WO2003003490A2 - Fuel cell assembly with a two-layer diffuser and production method of same - Google Patents

Fuel cell assembly with a two-layer diffuser and production method of same Download PDF

Info

Publication number
WO2003003490A2
WO2003003490A2 PCT/FR2002/002237 FR0202237W WO03003490A2 WO 2003003490 A2 WO2003003490 A2 WO 2003003490A2 FR 0202237 W FR0202237 W FR 0202237W WO 03003490 A2 WO03003490 A2 WO 03003490A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
creating
fuel cell
binder
thermolabile
Prior art date
Application number
PCT/FR2002/002237
Other languages
French (fr)
Other versions
WO2003003490A3 (en
Inventor
Didier Marsacq
Jean-Yves Laurent
Christine Nayoze
Pierre Perreau
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO2003003490A2 publication Critical patent/WO2003003490A2/en
Publication of WO2003003490A3 publication Critical patent/WO2003003490A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the subject of this invention is a fuel cell assembly, as well as a method of creating at least one electrode of this assembly.
  • Fuel cells use the chemical reaction of combining a fuel previously decomposed into ions with an oxidant to produce electrical energy. They include at least one assembly with two electrodes separated by an ion-exchange membrane (forming a solid electrolyte), and a catalytic layer is normally interposed between the membrane and the electrodes to promote the reaction of ionic decomposition of the fuel and the oxidant. .
  • the ion-exchange membrane is often made of perfluorinated sulfonic acid polymer having the property of being a proton conductor, and the electrode and the catalyst can be layers of nickel and platinum deposited by various usual techniques in microelectronics or for manufacture of micromachines.
  • the electrodes must allow the diffusion of the fuel and the oxidant, the nickel layer is made permeable by perforations.
  • the combination reaction unfortunately only takes place around the perforations, which are the only places where the electrons circulating in the nickel, the fuel ions having passed through the membrane and the ions of the oxidant decomposed on the catalyst can meet . Like this area is reduced, it must be assumed that the performance of the assembly will be poor. Another disadvantage to be feared comes from the poor resistance of nickel to corrosion produced by the acidity of the membrane.
  • the solution proposed here consists in producing an electrode in double diffusion layer with different materials responding to different functions: the first layer will be highly porous in order to remain permeable to gases and water while offering sufficient resistance; the second layer, composed of fine particles, will allow a large increase in the active surface and will provide a smooth support for the membrane.
  • These layers will both be made of carbon, the second layer being formed of finer carbon grains than those of the first. In particular, it may be composed essentially of carbon black while the first layer will also include graphite.
  • the two layers may in particular be deposited by liquid followed by drying of the deposited product.
  • the pores of the first layer may be produced using a thermolabile binder introduced into the deposited composition to produce the first layer, which will be heated after solidification until the binder is broken down.
  • the invention can be described by means of the figure: two assemblies of cells in accordance with the invention are shown on a substrate 1 made of common silicon, hollowed out with a channel 2 for the arrival of hydrogen or another fuel , and drilled numerous holes 3 which cross it from the end of the channel 2 to the pile assemblies 4.
  • These include a first electrode 5 deposited on the substrate 1, a proton conductor 6 deposited on the first electrode 5, and a second electrode 7 deposited on the proton conductor 6.
  • the first electrode 5 comprises a porous diffusion layer 8 deposited on the substrate 1 and an active layer 9 deposited on the porous layer 8; this active layer 9 is the second layer mentioned above; it also includes the catalyst.
  • the second electrode 7 can be similar to the first, the layers 8 and 9 being however inverted, which makes the structure of the assemblies 4 entirely symmetrical along a vertical direction.
  • the electrodes 5 and 7 are provided with electrical connections 10 which have only been shown diagrammatically.
  • the conduits which make it possible to convey the fuel and the oxidant to the assemblies 4 have not been shown either.
  • the porous layers 8 may be from 5 to 40 ⁇ m thick, the active layers 9 from 1 to 10 ⁇ m and the proton conductor 6 from 10 to 50 ⁇ m.
  • the composition which should form the porous layer 8 is prepared. It can comprise a mixture in parts by weight of 75% of solvent such as N-methyl-pyrrolidone, 5% of a thermolabile binder such as poly-alpha-methylstyrene, 2.5% of hydrophobic binder such as polyvinyl-difluoroethylene , 2.5% carbon black and 15% graphite.
  • solvent such as N-methyl-pyrrolidone
  • a thermolabile binder such as poly-alpha-methylstyrene
  • hydrophobic binder such as polyvinyl-difluoroethylene
  • carbon black a thermophobic binder
  • This composition is deposited on the substrate 1 by conventional liquid techniques, such as spraying, "spin coating” and “hand-coating” through a mask.
  • the deposit is dried under vacuum at 100 ° C for 4 hours to remove all of the solvent. There remains a dry layer with a thickness close to 40 ⁇ m, if the wet layer has been deposited at a thickness of 300 ⁇ m. It consists of grains of carbon having a diameter of about 40 ⁇ m, hydrophobic binder and thermolabile binder.
  • the active layer 9 is manufactured, first by developing a chemical composition containing it and comprising a mixture of 85% of a solvent composed of water and isopropanol in equal parts and of 15% of a mixture carbon black and platinum carbon grains.
  • the drying is carried out at the same temperature and the same duration as for the porous layer 8, but under inert gas.
  • a dry layer of 10 ⁇ m is obtained from a wet layer of 100 ⁇ m and the carbon grains of which are approximately 5 ⁇ m in diameter.
  • the catalyst is formed by platinum carbon.
  • the upper electrode 7 is constructed, possibly repeating steps 1 to 6.
  • thermolabile binder is removed at high temperature (250 ° C) for 4 hours. It decomposes giving gases which are completely evacuated, so that the porous layers 8 are formed and acquire a porosity close to 75%. Their electronic conductivity is close to 50 S / cm. The proton conductivity of the proton layer 6 is close to 0.01 S / cm at room temperature. The proton layer 6 is free from structural defects.
  • the thermolabile binder contributes to give good cohesion and good adhesion to the porous layer 8, in addition to ensuring the porosity. It is also observed that the porous layer 8 is not very rigid and does not clog the perforations 2 of the substrate 1 when the mixture is still liquid. The above requirements for electrodes and assembly in general are all met.

Abstract

The invention relates to a fuel cell assembly (4) comprising catalytic electrodes consisting of: (i) a relatively thick layer (8) of porous carbon, said layer being formed by the incorporation of a thermolabile binder which is subsequently decomposed by heating; and (ii) a finely-divided active carbon layer (9) comprising the catalyst. The thick layer (8) ensures that the gases and water formed are well diffused while maintaining a good mechanical strength. The active layer (9) provides a large catalysis surface and a smooth surface that can be used to deposit the ion-conducting membrane (6) under good conditions. Said layers (8, 9) are chemically inert and adhere well to the layers close to the cell.

Description

ASSEMBLAGE DE PILE A COMBUSTIBLE A DIFFUSEUR BICOUCHE FUEL CELL ASSEMBLY WITH TWO-LAYER DIFFUSER
ET PROCEDE DE CREATIONAND CREATION METHOD
Le sujet de cette invention est un assemblage de pile à combustible, ainsi qu'un procédé de création d'au moins une électrode de cet assemblage.The subject of this invention is a fuel cell assembly, as well as a method of creating at least one electrode of this assembly.
Les piles à combustible exploitent la réaction chimique de combinaison d'un combustible préalablement décomposé en ions avec un oxydant pour produire de l'énergie électrique. Elles comprennent au moins un assemblage à deux électrodes séparées par une membrane échangeuse des ions (formant un électrolyte solide) , et une couche catalytique est normalement intercalée entre la membrane et les électrodes pour favoriser la réaction de décomposition ionique du combustible et de 1 ' oxydant .Fuel cells use the chemical reaction of combining a fuel previously decomposed into ions with an oxidant to produce electrical energy. They include at least one assembly with two electrodes separated by an ion-exchange membrane (forming a solid electrolyte), and a catalytic layer is normally interposed between the membrane and the electrodes to promote the reaction of ionic decomposition of the fuel and the oxidant. .
La membrane échangeuse des ions est souvent en polymère d'acide sulfonique perfluoré ayant la propriété d'être conductrice des protons, et l'électrode et le catalyseur peuvent être des couches de nickel et de platine déposées par diverses techniques usuelles en microélectronique ou pour la fabrication de micromachines. Comme les électrodes doivent permettre la diffusion du combustible et de l'oxydant, la couche de nickel est rendue perméable par des perforations. La réaction de combinaison ne se fait malheureusement qu'au pourtour des perforations, qui sont les seuls endroits où les électrons circulant dans le nickel, les ions du combustible ayant traversé la membrane et les ions de l'oxydant décomposé sur le catalyseur peuvent se rencontrer. Comme cette superficie est réduite, on doit présumer que la performance de l'assemblage sera faible. Un autre inconvénient à redouter provient de la mauvaise tenue du nickel à la corrosion produite par l'acidité de la membrane .The ion-exchange membrane is often made of perfluorinated sulfonic acid polymer having the property of being a proton conductor, and the electrode and the catalyst can be layers of nickel and platinum deposited by various usual techniques in microelectronics or for manufacture of micromachines. As the electrodes must allow the diffusion of the fuel and the oxidant, the nickel layer is made permeable by perforations. The combination reaction unfortunately only takes place around the perforations, which are the only places where the electrons circulating in the nickel, the fuel ions having passed through the membrane and the ions of the oxidant decomposed on the catalyst can meet . Like this area is reduced, it must be assumed that the performance of the assembly will be poor. Another disadvantage to be feared comes from the poor resistance of nickel to corrosion produced by the acidity of the membrane.
On a donc cherché une électrode de pile à combustible dépourvue de ces inconvénients et qui concilierait une bonne conductivité des électrons et une grande faculté de diffusion du corps qui la traverse, tout en étant chimiquement inerte aux réactions produites dans l'assemblage et hydrophobe afin de ne pas retenir l'eau formée avec les combustibles usuels. On souhaiterait encore que cette électrode ait une surface assez peu rugueuse pour bien supporter une membrane fine d' électrolyte solide, tout en étant finement divisée pour que le catalyseur soit bien dispersé et présente une grande surface de réaction ; enfin, on voudrait qu'elle ait une rigidité suffisante pour se maintenir quand le substrat est évidé de larges trous et adhère bien aux surfaces voisines .We therefore sought a fuel cell electrode devoid of these drawbacks and which would reconcile a good conductivity of the electrons and a great faculty of diffusion of the body which crosses it, while being chemically inert to the reactions produced in the assembly and hydrophobic in order to do not retain water formed with common fuels. It would also be desirable for this electrode to have a surface that is not very rough to support a fine membrane of solid electrolyte, while being finely divided so that the catalyst is well dispersed and has a large reaction surface; finally, we would like it to have sufficient rigidity to be maintained when the substrate is hollowed out with large holes and adheres well to neighboring surfaces.
La solution proposée ici consiste à réaliser une électrode en double couche de diffusion avec des matériaux différents répondant à des fonctions différentes : la première couche sera fortement poreuse afin de rester perméable aux gaz et à l'eau tout en offrant une résistance suffisante ; la seconde couche, composée de fines particules, permettra une grande augmentation de la surface active et offrira un support lisse à la membrane. Ces couches seront toutes deux en carbone, la seconde couche étant formée de grains de carbone plus fins que ceux de la première. Notamment, elle pourra être composée essentiellement de noir de carbone alors que la première couche comprendra aussi du graphite.The solution proposed here consists in producing an electrode in double diffusion layer with different materials responding to different functions: the first layer will be highly porous in order to remain permeable to gases and water while offering sufficient resistance; the second layer, composed of fine particles, will allow a large increase in the active surface and will provide a smooth support for the membrane. These layers will both be made of carbon, the second layer being formed of finer carbon grains than those of the first. In particular, it may be composed essentially of carbon black while the first layer will also include graphite.
Les deux couches pourront notamment être déposées par voie liquide suivie d'un séchage du produit déposé. Les pores de la première couche pourront être produits en utilisant un liant thermolabile introduit dans la composition déposée pour produire la première couche, qu'on chauffera après la solidification jusqu'à décomposer ce liant.The two layers may in particular be deposited by liquid followed by drying of the deposited product. The pores of the first layer may be produced using a thermolabile binder introduced into the deposited composition to produce the first layer, which will be heated after solidification until the binder is broken down.
L'invention peut être décrite au moyen de la figure : on a représenté deux assemblages de piles conformes à l'invention sur un substrat 1 en silicium commun, creusé d'un canal 2 d'arrivée d'hydrogène ou d'un autre combustible, et percé de nombreux trous 3 qui le traversent de l'extrémité du canal 2 aux assemblages 4 de pile. Ceux-ci comprennent une première électrode 5 déposée sur le substrat 1, un conducteur protonique 6 déposé sur la première électrode 5, et une seconde électrode 7 déposée sur le conducteur protonique 6. La première électrode 5 comprend une couche poreuse 8 de diffusion déposée sur le substrat 1 et une couche active 9 déposée sur la couche poreuse 8 ; cette couche active 9 est la deuxième couche mentionnée plus haut ; elle comprend également le catalyseur. Enfin, la deuxième électrode 7 peut être semblable à la première, les couches 8 et 9 étant cependant inversées, ce qui rend la structure des assemblages 4 entièrement symétrique le long d'une direction verticale. Les électrodes 5 et 7 sont munies de connexions électriques 10 qui n'ont été que schématisées. On n'a pas représenté non plus les conduits qui permettent d'acheminer le combustible et l'oxydant vers les assemblages 4. Les couches poreuses 8 peuvent avoir de 5 à 40 μm d'épaisseur, les couches actives 9 de 1 à 10 μm et le conducteur protonique 6 de 10 à 50 μm.The invention can be described by means of the figure: two assemblies of cells in accordance with the invention are shown on a substrate 1 made of common silicon, hollowed out with a channel 2 for the arrival of hydrogen or another fuel , and drilled numerous holes 3 which cross it from the end of the channel 2 to the pile assemblies 4. These include a first electrode 5 deposited on the substrate 1, a proton conductor 6 deposited on the first electrode 5, and a second electrode 7 deposited on the proton conductor 6. The first electrode 5 comprises a porous diffusion layer 8 deposited on the substrate 1 and an active layer 9 deposited on the porous layer 8; this active layer 9 is the second layer mentioned above; it also includes the catalyst. Finally, the second electrode 7 can be similar to the first, the layers 8 and 9 being however inverted, which makes the structure of the assemblies 4 entirely symmetrical along a vertical direction. The electrodes 5 and 7 are provided with electrical connections 10 which have only been shown diagrammatically. The conduits which make it possible to convey the fuel and the oxidant to the assemblies 4 have not been shown either. The porous layers 8 may be from 5 to 40 μm thick, the active layers 9 from 1 to 10 μm and the proton conductor 6 from 10 to 50 μm.
Il est intéressant d'avoir au moins un facteur 5 entre les diamètres des grains de la première couche et de la deuxième couche .It is advantageous to have at least a factor of 5 between the diameters of the grains of the first layer and of the second layer.
Un mode de réalisation de l'invention sera maintenant décrit .An embodiment of the invention will now be described.
1°) La composition devant former la couche poreuse 8 est élaborée. Elle peut comprendre un mélange en parties massiques de 75% de solvant comme du N-méthyle- pyrrolidone, 5% d'un liant thermolabile tel que le poly-alpha-méthylstyrène, 2,5% de liant hydrophobe tel que le polyvinyl-difluoroéthylène, 2,5% de noir de carbone et 15% de graphite. Un autre liant thermolabile utilisable serait le poly-isobutylène.1 °) The composition which should form the porous layer 8 is prepared. It can comprise a mixture in parts by weight of 75% of solvent such as N-methyl-pyrrolidone, 5% of a thermolabile binder such as poly-alpha-methylstyrene, 2.5% of hydrophobic binder such as polyvinyl-difluoroethylene , 2.5% carbon black and 15% graphite. Another thermolabile binder that can be used is polyisobutylene.
2°) Cette composition est déposée sur le substrat 1 par des techniques classiques de voie liquide, comme la pulvérisation, le "spin coating" et le "hand-coating" à travers un masque.2) This composition is deposited on the substrate 1 by conventional liquid techniques, such as spraying, "spin coating" and "hand-coating" through a mask.
3°) Le dépôt est séché sous vide à 100°C pendant 4 heures afin d'éliminer la totalité du solvant. Il subsiste une couche sèche d'une épaisseur voisine de 40 μm, si la couche humide a été déposée à une épaisseur de 300 μm. Elle se compose de grains de carbone ayant un diamètre d'environ 40 μm, de liant hydrophobe et de liant thermolabile.3) The deposit is dried under vacuum at 100 ° C for 4 hours to remove all of the solvent. There remains a dry layer with a thickness close to 40 μm, if the wet layer has been deposited at a thickness of 300 μm. It consists of grains of carbon having a diameter of about 40 μm, hydrophobic binder and thermolabile binder.
4°) La couche active 9 est fabriquée, d'abord en élaborant une composition chimique la contenant et comprenant un mélange de 85% d'un solvant composé d'eau et d' isopropanol en parties égales et de 15% d'un mélange de noir de carbone et de grains de carbone platiné.4 °) The active layer 9 is manufactured, first by developing a chemical composition containing it and comprising a mixture of 85% of a solvent composed of water and isopropanol in equal parts and of 15% of a mixture carbon black and platinum carbon grains.
5°) Cette composition est projetée de la même façon que celle de la couche poreuse 8 vers le substrat 1 et couvre le dépôt de carbone grossier précédemment déposé .5) This composition is projected in the same way as that of the porous layer 8 towards the substrate 1 and covers the deposit of coarse carbon previously deposited.
6°) Le séchage est mené à la même température et la même durée que pour la couche poreuse 8, mais sous gaz inerte. On obtient une couche sèche de 10 μm à partir d'une couche humide de 100 μm et dont les grains de carbone ont 5 μm de diamètre environ. Le catalyseur est formé par le carbone platiné.6 °) The drying is carried out at the same temperature and the same duration as for the porous layer 8, but under inert gas. A dry layer of 10 μm is obtained from a wet layer of 100 μm and the carbon grains of which are approximately 5 μm in diameter. The catalyst is formed by platinum carbon.
7°) Une solution à 20% en masse de Nafion (nom déposé) sous forme acide dans un mélange composé de 50% d'eau, 30% d'éthanol, 10% d' isopropanol et 10% de diméthylformamide est projetée sur la couche active 9 au travers d'un masque mécanique.7 °) A 20% solution by mass of Nafion (registered name) in acid form in a mixture composed of 50% water, 30% ethanol, 10% isopropanol and 10% dimethylformamide is sprayed onto the active layer 9 through a mechanical mask.
8°) Cette nouvelle couche est séchée à 80°C pendant 3 heures pour donner une couche sèche de 30 μm d'épaisseur qui est la couche protonique 6.8 °) This new layer is dried at 80 ° C for 3 hours to give a dry layer 30 μm thick which is the proton layer 6.
9°) L'acidité du Nafion est corrigée par un traitement d'une heure dans une solution molaire de chlorure de lithium. 10°) La couche protonique 6 de Nafion est traitée à une température de 200°C pendant 2 heures. 11°) Les différentes couches sont traitées dans une solution d'acide sulfurique normale pendant 4 heures .9 °) The acidity of Nafion is corrected by a treatment of one hour in a molar solution of lithium chloride. 10 °) The proton layer 6 of Nafion is treated at a temperature of 200 ° C for 2 hours. 11 °) The different layers are treated in a normal sulfuric acid solution for 4 hours.
12°) L'électrode supérieure 7 est construite, en reprenant éventuellement les étapes 1 à 6.12 °) The upper electrode 7 is constructed, possibly repeating steps 1 to 6.
13°) Le liant thermolabile polymérisé est éliminé à haute température (250°C) pendant 4 heures. Il se décompose en donnant des gaz qui s ' évacuent complètement, de sorte que les couches poreuses 8 sont constituées et acquièrent une porosité voisine de 75%. Leur conductivité électronique est voisine de 50 S/cm. La conductivité protonique de la couche protonique 6 est proche de 0,01 S/cm à température ambiante. La couche protonique 6 est exempte de défaut de structure . Le liant thermolabile contribue à donner une bonne cohésion et une bonne adhérence à la couche poreuse 8, en plus d'assurer la porosité. On observe aussi que la couche poreuse 8 est peu rigide et ne colmate pas les perforations 2 du substrat 1 quand le mélange est encore liquide. Les exigences avancées plus haut pour les électrodes et l'assemblage en général sont toutes satisfaites . 13 °) The polymerized thermolabile binder is removed at high temperature (250 ° C) for 4 hours. It decomposes giving gases which are completely evacuated, so that the porous layers 8 are formed and acquire a porosity close to 75%. Their electronic conductivity is close to 50 S / cm. The proton conductivity of the proton layer 6 is close to 0.01 S / cm at room temperature. The proton layer 6 is free from structural defects. The thermolabile binder contributes to give good cohesion and good adhesion to the porous layer 8, in addition to ensuring the porosity. It is also observed that the porous layer 8 is not very rigid and does not clog the perforations 2 of the substrate 1 when the mixture is still liquid. The above requirements for electrodes and assembly in general are all met.

Claims

REVENDICATIONS
1. Procédé de création d'une électrode de pile à combustible, caractérisé en ce qu'il comprend une étape de dépôt par voie liquide d'un mélange comprenant des grains de carbone et un liant thermolabile sur un substrat, une étape de séchage du mélange et une étape de chauffage du mélange jusqu'à éliminer le liant thermolabile .1. A method of creating a fuel cell electrode, characterized in that it comprises a step of depositing by liquid means a mixture comprising carbon grains and a thermolabile binder on a substrate, a step of drying the mixing and a step of heating the mixture until the thermolabile binder is eliminated.
2. Procédé de création d'une électrode de pile à combustible suivant la revendication 1, caractérisé en ce que le mélange comprend au moins du graphite pour constituer le carbone, un liant hydrophobe et un solvant .2. Method for creating a fuel cell electrode according to claim 1, characterized in that the mixture comprises at least graphite to constitute carbon, a hydrophobic binder and a solvent.
3. Procédé de création d'une électrode de pile à combustible suivant la revendication 1 ou 2, caractérisé en ce que le liant thermolabile est du poly (alpha-méthylstyrène) .3. Method of creating a fuel cell electrode according to claim 1 or 2, characterized in that the thermolabile binder is poly (alpha-methylstyrene).
4. Procédé de création d'une électrode de pile à combustible suivant la revendication 1, 2 ou 3, caractérisé en ce que le mélange comprend, en proportions massiques, 2 parts de liant thermolabile, 1 part de liant hydrophobe, 1 part de noir de carbone et 6 parts de graphite, ainsi que du solvant.4. Method for creating a fuel cell electrode according to claim 1, 2 or 3, characterized in that the mixture comprises, in mass proportions, 2 parts of thermolabile binder, 1 part of hydrophobic binder, 1 part of black of carbon and 6 parts of graphite, as well as of the solvent.
5. Procédé de création d'un assemblage de pile à combustible comprenant, après une création d'une électrode suivant l'une quelconque des revendications 1 à 4, une étape de création d'une couche active par une étape de dépôt par voie liquide d'un mélange comprenant des grains de carbone, des grains de catalyseur et un solvant sur l'électrode, une étape de séchage du mélange, puis un dépôt d'une membrane échangeuse d'ions et un dépôt d'une seconde électrode.5. Method for creating a fuel cell assembly comprising, after creation of an electrode according to any one of claims 1 at 4, a step of creating an active layer by a step of depositing by liquid means a mixture comprising grains of carbon, grains of catalyst and a solvent on the electrode, a step of drying the mixture, then depositing an ion exchange membrane and depositing a second electrode.
6. Procédé de création d'un assemblage à combustible suivant la revendication 5, caractérisé en ce que la membrane échangeuse d'ions est déposée par voie liquide puis séchée.6. A method of creating a fuel assembly according to claim 5, characterized in that the ion exchange membrane is deposited by the liquid route and then dried.
7. Procédé de création d'un assemblage à combustible suivant la revendication 5, caractérisé en ce que la membrane échangeuse d'ions est déposée sous vide.7. A method of creating a fuel assembly according to claim 5, characterized in that the ion exchange membrane is deposited under vacuum.
8. Procédé de création d'un assemblage à combustible suivant la revendication 5 ou 7, caractérisé en ce que la seconde électrode est déposée par voie liquide puis séchée. 8. A method of creating a fuel assembly according to claim 5 or 7, characterized in that the second electrode is deposited by the liquid route and then dried.
PCT/FR2002/002237 2001-06-29 2002-06-27 Fuel cell assembly with a two-layer diffuser and production method of same WO2003003490A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/08644 2001-06-29
FR0108644A FR2826781B1 (en) 2001-06-29 2001-06-29 BILOUS DIFFUSER FUEL CELL ASSEMBLY AND CREATION METHOD

Publications (2)

Publication Number Publication Date
WO2003003490A2 true WO2003003490A2 (en) 2003-01-09
WO2003003490A3 WO2003003490A3 (en) 2004-01-22

Family

ID=8864941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/002237 WO2003003490A2 (en) 2001-06-29 2002-06-27 Fuel cell assembly with a two-layer diffuser and production method of same

Country Status (2)

Country Link
FR (1) FR2826781B1 (en)
WO (1) WO2003003490A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080182012A1 (en) * 2007-01-31 2008-07-31 Motorola, Inc. Micro fuel cell having macroporous metal current collectors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3361595A (en) * 1961-01-23 1968-01-02 Leesona Corp Process of making an improved fuel cell electrode
US3413152A (en) * 1965-07-30 1968-11-26 Union Oil Co Method of making carbonaceous fuel cell electrode
US5336570A (en) * 1992-08-21 1994-08-09 Dodge Jr Cleveland E Hydrogen powered electricity generating planar member
WO2000045457A2 (en) * 1999-02-01 2000-08-03 The Regents Of The University Of California Mems-based thin-film fuel cells
DE19914661A1 (en) * 1999-03-31 2000-10-05 Joerg Mueller Thin layer polymer electrolytic fuel cell, useful for the direct conversion of methanol, comprises a plasma-copolymerized membrane sandwiched between two porous graphite electrodes
DE19914681A1 (en) * 1999-03-31 2000-10-05 Joerg Mueller Miniature polymer electrolyte membrane fuel cell, used in microsystems, has a structure produced by a combination of thin film, microsystem etching and glass-silicon bonding technologies
EP1045467A1 (en) * 1999-04-12 2000-10-18 General Motors Corporation Layered carbon electrode for electrochemical cells
EP1096587A1 (en) * 1998-06-16 2001-05-02 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208260A (en) * 1990-01-09 1991-09-11 Mitsubishi Heavy Ind Ltd Manufacture of connecting body between solid high polymer electrolyte membrane and electrode
JP3117280B2 (en) * 1992-05-13 2000-12-11 三菱重工業株式会社 Method and apparatus for filling solid polymer electrolyte into gas diffusion electrode
JPH07326362A (en) * 1994-05-30 1995-12-12 Aisin Seiki Co Ltd Gas diffusion electrode and manufacture thereof
JPH09180740A (en) * 1995-12-27 1997-07-11 Tokyo Gas Co Ltd Solid high-molecular fuel cell and manufacture and device thereof
CA2370899A1 (en) * 1999-05-06 2000-11-16 Sandia Corporation Fuel cell and membrane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3361595A (en) * 1961-01-23 1968-01-02 Leesona Corp Process of making an improved fuel cell electrode
US3413152A (en) * 1965-07-30 1968-11-26 Union Oil Co Method of making carbonaceous fuel cell electrode
US5336570A (en) * 1992-08-21 1994-08-09 Dodge Jr Cleveland E Hydrogen powered electricity generating planar member
EP1096587A1 (en) * 1998-06-16 2001-05-02 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
WO2000045457A2 (en) * 1999-02-01 2000-08-03 The Regents Of The University Of California Mems-based thin-film fuel cells
DE19914661A1 (en) * 1999-03-31 2000-10-05 Joerg Mueller Thin layer polymer electrolytic fuel cell, useful for the direct conversion of methanol, comprises a plasma-copolymerized membrane sandwiched between two porous graphite electrodes
DE19914681A1 (en) * 1999-03-31 2000-10-05 Joerg Mueller Miniature polymer electrolyte membrane fuel cell, used in microsystems, has a structure produced by a combination of thin film, microsystem etching and glass-silicon bonding technologies
EP1045467A1 (en) * 1999-04-12 2000-10-18 General Motors Corporation Layered carbon electrode for electrochemical cells

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [en ligne] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; KUWAHA, KOICHI: "Gas diffusion electrodes and their manufacture" retrieved from STN Database accession no. 124:150922 CA XP002233896 & JP 07 326362 A (AISIN SEIKI, JAPAN) 12 décembre 1995 (1995-12-12) -& PATENT ABSTRACTS OF JAPAN vol. 1996, no. 04, 30 avril 1996 (1996-04-30) & JP 07 326362 A (AISIN SEIKI CO LTD), 12 décembre 1995 (1995-12-12) *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 479 (E-1141), 5 décembre 1991 (1991-12-05) -& JP 03 208260 A (MITSUBISHI HEAVY IND LTD), 11 septembre 1991 (1991-09-11) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 116 (E-1515), 24 février 1994 (1994-02-24) -& JP 05 314990 A (MITSUBISHI HEAVY IND LTD), 26 novembre 1993 (1993-11-26) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 11, 28 novembre 1997 (1997-11-28) -& JP 09 180740 A (TOKYO GAS CO LTD), 11 juillet 1997 (1997-07-11) *

Also Published As

Publication number Publication date
FR2826781A1 (en) 2003-01-03
WO2003003490A3 (en) 2004-01-22
FR2826781B1 (en) 2003-09-05

Similar Documents

Publication Publication Date Title
US8039414B2 (en) Method for preparing metal catalyst and electrode
US7988834B2 (en) Conductive catalyst particles and process for production thereof, gas-diffusing catalytic electrode, and electrochemical device
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
EP1982371B1 (en) Dli-mocvd process for making electrodes for electrochemical reactors
US20060105226A1 (en) Metal catalyst and fuel cell with electrode including the same
FR2755541A1 (en) GAS DIFFUSION ELECTRODES BASED ON MIXTURES OF POLY (VINYLIDENE FLUORIDE) AND CARBON
US20070269698A1 (en) Membrane electrode assembly and its manufacturing method
US20060057452A1 (en) Electrode for fuel cell and fuel cell comprising same
RU2414772C2 (en) Structures for gas diffusion electrodes
FR2755542A1 (en) GAS DIFFUSION ELECTRODES BASED ON POLYETHERSULFONE AND CARBON MIXTURES
EP3474356A1 (en) Multilayer structure incorporating a carbon nanotube mat as the scattering layer in a pemfc
US8802329B2 (en) Electrode containing nanostructured thin catalytic layers and method of making
US8815335B2 (en) Method of coating a substrate with nanoparticles including a metal oxide
US20060014073A1 (en) Electrode for fuel cell, fuel cell comprising the same and method for making an electrode
RU2370859C2 (en) Gas-diffusion electrodes, membrane-electrode assemblies and method of their manufacturing
JP2009524178A (en) Fuel cell having a porous frit-based composite proton exchange membrane
EP1282185A2 (en) Method of manufacting fuel cell with cylindrical geometry
WO2003003490A2 (en) Fuel cell assembly with a two-layer diffuser and production method of same
US20100151135A1 (en) Method of coating a substrate with nanoparticles including a metal oxide
JPH09120827A (en) Solid polymer electrolyte fuel cell
JPH10241701A (en) Gas diffusion electrode and solid polymer electrolyte film, manufacture thereof, and solid polymer electrolyte type fuel cell
EP0557259B1 (en) Gas diffusion electrode for electrochemical cell and process of preparing same
EP1259995A1 (en) Method for preparing electrode-membrane assemblies, resulting assemblies and fuel cells comprising same
EP3108040B1 (en) Process of manufacturing a membrane electrode assembly for fuel cell by electroplating
EP4293762A1 (en) Formation of an mpl microporous layer on surface of an active layer for an electrochemical converter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP