DE19914681A1 - Miniature polymer electrolyte membrane fuel cell, used in microsystems, has a structure produced by a combination of thin film, microsystem etching and glass-silicon bonding technologies - Google Patents

Miniature polymer electrolyte membrane fuel cell, used in microsystems, has a structure produced by a combination of thin film, microsystem etching and glass-silicon bonding technologies

Info

Publication number
DE19914681A1
DE19914681A1 DE19914681A DE19914681A DE19914681A1 DE 19914681 A1 DE19914681 A1 DE 19914681A1 DE 19914681 A DE19914681 A DE 19914681A DE 19914681 A DE19914681 A DE 19914681A DE 19914681 A1 DE19914681 A1 DE 19914681A1
Authority
DE
Germany
Prior art keywords
fuel cell
pem fuel
technology according
microsystem technology
microsystem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19914681A
Other languages
German (de)
Other versions
DE19914681C2 (en
Inventor
Joerg Mueller
Laurent Mex
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MUELLER, JOERG, PROF. DR.-ING., 21244 BUCHHOLZ, DE
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19914681A priority Critical patent/DE19914681C2/en
Publication of DE19914681A1 publication Critical patent/DE19914681A1/en
Application granted granted Critical
Publication of DE19914681C2 publication Critical patent/DE19914681C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2418Grouping by arranging unit cells in a plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

A microsystem polymer electrolyte membrane (PEM) fuel cell is produced by a combination of thin film, microsystem etching and glass/silicon bonding technology. A microsystem PEM fuel cell comprises a complete fuel cell structure which is produced by a thin film process on porous membranes formed in a silicon substrate by a microsystem technology etching process, and which comprises a plasma polymerized membrane, two catalyst metal-doped porous graphite layers and elements for connecting the structure to parallel produced structures, the structure allowing spatially separate and uniform supply of fuel from both sides by means of a glass/silicon bonding technique.

Description

Die Erfindung betrifft eine miniaturisierte PEM- (Polymer-Elektrolyt-Membran)-Brennstoffzelle in Mikrosystemtechnik, die mit Hilfe von Dünn­ schichtverfahren, insbesondere der Plasmapolyme­ risation zur Herstellung der ionenleitenden Mem­ bran sowie von Plasma-CVD-Verfahren zur Erzeu­ gung leitfähiger poröser und mit Katalysatoren dotierter Kontaktschichten, vorzugsweise in einer Silizium-Glas-Technik aufgebaut wird. Eine solche Struktur erlaubt aufgrund der Kompatibilität mit üblichen Mikrosystemen nicht nur prinzipiell eine Integration in solche Mikrosysteme, infolge der hohen elektrischen und thermischen Leitfähigkeit des Siliziums sowie der erprobten, hermetisch dichten Verbindungstechnik von Silizium-Glas durch anodisches Bonden und die Möglichkeit, Silizium durch trocken- und naßchemische Verfah­ ren kostengünstig, reproduzierbar und mit hoher Genauigkeit zu strukturieren und mit Dünnschicht­ verfahren zu kombinieren, eröffnet diese Technik auch eine einfache Möglichkeiten zur Parallel- und Reihen-Verschaltung sowie zur Brennstoff-Zu- und Abfuhr.The invention relates to a miniaturized PEM (Polymer electrolyte membrane) fuel cell in Microsystem technology using thin Layer process, in particular the plasma polymer rization for the production of the ion-conducting mem bran as well as plasma CVD processes for generating gung conductive porous and with catalysts doped contact layers, preferably in one Silicon glass technology is built. Such Structure allowed due to compatibility with conventional microsystems not just one in principle Integration in such microsystems, as a result of high electrical and thermal conductivity of silicon as well as the tried and tested, hermetic tight connection technology of silicon glass through anodic bonding and the possibility Silicon by dry and wet chemical processes ren inexpensive, reproducible and with high Structure accuracy and with thin film Combining the process opens up this technique also an easy way to parallel and Series connection as well as for fuel connection and Discharge.

Gegenwärtig werden Brennstoffzellen, insbesonde­ re PEM-Zellen, realisiert auf der Basis von Schichtstapeln aus der ionenleitenden Membran, eingebettet zwischen zwei mit Katalysatoren be­ schichteten porösen Graphitelektroden, die durch Bleche mit Kanälen zur Brennstoffzufuhr abge­ schlossen werden. Während auf diese Weise eine Reihenschaltung von Zellen mit nicht unerhebli­ chem Material- und Montage-Aufwand möglich ist (US 5,858,569), ist eine Reihenschaltung zwar grundsätzlich möglich und auch inzwischen reali­ siert (z. B. DE 44 43 945 C1, DE 195 02 391 C1), allerdings ohne die möglichen technologischen Lösungen integrierter Systeme etwa aus der Mikro­ systemtechnik nutzen zu können.Fuel cells are becoming more and more popular right PEM cells, realized on the basis of Layer stacks from the ion-conducting membrane, embedded between two with catalysts layered porous graphite electrodes through Sheets with channels for fuel supply abge be closed. While this way one Series connection of cells with not inconsiderable chem material and assembly effort is possible (US 5,858,569), is a series connection though basically possible and now reali based (e.g. DE 44 43 945 C1, DE 195 02 391 C1), but without the possible technological Solutions of integrated systems, for example from the micro to be able to use system technology.

In dieser Erfindung werden die Vorteile der Mikro­ systemtechnologie, einer Kombination von Silizi­ um-Mikrostrukturierungstechniken, Dünnschicht­ verfahren, Glasätztechniken sowie der Aufbau- und Verbindungstechnik von Silizium-Glas-Verbin­ dungen kombiniert, um damit ein in einer Ebene liegendes, beliebig parallel und in Reihe verschalt­ bares Brennstoffzellensystem aufzubauen.In this invention, the advantages of micro system technology, a combination of silicon um microstructuring techniques, thin film process, glass etching techniques and the assembly and Connection technology of silicon-glass composite combined to make one in one level horizontal, arbitrarily parallel and connected in series buildable fuel cell system.

Ein solches System, wie es beispielhaft in Abb. 1 dargestellt ist besteht aus einem z. B. n-leitenden Siliziumsubstrat 1 mit einer durch Epitaxie oder Diffusion erzeugten p-leitenden dünnen Deck­ schicht 2. Im Bereich der Fläche der Brennstoff­ zelle 3 ist das n-leitende Substrat z. B. durch eine naßchemische richtungsbevorzugende Ätze bis zur p-dotierten Schicht selektiv entfernt, die p-leitende Schicht ist dort 4 durch entsprechende Ätzverfahren porös gemacht. Auf dieser Membran ist eine eben­ falls poröse und wie anderswo beschrieben mit Katalysatormetallen dotierte Graphitschicht 5, z. B. in einem Plasma-CVD-Verfahren zwischen Elek­ troden aus Katalysatormetall, abgeschieden. Die Membran 6 wird ebenfalls in einem plasmaunter­ stützten Verfahren, einem Plasmapolymersations­ verfahren, durch Kopolymerisation aus z. B. einer teflon-artigen Matrix mit integrierten Ionenleiter­ ketten, z. B. Phophor- oder Schwefelsäure-Gruppen, abgeschieden. Daran schließt sich wiederum eine Schicht aus porösem mit Katalysatormetallen do­ tierten Graphit 7 an. Werden die untere Graphit­ schicht 5 sowie die Membran 6 entsprechend Abb. 1 strukturiert, so läßt sich durch entsprechende Strukturierung der oberen Graphitschicht 7 eine direkte Verschaltung der Zellen in Reihe erreichen. Zur Minimierung des Reihenwiderstandes werden die einzeln Zellen gemäß Abb. 2 vorzugsweise als schmale Steifen ausgeführt. Außerdem können die nicht notwendigerweise porösen Bereiche außer­ halb der aktiven Bereiche der Zelle mit zusätzlichen Metallisierungen 8, in Dünnschichttechik realisiert, versehen werden.Such a system, as exemplified in Fig. 1 consists of a z. B. n-type silicon substrate 1 with a p-type thin cover layer generated by epitaxy or diffusion. 2 In the area of the surface of the fuel cell 3 , the n-type substrate is z. B. selectively removed by a wet chemical directional etching up to the p-doped layer, the p-type layer 4 is made porous there by appropriate etching processes. On this membrane is also a porous and as described elsewhere doped with catalyst metals graphite layer 5 , z. B. in a plasma CVD process between electrodes made of catalyst metal, deposited. The membrane 6 is also in a plasma-assisted process, a plasma polymerisation process, by copolymerization from z. B. chains a Teflon-like matrix with integrated ion conductor, z. B. phophore or sulfuric acid groups, deposited. This is in turn followed by a layer of porous graphite 7 doped with catalyst metals. If the lower graphite layer 5 and the membrane 6 are structured in accordance with FIG. 1, a direct connection of the cells in series can be achieved by appropriate structuring of the upper graphite layer 7 . To minimize the series resistance, the individual cells according to Fig. 2 are preferably designed as narrow strips. In addition, the not necessarily porous areas outside of the active areas of the cell can be provided with additional metallizations 8 , implemented using thin-film technology.

Die Zufuhr der Brennstoffe erfolgt über Kapillaren 9 in Hohlräume 10, die in dem Silizium im thermi­ schen Ausdehnungskoeffizienten angepaßte Glas­ substrat 11 (Tempax, Pyrex) z. B. naßchemisch eingebracht werden. Die Glassubstrate werden z. B. durch anodisches Bonden auf das Silizium-Substrat hermetisch dicht angeschlossen.The supply of the fuels takes place via capillaries 9 in cavities 10 , which in the silicon in the thermal expansion coefficient's adapted glass substrate 11 (Tempax, Pyrex) z. B. can be introduced wet-chemically. The glass substrates are e.g. B. hermetically sealed by anodic bonding to the silicon substrate.

Aufgrund der hohen Wärmeleitfähigkeit und gerin­ gen Wärmekapazität des Siliziums und der gerin­ gen Wärmeleitung im Glas erreicht eine solche Zelle schnell ihre Betriebstemperatur, ohne daß ihre Umgebung wesentlich davon beeinflußt wird.Due to the high thermal conductivity and low heat capacity of silicon and low heat conduction in the glass achieves such Cell quickly their operating temperature without their Environment is significantly affected.

Claims (19)

1. PEM-Brennstoffzelle in Mikrosystemtechnik, dadurch gekennzeichnet, daß auf mit Hilfe von Ätzverfahren der Mikrosystemtechnik erzeug­ ten porösen Membranen in einem Silizium­ substrat mit Hilfe von Dünnschichtverfahren ein kompletter Zellaufbau von Brennstoffzellen realisiert wird, der eine plasmapolymerisierte Membran sowie zwei mit Katalysatormetallen dotierte poröse Graphitschichten umfaßt, Ele­ mente zur Verschaltung solcher parallel er­ zeugter Strukturen enthält und mit Hilfe einer Glas-Silizium-Verbindungstechnik auch die räumlich getrennte und gleichmäßige Zufuhr der Brennstoffe von beiden Seiten her ermög­ licht.1. PEM fuel cell in microsystem technology, characterized in that on the porous membranes produced with the aid of etching methods of microsystem technology in a silicon substrate with the aid of thin-film processes, a complete cell structure of fuel cells is realized, which has a plasma-polymerized membrane and two porous graphite layers doped with catalyst metals includes, elements for interconnection of such parallel structures he created and with the help of a glass-silicon connection technology also the spatially separated and uniform supply of fuels from both sides enables light. 2. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1, dadurch gekennzeichnet, daß die ionenleitende Polymermembran durch Co- Polymerisation von fluorcarbon-basierenden Präkursoren und ionenleitenden Gruppen reali­ siert wird.2. PEM fuel cell in microsystem technology according to claim 1, characterized in that the ion-conducting polymer membrane through co- Polymerization of fluorocarbon based Precursors and ion-guiding groups reali is settled. 3. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 und 2, dadurch gekennzeich­ net, daß dafür vorzugsweise Fluoräthen und Vinylphosphon-Säure verwendet wird.3. PEM fuel cell in microsystem technology according to claim 1 and 2, characterized net that it is preferably fluorine and Vinylphosphonic acid is used. 4. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß zur Herstellung der porösen dotierten Gra­ phitschichten vorzugsweise eine Plasmaab­ scheidung im Regime der Gasphasenreaktionen zwischen mit Katalysatormetallen bedeckten Platten erfolgt.4. PEM fuel cell in microsystem technology according to claim 1 to 3, characterized in that for the production of the porous doped Gra phit layers preferably a plasma divorce in the regime of gas phase reactions between those covered with catalyst metals Plates done. 5. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß als Katalysatormetalle vorzugsweise Pt und Pt-Ru verwendet werden.5. PEM fuel cell in microsystem technology according to claim 1 to 4, characterized in that preferably Pt and Pt-Ru can be used. 6. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß zur galvanischen Trennung der Einzelzellen in der Ebene ein pn-Übergang im Silizium ver­ wendet wird.6. PEM fuel cell in microsystem technology according to claim 1 to 5, characterized in that for the galvanic separation of the individual cells a pn junction in the silicon ver is applied. 7. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß dieser pn-Übergang durch Epitaxie oder Diffusion erzeugt wird.7. PEM fuel cell in microsystem technology according to claim 1 to 6, characterized in that this pn junction through epitaxy or Diffusion is generated. 8. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß zur Erzeugung der porösen leitfähigen Membran eine Siliziumätzung genutzt wird.8. PEM fuel cell in microsystem technology according to claim 1 to 7, characterized in that to produce the porous conductive Silicon etching membrane is used. 9. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß zur Erzeugung der dünnen Membran eine richtungsbevorzugende Ätzung eingesetzt wird, die am pn-Übergang stoppt.9. PEM fuel cell in microsystem technology according to claim 1 to 8, characterized in that to produce the thin membrane directional etching is used, that stops at the pn junction. 10. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß die Zelle nach beiden Seiten durch Glas­ substrate abgedeckt wird.10. PEM fuel cell in microsystem technology according to claim 1 to 9, characterized in that the cell on both sides through glass substrate is covered. 11. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 10, dadurch gekennzeich­ net, daß in diese Glassubstrate Vertiefungen zur Gasführung und Verteilung eingeätzt werden.11. PEM fuel cell in microsystem technology according to claim 1 to 10, characterized in net that wells in these glass substrates Gas flow and distribution are etched. 12. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 11, dadurch gekennzeich­ net, daß die Gläser durch anodisches Bonden mit dem Silizium hermetisch verbunden wer­ den.12. PEM fuel cell in microsystem technology according to claim 1 to 11, characterized in net that the glasses by anodic bonding hermetically bonded to the silicon the. 13. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 12, dadurch gekennzeich­ net, daß die Brennstoffzufuhr durch seitliche Öffnungen im Glas erfolgt, in die vorzugsweise Kapillaren eingefügt werden.13. PEM fuel cell in microsystem technology according to claim 1 to 12, characterized in net that the fuel supply through lateral Openings are made in the glass, preferably in the Capillaries are inserted. 14. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 13, dadurch gekennzeich­ net, daß die Zellen streifenförmig ausgebildet werden.14. PEM fuel cell in microsystem technology according to claim 1 to 13, characterized in net that the cells are strip-shaped become. 15. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 14, dadurch gekennzeich­ net, daß einzelne Zellen in Reihe und parallel verschaltet werden können.15. PEM fuel cell in microsystem technology according to claim 1 to 14, characterized net that individual cells in series and in parallel can be connected. 16. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 15, dadurch gekennzeich­ net, daß die elektrische Kontaktierung für eine Reihenverschaltung entlang der Breitseiten der Zellen erfolgt.16. PEM fuel cell in microsystem technology according to claim 1 to 15, characterized in net that the electrical contact for a Series connection along the broad sides of the Cells. 17. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 16, dadurch gekennzeich­ net, daß die elektrische Kontaktierung zur Par­ allelschaltung entlang der Schmalseiten erfolgt.17. PEM fuel cell in microsystem technology according to claim 1 to 16, characterized in net that the electrical contact to Par allele switching takes place along the narrow sides. 18. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 17, dadurch gekennzeich­ net, daß zur elektrischen Verbindung struktu­ rierte dünne Schichten verwendet werden.18. PEM fuel cell in microsystem technology according to claim 1 to 17, characterized in net that struktu for electrical connection rated thin layers can be used. 19. PEM-Brennstoffzelle in Mikrosystemtechnik nach Anspruch 1 bis 18, dadurch gekennzeich­ net, daß das zum Verschließen verwendete Glas dem Silizium im Ausdehnungskoeffizienten an­ gepaßt ist.19. PEM fuel cell in microsystem technology according to claim 1 to 18, characterized in net that the glass used for closing the silicon in the coefficient of expansion is fit.
DE19914681A 1999-03-31 1999-03-31 Polymer electrolyte membrane Fuel cell system in microsystem technology Expired - Fee Related DE19914681C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19914681A DE19914681C2 (en) 1999-03-31 1999-03-31 Polymer electrolyte membrane Fuel cell system in microsystem technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19914681A DE19914681C2 (en) 1999-03-31 1999-03-31 Polymer electrolyte membrane Fuel cell system in microsystem technology

Publications (2)

Publication Number Publication Date
DE19914681A1 true DE19914681A1 (en) 2000-10-05
DE19914681C2 DE19914681C2 (en) 2002-07-18

Family

ID=7903132

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19914681A Expired - Fee Related DE19914681C2 (en) 1999-03-31 1999-03-31 Polymer electrolyte membrane Fuel cell system in microsystem technology

Country Status (1)

Country Link
DE (1) DE19914681C2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054217A3 (en) * 1999-11-24 2002-05-02 Integrated Fuel Cell Technolog Fuel cell and power chip technology
WO2002086994A1 (en) * 2001-04-19 2002-10-31 Neah Power Systems, Inc. Porous silicon and sol-gel derived electrode structures and assemblies adapted for use with fuel cell systems
EP1258937A1 (en) * 2001-05-17 2002-11-20 STMicroelectronics S.r.l. Micro silicon fuel cell, method of fabrication and self-powered semiconductor device integrating a micro fuel cell
FR2826781A1 (en) * 2001-06-29 2003-01-03 Commissariat Energie Atomique BILOUS DIFFUSER FUEL CELL ASSEMBLY AND CREATION METHOD
EP1282184A2 (en) * 2001-07-27 2003-02-05 Hewlett-Packard Company Multi-element thin-film fuel cell
EP1294039A1 (en) * 2001-03-29 2003-03-19 Matsushita Electric Industrial Co., Ltd. High-polymer electrolyte type thin film fuel cell and its driving method
WO2003032412A2 (en) * 2001-09-28 2003-04-17 The Regents Of The University Of California Method of forming a package for mems-based fuel cell
WO2003061041A2 (en) * 2002-01-11 2003-07-24 Metallic Power, Inc. Integrated fuel cell and electrochemical power system employing the same
FR2840108A1 (en) * 2002-05-24 2003-11-28 Commissariat Energie Atomique Miniature fuel cell base module made up of numerous micro-volumes in a closed space, traversed by one of two reactants circulating in the module
EP1525638A2 (en) * 2002-05-09 2005-04-27 Honda Giken Kogyo Kabushiki Kaisha Fuel cell assembly, separator-diffusion layer assembly for fuel cell assembly and manufacturing method therefor
EP1722434A1 (en) 2005-05-13 2006-11-15 STMicroelectronics S.r.l. Fuel cell array formed in a single layer of monocrystalline silicon and fabrication process
US7208246B2 (en) 2002-07-23 2007-04-24 Hewlett-Packard Development Company, L.P. Fuel cell with integrated heater and robust construction
EP1798799A1 (en) * 2005-12-16 2007-06-20 STMicroelectronics S.r.l. Fuel cell planarly integrated on a monocrystalline silicon chip and process of fabrication
FR2972301A1 (en) * 2011-03-04 2012-09-07 St Microelectronics Sa Method for manufacturing membrane device that is used as electrode of biofuel cell, involves treating porous silicon area to produce electrically conducting porous area that forms electrically conducting porous membrane
US8518594B2 (en) 1999-11-24 2013-08-27 Encite, Llc Power cell and power chip architecture
US8834700B2 (en) 1999-11-24 2014-09-16 Encite, Llc Method and apparatus for electro-chemical reaction
US8980492B2 (en) 1999-11-24 2015-03-17 Encite Llc Method and apparatus for controlling an array of power generators
US9819037B2 (en) 2006-03-02 2017-11-14 Encite Llc Method and apparatus for cleaning catalyst of a power cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3907485A1 (en) * 1989-03-08 1990-09-20 Asea Brown Boveri FUEL CELL ARRANGEMENT
DE4104841A1 (en) * 1991-02-16 1992-08-20 Abb Patent Gmbh FUEL CELL ARRANGEMENT
DE4329819A1 (en) * 1993-07-28 1995-02-02 Fraunhofer Ges Forschung Strip membrane
DE19624887A1 (en) * 1995-06-21 1997-01-02 Fraunhofer Ges Forschung Electrochemical cell including solid electrolyte system formed by thin film technologies
DE19644628A1 (en) * 1996-10-17 1998-04-23 Hahn Meitner Inst Berlin Gmbh Inert cathode for selective oxygen reduction and process for its production
US5750013A (en) * 1996-08-07 1998-05-12 Industrial Technology Research Institute Electrode membrane assembly and method for manufacturing the same
DE19718687A1 (en) * 1997-05-02 1998-11-05 Forschungszentrum Juelich Gmbh Fuel cell stack
DE19833064A1 (en) * 1998-07-22 2000-02-03 Fraunhofer Ges Forschung Fuel cell for high output voltages

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3907485A1 (en) * 1989-03-08 1990-09-20 Asea Brown Boveri FUEL CELL ARRANGEMENT
DE4104841A1 (en) * 1991-02-16 1992-08-20 Abb Patent Gmbh FUEL CELL ARRANGEMENT
DE4329819A1 (en) * 1993-07-28 1995-02-02 Fraunhofer Ges Forschung Strip membrane
DE19624887A1 (en) * 1995-06-21 1997-01-02 Fraunhofer Ges Forschung Electrochemical cell including solid electrolyte system formed by thin film technologies
US5750013A (en) * 1996-08-07 1998-05-12 Industrial Technology Research Institute Electrode membrane assembly and method for manufacturing the same
DE19644628A1 (en) * 1996-10-17 1998-04-23 Hahn Meitner Inst Berlin Gmbh Inert cathode for selective oxygen reduction and process for its production
DE19718687A1 (en) * 1997-05-02 1998-11-05 Forschungszentrum Juelich Gmbh Fuel cell stack
DE19833064A1 (en) * 1998-07-22 2000-02-03 Fraunhofer Ges Forschung Fuel cell for high output voltages

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9406955B2 (en) 1999-11-24 2016-08-02 Encite Llc Methods of operating fuel cells
US8518594B2 (en) 1999-11-24 2013-08-27 Encite, Llc Power cell and power chip architecture
US8834700B2 (en) 1999-11-24 2014-09-16 Encite, Llc Method and apparatus for electro-chemical reaction
US8962166B2 (en) 1999-11-24 2015-02-24 Encite Llc Power cell and power chip architecture
US7029779B2 (en) 1999-11-24 2006-04-18 Integrated Fuel Cell Technologies, Inc. Fuel cell and power chip technology
US6991866B2 (en) 1999-11-24 2006-01-31 Integrated Fuel Cell Technologies, Inc. Fuel cell and power chip technology
US6815110B2 (en) 1999-11-24 2004-11-09 Integrated Fuel Cell Technologies, Inc. Fuel cell and power chip technology
WO2001054217A3 (en) * 1999-11-24 2002-05-02 Integrated Fuel Cell Technolog Fuel cell and power chip technology
US8431281B2 (en) 1999-11-24 2013-04-30 Encite, Llc Methods of operating fuel cells
US8980492B2 (en) 1999-11-24 2015-03-17 Encite Llc Method and apparatus for controlling an array of power generators
EP1294039A4 (en) * 2001-03-29 2008-04-30 Matsushita Electric Ind Co Ltd High-polymer electrolyte type thin film fuel cell and its driving method
EP1294039A1 (en) * 2001-03-29 2003-03-19 Matsushita Electric Industrial Co., Ltd. High-polymer electrolyte type thin film fuel cell and its driving method
WO2002086994A1 (en) * 2001-04-19 2002-10-31 Neah Power Systems, Inc. Porous silicon and sol-gel derived electrode structures and assemblies adapted for use with fuel cell systems
US6969664B2 (en) 2001-05-17 2005-11-29 Stmicroelectronics S.R.L. Micro silicon fuel cell, method of fabrication and self-powered semiconductor device integrating a micro fuel cell
EP1258937A1 (en) * 2001-05-17 2002-11-20 STMicroelectronics S.r.l. Micro silicon fuel cell, method of fabrication and self-powered semiconductor device integrating a micro fuel cell
WO2003003490A3 (en) * 2001-06-29 2004-01-22 Commissariat Energie Atomique Fuel cell assembly with a two-layer diffuser and production method of same
FR2826781A1 (en) * 2001-06-29 2003-01-03 Commissariat Energie Atomique BILOUS DIFFUSER FUEL CELL ASSEMBLY AND CREATION METHOD
WO2003003490A2 (en) * 2001-06-29 2003-01-09 Commissariat A L'energie Atomique Fuel cell assembly with a two-layer diffuser and production method of same
US7018734B2 (en) * 2001-07-27 2006-03-28 Hewlett-Packard Development Company, L.P. Multi-element thin-film fuel cell
EP1282184A3 (en) * 2001-07-27 2005-01-26 Hewlett-Packard Company Multi-element thin-film fuel cell
EP1282184A2 (en) * 2001-07-27 2003-02-05 Hewlett-Packard Company Multi-element thin-film fuel cell
US7306866B2 (en) 2001-07-27 2007-12-11 Hewlett-Packard Development Company, L.P. Multi-element thin-film fuel cell
WO2003032412A2 (en) * 2001-09-28 2003-04-17 The Regents Of The University Of California Method of forming a package for mems-based fuel cell
WO2003032412A3 (en) * 2001-09-28 2004-07-01 Univ California Method of forming a package for mems-based fuel cell
WO2003061041A2 (en) * 2002-01-11 2003-07-24 Metallic Power, Inc. Integrated fuel cell and electrochemical power system employing the same
WO2003061041A3 (en) * 2002-01-11 2005-02-10 Metallic Power Inc Integrated fuel cell and electrochemical power system employing the same
EP1525638A2 (en) * 2002-05-09 2005-04-27 Honda Giken Kogyo Kabushiki Kaisha Fuel cell assembly, separator-diffusion layer assembly for fuel cell assembly and manufacturing method therefor
WO2003100895A2 (en) * 2002-05-24 2003-12-04 Commissariat A L'energie Atomique Miniature fuel cell base module comprising micro-volumes which are traversed by one of two reactants
US7550220B2 (en) 2002-05-24 2009-06-23 Commissariat A L'energie Atomique Miniature fuel cell base module comprising micro-volumes which are traversed by one of two reactants
FR2840108A1 (en) * 2002-05-24 2003-11-28 Commissariat Energie Atomique Miniature fuel cell base module made up of numerous micro-volumes in a closed space, traversed by one of two reactants circulating in the module
WO2003100895A3 (en) * 2002-05-24 2005-03-10 Commissariat Energie Atomique Miniature fuel cell base module comprising micro-volumes which are traversed by one of two reactants
US7208246B2 (en) 2002-07-23 2007-04-24 Hewlett-Packard Development Company, L.P. Fuel cell with integrated heater and robust construction
US8304144B2 (en) 2005-05-13 2012-11-06 Stmicroelectronics S.R.L. Fuel cell formed in a single layer of monocrystalline silicon and fabrication process
US7763372B2 (en) 2005-05-13 2010-07-27 Stmicroelectronics S.R.L. Fuel cell formed in a single layer of monocrystalline silicon and fabrication process
EP1722434A1 (en) 2005-05-13 2006-11-15 STMicroelectronics S.r.l. Fuel cell array formed in a single layer of monocrystalline silicon and fabrication process
EP1798799A1 (en) * 2005-12-16 2007-06-20 STMicroelectronics S.r.l. Fuel cell planarly integrated on a monocrystalline silicon chip and process of fabrication
US7892693B2 (en) 2005-12-16 2011-02-22 Stmicroelectronics S.R.L. Fuel cell planarly integrated on a monocrystalline silicon chip and process of fabrication
US9819037B2 (en) 2006-03-02 2017-11-14 Encite Llc Method and apparatus for cleaning catalyst of a power cell
US10199671B2 (en) 2006-03-02 2019-02-05 Encite Llc Apparatus for cleaning catalyst of a power cell
US11121389B2 (en) 2006-03-02 2021-09-14 Encite Llc Method and controller for operating power cells using multiple layers of control
FR2972301A1 (en) * 2011-03-04 2012-09-07 St Microelectronics Sa Method for manufacturing membrane device that is used as electrode of biofuel cell, involves treating porous silicon area to produce electrically conducting porous area that forms electrically conducting porous membrane

Also Published As

Publication number Publication date
DE19914681C2 (en) 2002-07-18

Similar Documents

Publication Publication Date Title
DE19914681A1 (en) Miniature polymer electrolyte membrane fuel cell, used in microsystems, has a structure produced by a combination of thin film, microsystem etching and glass-silicon bonding technologies
US20030013046A1 (en) Use of sacrificial layers in the manufacturing of chemical reactor structures and the application of such structures
US20040115507A1 (en) Monolithic fuel cell and method of manufacture
US6713206B2 (en) Electrochemical cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same
US8283090B2 (en) Electrochemical cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same
CN101445216B (en) Split type micro-electric mechanic system and preparation method thereof
US6171719B1 (en) Electrode plate structures for high-pressure electrochemical cell devices
CA2408592C (en) Fuel cell assembly and method for making the same
US7153602B2 (en) Fuel cell assembly
US6740444B2 (en) PEM fuel cell with alternating ribbed anodes and cathodes
EP1502316B1 (en) Fuel cell assembly and a separator therefor
KR20060021916A (en) Fuel cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same
US7736788B2 (en) Pattern molding of polymeric flow channels for micro fuel cells
KR20020012214A (en) Fuel cell and membrane
EP1812687A2 (en) Dual electrolyte membraneless microchannel fuel cells
US20050003263A1 (en) Fuel cell electrode pair assemblies and related methods
WO1998024136A9 (en) Electrode plate structures, high-pressure electrochemical cell devices and method for preparing same
DE19823880A1 (en) Bipolar plate for fuel cell arrangement
US20040071865A1 (en) Method for making an assembly of base elements for a fuel cell substrate
JP5645467B2 (en) Electrochemical cell for obtaining electrical energy
US7521147B2 (en) Fuel cell comprising current collectors integrated in the electrode-membrane-electrode stack
US7776479B2 (en) Micro-electro-mechanical systems phosphoric acid fuel cell
CN109786777B (en) Liquid metal battery device based on micro-fluidic chip and preparation method thereof
DE19914661A1 (en) Thin layer polymer electrolytic fuel cell, useful for the direct conversion of methanol, comprises a plasma-copolymerized membrane sandwiched between two porous graphite electrodes
JP2004031158A (en) Cell of fuel cell and fuel cell stack using this

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8327 Change in the person/name/address of the patent owner

Owner name: 3P-ENERGY GMBH, 19061 SCHWERIN, DE

8381 Inventor (new situation)

Inventor name: MUELLER, JOERG, PROF.DR.-ING., 21073 HAMBURG, DE

Inventor name: MEX, LAURENT,DIPL.-PHYS., 21073 HAMBURG, DE

8339 Ceased/non-payment of the annual fee
8327 Change in the person/name/address of the patent owner

Owner name: MUELLER, JOERG, PROF. DR.-ING., 21244 BUCHHOLZ, DE