DE19914681A1 - Miniature polymer electrolyte membrane fuel cell, used in microsystems, has a structure produced by a combination of thin film, microsystem etching and glass-silicon bonding technologies - Google Patents
Miniature polymer electrolyte membrane fuel cell, used in microsystems, has a structure produced by a combination of thin film, microsystem etching and glass-silicon bonding technologiesInfo
- Publication number
- DE19914681A1 DE19914681A1 DE19914681A DE19914681A DE19914681A1 DE 19914681 A1 DE19914681 A1 DE 19914681A1 DE 19914681 A DE19914681 A DE 19914681A DE 19914681 A DE19914681 A DE 19914681A DE 19914681 A1 DE19914681 A1 DE 19914681A1
- Authority
- DE
- Germany
- Prior art keywords
- fuel cell
- pem fuel
- technology according
- microsystem technology
- microsystem
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 34
- 238000005516 engineering process Methods 0.000 title claims abstract description 31
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 19
- 239000010703 silicon Substances 0.000 title claims abstract description 19
- 239000012528 membrane Substances 0.000 title claims abstract description 14
- 238000005530 etching Methods 0.000 title claims abstract description 9
- 239000010409 thin film Substances 0.000 title claims abstract description 7
- 239000005518 polymer electrolyte Substances 0.000 title abstract description 3
- 238000000034 method Methods 0.000 claims abstract description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000011521 glass Substances 0.000 claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 239000003054 catalyst Substances 0.000 claims abstract description 8
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 7
- 239000010439 graphite Substances 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 4
- 238000007334 copolymerization reaction Methods 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 claims description 2
- 238000000407 epitaxy Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 108700028369 Alleles Proteins 0.000 claims 1
- 229910002848 Pt–Ru Inorganic materials 0.000 claims 1
- 239000002322 conducting polymer Substances 0.000 claims 1
- 229920001940 conductive polymer Polymers 0.000 claims 1
- 229910052731 fluorine Inorganic materials 0.000 claims 1
- 239000011737 fluorine Substances 0.000 claims 1
- 125000001153 fluoro group Chemical group F* 0.000 claims 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims 1
- 238000010574 gas phase reaction Methods 0.000 claims 1
- 239000002243 precursor Substances 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical class [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 claims 1
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 claims 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical group S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1023—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1007—Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1072—Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2418—Grouping by arranging unit cells in a plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Fuel Cell (AREA)
Abstract
Description
Die Erfindung betrifft eine miniaturisierte PEM- (Polymer-Elektrolyt-Membran)-Brennstoffzelle in Mikrosystemtechnik, die mit Hilfe von Dünn schichtverfahren, insbesondere der Plasmapolyme risation zur Herstellung der ionenleitenden Mem bran sowie von Plasma-CVD-Verfahren zur Erzeu gung leitfähiger poröser und mit Katalysatoren dotierter Kontaktschichten, vorzugsweise in einer Silizium-Glas-Technik aufgebaut wird. Eine solche Struktur erlaubt aufgrund der Kompatibilität mit üblichen Mikrosystemen nicht nur prinzipiell eine Integration in solche Mikrosysteme, infolge der hohen elektrischen und thermischen Leitfähigkeit des Siliziums sowie der erprobten, hermetisch dichten Verbindungstechnik von Silizium-Glas durch anodisches Bonden und die Möglichkeit, Silizium durch trocken- und naßchemische Verfah ren kostengünstig, reproduzierbar und mit hoher Genauigkeit zu strukturieren und mit Dünnschicht verfahren zu kombinieren, eröffnet diese Technik auch eine einfache Möglichkeiten zur Parallel- und Reihen-Verschaltung sowie zur Brennstoff-Zu- und Abfuhr.The invention relates to a miniaturized PEM (Polymer electrolyte membrane) fuel cell in Microsystem technology using thin Layer process, in particular the plasma polymer rization for the production of the ion-conducting mem bran as well as plasma CVD processes for generating gung conductive porous and with catalysts doped contact layers, preferably in one Silicon glass technology is built. Such Structure allowed due to compatibility with conventional microsystems not just one in principle Integration in such microsystems, as a result of high electrical and thermal conductivity of silicon as well as the tried and tested, hermetic tight connection technology of silicon glass through anodic bonding and the possibility Silicon by dry and wet chemical processes ren inexpensive, reproducible and with high Structure accuracy and with thin film Combining the process opens up this technique also an easy way to parallel and Series connection as well as for fuel connection and Discharge.
Gegenwärtig werden Brennstoffzellen, insbesonde re PEM-Zellen, realisiert auf der Basis von Schichtstapeln aus der ionenleitenden Membran, eingebettet zwischen zwei mit Katalysatoren be schichteten porösen Graphitelektroden, die durch Bleche mit Kanälen zur Brennstoffzufuhr abge schlossen werden. Während auf diese Weise eine Reihenschaltung von Zellen mit nicht unerhebli chem Material- und Montage-Aufwand möglich ist (US 5,858,569), ist eine Reihenschaltung zwar grundsätzlich möglich und auch inzwischen reali siert (z. B. DE 44 43 945 C1, DE 195 02 391 C1), allerdings ohne die möglichen technologischen Lösungen integrierter Systeme etwa aus der Mikro systemtechnik nutzen zu können.Fuel cells are becoming more and more popular right PEM cells, realized on the basis of Layer stacks from the ion-conducting membrane, embedded between two with catalysts layered porous graphite electrodes through Sheets with channels for fuel supply abge be closed. While this way one Series connection of cells with not inconsiderable chem material and assembly effort is possible (US 5,858,569), is a series connection though basically possible and now reali based (e.g. DE 44 43 945 C1, DE 195 02 391 C1), but without the possible technological Solutions of integrated systems, for example from the micro to be able to use system technology.
In dieser Erfindung werden die Vorteile der Mikro systemtechnologie, einer Kombination von Silizi um-Mikrostrukturierungstechniken, Dünnschicht verfahren, Glasätztechniken sowie der Aufbau- und Verbindungstechnik von Silizium-Glas-Verbin dungen kombiniert, um damit ein in einer Ebene liegendes, beliebig parallel und in Reihe verschalt bares Brennstoffzellensystem aufzubauen.In this invention, the advantages of micro system technology, a combination of silicon um microstructuring techniques, thin film process, glass etching techniques and the assembly and Connection technology of silicon-glass composite combined to make one in one level horizontal, arbitrarily parallel and connected in series buildable fuel cell system.
Ein solches System, wie es beispielhaft in Abb. 1 dargestellt ist besteht aus einem z. B. n-leitenden Siliziumsubstrat 1 mit einer durch Epitaxie oder Diffusion erzeugten p-leitenden dünnen Deck schicht 2. Im Bereich der Fläche der Brennstoff zelle 3 ist das n-leitende Substrat z. B. durch eine naßchemische richtungsbevorzugende Ätze bis zur p-dotierten Schicht selektiv entfernt, die p-leitende Schicht ist dort 4 durch entsprechende Ätzverfahren porös gemacht. Auf dieser Membran ist eine eben falls poröse und wie anderswo beschrieben mit Katalysatormetallen dotierte Graphitschicht 5, z. B. in einem Plasma-CVD-Verfahren zwischen Elek troden aus Katalysatormetall, abgeschieden. Die Membran 6 wird ebenfalls in einem plasmaunter stützten Verfahren, einem Plasmapolymersations verfahren, durch Kopolymerisation aus z. B. einer teflon-artigen Matrix mit integrierten Ionenleiter ketten, z. B. Phophor- oder Schwefelsäure-Gruppen, abgeschieden. Daran schließt sich wiederum eine Schicht aus porösem mit Katalysatormetallen do tierten Graphit 7 an. Werden die untere Graphit schicht 5 sowie die Membran 6 entsprechend Abb. 1 strukturiert, so läßt sich durch entsprechende Strukturierung der oberen Graphitschicht 7 eine direkte Verschaltung der Zellen in Reihe erreichen. Zur Minimierung des Reihenwiderstandes werden die einzeln Zellen gemäß Abb. 2 vorzugsweise als schmale Steifen ausgeführt. Außerdem können die nicht notwendigerweise porösen Bereiche außer halb der aktiven Bereiche der Zelle mit zusätzlichen Metallisierungen 8, in Dünnschichttechik realisiert, versehen werden.Such a system, as exemplified in Fig. 1 consists of a z. B. n-type silicon substrate 1 with a p-type thin cover layer generated by epitaxy or diffusion. 2 In the area of the surface of the fuel cell 3 , the n-type substrate is z. B. selectively removed by a wet chemical directional etching up to the p-doped layer, the p-type layer 4 is made porous there by appropriate etching processes. On this membrane is also a porous and as described elsewhere doped with catalyst metals graphite layer 5 , z. B. in a plasma CVD process between electrodes made of catalyst metal, deposited. The membrane 6 is also in a plasma-assisted process, a plasma polymerisation process, by copolymerization from z. B. chains a Teflon-like matrix with integrated ion conductor, z. B. phophore or sulfuric acid groups, deposited. This is in turn followed by a layer of porous graphite 7 doped with catalyst metals. If the lower graphite layer 5 and the membrane 6 are structured in accordance with FIG. 1, a direct connection of the cells in series can be achieved by appropriate structuring of the upper graphite layer 7 . To minimize the series resistance, the individual cells according to Fig. 2 are preferably designed as narrow strips. In addition, the not necessarily porous areas outside of the active areas of the cell can be provided with additional metallizations 8 , implemented using thin-film technology.
Die Zufuhr der Brennstoffe erfolgt über Kapillaren 9 in Hohlräume 10, die in dem Silizium im thermi schen Ausdehnungskoeffizienten angepaßte Glas substrat 11 (Tempax, Pyrex) z. B. naßchemisch eingebracht werden. Die Glassubstrate werden z. B. durch anodisches Bonden auf das Silizium-Substrat hermetisch dicht angeschlossen.The supply of the fuels takes place via capillaries 9 in cavities 10 , which in the silicon in the thermal expansion coefficient's adapted glass substrate 11 (Tempax, Pyrex) z. B. can be introduced wet-chemically. The glass substrates are e.g. B. hermetically sealed by anodic bonding to the silicon substrate.
Aufgrund der hohen Wärmeleitfähigkeit und gerin gen Wärmekapazität des Siliziums und der gerin gen Wärmeleitung im Glas erreicht eine solche Zelle schnell ihre Betriebstemperatur, ohne daß ihre Umgebung wesentlich davon beeinflußt wird.Due to the high thermal conductivity and low heat capacity of silicon and low heat conduction in the glass achieves such Cell quickly their operating temperature without their Environment is significantly affected.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19914681A DE19914681C2 (en) | 1999-03-31 | 1999-03-31 | Polymer electrolyte membrane Fuel cell system in microsystem technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19914681A DE19914681C2 (en) | 1999-03-31 | 1999-03-31 | Polymer electrolyte membrane Fuel cell system in microsystem technology |
Publications (2)
Publication Number | Publication Date |
---|---|
DE19914681A1 true DE19914681A1 (en) | 2000-10-05 |
DE19914681C2 DE19914681C2 (en) | 2002-07-18 |
Family
ID=7903132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19914681A Expired - Fee Related DE19914681C2 (en) | 1999-03-31 | 1999-03-31 | Polymer electrolyte membrane Fuel cell system in microsystem technology |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE19914681C2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001054217A3 (en) * | 1999-11-24 | 2002-05-02 | Integrated Fuel Cell Technolog | Fuel cell and power chip technology |
WO2002086994A1 (en) * | 2001-04-19 | 2002-10-31 | Neah Power Systems, Inc. | Porous silicon and sol-gel derived electrode structures and assemblies adapted for use with fuel cell systems |
EP1258937A1 (en) * | 2001-05-17 | 2002-11-20 | STMicroelectronics S.r.l. | Micro silicon fuel cell, method of fabrication and self-powered semiconductor device integrating a micro fuel cell |
FR2826781A1 (en) * | 2001-06-29 | 2003-01-03 | Commissariat Energie Atomique | BILOUS DIFFUSER FUEL CELL ASSEMBLY AND CREATION METHOD |
EP1282184A2 (en) * | 2001-07-27 | 2003-02-05 | Hewlett-Packard Company | Multi-element thin-film fuel cell |
EP1294039A1 (en) * | 2001-03-29 | 2003-03-19 | Matsushita Electric Industrial Co., Ltd. | High-polymer electrolyte type thin film fuel cell and its driving method |
WO2003032412A2 (en) * | 2001-09-28 | 2003-04-17 | The Regents Of The University Of California | Method of forming a package for mems-based fuel cell |
WO2003061041A2 (en) * | 2002-01-11 | 2003-07-24 | Metallic Power, Inc. | Integrated fuel cell and electrochemical power system employing the same |
FR2840108A1 (en) * | 2002-05-24 | 2003-11-28 | Commissariat Energie Atomique | Miniature fuel cell base module made up of numerous micro-volumes in a closed space, traversed by one of two reactants circulating in the module |
EP1525638A2 (en) * | 2002-05-09 | 2005-04-27 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell assembly, separator-diffusion layer assembly for fuel cell assembly and manufacturing method therefor |
EP1722434A1 (en) | 2005-05-13 | 2006-11-15 | STMicroelectronics S.r.l. | Fuel cell array formed in a single layer of monocrystalline silicon and fabrication process |
US7208246B2 (en) | 2002-07-23 | 2007-04-24 | Hewlett-Packard Development Company, L.P. | Fuel cell with integrated heater and robust construction |
EP1798799A1 (en) * | 2005-12-16 | 2007-06-20 | STMicroelectronics S.r.l. | Fuel cell planarly integrated on a monocrystalline silicon chip and process of fabrication |
FR2972301A1 (en) * | 2011-03-04 | 2012-09-07 | St Microelectronics Sa | Method for manufacturing membrane device that is used as electrode of biofuel cell, involves treating porous silicon area to produce electrically conducting porous area that forms electrically conducting porous membrane |
US8518594B2 (en) | 1999-11-24 | 2013-08-27 | Encite, Llc | Power cell and power chip architecture |
US8834700B2 (en) | 1999-11-24 | 2014-09-16 | Encite, Llc | Method and apparatus for electro-chemical reaction |
US8980492B2 (en) | 1999-11-24 | 2015-03-17 | Encite Llc | Method and apparatus for controlling an array of power generators |
US9819037B2 (en) | 2006-03-02 | 2017-11-14 | Encite Llc | Method and apparatus for cleaning catalyst of a power cell |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3907485A1 (en) * | 1989-03-08 | 1990-09-20 | Asea Brown Boveri | FUEL CELL ARRANGEMENT |
DE4104841A1 (en) * | 1991-02-16 | 1992-08-20 | Abb Patent Gmbh | FUEL CELL ARRANGEMENT |
DE4329819A1 (en) * | 1993-07-28 | 1995-02-02 | Fraunhofer Ges Forschung | Strip membrane |
DE19624887A1 (en) * | 1995-06-21 | 1997-01-02 | Fraunhofer Ges Forschung | Electrochemical cell including solid electrolyte system formed by thin film technologies |
DE19644628A1 (en) * | 1996-10-17 | 1998-04-23 | Hahn Meitner Inst Berlin Gmbh | Inert cathode for selective oxygen reduction and process for its production |
US5750013A (en) * | 1996-08-07 | 1998-05-12 | Industrial Technology Research Institute | Electrode membrane assembly and method for manufacturing the same |
DE19718687A1 (en) * | 1997-05-02 | 1998-11-05 | Forschungszentrum Juelich Gmbh | Fuel cell stack |
DE19833064A1 (en) * | 1998-07-22 | 2000-02-03 | Fraunhofer Ges Forschung | Fuel cell for high output voltages |
-
1999
- 1999-03-31 DE DE19914681A patent/DE19914681C2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3907485A1 (en) * | 1989-03-08 | 1990-09-20 | Asea Brown Boveri | FUEL CELL ARRANGEMENT |
DE4104841A1 (en) * | 1991-02-16 | 1992-08-20 | Abb Patent Gmbh | FUEL CELL ARRANGEMENT |
DE4329819A1 (en) * | 1993-07-28 | 1995-02-02 | Fraunhofer Ges Forschung | Strip membrane |
DE19624887A1 (en) * | 1995-06-21 | 1997-01-02 | Fraunhofer Ges Forschung | Electrochemical cell including solid electrolyte system formed by thin film technologies |
US5750013A (en) * | 1996-08-07 | 1998-05-12 | Industrial Technology Research Institute | Electrode membrane assembly and method for manufacturing the same |
DE19644628A1 (en) * | 1996-10-17 | 1998-04-23 | Hahn Meitner Inst Berlin Gmbh | Inert cathode for selective oxygen reduction and process for its production |
DE19718687A1 (en) * | 1997-05-02 | 1998-11-05 | Forschungszentrum Juelich Gmbh | Fuel cell stack |
DE19833064A1 (en) * | 1998-07-22 | 2000-02-03 | Fraunhofer Ges Forschung | Fuel cell for high output voltages |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9406955B2 (en) | 1999-11-24 | 2016-08-02 | Encite Llc | Methods of operating fuel cells |
US8518594B2 (en) | 1999-11-24 | 2013-08-27 | Encite, Llc | Power cell and power chip architecture |
US8834700B2 (en) | 1999-11-24 | 2014-09-16 | Encite, Llc | Method and apparatus for electro-chemical reaction |
US8962166B2 (en) | 1999-11-24 | 2015-02-24 | Encite Llc | Power cell and power chip architecture |
US7029779B2 (en) | 1999-11-24 | 2006-04-18 | Integrated Fuel Cell Technologies, Inc. | Fuel cell and power chip technology |
US6991866B2 (en) | 1999-11-24 | 2006-01-31 | Integrated Fuel Cell Technologies, Inc. | Fuel cell and power chip technology |
US6815110B2 (en) | 1999-11-24 | 2004-11-09 | Integrated Fuel Cell Technologies, Inc. | Fuel cell and power chip technology |
WO2001054217A3 (en) * | 1999-11-24 | 2002-05-02 | Integrated Fuel Cell Technolog | Fuel cell and power chip technology |
US8431281B2 (en) | 1999-11-24 | 2013-04-30 | Encite, Llc | Methods of operating fuel cells |
US8980492B2 (en) | 1999-11-24 | 2015-03-17 | Encite Llc | Method and apparatus for controlling an array of power generators |
EP1294039A4 (en) * | 2001-03-29 | 2008-04-30 | Matsushita Electric Ind Co Ltd | High-polymer electrolyte type thin film fuel cell and its driving method |
EP1294039A1 (en) * | 2001-03-29 | 2003-03-19 | Matsushita Electric Industrial Co., Ltd. | High-polymer electrolyte type thin film fuel cell and its driving method |
WO2002086994A1 (en) * | 2001-04-19 | 2002-10-31 | Neah Power Systems, Inc. | Porous silicon and sol-gel derived electrode structures and assemblies adapted for use with fuel cell systems |
US6969664B2 (en) | 2001-05-17 | 2005-11-29 | Stmicroelectronics S.R.L. | Micro silicon fuel cell, method of fabrication and self-powered semiconductor device integrating a micro fuel cell |
EP1258937A1 (en) * | 2001-05-17 | 2002-11-20 | STMicroelectronics S.r.l. | Micro silicon fuel cell, method of fabrication and self-powered semiconductor device integrating a micro fuel cell |
WO2003003490A3 (en) * | 2001-06-29 | 2004-01-22 | Commissariat Energie Atomique | Fuel cell assembly with a two-layer diffuser and production method of same |
FR2826781A1 (en) * | 2001-06-29 | 2003-01-03 | Commissariat Energie Atomique | BILOUS DIFFUSER FUEL CELL ASSEMBLY AND CREATION METHOD |
WO2003003490A2 (en) * | 2001-06-29 | 2003-01-09 | Commissariat A L'energie Atomique | Fuel cell assembly with a two-layer diffuser and production method of same |
US7018734B2 (en) * | 2001-07-27 | 2006-03-28 | Hewlett-Packard Development Company, L.P. | Multi-element thin-film fuel cell |
EP1282184A3 (en) * | 2001-07-27 | 2005-01-26 | Hewlett-Packard Company | Multi-element thin-film fuel cell |
EP1282184A2 (en) * | 2001-07-27 | 2003-02-05 | Hewlett-Packard Company | Multi-element thin-film fuel cell |
US7306866B2 (en) | 2001-07-27 | 2007-12-11 | Hewlett-Packard Development Company, L.P. | Multi-element thin-film fuel cell |
WO2003032412A2 (en) * | 2001-09-28 | 2003-04-17 | The Regents Of The University Of California | Method of forming a package for mems-based fuel cell |
WO2003032412A3 (en) * | 2001-09-28 | 2004-07-01 | Univ California | Method of forming a package for mems-based fuel cell |
WO2003061041A2 (en) * | 2002-01-11 | 2003-07-24 | Metallic Power, Inc. | Integrated fuel cell and electrochemical power system employing the same |
WO2003061041A3 (en) * | 2002-01-11 | 2005-02-10 | Metallic Power Inc | Integrated fuel cell and electrochemical power system employing the same |
EP1525638A2 (en) * | 2002-05-09 | 2005-04-27 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell assembly, separator-diffusion layer assembly for fuel cell assembly and manufacturing method therefor |
WO2003100895A2 (en) * | 2002-05-24 | 2003-12-04 | Commissariat A L'energie Atomique | Miniature fuel cell base module comprising micro-volumes which are traversed by one of two reactants |
US7550220B2 (en) | 2002-05-24 | 2009-06-23 | Commissariat A L'energie Atomique | Miniature fuel cell base module comprising micro-volumes which are traversed by one of two reactants |
FR2840108A1 (en) * | 2002-05-24 | 2003-11-28 | Commissariat Energie Atomique | Miniature fuel cell base module made up of numerous micro-volumes in a closed space, traversed by one of two reactants circulating in the module |
WO2003100895A3 (en) * | 2002-05-24 | 2005-03-10 | Commissariat Energie Atomique | Miniature fuel cell base module comprising micro-volumes which are traversed by one of two reactants |
US7208246B2 (en) | 2002-07-23 | 2007-04-24 | Hewlett-Packard Development Company, L.P. | Fuel cell with integrated heater and robust construction |
US8304144B2 (en) | 2005-05-13 | 2012-11-06 | Stmicroelectronics S.R.L. | Fuel cell formed in a single layer of monocrystalline silicon and fabrication process |
US7763372B2 (en) | 2005-05-13 | 2010-07-27 | Stmicroelectronics S.R.L. | Fuel cell formed in a single layer of monocrystalline silicon and fabrication process |
EP1722434A1 (en) | 2005-05-13 | 2006-11-15 | STMicroelectronics S.r.l. | Fuel cell array formed in a single layer of monocrystalline silicon and fabrication process |
EP1798799A1 (en) * | 2005-12-16 | 2007-06-20 | STMicroelectronics S.r.l. | Fuel cell planarly integrated on a monocrystalline silicon chip and process of fabrication |
US7892693B2 (en) | 2005-12-16 | 2011-02-22 | Stmicroelectronics S.R.L. | Fuel cell planarly integrated on a monocrystalline silicon chip and process of fabrication |
US9819037B2 (en) | 2006-03-02 | 2017-11-14 | Encite Llc | Method and apparatus for cleaning catalyst of a power cell |
US10199671B2 (en) | 2006-03-02 | 2019-02-05 | Encite Llc | Apparatus for cleaning catalyst of a power cell |
US11121389B2 (en) | 2006-03-02 | 2021-09-14 | Encite Llc | Method and controller for operating power cells using multiple layers of control |
FR2972301A1 (en) * | 2011-03-04 | 2012-09-07 | St Microelectronics Sa | Method for manufacturing membrane device that is used as electrode of biofuel cell, involves treating porous silicon area to produce electrically conducting porous area that forms electrically conducting porous membrane |
Also Published As
Publication number | Publication date |
---|---|
DE19914681C2 (en) | 2002-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19914681A1 (en) | Miniature polymer electrolyte membrane fuel cell, used in microsystems, has a structure produced by a combination of thin film, microsystem etching and glass-silicon bonding technologies | |
US20030013046A1 (en) | Use of sacrificial layers in the manufacturing of chemical reactor structures and the application of such structures | |
US20040115507A1 (en) | Monolithic fuel cell and method of manufacture | |
US20060003217A1 (en) | Planar membraneless microchannel fuel cell | |
US8283090B2 (en) | Electrochemical cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same | |
CN101445216B (en) | Split type micro-electric mechanic system and preparation method thereof | |
US6171719B1 (en) | Electrode plate structures for high-pressure electrochemical cell devices | |
CA2408592C (en) | Fuel cell assembly and method for making the same | |
KR20040101206A (en) | Electrochemical cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same | |
US7153602B2 (en) | Fuel cell assembly | |
US6740444B2 (en) | PEM fuel cell with alternating ribbed anodes and cathodes | |
EP1502316B1 (en) | Fuel cell assembly and a separator therefor | |
KR20060021916A (en) | Fuel cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same | |
KR20020012214A (en) | Fuel cell and membrane | |
US20050003263A1 (en) | Fuel cell electrode pair assemblies and related methods | |
US20070037037A1 (en) | Pattern molding of polymeric flow channels for micro fuel cells | |
WO1998024136A9 (en) | Electrode plate structures, high-pressure electrochemical cell devices and method for preparing same | |
DE19823880A1 (en) | Bipolar plate for fuel cell arrangement | |
JP5645467B2 (en) | Electrochemical cell for obtaining electrical energy | |
US6864010B1 (en) | Apparatus of high power density fuel cell layer with micro for connecting to an external load | |
US7763372B2 (en) | Fuel cell formed in a single layer of monocrystalline silicon and fabrication process | |
US7150933B1 (en) | Method of manufacturing high power density fuel cell layers with micro structured components | |
US7521147B2 (en) | Fuel cell comprising current collectors integrated in the electrode-membrane-electrode stack | |
SE521952C2 (en) | Fuel cell unit and fuel cell assembly comprising a plurality of such fuel cell units | |
CN109786777B (en) | Liquid metal battery device based on micro-fluidic chip and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
D2 | Grant after examination | ||
8327 | Change in the person/name/address of the patent owner |
Owner name: 3P-ENERGY GMBH, 19061 SCHWERIN, DE |
|
8381 | Inventor (new situation) |
Inventor name: MUELLER, JOERG, PROF.DR.-ING., 21073 HAMBURG, DE Inventor name: MEX, LAURENT,DIPL.-PHYS., 21073 HAMBURG, DE |
|
8339 | Ceased/non-payment of the annual fee | ||
8327 | Change in the person/name/address of the patent owner |
Owner name: MUELLER, JOERG, PROF. DR.-ING., 21244 BUCHHOLZ, DE |