WO2003004949A1 - Dispositif et procede de stockage et de regeneration d'un fluide frigo-porteur sous forme diphasique - Google Patents

Dispositif et procede de stockage et de regeneration d'un fluide frigo-porteur sous forme diphasique Download PDF

Info

Publication number
WO2003004949A1
WO2003004949A1 PCT/FR2002/002282 FR0202282W WO03004949A1 WO 2003004949 A1 WO2003004949 A1 WO 2003004949A1 FR 0202282 W FR0202282 W FR 0202282W WO 03004949 A1 WO03004949 A1 WO 03004949A1
Authority
WO
WIPO (PCT)
Prior art keywords
compartment
coolant
fluid
coolant fluid
storage
Prior art date
Application number
PCT/FR2002/002282
Other languages
English (en)
Inventor
Adrien Laude Bousquet
Original Assignee
Adrien Laude Bousquet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adrien Laude Bousquet filed Critical Adrien Laude Bousquet
Priority to EP02758526A priority Critical patent/EP1402221B1/fr
Priority to CA002451082A priority patent/CA2451082A1/fr
Priority to DE60230412T priority patent/DE60230412D1/de
Priority to US10/481,959 priority patent/US20040187518A1/en
Publication of WO2003004949A1 publication Critical patent/WO2003004949A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/08Producing ice by immersing freezing chambers, cylindrical bodies or plates into water

Definitions

  • the present invention relates to the storage and regeneration of a cooling fluid.
  • ice slurry a coolant comprising two phases of the same body in equilibrium of fusion or crystallization, for example water with an antifreeze agent, such as salt, alcohol, monoethylene glycol or monopropylene glycol.
  • This body in fusion balance can also be a eutectic.
  • the solid phase in divided form, for example microcrystals of ice is distributed homogeneously in the liquid phase, to the point of obtaining a consistency of the coolant fluid, pasty or viscous, for example sufficiently fluid to be able to pump said fluid.
  • the refrigerating fluids considered according to the invention are therefore obtained, stored, transported, and used in mixed and homogeneous two-phase form, in particular in a consistency close to an ice cream or sorbet.
  • the coolants include a liquid phase and a solid phase in a homogeneous mixture. They themselves are generally water-alcohol, water-ethylene-glycol, water-propylene-glycol, water-glycerol, water-ammonia, water-potassium carbonate, water-calcium chloride, water-magnesium chloride mixtures. , water-potassium acetate, etc .; other types of mixtures, not comprising water, may also be suitable. Such coolants are very efficient, they absorb heat by melting their solid phase, compared to conventional liquid coolants, which absorb heat, only by heating (sensible heat).
  • a coolant of the ice slurry type which should be understood as a fluid as defined above.
  • coolant fluid in the liquid phase is meant, by difference, a fluid essentially in the liquid phase, that is to say with a low concentration, or even zero, of micro-crystals.
  • Document US-A-2 902 839 discloses a device for storing and regenerating a coolant fluid, in two-phase form, but not in the form of an ice slurry, intended to circulate only in liquid form in a heat transfer circuit.
  • the latter comprises one or more heat exchangers between the cold and liquid coolant and the exterior.
  • Said device comprises:
  • a circulation means for circulating the coolant fluid, taken in the liquid state in the cold state in said compartment, in the heat transfer circuit, and reinjecting it into said compartment; a two-phase recycling and cooling circuit for the coolant fluid within said compartment, comprising a withdrawal point in the lower part of said compartment, said recycling circuit incorporating the means of indirect heat exchange, and comprising a means of suction / delivery of coolant.
  • the indirect heat exchange means is a scraped surface exchanger, generating a solidification of the coolant fluid on a scraping surface. The separation of the coolant fluid in solid form from the scraping surface requires significant efforts, thus going against a reduction in consumption of operating energy for the device.
  • a cold transfer device comprising a vertical compartment intended to store and supply a heat transfer circuit with a coolant of the ice slurry type.
  • the device comprises a means of indirect heat exchange between a refrigerant and the coolant, placed outside the storage enclosure. The latter is drawn in the liquid phase at a lower level of the storage compartment, to be reinjected at a higher level, once enriched with micro-crystals of solid phase.
  • An extraction means is also provided for supplying the heat transfer circuit with coolant of the ice slurry type.
  • This extraction means comprises a cone opening onto a conduit in the storage compartment. The opening of the cone is located at a higher level and where the coolant fluid is rich in solid phase (ice micro-crystals).
  • a stirring means is arranged in the cone, so as to create turbulence in the extracted coolant, regenerating the ice slurry.
  • Such a device does not make it possible to precisely control the concentration of micro-crystals in the coolant fluid of the ice slurry type, extracted to supply the heat transfer circuit.
  • the supply of the indirect heat exchange means takes place under the hydraulic pressure of the refrigerant fluid contained in the storage compartment.
  • a method for storing and regenerating a coolant fluid, in two-phase form, intended to supply in liquid form, one or more heat exchangers belonging to a heat transfer circuit, consisting of:
  • the purpose of the present invention is to store and regenerate, permanently, a coolant fluid, type ice slurry, so that it is operational permanently, even after long periods of use.
  • Another object of the present invention is to optimize the consistency of a refrigerant fluid of the ice slurry type, that is to say optimize the concentration of micro-crystals in the refrigerant fluid and in particular to control this concentration, to obtain maximum storage.
  • Another object of the present invention is to control and modify, if necessary, this concentration of micro-crystals, with a view to improving or adapting the refrigerating properties of the coolant fluid of the ice slurry type, to the 'use.
  • An additional object of the present invention aims to simplify the installations using such a coolant fluid on the one hand, and to facilitate maintenance operations on the other hand.
  • the device comprises:
  • the process in accordance with the invention differs from the process previously identified with reference to steps called (a) to (e), by the fact that: (f) a part of the coolant fluid rich in is separated and stored solid phase in another conditioning compartment in the form of an ice slurry; (g) a portion of poor solid phase coolant is injected into said other compartment, taken from the storage and regeneration compartment; (h) mixing the solid and liquid phases of the coolant in said other compartment; (i) the refrigerant fluid obtained under (h) is used to carry out step (a), by removing the refrigerant fluid conditioned in the form of an ice slurry in said other compartment, and by reinjecting it, downstream of the heat exchanger (s) of the heat transfer circuit in the storage and regeneration compartment, and / or for example at the inlet of the indirect heat exchange means.
  • the indirect heat exchange means comprises: a crystallization enclosure provided, on the one hand with at least one orifice for sampling the refrigerant carrier depleted in solid phase , communicating with the storage and regeneration compartment in the lower part, and on the other hand, an opening for expelling the coolant fluid (4) enriched in solid phase;
  • At least one hollow disc mounted fixed in the crystallization enclosure in contact with the flow of circulation of the coolant fluid from the withdrawal orifice at the expulsion opening, said disc being internally traversed by a refrigerant in progress evaporation or a refrigerator at a lower temperature;
  • a set of sweeping arms mounted on an axis, which is rotated by a gear motor, and arranged relative to the disc (s) so as to sweep its surface in contact with the coolant, and expel the enriched refrigerant fluid in solid phase towards the expulsion opening.
  • the indirect heat exchange means comprises a set of hollow discs, arranged parallel to each other and spaced apart, and in that at least part of the arms sweep, mounted fixed on the axis of the gear motor, are angularly offset with respect to each other, and passing from one disc to the adjacent disc, or passing from one side of a disc to its adjacent face, to force the circulation of the coolant fluid inside the crystallization chamber, the assembly of the scanning arms thus constituting the suction / discharge means for recycling the coolant fluid within of the storage and regeneration compartment.
  • the device according to the invention comprises a plurality of indirect heat exchange means, associated with one and the same storage and regeneration compartment, and distributed around said compartment, which extends concentrically around the only other packaging compartment.
  • the device according to the invention has the advantage of keeping the refrigerant fluid in motion, throughout its circulation in the two compartments, respectively for storage and regeneration, and for conditioning, in particular in the exchange medium. indirect heat, thus avoiding solidification which could block circulation by the frozen fluid.
  • FIG. 1 shows a sectional view of a storage, regeneration and packaging device according to the invention
  • FIG. 2 is a schematic and partial view of the top device of Figure 1;
  • FIGS. 3 and 4 are sectional views of the indirect heat exchange means, incorporated in the device according to the invention, respectively in section perpendicular to the axis, and along the axis of said means;
  • - Figures 5 to 9 are details of Figures 3 and 4;
  • FIG. 10 is a sectional view of another embodiment of a device according to the invention.
  • FIG. 11 is a view along line A-A of Figure 10;
  • FIG. 13 shows an exploded section along line XIII-XIII of Figure 12.
  • FIG. 1 is a sectional view of a storage, regeneration and packaging device according to the invention.
  • the latter includes a storage and regeneration compartment 2 containing a coolant fluid 4 in the two-phase state in melting or crystallization equilibrium.
  • the device according to the invention also comprises an indirect heat exchange means 6 between a refrigerant and the coolant 4 essentially in the liquid phase.
  • the indirect heat exchange means 6 is associated with the storage and regeneration compartment 2.
  • a circulation means 8 of the pump type shown for example in FIG. 2 is provided for circulating the coolant fluid 4 withdrawn from the storage and regeneration 2, in a heat transfer circuit 10 comprising one or more heat exchangers 12.
  • the heat transfer circuit 10 opens downstream of the heat exchange means 12 in the storage and regeneration compartment 12.
  • the heat transfer circuit 10 thus opens for example into the storage and regeneration compartment 2, via an opening 2a.
  • the volume into which the heat transfer circuit 10 opens is preferably partially separated or delimited with respect to the remainder of the storage and regeneration compartment 2, and may comprise, in its lower part, grids 14 capable of confining the fluid of a fridge-carrier 4 in solid phase in said storage and regeneration compartment 2.
  • the grids 14, thus constituting a filter can be omitted when the storage and regeneration compartment 2 is large enough to obtain good decantation of the fridge-carrier fluid 4 in liquid phase, down.
  • the storage and regeneration compartment 2 delimits a central decantation zone 2b, the lower part of which is arranged on the one hand between the grids 14 and on the other hand between two partition walls 16 and 18.
  • the first partition wall 16 makes it possible to obtaining a partial separation between the storage and regeneration zone 2b and the zone comprising the indirect heat exchange means 6.
  • the second partition wall 18 makes it possible to obtain a partial separation between the storage and regeneration zone 2b and another conditioning compartment 20 in the form of an ice slurry, of said cooling fluid 4.
  • This second compartment 20 is connected to the heat transfer circuit 10 via an opening 22 associated with the circulation means 8.
  • the other conditioning compartment 20 is also supplied with coolant fluid 4 of the ice slurry type.
  • the device according to the invention also includes a two-phase recycling and cooling circuit for the coolant 4 within the storage and regeneration compartment 2.
  • This two-phase recycling and cooling circuit has at least one withdrawal point 24 in lower part of said storage and regeneration compartment 2.
  • the grids 14 are spaced from the corresponding 2nd side walls to form circulation corridors opening onto the withdrawal point or points 24, supplying the indirect heat exchange means 6.
  • the circuit of recycling and cooling also integrates the indirect heat exchange means 6 and further comprises a means for suction and delivery of the coolant 4. The coolant 4 is thus sucked into the indirect exchange means heat 6, as shown for example in Figure 4 by the arrows "A".
  • the other conditioning compartment 20 and the indirect exchange means 6 are for example arranged on either side of the central storage and regeneration zone 2b, mainly constituting the storage and regeneration compartment 2 of the coolant 4.
  • the other conditioning compartment 20 is supplied at a higher level by at least a portion of the coolant fluid 4 enriched in solid phase outside of the indirect heat exchange means itself, and this using means introduction 72.
  • a complementary withdrawal point on the storage and regeneration compartment 2, and this in the lower part, associated with means 26 for injecting coolant 4 in liquid phase into said other packaging compartment 20 is also planned.
  • the coolant 4 in the liquid phase is thus brought into the other packaging compartment 20 for example using a distribution tube 28 disposed substantially in its central part.
  • a mixing member 30 is also provided for cooperating with the other packaging compartment 20, so as to mix the liquid and solid phases of the coolant 4 contained in said other compartment 20.
  • the device according to the invention also comprises a level detector 32 for determining the filling level of the other conditioning compartment 20 by the refrigerating fluid 4 in the form of an ice slurry.
  • the device also comprises a measuring member 34 for determining the concentration in solid phase of the refrigerating fluid 4 in the form of ice slurry in the other packaging compartment 20.
  • the measuring member 34 is for example made with a temperature sensor, or electrical or capacitive conductivity, or opacity measurement means, associated with suitable analysis means, of the electronic or microprocessor type.
  • the circulation means 8 makes it possible to re-inject downstream of the heat exchanger (s) 12 of the heat transfer circuit 10, the coolant 4, for example in the storage and regeneration compartment 2, using a orifice 2a formed in the latter at a lower level.
  • the circulation means 8 and the heat transfer circuit 10 are also or only connected to the indirect heat exchange means 6, in order to directly reinject the fluid therein. refrigerator 4 downstream of the heat exchanger (s) 12.
  • the indirect heat exchange means 6 is shown more precisely in FIGS. 2, 3 and 4.
  • the indirect heat exchange means 6 comprises an enclosure 6a for crystallization provided, on the one hand with at least one sampling orifice 6b of the refrigerant fluid 4 depleted in solid phase, communicating via the sampling orifices 24 with the storage and regeneration compartment 2 in the lower part, and on the other hand an expulsion opening 6c of the coolant fluid 4 enriched in solid phase.
  • the indirect heat exchange means 6 also comprises at least one hollow disc 40 fixedly mounted in the enclosure 6a, in contact with the flow of circulation of the coolant 4 from the withdrawal orifice 6b at the opening of expulsion 6c.
  • the hollow disc 40 is internally traversed by a refrigerant in the course of evaporation, for example NH3.
  • the hollow discs 40 are supplied with this refrigerant by means of a refrigeration unit 50 arranged for example next to the heat exchange means 6.
  • the refrigerant can be replaced by another coolant fluid, distinct from that circulating in the heat transfer circuit 10, but colder.
  • the indirect heat exchange means 6 also comprises a set of scanning arms 60 mounted on an axis 62, which is rotated by a motor-reducer 64.
  • the scanning arms 60 are arranged relative to the disc (s) (S) hollow 40, so as to sweep their surface in contact with the coolant 4 and expel the enriched coolant 4, during super-cooling to the expulsion opening 6c of the enclosure 6a .
  • the crystallization of the coolant 4 thus takes place directly in the pumped and expelled flow.
  • the expulsion of the coolant 4 and more precisely the discharge of this coolant 4 is shown schematically by arrows "R" as shown in Figures 4 and 3.
  • the return of the coolant 4 or grout ice is made downstream of the heat exchangers 12.
  • the or each hollow disc 40 has a central passage 41 crossed by the axis 62. The coolant 4 is thus sucked through the sampling openings 6b, then circulate from the passage or passages 41 towards the periphery of each hollow disc 40, and this by centrifugation.
  • FIGS. 12 and 13 An exemplary embodiment of a hollow disc 40 is shown in FIGS. 12 and 13.
  • the hollow disc 40 comprises for example two side plates 42, and an intermediate plate 43, each provided with a central passage 41.
  • the intermediate plate 43, cut into coils 43a is taken and clamped in an intimate and sealed manner between the side plates 42.
  • the coils 43a thus produce the circulation path for a refrigerant, the circulation of which is shown diagrammatically for example by the arrows Fe and Fs in FIGS. 3 and 12.
  • the arrows Fe and Fs correspond respectively to the directions of entry and exit of the refrigerant circulating in the hollow disc 40.
  • the indirect heat exchange means 6 comprises for example a set of hollow discs 40 arranged parallel to each other and spaced apart. At least a portion of the scanning arms 60 mounted fixed on the axis 62 of the gear motor 64 are angularly offset with respect to each other, passing from a disc to the adjacent disc, or passing from a face of a disc on its adjacent face, to force the circulation of the coolant 4 inside the crystallization enclosure 6a.
  • the assembly of the scanning arms 60 thus constitutes the suction and delivery means for recycling the coolant 4 within the storage compartment. and regeneration 2.
  • the rotation of the scanning arms 60 is shown diagrammatically by the arrow "V" in FIGS. 3 and 4.
  • the expulsion opening 6c is shaped, positioned and oriented so as to expel the coolant fluid 4 enriched in solid phase towards the other conditioning compartment 20, thus constituting means of introduction into the latter.
  • the scanning arms 60 can have different shapes shown by way of example in FIGS. 5 to 9.
  • the scanning arms 60 can thus be curved as shown in FIGS. 6 and 8, or bent as shown in FIGS. 5 and 7.
  • the number of scanning arms 60 for scanning a surface of a hollow disc may also vary. In fact, as shown in FIGS. 5 and 6, it is possible to scan a surface of a hollow disc 40 using two scanning arms 60, or for example using four scanning arms 60 , as shown in Figures 7 and 8. This list is by no means limiting.
  • scanning must be understood in the broad sense, that is to say also encompassing arms 60 promoting a disturbance of the super-cooled boundary layer in the vicinity of the hollow disc 40.
  • super-cooled boundary layer is meant the film which cools down in contact with the hollow disc 40.
  • scanning does not necessarily mean that there is mechanical contact between the arms and the surface of the hollow disc 40, for example by means of brushes 41
  • super-cooling should be understood as cooling to a temperature lower than the usual freezing temperature.
  • FIG. 9 shows an exemplary embodiment where the adjacent scanning arms 60 are offset angularly with respect to each other.
  • the expulsion opening 6c is positioned and oriented so as to expel the coolant fluid 4 enriched in solid phase in the storage and regeneration compartment 2, and more precisely in the central area 2b at a higher level.
  • the introduction means 72 then extend to a higher level in said storage and regeneration compartment 2.
  • They include movable blades 70 arranged to push the coolant 4 towards and into the packaging compartment 20.
  • the blades movable 70 are advantageously mounted on a chain or a band driven by a gear motor 74.
  • the movable blades 170 are mounted on the horizontal arms 172, themselves fixed on a vertical axis 174 driven by a geared motor 176.
  • the movable blades 170 are for example orientable relative to their horizontal mounting arms 172 as shown diagrammatically in FIG. 11 by the arrows "W".
  • the device according to the invention comprises a plurality of indirect heat exchange means 6 (of which only one is shown in FIG. 11), associated with one and the same storage and regeneration compartment 2.
  • the indirect heat exchange means 6 are distributed around the storage and regeneration compartment, which itself extends concentrically around the single other conditioning compartment 20.
  • the wall 20a delimiting the other packaging compartment 20 has a preferential height that does not substantially alter the supply of coolant fluid 4 in solid phase from the blades 170.
  • a mixing member 30 plunging into the other packaging compartment 20 is for example mounted on the axis 174 and rotates with the latter.
  • the functioning of the device represented in FIGS. 10 and 11 is for the rest identical to that of the device represented in FIG. 1.
  • the refrigerating source 50 can be placed next to, below, or entirely independent of the indirect exchange means 6.
  • the admission of the coolant 4 in the liquid phase into the indirect heat exchange means 6 or more precisely into the enclosure 6a is done by means of pipes 6d opening into the storage and regeneration compartment 2.
  • the device according to the invention makes it possible to implement a method of storing and regenerating a coolant fluid in two-phase form and intended to supply one or more heat exchangers 12.
  • This method makes it possible to illustrate the operation of 'Such a device according to the invention.
  • a refrigerating fluid 4 comprising a solid phase in equilibrium of fusion or crystallization with a liquid phase, and circulate said coolant 4 in the circuit comprising the heat exchangers 12 as well as in a storage and regeneration compartment 2 associated with an indirect heat exchange means 6.
  • the coolant 4 is continuously stored in the storage and regeneration compartment, thus allowing decantation between the liquid phase and the solid phase of said fluid.
  • a portion of the coolant 4 rich in micro-crystals or solid phase is separated and stored in the other conditioning compartment 20, in the form of an ice slurry. Then injected into said other conditioning compartment 20, a portion of coolant 4 in liquid phase, or poor in solid phase, taken from the storage and regeneration compartment 2 in order to mix the solid and liquid phases of the refrigerating fluid 4 in said other conditioning compartment 20.
  • the ice slurry mixed in the other conditioning compartment 20 is thus ready to be sucked or pumped in the heat transfer circuit 10.
  • the return of the refrigerating fluid 4 or the ice slurry downstream of the heat exchangers 12 is done either directly in the crystallization enclosure 6a, or in the storage and regeneration compartment 2 at a lower level.
  • the method also consists in modulating the quantity of refrigerant fluid 4 depleted in solid phase which is injected into the other conditioning compartment 20.
  • the method according to the invention also consists in determining in the compartment packaging 20, the concentration in solid phase and to modify, if necessary, this concentration by acting on the quantity of refrigerant fluid 4 depleted in solid phase injected into the other packaging compartment 20.
  • the process according to the invention it is also possible to determine the level of filling of the other conditioning compartment 20 with the coolant fluid of the ice-slurry type, and to use the result of this determination to act on the angular incidence of blades 170 or on the speed of movement of the blades, 70, 170. It is also possible to speed up, slow down or interrupt if necessary, the various operations of said process and in particular the operations under (f), (g ) and (h). It is thus possible to act on the orientation of the blades 170 in order to modulate the quantity of coolant fluid 4 in solid phase reinjected into the other packaging compartment 20.
  • the amount of coolant 4 in liquid phase reinjected into the other packaging compartment 20 is managed by the measuring member 34 determining the concentration of micro-crystals. According to this method, and thanks to the device implementing this method, it is thus possible to produce refrigeration sources making it possible to supply large units or large units, or even urban districts, for air conditioning purposes.
  • the movement of the coolant 4 enriched in micro-crystals, and if necessary favored by the introduction means, of the blades type 70, 170, generates a movement in the opposite direction of the coolant 4 in liquid phase in the bottom of the storage and regeneration compartment 2.
  • This movement is advantageously towards the crystallization enclosure 6a.
  • This promotes the movement of the coolant 4 in the liquid phase to the crystallization chamber 6a, simultaneously with the movement of the coolant rich in micro-crystals to the other packaging compartment 20.
  • the blades 70 and 170 maintain permanently the upper part rich in crystals or solid phase, in the pasty state, and prevent solidification of the crystals. This device is necessary in large capacity assemblies, for example used discontinuously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Dispositif de stockage d'un fluide frigo porteur (4), sous forme diphasique, destiné à circuler dans un circuit de transfert de chaleur (10), comportant : un compartiment de stockage et de régénération (2) du fluide frigo porteur à l'état diphasique ; au moins un moyen d'échange indirect de chaleur (6) entre un fluide frigorigène et le fluide frigo-porteur ; un moyen de circulation (8), pour faire circuler le fluide frigo-porteur, dans le circuit de transfert de chaleur ;un circuit de recyclage diphasique et de refroidissement du fluide frigo porteur. Ce dispositif comporte :un autre compartiment, de conditionnement (20) sous forme de coulis de glace, connecté au circuit de transfert de chaleur ; des moyens d'introduction d'une partie du fluide frigo-porteur, enrichie en phase solide, dans ledit autre compartiment ; un point de soutirage (24) sur le compartiment de stockage et régénération, et des moyens d'injection (26, 28) de fluide frigo-porteur en phase liquide, dans ledit autre compartiment ; et un organe mélangeur, coopérant avec ledit autre compartiment.

Description

DISPOSITIF ET PROCEDE DE STOCKAGE ET DE REGENERATION D'UN FLUIDE FRIGO-PORTEUR SOUS FORME DIPHASIQUE
La présente invention concerne le stockage et la régénération d'un fluide frigo-porteur.
Par "coulis de glace", on entend un fluide frigo-porteur comprenant deux phases d'un même corps en équilibre de fusion ou cristallisation, par exemple de l'eau additionnée d'un agent antigel, tel que du sel, de l'alcool, du monoéthylène-glycol ou du monopropylène-glycol. Ce corps en équilibre de fusion peut également être un eutectique. La phase solide sous forme divisée, par exemple des micro-cristaux de glace, est distribuée de manière homogène dans la phase liquide, au point d'obtenir une consistance du fluide frigo-porteur, pâteuse ou visqueuse, par exemple suffisamment fluide pour pouvoir pomper ledit fluide. Les fluides frigo-porteurs considérés selon l'invention, sont donc obtenus, stockés, transportés, et utilisés sous forme diphasique mélangée et homogène, en particulier dans une consistance proche d'un sorbet ou coulis de glace.
Les fluides frigo-porteurs comprennent une phase liquide et une phase solide en mélange homogène. Ce sont eux-mêmes en général des mélanges eau-alcool, eau-éthylène-glycol, eau-propylène-glycol, eau-glycérol, eau-ammoniac, eau-carbonate de potassium, eau-chlorure de calcium, eau-chlorure de magnésium, eau-acétate de potassium, etc.. ; d'autres types de mélanges, ne comportant pas d'eau, peuvent également convenir. De tels fluides frigo-porteurs sont très performants, ils absorbent la chaleur par fusion de leur phase solide, par rapport à des fluides frigo-porteurs liquides classiques, qui absorbent la chaleur, uniquement par réchauffement (chaleur sensible).
Pour simplifier la présentation de l'invention, on parlera ci-après de fluide frigo-porteur du type coulis de glace, lequel devra être compris comme un fluide tel que précédemment défini.
Par fluide frigo-porteur en phase liquide, il faudra entendre, par différence, un fluide essentiellement en phase liquide, c'est-à-dire avec une concentration faible, voire nulle, de micro-cristaux. Par le document US-A-2 902 839, on connaît un dispositif de stockage et de régénération d'un fluide frigo-porteur, sous forme diphasique, mais pas sous forme de coulis de glace, destiné à circuler uniquement sous forme liquide dans un circuit de transfert de chaleur. Ce dernier comporte un ou plusieurs échangeurs de chaleur entre le fluide frigo-porteur froid et sous forme liquide et l'extérieur. Ledit dispositif comporte :
- un compartiment de stockage du fluide frigo-porteur à l'état diphasique, en équilibre de fusion ;
- au moins un moyen d'échange indirect de chaleur entre un fluide frigorigène et le fluide frigo-porteur, en phase liquide, associé audit compartiment, et plus précisément disposé au sein dudit compartiment ;
- un moyen de circulation, du type pompe, pour faire circuler le fluide frigo-porteur, prélevé à l'état liquide à l'état froid dans ledit compartiment, dans le circuit de transfert de chaleur, et le réinjecter dans ledit compartiment ; - un circuit de recyclage diphasique et de refroidissement du fluide frigo-porteur au sein dudit compartiment, comportant un point de soutirage en partie inférieure dudit compartiment, ledit circuit de recyclage intégrant le moyen d'échange indirect de chaleur, et comportant un moyen d'aspiration/refoulement de fluide frigo-porteur. Le moyen d'échange indirect de chaleur est un échangeur à surface raclée, générant une prise en masse du fluide frigo-porteur sur une surface de raclage. La séparation du fluide frigo-porteur sous forme solide de la surface de raclage nécessite des efforts importants, allant ainsi à rencontre d'une diminution de consommation d'énergie de fonctionnement pour le dispositif.
Conformément au document EP-0 629 826, on connaît un dispositif de transfert de froid comportant un compartiment vertical destiné à stocker et à alimenter un circuit de transfert de chaleur avec un fluide frigo-porteur du type coulis de glace. Le dispositif comprend un moyen d'échange indirect de chaleur entre un fluide frigorigène et le fluide frigo-porteur, placé à l'extérieur de l'enceinte de stockage. Ce dernier est puisé en phase liquide à un niveau inférieur du compartiment de stockage, pour être réinjecté à un niveau supérieur, une fois enrichi en micro-cristaux de phase solide.
Un moyen d'extraction est également prévu pour alimenter le circuit de transfert de chaleur en fluide frigo-porteur du type coulis de glace. Ce moyen d'extraction comprend un cône débouchant sur un conduit dans le compartiment de stockage. L'ouverture du cône se situe à un niveau supérieur et où le fluide frigo-porteur est riche en phase solide (micro-cristaux de glace). Un moyen d'agitation est disposé dans le cône, de manière à créer une turbulence dans le fluide frigo-porteur extrait, régénérant le coulis de glace. Un tel dispositif ne permet pas de contrôler avec précision la concentration en micro-cristaux dans le fluide frigo-porteur du type coulis de glace, extrait pour alimenter le circuit de transfert de chaleur. En outre, l'alimentation du moyen d'échange indirect de chaleur se fait sous la pression hydraulique du fluide frigo-porteur contenu dans le compartiment de stockage. Ceci peut s'avérer gênant lors d'opérations de maintenance, a fortiori, lorsque le compartiment de stockage est très grand. Une hauteur importante de stockage du coulis de glace, peut, avec certains mélanges, amener à une stratification pouvant détériorer, de façon notoire, la qualité du coulis de glace qui sera injectée dans l'installation. Un dessèchement de la couche haute peut se produire, engendrant une température non optimale. Cet inconvénient est d'autant plus marquant lorsque le coulis de glace n'est pas utilisé en permanence.
On connaît ainsi également un procédé de stockage et de régénération d'un fluide frigo-porteur, sous forme diphasique, destiné à alimenter sous forme liquide, un ou plusieurs échangeurs de chaleur appartenant à un circuit de transfert de chaleur, consistant à :
(a) disposer d'un fluide frigo-porteur comprenant une phase solide en équilibre de fusion avec une phase liquide ;
(b) faire circuler le fluide frigo-porteur, sous forme liquide, dans un circuit comprenant le ou les échangeurs de chaleur, ainsi que dans un compartiment de stockage et régénération associé à un moyen d'échange indirect de chaleur ;
(c) stocker le fluide frigo-porteur dans le compartiment, permettant une décantation entre la phase liquide et la phase solide dudit fluide ; (d) prélever dans le compartiment le fluide frigo-porteur, essentiellement en phase liquide, et le faire circuler dans le moyen d'échange indirect de chaleur, de manière à le transformer en phase solide, laquelle est dissociée aux micro-cristaux ;
(e) réinjecter le fluide frigo-porteur riche en micro-cristaux sortant du moyen d'échange indirect de chaleur, dans le compartiment. Le but de la présente invention est de stocker et de régénérer, de façon permanente, un fluide frigo-porteur, type coulis de glace, pour qu'il soit opérationnel de façon permanente, même après de longs arrêts d'utilisation.
Un autre but de la présente invention vise à optimiser la consistance d'un fluide frigo-porteur du type coulis de glace, c'est-à-dire optimiser la concentration de micro-cristaux dans le fluide frigo-porteur et en particulier à contrôler cette concentration, pour obtenir un stockage maximum.
Un autre but de la présente invention vise à contrôler et à modifier, le cas échéant, cette concentration en micro-cristaux, en vue d'améliorer ou d'adapter les propriétés frigorifiques du fluide frigo-porteur du type coulis de glace, à l'utilisation.
Un but additionnel de la présente invention vise à simplifier les installations mettant en oeuvre un tel fluide frigo-porteur d'une part, et à faciliter les opérations de maintenance d'autre part. Selon l'invention, le dispositif comporte :
- un autre compartiment de conditionnement sous forme de coulis de glace, connecté au circuit de transfert de chaleur, lui-même alimenté en fluide frigo-porteur du type coulis de glace ;
- des moyens d'introduction d'une partie du fluide frigo-porteur, enrichie en phase solide, en dehors du moyen d'échange indirect de chaleur dans ledit autre compartiment, à un niveau supérieur ;
- un point de soutirage complémentaire sur le compartiment de stockage et régénération, en partie inférieure, et des moyens d'injection de fluide frigo-porteur en phase liquide, dans ledit autre compartiment ; - et un organe mélangeur coopérant avec ledit autre compartiment, pour mélanger les phases liquide et solide du fluide frigo-porteur.
En outre, le procédé conforme à l'invention se différencie du procédé identifié précédemment par référence aux étapes dites (a) à (e), par le fait que : (f) on sépare et stocke une partie du fluide frigo-porteur riche en phase solide dans un autre compartiment de conditionnement sous forme de coulis de glace ; (g) on injecte dans ledit autre compartiment une partie de fluide frigo-porteur pauvre en phase solide, prélevée dans le compartiment de stockage et régénération ; (h) on mélange les phases solide et liquide du fluide frigo-porteur dans ledit autre compartiment ; (i) on utilise le fluide frigo-porteur obtenu sous (h) pour mettre en oeuvre l'étape (a), par prélèvement du fluide frigo-porteur conditionné sous forme de coulis de glace dans ledit autre compartiment, et en le réinjectant, en aval du ou des échangeurs de chaleur du circuit de transfert de chaleur dans le compartiment de stockage et régénération, et/ou par exemple à l'entrée du moyen d'échange indirect de chaleur. Selon un mode de réalisation du dispositif conforme à l'invention, le moyen d'échange indirect de chaleur comprend : une enceinte de cristallisation pourvue, d'une part d'au moins un orifice de prélèvement du fluide frigo-porteur appauvri en phase solide, communiquant avec le compartiment de stockage et régénération en partie inférieure, et d'autre part, d'une ouverture d'expulsion du fluide frigo-porteur (4) enrichi en phase solide ;
- au moins un disque creux monté fixe dans l'enceinte de cristallisation au contact du flux de circulation du fluide frigo-porteur de l'orifice de prélèvement à l'ouverture d'expulsion, ledit disque étant traversé intérieurement par un fluide frigorigène en cours d'évaporation ou un frigo-porteur à plus basse température ;
- un ensemble de bras de balayage montés sur un axe, lequel est entraîné en rotation par un moto-réducteur, et disposés par rapport au(aux) disque(s) de manière à balayer sa surface au contact du fluide frigo-porteur, et expulser le fluide frigo-porteur enrichi en phase solide vers l'ouverture expulsion.
Selon un mode de réalisation du dispositif conforme à l'invention, le moyen d'échange indirect de chaleur comprend un ensemble de disques creux, disposés parallèlement les uns aux autres et espacés entre eux, et en ce qu'au moins une partie des bras de balayage, montés fixes sur l'axe du moto- réducteur, sont décalés angulairement l'un par rapport à l'autre, et en passant d'un disque au disque adjacent, ou en passant d'une face d'un disque à sa face adjacente, pour forcer la circulation du fluide frigo-porteur à l'intérieur de l'enceinte de cristallisation, l'ensemble des bras de balayage constituant ainsi les moyens d'aspiration/refoulement pour le recyclage du fluide frigo-porteur au sein du compartiment de stockage et régénération. Selon un mode de réalisation, le dispositif conforme à l'invention comporte une pluralité de moyens d'échange indirect de chaleur, associés à un seul et même compartiment de stockage et régénération, et répartis autour dudit compartiment, lequel s'étend concentriquement autour de l'unique autre compartiment de conditionnement.
Le dispositif conforme à l'invention présente l'avantage de maintenir en mouvement le fluide frigo-porteur, tout au long de sa circulation dans les deux compartiments, respectivement de stockage et régénération, et de conditionnement, en particulier dans le moyen d'échange indirect de chaleur, évitant ainsi une prise en masse risquant de bloquer la circulation par le fluide congelé.
Un autre avantage est lié à la grande quantité de fluide frigo-porteur, qu'il est possible de stocker sous forme diphasique en équilibre de fusion, en prévision d'une alimentation de tout circuit de transfert de froid. D'autres caractéristiques et avantages de l'invention également de la description détaillée ci-après, en référence aux dessins, sont donnés à titre d'exemples non limitatifs, dans lesquels :
- la figure 1 représente une vue en coupe d'un dispositif de stockage, régénération et conditionnement, conforme à l'invention ; - la figure 2 est une vue schématique et partielle du dispositif de dessus de la figure 1 ;
- les figures 3 et 4 sont des vues en coupe du moyen d'échange indirect de chaleur, incorporé dans le dispositif conforme à l'invention, respectivement en coupe perpendiculaire à l'axe, et selon l'axe dudit moyen ; - les figures 5 à 9 sont des détails des figures 3 et 4 ;
- la figure 10 est une vue en coupe d'un autre exemple de réalisation d'un dispositif conforme à l'invention ;
- la figure 11 est une vue selon la ligne A-A de la figure 10 ;
- la figure 12 représente un détail du moyen d'échange indirect de chaleur du dispositif conforme à l'invention ;
- la figure 13 représente une coupe éclatée selon la ligne XIII-XIII de la figure 12.
La figure 1 est une vue en coupe d'un dispositif de stockage, régénération et conditionnement conforme à l'invention. Ce dernier comprend un compartiment de stockage et de régénération 2 contenant un fluide frigo-porteur 4 à l'état diphasique en équilibre de fusion ou cristallisation. Le dispositif conforme à l'invention comprend également un moyen d'échange indirect de chaleur 6 entre un fluide frigorigène et le fluide frigo-porteur 4 essentiellement en phase liquide. Le moyen d'échange indirect de chaleur 6 est associé au compartiment de stockage et régénération 2. Un moyen de circulation 8 du type pompe représenté par exemple à la figure 2 est prévu pour faire circuler le fluide frigo-porteur 4 prélevé dans le compartiment de stockage et régénération 2, dans un circuit de transfert de chaleur 10 comportant un ou plusieurs échangeurs de chaleur 12. Le circuit de transfert de chaleur 10 débouche en aval des moyens d'échange de chaleur 12 dans le compartiment de stockage et de régénération 12.
A titre de variante non représentée aux figures, il est également possible de réinjecter le fluide frigo-porteur 4, en aval du ou des moyens d'échange de chaleur 12, directement dans le moyen d'échange indirect de chaleur 6 si le retour du fluide frigo-porteur 4 est à une température plus élevée que la température de cristallisation.
Le circuit de transfert de chaleur 10 débouche ainsi par exemple dans le compartiment de stockage et de régénération 2, par l'intermédiaire d'une ouverture 2a.
Le volume dans lequel débouche le circuit de transfert de chaleur 10 est de préférence partiellement séparé ou délimité par rapport au restant du compartiment de stockage et de régénération 2, et peut comprendre dans sa partie basse des grilles 14 susceptibles de confiner le fluide d'un frigo-porteur 4 en phase solide dans ledit compartiment de stockage et régénération 2. Les grilles 14, constituant ainsi un filtre peuvent être supprimées lorsque le compartiment de stockage et régénération 2 est suffisamment grand pour obtenir une bonne décantation du fluide frigo-porteur 4 en phase liquide, vers le bas.
Le compartiment de stockage et régénération 2 délimite une zone centrale de décantation 2b dont la partie inférieure disposée d'une part entre les grilles 14 et d'autre part entre deux parois de séparation 16 et 18. La première paroi de séparation 16 permet d'obtenir une séparation partielle entre la zone de stockage et régénération 2b et la zone comportant le moyen d'échange indirect de chaleur 6. La seconde paroi de séparation 18 permet d'obtenir une séparation partielle entre la zone de stockage et régénération 2b et un autre compartiment de conditionnement 20 sous forme d'un coulis de glace, dudit fluide frigo-porteur 4. Ce second compartiment 20 est connecté au circuit de transfert de chaleur 10 par l'intermédiaire d'une ouverture 22 associée au moyen de circulation 8. L'autre compartiment de conditionnement 20 est également alimenté en fluide frigo-porteur 4 du type coulis de glace.
Le dispositif conforme à l'invention comprend également un circuit de recyclage diphasique et de refroidissement du fluide frigo-porteur 4 au sein du compartiment de stockage et régénération 2. Ce circuit de recyclage diphasique et de refroidissement comporte au moins un point de soutirage 24 en partie inférieure dudit compartiment de stockage et régénération 2. Les grilles 14 sont espacées des parois latérales 2e correspondantes pour constituer des couloirs de circulation débouchant sur le ou les points de soutirage 24, alimentant le moyen d'échange indirect de chaleur 6. Le circuit de recyclage et de refroidissement intègre également les moyens d'échange de chaleur indirect 6 et comporte en outre un moyen d'aspiration et de refoulement du fluide frigo-porteur 4. Le fluide frigo-porteur 4 est ainsi aspiré dans le moyen d'échange indirect de chaleur 6, tel que cela est représenté par exemple à la figure 4 par les flèches "A".
L'autre compartiment de conditionnement 20 et le moyen d'échange indirect 6 sont par exemple disposés de part et d'autre de la zone centrale de stockage et régénération 2b, constituant principalement le compartiment de stockage et de régénération 2 du fluide frigo-porteur 4.
L'autre compartiment de conditionnement 20 est alimenté à un niveau supérieur par au moins une partie du fluide frigo-porteur 4 enrichi en phase solide en dehors du moyen d'échange indirect de chaleur lui-même, et ce à l'aide de moyens d'introduction 72. Un point de soutirage complémentaire sur le compartiment de stockage et de régénération 2, et ce en partie inférieure, associé à des moyens d'injection 26 de fluide frigo-porteur 4 en phase liquide dans ledit autre compartiment de conditionnement 20, est également prévu.
Le fluide frigo-porteur 4 en phase liquide est ainsi apporté dans l'autre compartiment de conditionnement 20 par exemple à l'aide d'un tube de répartition 28 disposé sensiblement dans sa partie centrale.
Un organe mélangeur 30 est également prévu pour coopérer avec l'autre compartiment de conditionnement 20, de manière à mélanger les phases liquide et solide du fluide frigo-porteur 4 contenues dans ledit autre compartiment 20. Le dispositif conforme à l'invention comprend également un détecteur de niveau 32 permettant de déterminer le niveau de remplissage de l'autre compartiment de conditionnement 20 par le fluide frigo-porteur 4 sous forme de coulis de glace.
Selon un exemple de réalisation, le dispositif comprend également un organe de mesure 34 pour déterminer la concentration en phase solide du fluide frigo-porteur 4 sous forme de coulis de glace dans l'autre compartiment de conditionnement 20. L'organe de mesure 34 est par exemple réalisé avec un capteur de température, ou de conductivité électrique ou capacitive, ou des moyens de mesure d'opacité, associé à des moyens d'analyse adéquats, du type électronique ou microprocesseur. Le moyen de circulation 8 permet de réinjecter en aval du ou des échangeurs de chaleur 12 du circuit de transfert de chaleur 10, le fluide frigo-porteur 4, par exemple dans le compartiment de stockage et régénération 2, à l'aide d'un orifice 2a ménagé dans ce dernier à un niveau inférieur.
Selon une variante de réalisation du dispositif conforme à l'invention, le moyen de circulation 8 et le circuit de transfert de chaleur 10 sont connectés également ou uniquement sur le moyen d'échange de chaleur indirect 6, afin d'y réinjecter directement le fluide frigo-porteur 4 en aval du ou des échangeurs de chaleur 12.
Le moyen d'échange de chaleur indirect 6 est schématisé plus précisément aux figures 2, 3 et 4.
Le moyen d'échange indirect de chaleur 6 comprend une enceinte 6a de cristallisation pourvue, d'une part d'au moins un orifice de prélèvement 6b du fluide frigo-porteur 4 appauvri en phase solide, communiquant via les orifices de prélèvement 24 avec le compartiment de stockage et régénération 2 en partie inférieure, et d'autre part une ouverture d'expulsion 6c du fluide frigo-porteur 4 enrichi en phase solide.
Le moyen d'échange indirect de chaleur 6 comprend également au moins un disque creux 40 monté fixe dans l'enceinte 6a, au contact du flux de circulation du fluide frigo-porteur 4 de l'orifice de prélèvement 6b à l'ouverture d'expulsion 6c. Le disque creux 40 est traversé intérieurement par un fluide frigorigène en cours d'évaporation, par exemple NH3. Le ou les disques creux 40 sont alimentés par ce fluide frigorigène par l'intermédiaire d'un groupe frigorifique 50 disposé par exemple à côté du moyen d'échange de chaleur 6. A titre de variante conforme à l'invention, le fluide frigorigène peut être remplacé par un autre fluide frigo-porteur, distinct de celui circulant dans le circuit de transfert de chaleur 10, mais plus froid. Le moyen d'échange indirect de chaleur 6 comprend également un ensemble de bras de balayage 60 montés sur un axe 62, lequel est entraîné en rotation par un moteur-réducteur 64. Les bras de balayage 60 sont disposés par rapport au(x) disque(s) creux 40, de manière à balayer leur surface au contact du fluide frigo-porteur 4 et à expulser le fluide frigo-porteur 4 enrichi, en cours de sur-refroidissement vers l'ouverture d'expulsion 6c de l'enceinte 6a. La cristallisation du fluide frigo-porteur 4 se fait ainsi directement dans le flux refoulé et expulsé. L'expulsion du fluide frigo-porteur 4 et plus précisément le refoulement de ce fluide frigo-porteur 4 est schématisé par des flèches "R" comme cela est représenté aux figures 4 et 3. Le retour du fluide frigo-porteur 4 ou du coulis de glace se fait en aval des échangeurs de chaleur 12. Le ou chaque disque creux 40 présente un passage central 41 traversé par l'axe 62. Le fluide frigo-porteur 4 est ainsi aspiré au travers des ouvertures de prélèvement 6b, pour ensuite circuler à partir du ou des passages 41 vers la périphérie de chaque disque creux 40, et ce par centrifugation.
Un exemple de réalisation d'un disque creux 40 est représenté aux figures 12 et 13. Le disque creux 40 comprend par exemple deux plaques latérales 42, et une plaque intermédiaire 43, pourvue chacune d'un passage central 41. La plaque intermédiaire 43, découpée en serpentins 43a est prise et enserrée de façon intime et étanche entre les plaques latérales 42. Les serpentins 43a réalisent ainsi le chemin de circulation pour un fluide frigorigène, dont la circulation est schématisée par exemple par les flèches Fe et Fs sur les figures 3 et 12. Les flèches Fe et Fs correspondent respectivement aux directions d'entrée et de sortie du fluide frigorigène circulant dans le disque creux 40.
Le moyen d'échange indirect de chaleur 6 comprend par exemple un ensemble de disques creux 40 disposés parallèlement les uns aux autres et espacés entre eux. Au moins une partie des bras de balayage 60 montés fixés sur l'axe 62 du moteur-réducteur 64 sont décalés angulairement l'un par rapport à l'autre, en passant d'un disque au disque adjacent, ou en passant d'une face d'un disque à sa face adjacente, pour forcer la circulation du fluide frigo-porteur 4 à l'intérieur de l'enceinte de cristallisation 6a. L'ensemble des bras de balayage 60 constitue ainsi les moyens d'aspiration et de refoulement pour le recyclage du fluide frigo-porteur 4 au sein du compartiment de stockage et de régénération 2. La rotation des bras de balayage 60 est schématisée par la flèche "V" aux figures 3 et 4.
Avantageusement, l'ouverture d'expulsion 6c est conformée, positionnée et orientée de manière à expulser le fluide frigo-porteur 4 enrichi en phase solide vers l'autre compartiment de conditionnement 20, constituant ainsi des moyens d'introduction dans ce dernier. Les bras de balayage 60 peuvent présenter différentes formes représentées à titre d'exemple aux figures 5 à 9. Les bras de balayage 60 peuvent ainsi être incurvés comme cela est représenté aux figures 6 et 8, ou coudés comme cela est représenté aux figures 5 et 7. Le nombre de bras de balayage 60 pour balayer une surface d'un disque creux peut également varier. En effet, il est possible comme cela est représenté aux figures 5 et 6, de balayer une surface d'un disque creux 40 à l'aide de deux bras de balayage 60, ou par exemple à l'aide de quatre bras de balayage 60, comme cela est représenté aux figures 7 et 8. Cette énumération n'est nullement limitative. Il est également possible de rajouter davantage de bras de balayage 60, pour balayer une même surface. Le terme "balayage" doit être compris au sens large, c'est-à-dire englobant également des bras 60 favorisant une perturbation de la couche limite sur-refroidie au voisinage du disque creux 40. Par couche limite sur-refroidie, on entend le film qui se refroidit au contact avec le disque creux 40. Le terme "balayage" ne veut pas dire obligatoirement qu'il y a contact mécanique entre les bras et la surface du disque creux 40, par exemple par l'intermédiaire de balais 41. Le terme "sur-refroidissement" doit être compris comme un refroidissement à une température plus basse que la température habituelle de congélation. La figure 9 montre un exemple de réalisation où les bras de balayage 60 adjacents sont décalés angulairement l'un par rapport à l'autre.
Selon l'exemple de réalisation (cf. figure 1), l'ouverture d'expulsion 6c est positionnée et orientée de manière à expulser le fluide frigo-porteur 4 enrichi en phase solide dans le compartiment de stockage et régénération 2, et plus précisément dans la zone centrale 2b à un niveau supérieur. Les moyens d'introduction 72 s'étendent alors à un niveau supérieur dans ledit compartiment de stockage et de régénération 2. Ils comportent des pales mobiles 70 agencées pour pousser le fluide frigo-porteur 4 vers et dans le compartiment de conditionnement 20. Les pales mobiles 70 sont avantageusement montées sur une chaîne ou une bande entraînée par un moteur-réducteur 74. Selon un autre exemple de réalisation du dispositif conforme à l'invention, représenté aux figures 10 et 11, les pales mobiles 170 sont montées sur les bras horizontaux 172, eux-mêmes fixés sur un axe vertical 174 entraîné par un moto-réducteur 176. Les pales mobiles 170 sont par exemple orientables par rapport à leurs bras horizontaux de montage 172 comme cela est schématisé à la figure 11 par les flèches "W".
Dans cet exemple de réalisation, le dispositif conforme à l'invention comporte une pluralité de moyens d'échange indirect de chaleur 6 (dont un seul est représenté à la figure 11), associés à un seul et même compartiment de stockage et régénération 2. Les moyens d'échange de chaleur indirect 6 sont répartis autour du compartiment de stockage et de régénération, lequel s'étend lui-même concentriquement autour de l'unique autre compartiment de conditionnement 20.
La paroi 20a délimitant l'autre compartiment de conditionnement 20 présente une hauteur préférentielle n'altérant pas substantiellement l'alimentation en fluide frigo-porteur 4 en phase solide à partir des pales 170. Un organe mélangeur 30 plongeant dans l'autre compartiment du conditionnement 20 est par exemple monté sur l'axe 174 et tourne avec ce dernier. Pour des installations de grande puissance frigorifique, c'est-à-dire des dispositifs présentant des dimensions importantes, il est possible de prévoir à l'extrémité de chaque bras horizontal 172, une roue d'appui 200 roulant sur un rebord 201 ménagé en partie supérieure sur la paroi 2c délimitant le compartiment de stockage et régénération 2.
Le fonctionnement du dispositif représenté aux figures 10 et 11 est pour le restant identique à celui du dispositif représenté à la figure 1. La source frigorifique 50 peut être placée à côté, au-dessous, ou carrément indépendante du moyen d'échange indirect 6. L'admission du fluide frigo-porteur 4 en phase liquide dans le moyen d'échange indirect de chaleur 6 ou plus précisément dans l'enceinte 6a se fait par l'intermédiaire de conduites 6d débouchant dans le compartiment de stockage et régénération 2.
Le dispositif conforme à l'invention permet de mettre en oeuvre un procédé de stockage et de régénération d'un fluide frigo-porteur sous forme diphasique et destiné à alimenter un ou plusieurs échangeurs de chaleur 12. Ce procédé permet d'illustrer le fonctionnement d'un tel dispositif conforme à l'invention. On dispose ainsi d'un fluide frigo-porteur 4 comprenant une phase solide en équilibre de fusion ou cristallisation avec une phase liquide, et on fait circuler ledit fluide frigo-porteur 4 dans le circuit comprenant les échangeurs de chaleur 12 ainsi que dans un compartiment de stockage et de régénération 2 associé à un moyen d'échange indirect de chaleur 6. On stocke continuellement le fluide frigo-porteur 4 dans le compartiment de stockage et régénération, permettant ainsi une décantation entre la phase liquide et la phase solide dudit fluide. Le prélèvement dans ledit compartiment de stockage et régénération 2 du fluide frigo-porteur 4, essentiellement en phase liquide et la circulation dans le moyen d'échange indirect de chaleur 6, permettent de transformer ledit fluide en phase solide, laquelle est dissociée en micro-cristaux. Ce dernier riche en micro-cristaux est ensuite réinjecté dans le compartiment de stockage et régénération 2.
Conformément à l'invention, on sépare et on stocke une partie du fluide frigo-porteur 4 riche en micro-cristaux ou phase solide dans l'autre compartiment 20 de conditionnement, sous forme de coulis de glace. On injecte ensuite dans ledit autre compartiment de conditionnement 20, une partie de fluide frigo-porteur 4 en phase liquide, ou pauvre en phase solide, prélevée dans le compartiment de stockage et de régénération 2 et ce afin de mélanger les phases solide et liquide du fluide frigo-porteur 4 dans ledit autre compartiment de conditionnement 20. Le coulis de glace mélangé dans l'autre compartiment de conditionnement 20 est ainsi prêt à être aspiré ou pompé dans le circuit de transfert de chaleur 10. Le retour du fluide frigo-porteur 4 ou du coulis de glace en aval des échangeurs de chaleur 12 se fait soit directement dans l'enceinte de cristallisation 6a, soit dans le compartiment de stockage et régénération 2 à un niveau inférieur. Conformément à l'invention, le procédé consiste également à moduler la quantité de fluide frigo-porteur 4 appauvri en phase solide qui est injectée dans l'autre compartiment de conditionnement 20. Le procédé conforme à l'invention consiste également à déterminer dans le compartiment de conditionnement 20, la concentration en phase solide et à modifier, le cas échéant, cette concentration en agissant sur la quantité de fluide frigo-porteur 4 appauvri en phase solide injectée dans l'autre compartiment de conditionnement 20.
Selon le procédé conforme à l'invention, il est également possible de déterminer le niveau de remplissage de l'autre compartiment de conditionnement 20 par le fluide frigo-porteur du type coulis de glace, et à utiliser le résultat de cette détermination pour agir sur l'incidence angulaire des pales 170 ou sur la vitesse de déplacement des pales, 70, 170. Il est également possible d'accélérer, de ralentir ou d'interrompre le cas échéant, les différentes opérations dudit procédé et en particulier les opérations sous (f), (g) et (h). Il est ainsi possible d'agir sur l'orientation des pales 170 pour moduler la quantité de fluide frigo-porteur 4 en phase solide réinjectée dans l'autre compartiment de conditionnement 20.
La quantité de fluide frigo-porteur 4 en phase liquide réinjectée dans l'autre compartiment de conditionnement 20 est gérée par l'organe de mesure 34 déterminant la concentration de micro-cristaux. Selon ce procédé, et grâce au dispositif mettant en oeuvre ce procédé, il est ainsi possible de réaliser des sources frigorifiques permettant d'alimenter de grands ensembles ou de grandes unités, voire des quartiers urbains, à des fins de climatisation.
Le mouvement du fluide frigo-porteur 4 enrichi en micro-cristaux, et le cas échéant favorisé par les moyens d'introduction, du type pales 70, 170, génère un mouvement en sens inverse du fluide frigo-porteur 4 en phase liquide dans le bas du compartiment de stockage et régénération 2. Ce mouvement se fait avantageusement vers l'enceinte de cristallisation 6a. On favorise ainsi le mouvement du fluide frigo-porteur 4 en phase liquide vers l'enceinte de cristallisation 6a, simultanément au déplacement du fluide frigo-porteur riche en micro-cristaux vers l'autre compartiment de conditionnement 20. Les pales 70 et 170 maintiennent en permanence la partie supérieure riche en cristaux ou phase solide, à l'état pâteux, et empêchent la prise en masse des cristaux. Ce dispositif est nécessaire dans les ensembles de grande capacité par exemple utilisés de façon discontinue.

Claims

REVENDICATIONS
1. Dispositif de stockage et de régénération d'un fluide frigo-porteur (4), sous forme diphasique, destiné à circuler dans un circuit de transfert de chaleur (10) comportant un ou plusieurs échangeurs de chaleur (12), ledit dispositif comportant :
- un compartiment de stockage et de régénération (2) du fluide frigo-porteur (4) à l'état diphasique, en équilibre de fusion ;
- au moins un moyen d'échange indirect de chaleur (6) entre un fluide frigorigène ou un autre fluide frigo-porteur et le fluide frigo-porteur (4), en phase liquide, associé audit compartiment (2) ;
- un moyen de circulation (8), du type pompe, pour faire circuler le fluide frigo-porteur (4), prélevé dans ledit compartiment (2), dans le circuit de transfert de chaleur (10), et le réinjecter dans ledit compartiment ; - un circuit de recyclage diphasique et de refroidissement du fluide frigo- porteur (4), au sein dudit compartiment, comportant un point de soutirage (24) en partie inférieure dudit compartiment, ledit circuit de recyclage intégrant le moyen d'échange indirect de chaleur, et comportant un moyen d'aspiration/refoulement du fluide frigo-porteur (4) ; caractérisé en ce qu'il comporte :
- un autre compartiment, de conditionnement sous forme de coulis de glace, connecté au circuit de transfert de chaleur (10), lui-même alimenté en fluide frigo-porteur (4) du type coulis de glace ;
- des moyens d'introduction d'une partie du fluide frigo-porteur (4), enrichie en phase solide, en dehors du moyen d'échange indirect de chaleur, lui-même dans ledit autre compartiment, à un niveau supérieur ;
- un point de soutirage (24) complémentaire sur le compartiment de stockage et régénération (2), en partie inférieure, et des moyens d'injection (26, 28) de fluide frigo-porteur (4) en phase liquide, dans ledit autre compartiment ; - et un organe mélangeur, coopérant avec ledit autre compartiment, pour mélanger les phases liquides et solides du fluide frigo-porteur (4).
2. Dispositif selon la revendication 1 , caractérisé en ce qu'il comprend un détecteur de niveau (32) permettant de déterminer le niveau de remplissage du compartiment de conditionnement (20) par le fluide frigo- porteur (4) sous forme de coulis de glace.
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce qu'il comprend un organe de mesure (34) pour déterminer la concentration en phase solide du fluide frigo-porteur (4), sous forme de coulis de glace, dans le compartiment de conditionnement (20).
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le moyen de circulation (8) est agencé pour réinjecter, en aval du ou des échangeurs de chaleur (12) du circuit de transfert et de chaleur (10), le fluide frigo-porteur (4), dans le compartiment de stockage et régénération (2), à l'aide d'un orifice (2a) ménagé dans ce dernier à un niveau inférieur.
5. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le moyen de circulation (8) est connecté sur le moyen d'échange de chaleur indirect (6) afin d'y réinjecter directement le fluide frigo- porteur (4), en aval du ou des échangeurs de chaleur (12) du circuit de transfert de chaleur (10).
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le moyen d'échange indirect de chaleur (6) comprend :
- une enceinte de cristallisation (6a) pourvue, d'une part d'au moins un orifice de prélèvement (6b) du fluide frigo-porteur (4) appauvri en phase solide, communiquant avec le compartiment de stockage et régénération (2) en partie inférieure, et d'autre part, d'une ouverture d'expulsion (6c) du fluide frigo-porteur (4) enrichi en phase solide ;
- au moins un disque creux (40) monté fixe dans l'enceinte de cristallisation (6a) au contact du flux de circulation du fluide frigo-porteur (4) de l'orifice de prélèvement (6b) à l'ouverture d'expulsion (6c), ledit disque étant traversé intérieurement par un fluide frigorigène en cours d'évaporation ou un autre fluide frigo-porteur à plus basse température ;
- un ensemble de bras de balayage (60) montés sur un axe (62), lequel est entraîné en rotation par un moto-réducteur (64), et disposés par rapport au(aux) disque(s) (40) de manière à balayer sa surface au contact du fluide frigo-porteur (4), et expulser le fluide frigo-porteur (4) enrichi en phase solide vers l'ouverture expulsion (6c).
7. Dispositif selon la revendication 6, caractérisé en ce que le moyen d'échange indirect de chaleur (6) comprend un ensemble de disques creux (40), disposés parallèlement les uns aux autres et espacés entre eux, et en ce qu'au moins une partie des bras de balayage (60), montés fixes sur l'axe (62) du moto-réducteur (64), sont décalés angulairement l'un par rapport à l'autre, et en passant d'un disque (40) au disque adjacent, ou en passant d'une face d'un disque (40) à sa face adjacente, pour forcer la circulation du fluide frigo-porteur (4) à l'intérieur de l'enceinte de cristallisation (6a), l'ensemble des bras de balayage (60) constituant ainsi les moyens d'aspiration/refoulement pour le recyclage du fluide frigo-porteur (4) au sein du compartiment de stockage et régénération (2).
8. Dispositif selon la revendication 7, caractérisé en ce que l'ouverture d'expulsion (6c) est conformée positionnée et orientée de manière à expulser le fluide frigo-porteur (4) enrichi en phase solide, vers l'autre compartiment de conditionnement (20), constituant ainsi les moyens d'introduction dans ce dernier.
9. Dispositif selon la revendication 7, caractérisé en ce que l'ouverture d'expulsion (6c) est positionnée et orientée de manière à expulser le fluide frigo-porteur (4) enrichi en phase solide dans le compartiment de stockage et régénération (2), à un niveau supérieur, et en ce que les moyens d'introduction s'étendent à un niveau supérieur dans ledit compartiment de stockage et régénération (2), et comportent des pales (70, 170) mobiles agencées pour pousser le fluide frigo-porteur (4) vers et dans l'autre compartiment de conditionnement (20).
10. Dispositif selon la revendication 9, caractérisé en ce que les pales (170) sont montées sur une chaîne ou une bande (72), entraînée par un moto-réducteur (74).
11. Dispositif selon la revendication 9, caractérisé en ce que les pales (170) sont montées sur des bras horizontaux (172), eux-mêmes fixés sur un axe vertical (174) entraîné par un moto-réducteur (176).
12. Dispositif selon la revendication 11 , caractérisé en ce que les pales (170) sont orientables par rapport à leurs bras horizontaux (172) les supportant.
13. Dispositif selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'il comporte une pluralité de moyens d'échange indirect de chaleur (6), associés à un seul et même compartiment de stockage et régénération (2), et répartis autour dudit compartiment, lequel s'étend concentriquement autour de l'unique autre compartiment de conditionnement (20).
14. Procédé de stockage et de régénération d'un fluide frigo- porteur (4), sous forme diphasique, destiné à alimenter un ou plusieurs échangeurs de chaleur (12), consistant à : (a) disposer d'un fluide frigo-porteur (4) comprenant une phase solide en équilibre de fusion avec une phase liquide ;
(b) faire circuler le fluide frigo-porteur (4) dans un circuit comprenant le ou les échangeurs de chaleur (12), ainsi que dans un compartiment de stockage et régénération (2), associé à un moyen d'échange indirect de chaleur (6) ;
(c) stocker, le fluide frigo-porteur (4) dans le compartiment (2), permettant une décantation entre la phase liquide et la phase solide dudit fluide ;
(d) prélever dans ledit compartiment (2) le fluide frigo-porteur (4), essentiellement en phase liquide, et le faire circuler dans le moyen d'échange indirect de chaleur (6) de manière à le transformer en phase solide, laquelle est dissociée en micro-cristaux ;
(e) réinjecter le fluide frigo-porteur (4) riche en micro-cristaux sortant du moyen d'échange indirect de chaleur (6), dans ledit compartiment (2) ; caractérisé en ce qu'il consiste à :
(f) séparer et stocker une partie du fluide frigo-porteur (4) riche en phase solide dans un autre compartiment de conditionnement (20) sous forme de coulis de glace ; (g) injecter dans ledit autre compartiment une partie de fluide frigo-porteur (4) en phase liquide ou pauvre en phase solide, prélevée dans le compartiment de stockage et régénération (2) ; (h) mélanger les phases solide et liquide du fluide frigo-porteur (4) dans ledit autre compartiment (20) ; (i) utiliser le fluide frigo-porteur (4) obtenu sous (h) pour mettre en oeuvre l'étape (a), par prélèvement du fluide frigo-porteur (4) conditionné sous forme de coulis de glace dans ledit autre compartiment (20) et en le réinjectant, en aval du ou des échangeurs de chaleur (12) du circuit de transfert de chaleur (10) dans le compartiment de stockage et régénération (2), et ou/par exemple à l'entrée du moyen d'échange indirect de chaleur.
15. Procédé selon la revendication 14, caractérisé en qu'il consiste à moduler la quantité de fluide frigo-porteur (4) appauvri en phase solide, injectée dans l'autre compartiment de conditionnement (20).
16. Procédé selon la revendication 14, caractérisé en ce qu'il consiste à déterminer dans l'autre compartiment de conditionnement (20), la concentration en phase solide, et à modifier le cas échéant cette concentration en agissant conformément à la revendication 15.
17. Procédé selon l'une quelconque des revendications 14 à 16, caractérisé en ce qu'il consiste à : - déterminer le niveau de remplissage du compartiment de conditionnement (20), par le fluide frigo-porteur (4) du type coulis de glace ;
- et à utiliser le résultat de cette détermination pour accélérer, orienter, ralentir ou interrompre le cas échéant les opérations selon (f), (g) et (h) ;
- ou à modifier l'inclinaison des pales (70,170).
PCT/FR2002/002282 2001-07-03 2002-07-01 Dispositif et procede de stockage et de regeneration d'un fluide frigo-porteur sous forme diphasique WO2003004949A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02758526A EP1402221B1 (fr) 2001-07-03 2002-07-01 Dispositif et procede de stockage et de regeneration d'un fluide frigo-porteur sous forme diphasique
CA002451082A CA2451082A1 (fr) 2001-07-03 2002-07-01 Dispositif et procede de stockage et de regeneration d'un fluide frigo-porteur sous forme diphasique
DE60230412T DE60230412D1 (de) 2001-07-03 2002-07-01 Verfahren und vorrichtung zum speichern und regenerieren eines zweiphasigen kälteträgers
US10/481,959 US20040187518A1 (en) 2001-07-03 2002-07-01 Device and method for storing and regenerating a two-phase coolant fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01.08821 2001-07-03
FR0108821A FR2827037B1 (fr) 2001-07-03 2001-07-03 Dispositif et procede de stockage et de regeneration d'un fluide frigo-porteur comprenant une phase solide et une phase liquide melangees

Publications (1)

Publication Number Publication Date
WO2003004949A1 true WO2003004949A1 (fr) 2003-01-16

Family

ID=8865078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/002282 WO2003004949A1 (fr) 2001-07-03 2002-07-01 Dispositif et procede de stockage et de regeneration d'un fluide frigo-porteur sous forme diphasique

Country Status (7)

Country Link
US (1) US20040187518A1 (fr)
EP (1) EP1402221B1 (fr)
AT (1) ATE418052T1 (fr)
CA (1) CA2451082A1 (fr)
DE (1) DE60230412D1 (fr)
FR (1) FR2827037B1 (fr)
WO (1) WO2003004949A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2859691B1 (fr) * 2003-09-11 2014-10-17 Armines Ass Pour La Rech Et Le Dev Des Methodes Et Processus Ind Procede de rafraichissement de wagons de metro ne rejetant pas de chaleur dans le souterrain et pouvant meme contribuer a refroidir les stations
FR2914409A1 (fr) * 2007-03-26 2008-10-03 Bousquet Adrien Laude Disque refrigerant pour installation de stockage et de regeneration d'un fluide frigo-porteur
US9822932B2 (en) 2012-06-04 2017-11-21 Elwha Llc Chilled clathrate transportation system
US9303819B2 (en) * 2012-06-04 2016-04-05 Elwha Llc Fluid recovery in chilled clathrate transportation systems
DE102013112829A1 (de) * 2013-11-20 2015-05-21 Hubert Langheinz Kältetechnik Binäreisherstellungsvorrichtung und Verfahren hierzu
CN111595074A (zh) * 2019-02-20 2020-08-28 烟台冰轮节能科技有限公司 一种风冷型在线冰浆预冷一体机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE675883C (de) * 1938-03-12 1939-05-20 Wilhelm Weckerle Einrichtung zur Kaeltespeicherung
US2299414A (en) * 1940-07-15 1942-10-20 Ellis H Spiegl Apparatus for producing refrigerants
FR925476A (fr) * 1945-04-27 1947-09-04 Escher Wyss & Cie Const Mec Installation pour la production de la glace
US2902839A (en) * 1956-10-12 1959-09-08 George S Marshall Apparatus for producing a thermal absorption bank of water
US3869870A (en) * 1973-07-02 1975-03-11 Borg Warner Refrigeration system utilizing ice slurries
FR2654500A1 (fr) * 1989-11-10 1991-05-17 Thermique Generale Vinicole Procede et dispositif de transfert de froid.
EP0629826A1 (fr) * 1993-06-21 1994-12-21 Mc International Procédé et dispositif de stockage d'un fluide frigo-porteur en équilibre de fusion
FR2709817A1 (fr) * 1993-09-08 1995-03-17 Thermique Generale Vinicole Dispositif d'échange de chaleur intégrant des moyens d'enlèvement d'une phase solide.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2869870A (en) * 1952-07-31 1959-01-20 Macey Company Pile elevator
US4509344A (en) * 1983-12-08 1985-04-09 Chicago Bridge & Iron Company Apparatus and method of cooling using stored ice slurry
US4584843A (en) * 1984-11-05 1986-04-29 Chicago Bridge & Iron Company Method and apparatus of storing ice slurry and its use for cooling purposes
CA2143465C (fr) * 1995-02-27 2007-05-22 Vladimir Goldstein Distributeur de barbotine glacee

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE675883C (de) * 1938-03-12 1939-05-20 Wilhelm Weckerle Einrichtung zur Kaeltespeicherung
US2299414A (en) * 1940-07-15 1942-10-20 Ellis H Spiegl Apparatus for producing refrigerants
FR925476A (fr) * 1945-04-27 1947-09-04 Escher Wyss & Cie Const Mec Installation pour la production de la glace
US2902839A (en) * 1956-10-12 1959-09-08 George S Marshall Apparatus for producing a thermal absorption bank of water
US3869870A (en) * 1973-07-02 1975-03-11 Borg Warner Refrigeration system utilizing ice slurries
FR2654500A1 (fr) * 1989-11-10 1991-05-17 Thermique Generale Vinicole Procede et dispositif de transfert de froid.
EP0629826A1 (fr) * 1993-06-21 1994-12-21 Mc International Procédé et dispositif de stockage d'un fluide frigo-porteur en équilibre de fusion
FR2709817A1 (fr) * 1993-09-08 1995-03-17 Thermique Generale Vinicole Dispositif d'échange de chaleur intégrant des moyens d'enlèvement d'une phase solide.

Also Published As

Publication number Publication date
EP1402221A1 (fr) 2004-03-31
DE60230412D1 (de) 2009-01-29
US20040187518A1 (en) 2004-09-30
FR2827037B1 (fr) 2003-09-12
FR2827037A1 (fr) 2003-01-10
EP1402221B1 (fr) 2008-12-17
CA2451082A1 (fr) 2003-01-16
ATE418052T1 (de) 2009-01-15

Similar Documents

Publication Publication Date Title
FR2540739A1 (fr) Dispositif et installations pour la distillation par evaporation en couches minces, en particulier pour hydrocarbures, et procede de mise en oeuvre de ce dispositif
FR2518722A1 (fr) Perfectionnement a une machine de production de glace en paillettes
EP1148928B1 (fr) Deshydrateur a compression mecanique de la vapeur, installation et procede pour l'epuration chimique de la vapeur
EP1402221B1 (fr) Dispositif et procede de stockage et de regeneration d'un fluide frigo-porteur sous forme diphasique
EP0641980B1 (fr) Dispositif d'échange de chaleur avec un fluide en cours de congélation partielle
EP0629826B1 (fr) Procédé et dispositif de stockage d'un fluide frigo-porteur en équilibre de fusion
WO1987004510A1 (fr) Procede pour generer du froid et pour l'utiliser, et dispositif pour la mise en oeuvre de ce procede
FR2530323A1 (fr) Procede de refroidissement de produits et appareil mettant en oeuvre le procede
FR2831950A1 (fr) Dispositif et installation de regulation de la temperature d'un fluide
EP0807232B1 (fr) Procede et dispositif de fabrication et de separation de particules solides
FR2491607A1 (fr) Procede et dispositif de stockage d'energie thermique a basse temperature et leur application
EP1711244B1 (fr) Procede continu de cristallisation partielle d'une solution et dispositif de mise en oeuvre
CH635669A5 (fr) Machine pour la fabrication de glacons.
SU444926A1 (ru) Устройство дл охлаждени воды и получени льда
FR2885996A1 (fr) Systeme de climatisation a circulation de fluide frigoporteur diphasique avec dispositif de separation et aspiration de coulis de glace stabilisee
WO2000071945A1 (fr) Procede pour detacher les cristaux de glace d'un echangeur thermique generateur d'un frigoporteur diphasique liquide-solide
WO2022117954A1 (fr) Machine pour la fabrication de particules d'eau à l'état solide, de type particules de glace ou de neige
FR2524126A1 (fr) Dispositif de stockage de chaleur et source froide pour pompe a chaleur comportant un tel dispositif
WO2011020787A1 (fr) Dispositif de traitement de biomasse humide par friture
BE347640A (fr)
FR2789161A1 (fr) Procede de production de neige artificielle
FR2880676A1 (fr) Dispositif de production de glace ecailles
CH271922A (fr) Procédé et appareil pour amener en contact au moins deux phases.
BE568496A (fr)
FR2629903A1 (fr) Procede et installation de production de glace carbonique broyee a partir de dioxyde de carbone liquide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002758526

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2451082

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10481959

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002758526

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP