WO2003006589A1 - Method of pelletizing, handling and transporting gas hydrate - Google Patents

Method of pelletizing, handling and transporting gas hydrate Download PDF

Info

Publication number
WO2003006589A1
WO2003006589A1 PCT/JP2002/005224 JP0205224W WO03006589A1 WO 2003006589 A1 WO2003006589 A1 WO 2003006589A1 JP 0205224 W JP0205224 W JP 0205224W WO 03006589 A1 WO03006589 A1 WO 03006589A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas hydrate
hydrate
gas
loading
storage
Prior art date
Application number
PCT/JP2002/005224
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuya Takaoki
Shigeru Nagamori
Yuichi Kato
Takashi Arai
Original Assignee
Mitsui Engineering & Shipbuilding Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001207339A external-priority patent/JP2002220353A/en
Application filed by Mitsui Engineering & Shipbuilding Co., Ltd. filed Critical Mitsui Engineering & Shipbuilding Co., Ltd.
Priority to JP2003512348A priority Critical patent/JP4167977B2/en
Priority to AU2002306357A priority patent/AU2002306357B9/en
Publication of WO2003006589A1 publication Critical patent/WO2003006589A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/366Powders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/363Pellets or granulates

Definitions

  • the present invention relates to a method of granulating, loading and transporting a so-called gas hydrate composed of gas mainly composed of gas such as natural gas and water, and a method of granulating, loading and transporting the gas hydrate.
  • gas hydrate composed of gas mainly composed of gas such as natural gas and water
  • LNG liquefied natural gas
  • compressed natural gas liquefied natural gas
  • LNG needs to be transported and stored at a cargo temperature of minus 16 2 ° C, and special vessels (LNG carriers) with expensive tanks specially manufactured for transport and storage are required. Storage facilities are required.
  • LNG carriers special vessels
  • a lot of energy needs to be put into production in order to make the liquid a negative 16 2 ° C.
  • LNG is dangerous because it quickly evaporates if the control goes wrong.
  • LNG is not suitable for long-term storage because it has a high vaporization rate due to extremely low temperature as described above.
  • natural gas and other gases mainly containing natural gas have attracted attention as clean energy sources and raw materials for various structures, and methane, such as natural gas, is mainly used for transportation and storage. Gas as a component is artificially or industrially Research into slate is underway.
  • Gasuhai Doreto is Ri Contact with a crystal structure molecules gas is within one by one in the basket to make the water molecules, for example, in the main Tanhai Doreto, meta Nhai Dre 1 m 3 at normal pressure It is said that 164 m 3 of methane can be stored in the area (the volume of water is 0.8 m 3 ).
  • methane hydrate has high gas storability and is attracting attention as a new natural gas transport and storage alternative to LNG.
  • the methane gas density in the methane hydrate is about 3.5 times lower than that of LNG.
  • the liquefaction temperature minus 16 It is said that energy efficiency is greatly improved because it is not necessary to cool to below C).
  • methane hydrate When methane hydrate is manufactured artificially, for example, water or antifreeze is sprayed from a spraying means into a pressure vessel maintained at a temperature of 1 to 10 ° (:, pressure: 30 to: 100 atm). And natural gas (methane) is supplied from the supply pipe, and water or antifreeze sprayed from the spraying means and natural gas (methane) are synthesized to produce powdery methane hydrate. Powdered methane hydrate has a low filling rate (volume of methane hydrate / volume of storage container), so it is large for transportation and storage. A sunset having a large volume is required.
  • powdered gas hydrates have a problem in that they are combined with each other by their own weight and become rock-like, making it difficult to remove (unload) them.
  • the present invention has been made in view of such conventional problems, and aims at improving the filling rate of gas hydrates, safety during transportation and storage, and ease of handling during loading. It is an object of the present invention to provide a method for granulating, handling, and transporting a gas hydrate whose properties can be measured.
  • a method for granulating a gas hydrate of the present invention is characterized in that a powdery gas hydrate is compression-molded by a granulator to form a pellet.
  • a powdery gas hydrate is compression-molded by a granulator to form a pellet, and thereafter, the solidified gas hydrate is stored in a tank of a ship or a storage facility. It is characterized by loading in
  • the powdery gas hydrate is processed into a pellet, it is preferable to spray a liquid on the gas hydrate in advance to wet the gas hydrate. Also, solidified gas It is preferable to spray a liquid on the hydrate to moisten it and then supercool it. It is also preferable to mix two or more types of pelletized gas hydrates with different dimensions and load them on ships or storage facilities. Further, it is preferable that the diameter ratio of two or more kinds of pellet-shaped gas hydrates having different dimensions is set to 1.5 to 30.
  • the powdered gas hydrate is compression-molded by a granulator to form a pellet, and thereafter, the solidified gas hydrate is shipped or stored. It is loaded into the storage tank of the facility and transported at a predetermined temperature.
  • the storage temperature of the pellet-shaped gas hydrate it is preferable to keep the storage temperature of the pellet-shaped gas hydrate at ⁇ 5 ° C. to ⁇ 30 ° C.
  • FIG. 1 is an explanatory view showing a method for granulating and loading gas hydrate according to the present invention.
  • FIG. 2 is an enlarged front view including a partial cross section of the pelletizer.
  • FIG. 3 is a cross-sectional view of the transfer device.
  • FIG. 4 is an explanatory diagram of a gas hydrate manufacturing method.
  • FIG. 5 is an explanatory diagram of a case where two types of gas hydrates, large and small, are mixed.
  • Fig. 6 is an explanatory diagram for loading on a tank truck.
  • FIG. 7 is a sectional view of the carrier.
  • FIG. 8 is a sectional view showing another example of the carrier.
  • FIG. 1 is an explanatory view showing a method of granulating and loading a gas hydrate according to the present invention. A brief description of how to make a drate artificially is provided.
  • Methane hydrate can be produced by two methods, a dry method and a wet method. When it is produced by a wet method, for example, it is produced by an apparatus shown in FIG.
  • This device is composed of a cylindrical container 101, the temperature in the container 101 is maintained at 1 to 100 ° C, and the pressure is maintained at 30 to 100 atm.
  • the water or antifreeze sprayed from the spraying means 112 is combined with natural gas (methane) supplied from the supply pipe 108 in the reaction section 101A to form powdered methane a. Generates and falls to the surface of water or antifreeze in storage section 101B.
  • the powdered methane hydrate a floating on the surface of water or antifreeze is discharged sequentially by the scraper 114. It is attracted to 107 and discharged from outlet 107.
  • the powdery medium a discharged from the discharge port 107 is stored in a storage tank (not shown) after removing excess water or antifreeze.
  • 103 is a cooling jacket
  • 106 is a coolant supply line
  • 102 is a coolant outlet line
  • 104 is a water or antifreeze draining line
  • 105 is water.
  • a circulation line for antifreeze 110 is a circulation pump
  • 111 is a line for extracting water or antifreeze
  • 113 is a supply line for water or antifreeze.
  • 1 is a storage tank for storing powdered methane hydrate a
  • 2 is a horizontal screw conveyor provided at the bottom of the storage tank 1
  • screw conveyor 2 is It comprises a cylindrical main body 3 and a screw shaft 4 actively driven by an electric motor 5.
  • the main body 2 has a downward duct 6 on the lower surface of the tip.
  • a pelletizer (granulator) 7 including two rollers 8a and 8b is provided.
  • the mouth roller 8a rotates clockwise in the figure, and the mouth roller 8b rotates counterclockwise in synchronization with the roller 8a.
  • hemispherical depressions 9 are provided at regular intervals in the circumferential direction on the outer peripheral surfaces of the rollers 8a and 8b, respectively.
  • the shape of the depression 9 is not limited to a hemisphere, but may be a desired shape such as a semi-elliptical sphere or a semi-column.
  • the size is also set to an arbitrary size.
  • the pelletizer is not limited to the roller type described above, and other types may be used.
  • a water injection nozzle 10 is provided between duct 6 and pelletizer 17. Further, a horizontal transfer device 11 is provided immediately below the pelletizer 17.
  • the transfer device 11 includes a belt conveyor 11 and a box-shaped main body 13.
  • the main body 13 has a hopper 14 directly below the pelletizer 17 and has a downward duct 15 on the lower surface of the tip.
  • the main body 13 of the transfer device 11 has a water injection nozzle 10a provided downstream of the hopper 14. The tip of the water injection nozzle 10 a faces the upper surface of the belt conveyor 1.
  • the main body 13 has a cooling jacket (not shown) on the outside thereof, so that the conveyed object conveyed by the belt conveyor 12 is supercooled.
  • the belt conveyor 12 is held by two or three rollers 16 at one location so as to maintain a dynamic angle of repose (see Fig. 3).
  • the space between the duct 6 of the screw conveyor 2 and the hopper 14 of the transfer device 11 is sealed with a cover (not shown) so that the vaporized gas does not leak to the outside.
  • the duct 15 of the transfer device 11 is inserted into the cargo port 32 of the bulk carrier 30 (load tank) 31 and then the screw conveyor 2
  • the powdered medium a in the storage tank 1 is supplied to the pelletizer 17 by the horizontal screw-comparator-2.
  • the powdery methane hydrate a supplied to the pelletizer 17 is compression-molded by two rollers 8 a and 8 b having a hemispherical recess 9 on the outer peripheral surface, and the spherical shape ( It is formed into a ball-shaped) meta hydrate b. If the wetness of the powdery medium hydrate a is insufficient, water c is sprayed from the water injection nozzle 10 to wet the powdery hydrate a. Then, the tightening of the powdered metal nose plate a becomes firm and hard to break even if dropped.
  • the ball-shaped methane hydrate (hereinafter referred to as the methane hydrate ball) b is from the pelletizer 17 It is supplied onto the belt conveyor 12 of the transport device 11. For example, when loading into a large carrier (bulk carrier) 30 hold (load tank) 31, the main body 13 of the transport device 11 is used. Water c is sprayed from the water injection nozzle 10a provided at the methane hydrate ball b on the belt conveyor 12 and supercooled to -5 ° C to -20 ° C.
  • the outer surface of the methane hydrate ball b is covered with an ice film (capsule), the strength of the methane hydrate ball b further increases, and a large carrier (bulk carrier) 30 holds (load tank). It will be harder to break even if loaded on 31 and less crushed by its weight when loaded in large quantities.
  • the powdery gas hydrate a has a self-preserving property because it has a crystal structure in which one gas molecule is contained in the water created by water molecules.
  • covering the outer surface of the metal hydrate ball b with an ice film (capsule) has the advantage of further improving self-preservation.
  • the methane drain balls b whose outer surface is covered with an ice film, are loaded into the hold (load tank) 31 of the bulk carrier 30 by the belt conveyor 12.
  • the hold (load tank) 31 has a temperature lower than the temperature at which the methanhydrate pole b decomposes (for example, minus 5 ° C Minus 30 ° C).
  • the bulk carrier 30 in FIG. 7 has a loading conveyor 33 and a discharging conveyor 35. In addition, it has a baffle plate and hatch 38 for evenly loading gas hydrate balls b.
  • the baffle plate / hatch 38 moves up and down.
  • 31 is the hold
  • 34 is the gate
  • 36 is the ballast tank
  • 37 is the cover
  • 39 is the insulation.
  • the bulk carrier 30 shown in Fig. 8 has a cargo handling machine 50 that can move in the bow direction.
  • 31 is the hold
  • 37 is the cover
  • 39 is the insulation.
  • methane hydrate ball b when loading methane hydrate ball b into tank lorry 40, it is also loaded into tank 41 of tank opening 40 by belt-conveyor-type transfer device 11 as in the case of a ship (Fig. See Figure 6). Also, when storing high-battery balls b in storage facilities, As in the case of the tank lorry, the sheet is conveyed by a belt-conveyor type conveying device 11.
  • the size of the metahydrate ball b may be from a few centimeters to a few tens of centimeters, and sometimes about a few meters. The larger the size, the lower the surface area ratio and the less bridging occurs, resulting in a higher filling rate.
  • the filling rate of the methane hydrate pole b granulated as described above is about 60%. Incidentally, since the filling rate of the powdery gas hydrate is 40%, it can be seen that the filling rate is greatly improved by granulating the gas hydrate.
  • Fig. 5 shows a method to further improve the filling rate of the hydrated ball.
  • this is a method of combining a methane hydrate pole b, which has a large particle diameter, with a pelletizer 17, and a pelletizer 17, which manufactures a methane hydrate ball b "with a small particle diameter.
  • This method attempts to fill the space (1 filling rate) created by a large methane hydrate drain b 'with a small methane hydrate drain b'. If this method is adopted, the filling rate of the gas hydrate is further improved to about 80%.
  • the diameter ratio is preferably in the range of 1.5 to 30, more preferably in the range of 5 to 20.
  • the filling rate does not increase because the small metal hydrate ball b "does not enter the space of the large metal hydrate ball b. If it exceeds 30, the number of small-sized methane hydrate balls b "increases, and bridging tends to occur, so that the filling rate does not increase.
  • the diameter of the metahedrate pole b other than spherical, such as an elliptical sphere, is
  • the diameter of the inscribed sphere is the diameter of the inscribed sphere.
  • the size of the cargo hold (loading tank) and the tank of the evening crawler will be less than one-half that of the case where the powder of the powder is loaded.
  • the number of types of the methane hydrate balls is preferably two or more. For example, if the number of the methane hydrate poles is three, large, medium, and small, the filling rate can be further improved.
  • the contact area between adjacent methane hydrate balls is small, so that the The late balls maintain a sintered state. Therefore, the aggregate of the transported methanehydrate balls can be easily crushed, and can be unloaded with a grab or the like.
  • the present invention is also applicable to granulation, cargo handling, storage and transportation of gas hydrates other than methane, such as propane and carbon dioxide.
  • a gas hydrate can be made into a solid having uniform shape and quality by industrially pelletizing a powdery gas hydrate. This dramatically increases the fluidity of the gas hydrate, making it easier to handle and transport.
  • the present invention makes it possible to industrially pelletize a powdery gas hydrate, so that the filling rate is significantly improved as compared with the gas hydrate of powder, and the economics of transportation and storage can be secured. Became.
  • the gas hydrate has a crystal structure in which gas molecules are contained one by one in a basket made of water molecules, so it rapidly evaporates even if the temperature control becomes abnormal. It is safer than LNG. In addition, because of the slow vaporization rate, longer-term storage than LNG Suitable for warehouse.
  • the contact area of the ball-shaped gas hydrate is small, the ball-shaped gas hydrate maintains a sintered state. For this reason, the aggregate of ball-shaped gas hydrates collected during transportation or storage can be easily crushed, and can be easily unloaded using, for example, a grab.
  • the present invention also provides a method for forming an ice film (force capsule) on the surface of a ball-shaped gas hydrate by spraying water onto the ball-shaped gas hydrate and supercooling the ball-shaped gas hydrate.
  • Strength is increased and it is hard to break. Therefore, a large amount of the gas hydrate can be transported and stored.
  • two or more types of ball-shaped gas hydrates having different dimensions are mixed and loaded. The filling rate can be further improved as compared with the case of loading.
  • the present invention having the above-described excellent effects can be extremely effectively used for granulation, cargo handling and transportation of gas hydrate.

Abstract

Powdery gas hydrate is compression-molded and palletized by a pelletizing device. Thereafter, the solid gas hydrate is loaded into a ship or in a storage tank in a storage facility.

Description

明 細 書  Specification
ガスハイ ドレー トの造粒及び荷役並びに輸送方法 技術分野  Granulation and cargo handling of gas hydrate and transportation method
本発明は、 天然ガスなど、 メ 夕ンを主成分とするガ スと水とから構成されている所謂ガスハイ ドレ一トを 造粒、 荷役及び輸送するガスハイ ドレー トの造粒及び 荷役並びに輸送方法に関する。  The present invention relates to a method of granulating, loading and transporting a so-called gas hydrate composed of gas mainly composed of gas such as natural gas and water, and a method of granulating, loading and transporting the gas hydrate. About.
目景技術  Visual technology
従来、 天然ガスの輸送や貯蔵は、 液化天然ガス (以 下、 L N Gという) 、 或いは圧縮天然ガスの形で行わ れている。  Traditionally, the transport and storage of natural gas has been carried out in the form of liquefied natural gas (hereinafter LNG) or compressed natural gas.
ところが、 L N Gは、 貨物温度をマイナス 1 6 2 °C に保って輸送や貯蔵する必要があり、 輸送や貯蔵のた めに特別に製作された高価なタンクを持つ特別な船舶 ( L N G船) や貯蔵施設が必要である。 また、 マイナ ス 1 6 2 °Cの液体にするために、 製造に多くのェネル ギーを投入する必要がある。 また、 L N Gは、 コン ト ロールが不調になる と、 急激に気化し、 危険である。 また、 L N Gは、 上記のように、 極端な低温のため、 気化速度が速く 、 長期貯蔵に不向きである。  However, LNG needs to be transported and stored at a cargo temperature of minus 16 2 ° C, and special vessels (LNG carriers) with expensive tanks specially manufactured for transport and storage are required. Storage facilities are required. In addition, a lot of energy needs to be put into production in order to make the liquid a negative 16 2 ° C. In addition, LNG is dangerous because it quickly evaporates if the control goes wrong. In addition, LNG is not suitable for long-term storage because it has a high vaporization rate due to extremely low temperature as described above.
一方、 ク リーンなエネルギー源や各種構造の原料と して、 天然ガスなど、 メ 夕ンを主成分とするガスが注 目され、 その輸送や貯蔵のために、 天然ガスなど、 メ タンを主成分とするガスを人工的、 或いは工業的にガ スハイ ドレートにする研究が行なわれている。 On the other hand, natural gas and other gases mainly containing natural gas have attracted attention as clean energy sources and raw materials for various structures, and methane, such as natural gas, is mainly used for transportation and storage. Gas as a component is artificially or industrially Research into slate is underway.
ガスハイ ドレートは、 水の分子の作るカゴの中にガ スの分子が一つずつ収まっている結晶構造を持ってお り、 例えば、 メ タンハイ ドレートでは、 常圧で 1 m 3 のメ タ ンハイ ドレー ト中 (このう ち水の体積は、 0 . 8 m 3 ) に、 1 6 4 m 3 のメ タンを包蔵できるといわ れている。 Gasuhai Doreto is Ri Contact with a crystal structure molecules gas is within one by one in the basket to make the water molecules, for example, in the main Tanhai Doreto, meta Nhai Dre 1 m 3 at normal pressure It is said that 164 m 3 of methane can be stored in the area (the volume of water is 0.8 m 3 ).
このよう に、 メ タ ンハイ ド レ一 トは、 高いガス包蔵 性を有しているので、 L N Gに代わる天然ガスの新し い輸送および貯蔵体として注目されている。 メ タンハ イ ドレート中のメ タンガス密度は、 L N Gの約 3 . 5 分の 1 であるが、 人口的、 或いは工業的に製造する場 合には、 L N Gのように液化温度 (マイナス 1 6 2 °C 以下) まで冷却する必要がないために、 エネルギー効 率が大幅に改善されるといわれている。  As described above, methane hydrate has high gas storability and is attracting attention as a new natural gas transport and storage alternative to LNG. The methane gas density in the methane hydrate is about 3.5 times lower than that of LNG. However, for man-made or industrial production, the liquefaction temperature (minus 16 It is said that energy efficiency is greatly improved because it is not necessary to cool to below C).
メ タンハイ ドレー トを人工的に製造する場合は、 例 えば、 温度を 1 〜 1 0 ° (:、 圧力を 3 0〜 : I 0 0気圧に 保持した圧力容器内に、 散布手段から水または不凍液 を散布すると共に、 供給管から天然ガス (メ タン) を 供給する。 すると、 散布手段から散布された水または 不凍液と天然ガス (メ タン) とが合成して粉体状のメ タンハイ ドレートが生成される。 粉体状のメ タンハイ ドレー トは、 充填率 (メ タ ンハイ ドレートの体積/貯 蔵容器の体積) が小さいため、 輸送や貯蔵に際して大 きな容積を有する夕ンクが必要となる。 When methane hydrate is manufactured artificially, for example, water or antifreeze is sprayed from a spraying means into a pressure vessel maintained at a temperature of 1 to 10 ° (:, pressure: 30 to: 100 atm). And natural gas (methane) is supplied from the supply pipe, and water or antifreeze sprayed from the spraying means and natural gas (methane) are synthesized to produce powdery methane hydrate. Powdered methane hydrate has a low filling rate (volume of methane hydrate / volume of storage container), so it is large for transportation and storage. A sunset having a large volume is required.
また、 粉体状のガスハイ ドレートは、 長期間大量に 貯蔵すると、 自重などによって互いに結合して岩盤状 となり、 取り出し (荷揚げ) が困難になるという問題 がある。  In addition, when stored in large quantities for a long period of time, powdered gas hydrates have a problem in that they are combined with each other by their own weight and become rock-like, making it difficult to remove (unload) them.
発明の開示  Disclosure of the invention
本発明は、 このような従来の問題に鑑みてなされた ものであり、 その目的とする ところは、 ガスハイ ドレ 一卜の充填率の向上、 輸送及び貯蔵中の安全性、 荷役 時の扱いの容易性などを計ることができるガスハイ ド レートの造粒及び荷役並びに輸送方法を提供すること にある。  The present invention has been made in view of such conventional problems, and aims at improving the filling rate of gas hydrates, safety during transportation and storage, and ease of handling during loading. It is an object of the present invention to provide a method for granulating, handling, and transporting a gas hydrate whose properties can be measured.
上記の課題を解決するため、 本発明のガスハイ ドレ 一トの造粒方法は、 粉体状のガスハイ ドレートを造粒 装置により圧縮成形してペレツ ト状にすることを特徴 とする。  In order to solve the above-mentioned problems, a method for granulating a gas hydrate of the present invention is characterized in that a powdery gas hydrate is compression-molded by a granulator to form a pellet.
また、 本発明のガスハイ ドレートの荷役方法は、 粉 体状のガスハイ ドレートを造粒装置によ り圧縮成形し てペレツ 卜状にし、 しかる後に、 固形化したガスハイ ドレー トを船や貯蔵施設の貯槽に積み込むことを特徴 とする。  Further, in the gas hydrate loading and unloading method of the present invention, a powdery gas hydrate is compression-molded by a granulator to form a pellet, and thereafter, the solidified gas hydrate is stored in a tank of a ship or a storage facility. It is characterized by loading in
ここで、 粉体状のガスハイ ドレ一トをペレツ ト状に 加工する前に、 予め、 ガスハイ ドレ一卜に液を吹きつ けて湿らせることが好ま しい。 また、 固形化したガス ハイ ドレ一卜に液を吹きつけて湿らせ、 しかる後に、 過冷却することが好ましい。 また、 寸法の異なる 2種 以上のペレツ ト状のガスハイ ドレ一トを混合して船や 貯蔵施設の貯槽に積み込むことが好ま しい。 また、 寸 法の異なる 2種以上のペレツ ト状のガスハイ ドレ一ト の直径比を 1 . 5 〜 3 0 とすることが好ましい。 Here, before the powdery gas hydrate is processed into a pellet, it is preferable to spray a liquid on the gas hydrate in advance to wet the gas hydrate. Also, solidified gas It is preferable to spray a liquid on the hydrate to moisten it and then supercool it. It is also preferable to mix two or more types of pelletized gas hydrates with different dimensions and load them on ships or storage facilities. Further, it is preferable that the diameter ratio of two or more kinds of pellet-shaped gas hydrates having different dimensions is set to 1.5 to 30.
一方、 本発明のガスハイ ドレ一 トの輸送方法は、 粉 体状のガスハイ ドレ一トを造粒装置によ り圧縮成形し てペレツ ト状にし、 しかる後に、 固形化したガスハイ ドレートを船や貯蔵施設の貯槽に積み込み、 所定の温 度下で輸送することを特徴とする。  On the other hand, in the gas hydrate transportation method of the present invention, the powdered gas hydrate is compression-molded by a granulator to form a pellet, and thereafter, the solidified gas hydrate is shipped or stored. It is loaded into the storage tank of the facility and transported at a predetermined temperature.
ここで、 ペレツ 卜状のガスハイ ドレ一卜の貯蔵温度 をマイナス 5 °C〜マイナス 3 0 °C に保持するこ とが好 ま しい。  Here, it is preferable to keep the storage temperature of the pellet-shaped gas hydrate at −5 ° C. to −30 ° C.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明に係るガスハイ ドレー トの造粒及び 荷役方法を示す説明図である。  FIG. 1 is an explanatory view showing a method for granulating and loading gas hydrate according to the present invention.
第 2図はペレタイザ一の一部断面を含む拡大正面図 である。  FIG. 2 is an enlarged front view including a partial cross section of the pelletizer.
第 3図は搬送装置の横断面図である。  FIG. 3 is a cross-sectional view of the transfer device.
第 4図はガスハイ ド レ一ト製造方法の説明図である 第 5図は大小 2種類のガスハイ ドレ一トを混合させ る場合の説明図である。 第 6図はタンクローリ一に積み込む場合の説明図で める。 FIG. 4 is an explanatory diagram of a gas hydrate manufacturing method. FIG. 5 is an explanatory diagram of a case where two types of gas hydrates, large and small, are mixed. Fig. 6 is an explanatory diagram for loading on a tank truck.
第 7図は運搬船の断面図である。  FIG. 7 is a sectional view of the carrier.
第 8図は運搬船の他の一例を示す断面図である。  FIG. 8 is a sectional view showing another example of the carrier.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面を用いて説明する 第 1 図は、 本発明に係るガスハイ ドレー トの造粒及 び荷役方法を示す説明図であるが、 その説明を行う前 にメ タンハイ ドレートを人口的に製造する方法につい て簡単に説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing a method of granulating and loading a gas hydrate according to the present invention. A brief description of how to make a drate artificially is provided.
メ タンハイ ドレートは、 乾式法と湿式法の 2つの方 法によって製造するこ とができるが、 湿式法によって 製造する場合は、 例えば、 第 4図に示す装置によって 製造される。  Methane hydrate can be produced by two methods, a dry method and a wet method. When it is produced by a wet method, for example, it is produced by an apparatus shown in FIG.
この装置は、 筒状容器 1 0 1 からなり、 容器 1 0 1 内の温度は 1 〜 1 0 °Cに保持され、 また、 圧力は 3 0 〜 1 0 0気圧に保持されている。 散布手段 1 1 2から 散布された水又は不凍液は、 反応部 1 0 1 Aにおいて 供給管 1 0 8から供給される天然ガス (メ タン) と合 成して粉体状のメ タンハイ ドレート aを生成し、 貯留 部 1 0 1 Bの水又は不凍液の表層に落下する。 水又は 不凍液の表層に浮遊している粉体状のメ タンハイ ドレ ー ト aは、 かき寄せ機 1 1 4によって、 順次、 排出口 1 0 7の方にかき寄せられ、 排出口 1 0 7から排出さ れる。 排出口 1 0 7から排出された粉体状のメ 夕ンハ イ ドレー ト aは、 余分な水又は不凍液を取り除いた後 、 図示しない貯蔵タンクに貯蔵される。 This device is composed of a cylindrical container 101, the temperature in the container 101 is maintained at 1 to 100 ° C, and the pressure is maintained at 30 to 100 atm. The water or antifreeze sprayed from the spraying means 112 is combined with natural gas (methane) supplied from the supply pipe 108 in the reaction section 101A to form powdered methane a. Generates and falls to the surface of water or antifreeze in storage section 101B. The powdered methane hydrate a floating on the surface of water or antifreeze is discharged sequentially by the scraper 114. It is attracted to 107 and discharged from outlet 107. The powdery medium a discharged from the discharge port 107 is stored in a storage tank (not shown) after removing excess water or antifreeze.
なお、 図中、 1 0 3 は冷却ジャケッ ト、 1 0 6 は冷 媒の供給ライ ン、 1 0 2 は冷媒の出口ライ ン、 1 0 4 は水又は不凍液抜き出しライ ン、 1 0 5は水又は不凍 液の循環ライ ン、 1 1 0は循環ポンプ、 1 1 1 は水又 は不凍液の抜き出しライ ン、 1 1 3は水又は不凍液の 補給ライ ンである。  In the figure, 103 is a cooling jacket, 106 is a coolant supply line, 102 is a coolant outlet line, 104 is a water or antifreeze draining line, and 105 is water. Or, a circulation line for antifreeze, 110 is a circulation pump, 111 is a line for extracting water or antifreeze, and 113 is a supply line for water or antifreeze.
次に、 第 1 図を用いて本発明に係るガスハイ ドレ一 トの造粒及び荷役方法について説明する。  Next, a method for granulating and handling a gas hydrate according to the present invention will be described with reference to FIG.
第 1 図において、 1 は、 粉体状のメ タンハイ ドレー ト aを貯蔵する貯蔵タンク、 2 は、 貯蔵タンク 1 の底 に設けた横型のスク リ ュ コンベヤーであ り、 スク リ ューコンベヤー 2は、 筒状の本体 3 と、 電動モ一夕 5 によ り積極駆動されるスク リ ユー軸 4 とから構成さ れている。 本体 2 は、 その先端下面に下向きのダク ト 6 を有している。  In FIG. 1, 1 is a storage tank for storing powdered methane hydrate a, 2 is a horizontal screw conveyor provided at the bottom of the storage tank 1, and screw conveyor 2 is It comprises a cylindrical main body 3 and a screw shaft 4 actively driven by an electric motor 5. The main body 2 has a downward duct 6 on the lower surface of the tip.
ダク ト 6の直下には、 2個のローラ 8 a , 8 bから 成るペレタイザ一 (造粒機) 7が設けられている。 口 ーラ 8 aは、 図において時計方向に回転し、 口 "^ラ 8 bは、 ローラ 8 a と同期して反時計方向に回転するよ う になっている。 第 2図に示すよう に、 ローラ 8 a, 8 bの外周面に は、 それぞれ、 半球状の窪み 9が周方向に一定の間隔 で設けられている。 窪み 9 の形状は、 半球状に限らず 、 例えば、 半楕円球状や半円柱状などの所望の形状の ものが採用される。 また、 その大きさ も任意の寸法に 設定される。 なお、 ペレタイザ一は、 上記のローラ方 式に限らず、 他の方式でも差し支えがない。 Immediately below the duct 6, a pelletizer (granulator) 7 including two rollers 8a and 8b is provided. The mouth roller 8a rotates clockwise in the figure, and the mouth roller 8b rotates counterclockwise in synchronization with the roller 8a. As shown in FIG. 2, hemispherical depressions 9 are provided at regular intervals in the circumferential direction on the outer peripheral surfaces of the rollers 8a and 8b, respectively. The shape of the depression 9 is not limited to a hemisphere, but may be a desired shape such as a semi-elliptical sphere or a semi-column. The size is also set to an arbitrary size. The pelletizer is not limited to the roller type described above, and other types may be used.
また、 第 1 図に戻って説明すると、 ダク ト 6 とペレ 夕ィザ一 7 との間には、 水噴射ノズル 1 0が設けられ ている。 更に、 ペレタイザ一 7の直下に横形の搬送装 置 1 1 が設けられている。 搬送装置 1 1 は、 ベルトコ ンべャ 1 1 と箱形の本体 1 3 とから構成されている。 本体 1 3 は、 ペレタイザ一 7 の直下にホッパー 1 4 を 有するとともに、 先端下面に下向きのダク ト 1 5 を有 している。 また、 搬送装置 1 1 の本体 1 3は、 ホッパ 一 1 4の下流側に水噴射ノズル 1 0 aを設けている。 水噴射ノズル 1 0 aは、 その先端をベルトコンペャ 1 の上面に向けている。  Referring back to FIG. 1, a water injection nozzle 10 is provided between duct 6 and pelletizer 17. Further, a horizontal transfer device 11 is provided immediately below the pelletizer 17. The transfer device 11 includes a belt conveyor 11 and a box-shaped main body 13. The main body 13 has a hopper 14 directly below the pelletizer 17 and has a downward duct 15 on the lower surface of the tip. The main body 13 of the transfer device 11 has a water injection nozzle 10a provided downstream of the hopper 14. The tip of the water injection nozzle 10 a faces the upper surface of the belt conveyor 1.
更に、 上記本体 1 3は、 その外側に冷却ジャケッ ト (図示せず) を有し、 ベルトコンペャ 1 2 によって搬 送される被搬送物を過冷却するようになっている。 ま た、 ベルトコンペャ 1 2 は、 動的安息角を保持するよ う に、 1箇所につき 2〜 3本のローラ 1 6 によって保 持されている (第 3 図参照) 。 なお、 スク リ ューコンベヤー 2 のダク ト 6 と搬送装 置 1 1 のホッパー 1 4 との間は、 図示しないカバーな どで密閉され、 気化したガスが外部に漏れないよう に なっている Further, the main body 13 has a cooling jacket (not shown) on the outside thereof, so that the conveyed object conveyed by the belt conveyor 12 is supercooled. The belt conveyor 12 is held by two or three rollers 16 at one location so as to maintain a dynamic angle of repose (see Fig. 3). The space between the duct 6 of the screw conveyor 2 and the hopper 14 of the transfer device 11 is sealed with a cover (not shown) so that the vaporized gas does not leak to the outside.
次に、 メ タ ンハイ ドレー ト ( N G H ) を運搬船 (バ ラ積み船) に積み込んで運搬する場合について説明す る。  Next, the case where the methane hydrate (NGH) is loaded on a carrier (bulk carrier) and transported will be described.
第 1 図に示すよう に、 搬送装置 1 1 のダク ト 1 5 を バラ積み船 3 0 の船倉 (積荷タンク) 3 1 の積荷口 3 2 に揷入し、 しかる後に、 スク リ ユーコンベヤー 2 の 電動モータ 5 を駆動する と、 貯蔵夕 ンク 1 内の粉体状 のメ 夕 ンハィ ドレー ト aが横型のスク リ ユーコンペャ ― 2 によつてペレタイザ一 7 に供給される。  As shown in Fig. 1, the duct 15 of the transfer device 11 is inserted into the cargo port 32 of the bulk carrier 30 (load tank) 31 and then the screw conveyor 2 When the electric motor 5 is driven, the powdered medium a in the storage tank 1 is supplied to the pelletizer 17 by the horizontal screw-comparator-2.
ペレ夕ィザ一 7 に供給された粉体状のメ タ ンハイ ド レー ト aは、 外周面に半球状の窪み 9 を持つ 2つの口 ーラ 8 a, 8 b によって圧縮成形され、 球状 (ボール 状) のメ タ ンハイ ドレー ト b に成形される。 粉体状の メ 夕 ンハイ ドレー ト aの湿り具合が足りない場合には 、 水噴射ノズル 1 0から水 c を噴射して粉体状のメ タ ンノヽ ィ ドレー ト aを湿らせる。 する と、 粉体状のメ タ ンノヽィ ドレ— ト aの締ま り具合が固く な り、 落下させ ても壊れ難く なる。  The powdery methane hydrate a supplied to the pelletizer 17 is compression-molded by two rollers 8 a and 8 b having a hemispherical recess 9 on the outer peripheral surface, and the spherical shape ( It is formed into a ball-shaped) meta hydrate b. If the wetness of the powdery medium hydrate a is insufficient, water c is sprayed from the water injection nozzle 10 to wet the powdery hydrate a. Then, the tightening of the powdered metal nose plate a becomes firm and hard to break even if dropped.
ボール状のメ タ ンハイ ドレー ト (以下、 メ タンハイ ドレー トボ—ルと称する) b は、 ペレタイザ一 7から 搬送装置 1 1 のベルトコ ンペャ 1 2上に供給されるが 、 例えば、 大型の運搬船 (バラ積み船) 3 0の船倉 ( 積荷タンク) 3 1 に積み込む場合には、 搬送装置 1 1 の本体 1 3 に設けた水噴射ノズル 1 0 aからベルトコ ンべャ 1 2上のメ タンハイ ドレー トボール bに向けて 水 c を噴射してマイナス 5 °C〜マイナス 2 0 °Cに過冷 却する。 The ball-shaped methane hydrate (hereinafter referred to as the methane hydrate ball) b is from the pelletizer 17 It is supplied onto the belt conveyor 12 of the transport device 11. For example, when loading into a large carrier (bulk carrier) 30 hold (load tank) 31, the main body 13 of the transport device 11 is used. Water c is sprayed from the water injection nozzle 10a provided at the methane hydrate ball b on the belt conveyor 12 and supercooled to -5 ° C to -20 ° C.
すると、 メ タンハイ ドレートボール bの外表面が氷 の膜 (カプセル) で覆われ、 メ タンハイ ドレー トボー ル bの強度が更に増大し、 大型の運搬船 (バラ積み船 ) 3 0 の船倉 (積荷タンク) 3 1 に積み込んでも壊れ 難く なると共に、 大量に積み込んでもその重さで潰れ るようなことが少なく なる。  Then, the outer surface of the methane hydrate ball b is covered with an ice film (capsule), the strength of the methane hydrate ball b further increases, and a large carrier (bulk carrier) 30 holds (load tank). It will be harder to break even if loaded on 31 and less crushed by its weight when loaded in large quantities.
粉体状のガスハイ ドレート aは、 水の分子の作る力 ゴの中にガスの分子が一つずっ収まっている結晶構造 を持っているため、 自己保存性を有しているが、 上記 のよう に、 メ タンハイ ドレ一 トボール bの外表面を氷 の膜 (カプセル) で覆う と、 自己保存性が更に改善さ れる利点がある。  The powdery gas hydrate a has a self-preserving property because it has a crystal structure in which one gas molecule is contained in the water created by water molecules. In addition, covering the outer surface of the metal hydrate ball b with an ice film (capsule) has the advantage of further improving self-preservation.
氷の膜で外表面が覆われメ タンハイ ドレ一トボール bは、 ベルトコンペャ 1 2 によってバラ積み船 3 0の 船倉 (積荷タンク) 3 1 内に積み込まれる。 船倉 (積 荷タ ンク) 3 1 内は、 メ タ ンハイ ドレ一 トポール bが 分解する温度よ り も低温 (例えば、 マイナス 5 °C〜マ ィナス 3 0 °C ) に保たれている。 The methane drain balls b, whose outer surface is covered with an ice film, are loaded into the hold (load tank) 31 of the bulk carrier 30 by the belt conveyor 12. The hold (load tank) 31 has a temperature lower than the temperature at which the methanhydrate pole b decomposes (for example, minus 5 ° C Minus 30 ° C).
バラ積み船 3 0 としては、 第 7図や第 8図に示すも のが好ま しく使用される。 第 7図のバラ積み船 3 0は 、 積荷コンベア 3 3及び荷揚コンベア 3 5 を有してい る。 また、 ガスハイ ドレー トボール b を均等に積み込 むための邪魔板装置兼ハッチ 3 8 を有している。 この 邪魔板装置兼ハツチ 3 8は、 上下に移動するようにな つている。 図中、 3 1 は船倉、 3 4 はゲー ト、 3 6 は バラス ト タンク、 3 7は覆い、 3 9は断熱材を示して いる。  As the bulk carriers 30, those shown in Figs. 7 and 8 are preferably used. The bulk carrier 30 in FIG. 7 has a loading conveyor 33 and a discharging conveyor 35. In addition, it has a baffle plate and hatch 38 for evenly loading gas hydrate balls b. The baffle plate / hatch 38 moves up and down. In the figure, 31 is the hold, 34 is the gate, 36 is the ballast tank, 37 is the cover, and 39 is the insulation.
—方、 図 8図のバラ積み船 3 0 は、 船首尾方向に移 動可能な荷役機械 5 0.を備えている。 3 1 は船倉、 3 7 は覆い、 3 9断熱材を示している。  On the other hand, the bulk carrier 30 shown in Fig. 8 has a cargo handling machine 50 that can move in the bow direction. 31 is the hold, 37 is the cover, and 39 is the insulation.
以上の説明では、 メ タンハイ ドレ一トポール b をべ ルトコンべャ式の搬送装置 1 1 によつて船倉 (積荷夕 ンク) 3 1 に積み込む場合について説明したが、 ペレ タイザ一 7から船倉 (積荷タンク) 3 1 へ直接積み込 む場合には、 搬送装置として空気輸送方式を採用して もよい。  In the above explanation, the case where the methane drain pole b is loaded into the hold (loading tank) 31 by the belt conveyor type transfer device 11 has been described. ) When directly loading to 31, a pneumatic transport system may be used as the transport device.
また、 タンクローリー 4 0にメ タンハイ ドレートボ ール b を積み込む場合も、 船と同様に、 ベルトコ ンペ ャ式の搬送装置 1 1 によってタンク口一リ ー 4 0の夕 ンク 4 1 に積み込まれる (図 6図参照) 。 また、 貯蔵 施設にメ 夕ンハイ ドレ一トボール b を貯蔵する場合も 、 タンクローリ 一と同様に、 ベルト コ ンペャ式の搬送 装置 1 1 によって搬送される。 Also, when loading methane hydrate ball b into tank lorry 40, it is also loaded into tank 41 of tank opening 40 by belt-conveyor-type transfer device 11 as in the case of a ship (Fig. See Figure 6). Also, when storing high-battery balls b in storage facilities, As in the case of the tank lorry, the sheet is conveyed by a belt-conveyor type conveying device 11.
メ タ ンハイ ド レー トボール bの大きさは、 数センチ メー トルから数十センチメ一 トル、 時には、 数メー ト ル程度にしてもよい。 大き く すればするほど、 表面積 比が小さ く なり、 ブリ ッジが発生しなく なるので、 充 填率が高く なる。 上記のよう に造粒されたメ タ ンハイ ドレー トポール bの充填率は、 約 6 0 %となる。 因み に、 パウダー状のガスハイ ドレー トの充填率は、 4 0 %であるからガスハイ ドレー ト を造粒化することによ つて充填率が大幅に改善されることが分かる。  The size of the metahydrate ball b may be from a few centimeters to a few tens of centimeters, and sometimes about a few meters. The larger the size, the lower the surface area ratio and the less bridging occurs, resulting in a higher filling rate. The filling rate of the methane hydrate pole b granulated as described above is about 60%. Incidentally, since the filling rate of the powdery gas hydrate is 40%, it can be seen that the filling rate is greatly improved by granulating the gas hydrate.
第 5 図は、 メ タンハイ ド レー トボールの充填率をよ り一層向上させる方法を示している。 すなわち、 粒径 の大きいメ タンハイ ドレー トポール b, を製造するぺ レタイザ一 7 , と、 粒径の小さいメ タ ンハイ ドレー ト ボール b " を製造するペレタイザ一 7 " とを組み合わ せる方法である。 この方法は、 大粒のメ タ ンハイ ド レ — トポール b ' が作る空間 ( 1 一充填率) に、 粒の小 さいメ タ ンハイ ドレ一 トボ一ル b " を充填しよう とす るものである。 この方法を採用すれば、 ガスハイ ド レ ― トの充填率は、 更に向上して約 8 0 %となる。  Fig. 5 shows a method to further improve the filling rate of the hydrated ball. In other words, this is a method of combining a methane hydrate pole b, which has a large particle diameter, with a pelletizer 17, and a pelletizer 17, which manufactures a methane hydrate ball b "with a small particle diameter. This method attempts to fill the space (1 filling rate) created by a large methane hydrate drain b 'with a small methane hydrate drain b'. If this method is adopted, the filling rate of the gas hydrate is further improved to about 80%.
ここで、 重要なこ とは、 大粒のメ タンハイ ドレー ト ポ一ル b ' の直径と、 小粒のメ タンハイ ドレー トボー ル b " の直径の比 (直径比 =大粒のメ タ ンハイ ドレー トボールの直径/小粒のメ タンハイ ドレ一 トポールの 直径) を、 適宜、 選択するこ とである。 実験によればWhat is important here is the ratio of the diameter of the large meth- nate hydrate ball b 'to the diameter of the small methane hydrate ball b "(diameter ratio = large methane hydrate drain). The diameter of the ball / diameter of the small-sized metal hydrate pole). According to the experiment
、 この直径比は、 1 . 5 から 3 0 の範囲、 よ り好ま し く は、 5〜 2 0 の範囲が望ま しい。 The diameter ratio is preferably in the range of 1.5 to 30, more preferably in the range of 5 to 20.
直径比が 1 . . 5未満の場合は、 大粒のメ 夕ンハイ ド レー トボール b, の空間に小粒のメ タンハイ ドレ一 ト ボール b " が入らないので、 充填率が高く ならない。 一方、 直径比が 3 0 を超える と、 小粒のメ タンハイ ドレー トボール b " が多く な り、 ブ'リ ッジが発生し易 く なるため、 充填率が高く ならない。 なお、 楕円球な ど、 球形以外のメ タ ンハイ ドレー トポール bの直径は When the diameter ratio is less than 1.5, the filling rate does not increase because the small metal hydrate ball b "does not enter the space of the large metal hydrate ball b. If it exceeds 30, the number of small-sized methane hydrate balls b "increases, and bridging tends to occur, so that the filling rate does not increase. In addition, the diameter of the metahedrate pole b other than spherical, such as an elliptical sphere, is
、 内接球の直径をいう。 The diameter of the inscribed sphere.
本方法を採用すれば、 パウダーのメ タ ンハイ ドレ一 ト a を積み込む場合に比べて船倉 (積荷タ ンク) や夕 ンクローリ のタ ンクの大きさが 1 / 2以下になる。 ま た、 メ タンハイ ドレー トボールの種類は、 2種類以上 が好ま しく 、 例えば、 メ タンハイ ドレ一 トポールを大 中小の 3種類にする と、 更に充填率を向上させるこ と が可能となる。  If this method is adopted, the size of the cargo hold (loading tank) and the tank of the evening crawler will be less than one-half that of the case where the powder of the powder is loaded. Further, the number of types of the methane hydrate balls is preferably two or more. For example, if the number of the methane hydrate poles is three, large, medium, and small, the filling rate can be further improved.
上記のよう に、 本発明を採用し、 メ タンハイ ドレ一 トボールが分解する温度よ り も低温状態を保持すれば 、 隣り合う メ タ ンハイ ド レー トボールの接触面積が小 さいため、 メ タ ンハイ ド レー トボールどう しが焼結状 態を維持する。 従って、 運搬されるメ タンハイ ドレ一トボールの集 合体は、 容易に粉砕可能であり、 グラブなどで荷揚げ することが可能となる。 As described above, by employing the present invention and maintaining the temperature lower than the temperature at which the methane hydrate ball decomposes, the contact area between adjacent methane hydrate balls is small, so that the The late balls maintain a sintered state. Therefore, the aggregate of the transported methanehydrate balls can be easily crushed, and can be unloaded with a grab or the like.
以上の説明では、 メ タンハイ ドレートボールを船倉 やタンクローリ に積み込む場合について説明したが、 本発明は、 メ タンハイ ドレートボールを貯蔵施設の夕 ンクに貯蔵する場合にも適用することができる。  In the above description, a case where methane hydrate balls are loaded in a hold or a tank lorry has been described. However, the present invention can also be applied to a case where methane hydrate balls are stored in the evening of a storage facility.
また、 本発明は、 プロパン、 二酸化炭素など、 メ タ ン以外のガスハイ ドレー トの造粒や荷役及び貯蔵運搬 にも適用することが可能である。  The present invention is also applicable to granulation, cargo handling, storage and transportation of gas hydrates other than methane, such as propane and carbon dioxide.
上述したように、 本発明は、 粉体状のガスハイ ドレ ートを工業的にペレッ ト化することによ り、 ガスハイ ドレートを形状、 品質の揃った固形物にすることがで きる。 このため、 ガスハイ ドレー トの流動性が飛躍的 に増し、 荷役や輸送が容易になる。  As described above, according to the present invention, a gas hydrate can be made into a solid having uniform shape and quality by industrially pelletizing a powdery gas hydrate. This dramatically increases the fluidity of the gas hydrate, making it easier to handle and transport.
また、 本発明は、 粉体状のガスハイ ドレートを工業 的にペレツ ト化することによ り、 パウダーのガスハイ ドレートに比べて充填率が大幅に向上し、 運搬や貯蔵 の経済性を確保できるようになった。  In addition, the present invention makes it possible to industrially pelletize a powdery gas hydrate, so that the filling rate is significantly improved as compared with the gas hydrate of powder, and the economics of transportation and storage can be secured. Became.
また、 ガスハイ ドレ一トは、 水の分子の作るカゴの 中にガスの分子が一つずつ収まっている結晶構造を持 つているので、 温度コン ト ロールが不調になっても急 激に気化することがなく 、 L N Gに比べて安全性が高 い。 また、 気化速度が遅いので、 L N Gよ り も長期貯 蔵に向いている。 In addition, the gas hydrate has a crystal structure in which gas molecules are contained one by one in a basket made of water molecules, so it rapidly evaporates even if the temperature control becomes abnormal. It is safer than LNG. In addition, because of the slow vaporization rate, longer-term storage than LNG Suitable for warehouse.
また、 ボール状のガスハイ ドレートは、 接触面積が 小さいため、 ボール状のガスハイ ドレ一ト どう しは、 焼結状態を保持する。 このため、 運搬や貯蔵中に集合 したボール状のガスハイ ドレ一トの集合体は、 容易に 粉砕可能であ り、 例えば、 グラブなどを用いて容易に 荷揚げすることが可能である。  Further, since the contact area of the ball-shaped gas hydrate is small, the ball-shaped gas hydrate maintains a sintered state. For this reason, the aggregate of ball-shaped gas hydrates collected during transportation or storage can be easily crushed, and can be easily unloaded using, for example, a grab.
また、 本発明は、 ボール状のガスハイ ドレートに水 を吹き付けて過冷却するこ とによつてボール状のガス ハイ ドレートの表面に氷の膜 (力プセル) を作るため 、 ボール状のガスハイ ドレートの強度が増大して壊れ 難く なる。 このため、 大量の運搬や貯蔵が可能となる また、 本発明は、 寸法の異なる 2種以上のボール状 のガスハイ ドレ一トを混合して積み込むので、 同径の ボール状のガスハイ ドレ一トのみを積み込む場合に比 ベて充填率をよ り一層向上させることができる。  The present invention also provides a method for forming an ice film (force capsule) on the surface of a ball-shaped gas hydrate by spraying water onto the ball-shaped gas hydrate and supercooling the ball-shaped gas hydrate. Strength is increased and it is hard to break. Therefore, a large amount of the gas hydrate can be transported and stored.Moreover, according to the present invention, two or more types of ball-shaped gas hydrates having different dimensions are mixed and loaded. The filling rate can be further improved as compared with the case of loading.
産業上の利用可能性  Industrial applicability
上述した優れた効果を有する本発明は、 ガスハイ ド レー トの造粒、 荷役及び輸送に極めて有効に利用する こ とができる。  INDUSTRIAL APPLICABILITY The present invention having the above-described excellent effects can be extremely effectively used for granulation, cargo handling and transportation of gas hydrate.

Claims

請求の範囲 The scope of the claims
1 . 粉体状のガスハイ ドレートを造粒装置によ り 圧縮成形してペレッ ト状にすることを特徴とするガス ハイ ドレー トの造粒方法。  1. A method for granulating a gas hydrate, wherein a powdery gas hydrate is compression-molded into a pellet by a granulator.
2 . 粉体状のガスハイ ドレー トを造粒装置によ り 圧縮成形してペレツ ト状にし、 しかる後に、 固形化し たガスハイ ドレートを船や貯蔵施設の貯槽に積み込む ことを特徴とするガスハイ ドレートの荷役方法。  2. The gas hydrate is characterized in that the powdery gas hydrate is compression-molded by a granulator to form a pellet, and then the solidified gas hydrate is loaded into the tanks of ships and storage facilities. Loading method.
3 . 粉体状のガスハイ ドレートをペレツ ト状に加 ェする前に、 前記ガスハイ ドレートに液を吹きつけて 湿らせるこ とを特徴とする請求項 2記載のガスハイ ド レー トの荷役方法。  3. The gas hydrate loading and unloading method according to claim 2, wherein a liquid is sprayed on the gas hydrate to wet the gas hydrate before the powdery gas hydrate is added in a pellet form.
4 . 固形化したガスハイ ドレートに液を吹きつけ て湿らせ、 しかる後に、 過冷却するこ とを特徴とする 請求項 2記載のガスハイ ド レー トの荷役方法。  4. The gas hydrate loading and unloading method according to claim 2, wherein the solidified gas hydrate is sprayed with a liquid to moisten the liquid, followed by supercooling.
5 . 寸法の異なる 2種以上のペレッ ト状のガスハ ィ ドレートを混合して船や貯蔵施設の貯槽に積み込む ことを特徴とする請求項 2乃至 4 のいずれか 1項に記 載のガスハイ ドレー トの荷役方法。  5. The gas hydrate according to any one of claims 2 to 4, wherein two or more types of gas hydrates having different dimensions are mixed and loaded into a storage tank of a ship or a storage facility. Cargo handling method.
6 . 寸法の異なる 2種以上のペレッ ト状のガスハ ィ ドレ一トの直径比を 1 . 5 〜 3 0 とすることを特徴 とする請求項 5記載のガスハイ ドレー トの荷役方法。  6. The method for loading and unloading gas hydrate according to claim 5, wherein the diameter ratio of two or more kinds of gas hydrates having different dimensions is set to 1.5 to 30.
7 . 粉体状のガスハイ ドレートを造粒装置によ り 圧縮成形してペレツ ト状にし、 しかる後に、 固形化し たガスハイ ドレー トを船や貯蔵施設の貯槽に積み込み 、 所定の温度下で輸送するこ とを特徴とするガスハイ ドレ一 トの輸送方法。 7. The powdery gas hydrate is compression-molded into pellets by a granulator and then solidified. A method of transporting gas hydrate, comprising loading the hydrated gas hydrate into a storage tank of a ship or storage facility and transporting the hydrate at a predetermined temperature.
8 . ペレッ ト状のガスハイ ド レー トの貯蔵温度を マイナス 5 °C〜マイナス 3 0 °Cに保持するこ とを特徴 とする請求項 7記載のガスハイ ド レー トの輸送方法。  8. The method for transporting gas hydrate according to claim 7, wherein the storage temperature of the gas hydrate in the form of pellets is maintained at -5 ° C to -30 ° C.
PCT/JP2002/005224 2001-07-09 2002-05-29 Method of pelletizing, handling and transporting gas hydrate WO2003006589A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003512348A JP4167977B2 (en) 2001-07-09 2002-05-29 Granulation, cargo handling and transportation method of gas hydrate
AU2002306357A AU2002306357B9 (en) 2001-07-09 2002-05-29 Method of pelletizing, handling and transporting gas hydrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-207339 2001-07-09
JP2001207339A JP2002220353A (en) 2000-11-21 2001-07-09 Method for pelletizing, loading and transporting gas hydrate

Publications (1)

Publication Number Publication Date
WO2003006589A1 true WO2003006589A1 (en) 2003-01-23

Family

ID=19043339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005224 WO2003006589A1 (en) 2001-07-09 2002-05-29 Method of pelletizing, handling and transporting gas hydrate

Country Status (4)

Country Link
JP (1) JP4167977B2 (en)
AU (1) AU2002306357B9 (en)
RU (1) RU2276128C2 (en)
WO (1) WO2003006589A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238849A (en) * 2006-03-10 2007-09-20 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet production device
JP2007254531A (en) * 2006-03-22 2007-10-04 Mitsui Eng & Shipbuild Co Ltd Apparatus for manufacturing gas hydrate pellet
JP2007254503A (en) * 2006-03-20 2007-10-04 Mitsui Eng & Shipbuild Co Ltd Apparatus for producing gas hydrate pellet
JP2007262142A (en) * 2006-03-27 2007-10-11 Mitsui Eng & Shipbuild Co Ltd Burr separator for gas hydrate molded form
JP2007262186A (en) * 2006-03-28 2007-10-11 Mitsui Eng & Shipbuild Co Ltd Method for producing gas hydrate pellet
JP2007262143A (en) * 2006-03-27 2007-10-11 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet production apparatus
JP2007262297A (en) * 2006-03-29 2007-10-11 Mitsui Eng & Shipbuild Co Ltd Apparatus for producing gas hydrate pellet
JP2007269908A (en) * 2006-03-30 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet production apparatus
JP2007270030A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet production apparatus
JP2007270029A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet production method and apparatus
JP2007269919A (en) * 2006-03-30 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Apparatus for producing gas hydrate pellet
JP2007277098A (en) * 2006-04-03 2007-10-25 Mitsui Eng & Shipbuild Co Ltd Roller type molding apparatus for gas hydrate powder
WO2009044468A1 (en) * 2007-10-03 2009-04-09 Mitsui Engineering & Shipbuilding Co., Ltd. Process and apparatus for producing gas hydrate pellet
WO2009047847A1 (en) * 2007-10-10 2009-04-16 Mitsui Engineering & Shipbuilding Co., Ltd. Apparatus for producing gas hydrate pellets

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY147563A (en) * 2007-03-30 2012-12-31 Mitsui Shipbuilding Eng Gas hydrate compression molding machine
EP2660303A1 (en) * 2007-10-10 2013-11-06 Mitsui Engineering & Shipbuilding Co., Ltd. Apparatus for producing gas hydrate pellet and process for producing gas hydrate pellet with the same
DE102011108065A1 (en) * 2011-07-21 2013-01-24 Rwe Ag Energetic use of fuel gases, preferably combustible gases, comprises producing gas hydrate using combustible gas, storing it, regasifying gas hydrate, and energetically converting combustible gas for electricity and/or heat generation
RU2554374C1 (en) * 2014-05-19 2015-06-27 Александр Валентинович Воробьев Method for recovery and transportation of gas hydrates from bottom sediments and submarine vessel for recovery and transportation of gas hydrates
RU2554375C1 (en) * 2014-07-01 2015-06-27 Александр Валентинович Воробьев Method to extract gas hydrates from bottom deposits and device to this end

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993001153A1 (en) * 1990-01-29 1993-01-21 Jon Steinar Gudmundsson Method for production of gas hydrates for transportation and storage
JP2000264852A (en) * 1999-03-16 2000-09-26 Mitsui Eng & Shipbuild Co Ltd Device for continuously producing gas hydrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993001153A1 (en) * 1990-01-29 1993-01-21 Jon Steinar Gudmundsson Method for production of gas hydrates for transportation and storage
JP2000264852A (en) * 1999-03-16 2000-09-26 Mitsui Eng & Shipbuild Co Ltd Device for continuously producing gas hydrate

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238849A (en) * 2006-03-10 2007-09-20 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet production device
JP2007254503A (en) * 2006-03-20 2007-10-04 Mitsui Eng & Shipbuild Co Ltd Apparatus for producing gas hydrate pellet
JP2007254531A (en) * 2006-03-22 2007-10-04 Mitsui Eng & Shipbuild Co Ltd Apparatus for manufacturing gas hydrate pellet
JP2007262142A (en) * 2006-03-27 2007-10-11 Mitsui Eng & Shipbuild Co Ltd Burr separator for gas hydrate molded form
JP2007262143A (en) * 2006-03-27 2007-10-11 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet production apparatus
JP2007262186A (en) * 2006-03-28 2007-10-11 Mitsui Eng & Shipbuild Co Ltd Method for producing gas hydrate pellet
JP2007262297A (en) * 2006-03-29 2007-10-11 Mitsui Eng & Shipbuild Co Ltd Apparatus for producing gas hydrate pellet
JP2007269919A (en) * 2006-03-30 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Apparatus for producing gas hydrate pellet
JP2007269908A (en) * 2006-03-30 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet production apparatus
JP2007270030A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet production apparatus
JP2007270029A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Gas hydrate pellet production method and apparatus
JP2007277098A (en) * 2006-04-03 2007-10-25 Mitsui Eng & Shipbuild Co Ltd Roller type molding apparatus for gas hydrate powder
WO2009044468A1 (en) * 2007-10-03 2009-04-09 Mitsui Engineering & Shipbuilding Co., Ltd. Process and apparatus for producing gas hydrate pellet
US20100244292A1 (en) * 2007-10-03 2010-09-30 Toru Iwasaki Process and apparatus for producing gas hydrate pellet
US8303293B2 (en) * 2007-10-03 2012-11-06 Mitsui Engineering & Shipbuilding Co., Ltd. Process and apparatus for producing gas hydrate pellet
US8497402B2 (en) 2007-10-03 2013-07-30 Mitsui Engineering & Shipbuilding Co., Ltd. Process and apparatus for producing gas hydrate pellet
WO2009047847A1 (en) * 2007-10-10 2009-04-16 Mitsui Engineering & Shipbuilding Co., Ltd. Apparatus for producing gas hydrate pellets

Also Published As

Publication number Publication date
JP4167977B2 (en) 2008-10-22
AU2002306357B2 (en) 2006-03-09
RU2004103553A (en) 2005-06-10
JPWO2003006589A1 (en) 2004-11-04
RU2276128C2 (en) 2006-05-10
AU2002306357B9 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
JP2002220353A (en) Method for pelletizing, loading and transporting gas hydrate
WO2003006589A1 (en) Method of pelletizing, handling and transporting gas hydrate
EP0594616B1 (en) Method for production of gas hydrates for transportation and storage
EP2781468B1 (en) Container for storing, transporting, and disassociating hydrate pellets and method for storing, transporting, and disassociating hydrate pellets by using same
US8466331B2 (en) Apparatus and method for gasifying gas hydrate pellet
KR100913747B1 (en) Gas hydrate carrier
JP2011056987A (en) Bulk carrier and bulk cargo barge
JP3810310B2 (en) Gas hydrate handling method and apparatus
JP3981583B2 (en) Offshore gas hydrate pellet storage facility
JP2011116159A (en) Bulker, bulk barge, and method for loading dry bulk cargo
JPH06511500A (en) Method for producing gas hydrates for transportation and storage
JP4575804B2 (en) Decompressor
JP2007269874A (en) Method for transferring gas hydrate
US20140018583A1 (en) Successive gas hydrate manufacturing method
US20160002550A1 (en) Apparatus for molding gas hydrate pellets
US20220048542A1 (en) Storage and transport system and method for solid sodium hypochlorite pentahydrate
JP4054592B2 (en) Gas hydrate pellet carrier
US20140017141A1 (en) Successive gas hydrate manufacturing device
US20120022313A1 (en) Methods and systems for sulfur disposal
JP2005008347A (en) Slurry transporting method of granular body formed of ice or snow or gas hydrate
JP2011111138A (en) Bulk ship, barge for bulk, and method for loading bulk dry cargo
JP4511854B2 (en) Dry gas hydrate generating apparatus and generating method
JP4213655B2 (en) Gas hydrate pellet transportation method and ship
JP4638715B2 (en) Hydrate decomposition method and hydrate generation method
JP2005163931A (en) Natural gas hydrate pellet transporting method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003512348

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002306357

Country of ref document: AU

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase