ein Referenzmarkensignal (R1 , R2) erzeugbar ist, der Maßstab (1) optisch abtastbare Bereichsmarkierungen (5, 6) aufweist und durch lichtelektrische Abtastung der Bereichsmarkierungen (5, 6) mit einem Abtaststrahlenbundel (12) ein Bereichssignal (B) erzeugbar ist, durch dessen Charakteristik mehrere Messbereiche (5, 6, 50, 60) neben der Referenzmarke (4) unterscheidbar sind, dadurch gekennzeichnet, dass - die Bereichsmarkierungen optisch unterschiedlich ablenkende Elemente (5, 6) sind, welche das auftreffende Abtaststrahlenbundel (12) in den mehreren Messbereichen (5, 6, 50, 60) auf unterschiedliche Fotoempfänger (131, 133, 134) ablenkt.
2. Positionsmesseinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die optisch ablenkenden Elemente Gitter (5, 6) mit unterschiedlichen Gitterparametern sind.
3. Positionsmesseinrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Messteilung (3), die Referenzmarkierung (4) und die Bereichsmarkierungen (5, 6) Phasengitter sind.
4. Positionsmesseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bereichsmarkierungen (5, 6) und die Referenzmarkierung (4) in einer gemeinsamen Spur angeordnet sind.
5. Positionsmesseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die unterschiedlichen Fotoempfänger (131, 133, 134) derart angeordnet sind, dass ein auf die Referenzmarkierung (4) auftreffendes Abtaststrahlenbundel (12) ebenfalls auf zumin- dest einen dieser Fotbempfänger (131 ; 133, 134) gerichtet ist.
6. Positionsmesseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch das Bereichssignal (B) unterscheidbar ist, ob sich die Abtasteinrichtung (2) auf der ersten oder der zweiten Seite der Referenzmarkierung (4) befindet, indem die Bereichsmarkierung (5) auf der ersten Seite der Referenzmarkierung (4) derart ausgebildet ist, dass das auftreffende Abtaststrahlenbundel (12) auf einen ersten Fotoempfänger (131) trifft und die Bereichsmarkierung (6) auf der zweiten Seite der Referenzmarkierung (4) derart ausgebildet ist, dass das auftreffende Abtaststrahlenbundel (12) auf zumindest einen zweiten Fotoempfänger (133, 134) trifft.
7. Positionsmesseinrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Bereichsmarkierung (5) auf der ersten Seite der Referenzmar- kierung (4) reflektierend oder transparent ausgebildet ist und die Bereichsmarkierung (6) auf der zweiten Seite der Referenzmarkierung (4) als Beugungsgitter ausgebildet ist.
8. Positionsmesseinrichtung nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass der Maßstab (1) Limitbereiche (50, 60) aufweist, wobei die Limitbereiche (50, 60) durch partielles Verändern der optischen Wirkung der Bereichsmarkierungen (5, 6) gebildet sind.
9. Positionsmesseinrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Limitbereiche (50, 60) durch partielles Abdecken der Bereichsmarkierungen (5, 6) gebildet sind.
10. Positionsmesseinrichtung nach Anspruch 9, dadurch gekennzeichnet, dass zur Bildung der Limitbereiche (50, 60) jeweils eine Blende (51, 61) auf den Bereichsmarkierungen (5, 6) aufgebracht ist.
11. Positionsmesseinrichtung nach einem der vorhergehenden Ansprüche 6 bis 10, dadurch gekennzeichnet, dass durch lichtelektrische Abtastung der Referenzmarkierung (4) zumindest ein Referenzmarkensignal (R1, R2) erzeugbar ist, durch lichtelektrische Abtastung der Bereichsmarkierungen (5, 6) jeweils vom ersten Fotoempfänger (131) und vom zumin- dest zweiten Fotoempfänger (133, 134) ein zweites Abtastsignal (B1) erzeugbar ist, wobei zur Bildung eines Bereichssignals (B) diese Signale (R1, B1) in einer Auswerteeinheit nach einer ersten Verknüpfungsregel kombiniert sind und zur Bildung eines Limitsignals (L) nach einer zweiten davon abweichenden Verknüpfungsregel kombiniert sind.
PCT/EP2002/007453 2001-07-09 2002-07-05 Positionsmesseinrichtung WO2003006926A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003512646A JP4150337B2 (ja) 2001-07-09 2002-07-05 位置測定装置
ES02764630T ES2376656T3 (es) 2001-07-09 2002-07-05 Dispositivo medidor de posición.
US10/483,971 US7057161B2 (en) 2001-07-09 2002-07-05 Position measuring device
AT02764630T ATE538365T1 (de) 2001-07-09 2002-07-05 Positionsmesseinrichtung
EP02764630A EP1407231B1 (de) 2001-07-09 2002-07-05 Positionsmesseinrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10132521A DE10132521A1 (de) 2001-07-09 2001-07-09 Positionsmesseinrichtung
DE10132521.5 2001-07-09

Publications (1)

Publication Number Publication Date
WO2003006926A1 true WO2003006926A1 (de) 2003-01-23

Family

ID=7690656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/007453 WO2003006926A1 (de) 2001-07-09 2002-07-05 Positionsmesseinrichtung

Country Status (8)

Country Link
US (1) US7057161B2 (de)
EP (1) EP1407231B1 (de)
JP (1) JP4150337B2 (de)
CN (1) CN1235020C (de)
AT (1) ATE538365T1 (de)
DE (1) DE10132521A1 (de)
ES (1) ES2376656T3 (de)
WO (1) WO2003006926A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357700C (zh) * 2003-11-14 2007-12-26 约翰尼斯海登海恩博士股份有限公司 用于位置测量装置的分度机构及位置测量装置
US7421800B2 (en) 2004-06-21 2008-09-09 Renishaw Plc Scale reading apparatus

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10244234A1 (de) * 2002-09-23 2004-03-25 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
DE10329374A1 (de) * 2003-06-30 2005-01-20 Dr. Johannes Heidenhain Gmbh Abtastbaueinheit einer Positionsmesseinrichtung
ES2285390T3 (es) * 2004-11-23 2007-11-16 Fagor, S.Coop Codificador lineal con compensacion de temperatura.
DE102005002189B4 (de) * 2005-01-17 2007-02-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zum Ermitteln der Winkelposition eines Lichtstrahls und Verfahren zum Betreiben einer Vorrichtung zum Ermitteln der Winkelposition eines Lichtstrahls
CN101268337A (zh) * 2005-09-21 2008-09-17 皇家飞利浦电子股份有限公司 用于检测主体运动的系统
DE102006021484A1 (de) * 2006-05-09 2007-11-15 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
DE102007056612A1 (de) * 2007-11-23 2009-05-28 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
JP5178819B2 (ja) * 2008-03-31 2013-04-10 Thk株式会社 位置検出装置及びこれを用いたリニアアクチュエータ
EP2636991A1 (de) * 2012-03-07 2013-09-11 Hexagon Metrology S.p.A. Messmaschine mit kompensierten Meßsystem von thermisch bedingten Fehlern aufgrund der Dilatation des Maßstabs eines linearen Transducers
JP6161870B2 (ja) * 2012-03-12 2017-07-12 Dmg森精機株式会社 位置検出装置
DE102014215633A1 (de) * 2013-11-28 2015-05-28 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
DE102014209004A1 (de) * 2014-05-13 2015-11-19 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
DE102014218483B4 (de) 2014-09-15 2016-10-13 Deckel Maho Pfronten Gmbh Positionsmesseinrichtung zum Einsatz an einer Werkzeugmaschine
DE102015201297B4 (de) * 2015-01-26 2024-03-14 Bundesdruckerei Gmbh Vorrichtung und Verfahren zum Bestimmen einer Ausrichtung zwischen einer Vorderseitenmarkierung und einer Rückseitenmarkierung eines Dokumentenkörpers
DE102015207275B4 (de) * 2015-04-22 2018-06-07 Robert Bosch Gmbh Maßverkörperung mit signalkompensierenden Markierungen
CN106141789B (zh) * 2015-07-31 2018-08-31 宁夏巨能机器人系统有限公司 一种堆垛料道的定位装置及其定位方法
DE102016200847A1 (de) * 2016-01-21 2017-07-27 Dr. Johannes Heidenhain Gesellschaft Mit Beschränkter Haftung Optische Positionsmesseinrichtung
DE102016211150A1 (de) * 2016-06-22 2017-12-28 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
CN107462168A (zh) * 2017-08-31 2017-12-12 广东工业大学 一种新型阵列光电传感器光栅位移检测系统及方法
DE102018202556A1 (de) * 2018-02-20 2019-08-22 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
CN109459271B (zh) * 2018-12-21 2024-04-30 武汉飞流智能技术有限公司 一种取水管线定位装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160811A2 (de) * 1984-05-08 1985-11-13 Dr. Johannes Heidenhain GmbH Photoelektrische Messeinrichtung
EP0498904A1 (de) * 1991-02-11 1992-08-19 Dr. Johannes Heidenhain GmbH Photoelektrische Positionsmesseinrichtung
EP0895063A1 (de) * 1997-07-30 1999-02-03 Dr. Johannes Heidenhain GmbH Positionsmesseinrichtung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3308814C2 (de) * 1983-03-12 1985-02-07 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Meßeinrichtung
DE3334609C1 (de) 1983-09-24 1984-11-22 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Laengen- oder Winkelmesseinrichtung
DE4111873C2 (de) 1991-04-11 1995-05-11 Boehringer Werkzeugmaschinen Meßeinrichtung an einer Werkzeugmaschine zum Bestimmen des jeweiligen Standorts eines beweglichen Bauteils
DE9209801U1 (de) 1992-07-22 1992-09-17 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut, De
ATE189057T1 (de) 1994-02-23 2000-02-15 Heidenhain Gmbh Dr Johannes Vorrichtung zum erzeugen von positionsabhängigen signalen
US6229140B1 (en) * 1995-10-27 2001-05-08 Canon Kabushiki Kaisha Displacement information detection apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160811A2 (de) * 1984-05-08 1985-11-13 Dr. Johannes Heidenhain GmbH Photoelektrische Messeinrichtung
EP0498904A1 (de) * 1991-02-11 1992-08-19 Dr. Johannes Heidenhain GmbH Photoelektrische Positionsmesseinrichtung
EP0895063A1 (de) * 1997-07-30 1999-02-03 Dr. Johannes Heidenhain GmbH Positionsmesseinrichtung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357700C (zh) * 2003-11-14 2007-12-26 约翰尼斯海登海恩博士股份有限公司 用于位置测量装置的分度机构及位置测量装置
US7421800B2 (en) 2004-06-21 2008-09-09 Renishaw Plc Scale reading apparatus

Also Published As

Publication number Publication date
ATE538365T1 (de) 2012-01-15
CN1235020C (zh) 2006-01-04
CN1526065A (zh) 2004-09-01
US7057161B2 (en) 2006-06-06
JP2004534247A (ja) 2004-11-11
ES2376656T3 (es) 2012-03-15
EP1407231A1 (de) 2004-04-14
DE10132521A1 (de) 2003-01-30
JP4150337B2 (ja) 2008-09-17
EP1407231B1 (de) 2011-12-21
US20040245442A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
EP1407231B1 (de) Positionsmesseinrichtung
EP0513427B1 (de) Interferentielle Positionsmessvorrichtung
EP0160811B1 (de) Photoelektrische Messeinrichtung
EP0509979B1 (de) Photoelektronische Positionsmesseinrichtung
EP1111345B1 (de) Positionsmesseinrichtung mit Inkrementalspur mit zwei unterschiedlichen Teilungsperioden
EP1923673B1 (de) Positionsmesseinrichtung
EP2318812B1 (de) Optische positionsmesseinrichtung
EP1002219A1 (de) Abtasteinheit für eine optische positionsmesseinrichtung
EP1271107B1 (de) Positionsmesseinrichtung
EP2063230A2 (de) Optische Positionsmesseinrichtung
DE60033075T3 (de) Kodierer
EP0669518B1 (de) Vorrichtung zum Erzeugen von positionsabhängigen Signalen
EP3064902A1 (de) System zur Bestimmung von Positionen
EP1995566A2 (de) Maßstab für eine Positionsmesseinrichtung und Positionsmesseinrichtung
DE19726935B4 (de) Optische Positionsmeßeinrichtung
EP1427985B1 (de) Positionsmesseinrichtung und verfahren zum betrieb einer positionsmesseinrichtung
EP2878930B1 (de) Positionsmesseinrichtung
EP0498904B1 (de) Photoelektrische Positionsmesseinrichtung
DE10346380B4 (de) Positionsmesseinrichtung
DE4423877A1 (de) Längen- oder Winkelmeßeinrichtung
EP0434973B1 (de) Lichtelektrische Positionsmesseinrichtung
DE202005002622U1 (de) Optische Positionsmesseinrichtung
WO1998016802A1 (de) Optische positionsmesseinrichtung
DE19646391A1 (de) Inkrementales Meßsystem mit Absolutmarken
DE19962309A1 (de) Meßkopf zur Messung einer Bewegung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002764630

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003512646

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028138880

Country of ref document: CN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWP Wipo information: published in national office

Ref document number: 2002764630

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10483971

Country of ref document: US