DE19914681C2 - Polymer electrolyte membrane Fuel cell system in microsystem technology - Google Patents

Polymer electrolyte membrane Fuel cell system in microsystem technology

Info

Publication number
DE19914681C2
DE19914681C2 DE19914681A DE19914681A DE19914681C2 DE 19914681 C2 DE19914681 C2 DE 19914681C2 DE 19914681 A DE19914681 A DE 19914681A DE 19914681 A DE19914681 A DE 19914681A DE 19914681 C2 DE19914681 C2 DE 19914681C2
Authority
DE
Germany
Prior art keywords
fuel cell
cell system
microsystem technology
technology according
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19914681A
Other languages
German (de)
Other versions
DE19914681A1 (en
Inventor
Joerg Mueller
Laurent Mex
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3P-ENERGY GMBH, 19061 SCHWERIN, DE
Original Assignee
Joerg Mueller
Laurent Mex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joerg Mueller, Laurent Mex filed Critical Joerg Mueller
Priority to DE19914681A priority Critical patent/DE19914681C2/en
Publication of DE19914681A1 publication Critical patent/DE19914681A1/en
Application granted granted Critical
Publication of DE19914681C2 publication Critical patent/DE19914681C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2418Grouping by arranging unit cells in a plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)

Description

Die Erfindung betrifft den Aufbau einer miniaturisierten PEM-(Polymer-Elektrolyt-Membran)-Brennstoffzelle in Mikrosystemtechnik, die aus einer Dünnschicht-Membran-Elektroden Einheit und einem Silizium-Träger mit porösen Siliziumstrukturen sowie hermetisch dicht mit dem Silizium verbundenen Glasabdeckungen besteht.The invention relates to the construction of a miniaturized PEM (polymer electrolyte membrane) fuel cell in Microsystem technology consisting of a thin-film membrane electrode unit and a silicon carrier porous silicon structures and hermetically sealed glass covers.

Eine solche Struktur erlaubt aufgrund der Kompatibilität mit üblichen Mikrosystemen nicht nur prinzipiell eine Integration in solche Mikrosysteme. Infolge der hohen elektrischen und thermischen Leitfähigkeit des Siliziums sowie der erprobten, hermetisch dichten Verbindung von Silizium-Glas, z. B. durch anodisches Bonden, und der Möglichkeit, Silizium durch trocken- und naßchemische Verfahren kostengünstig, reproduzierbar und mit hoher Genauigkeit zu strukturieren und mit Dünnschichtverfahren zu kombinieren, eröffnet dieser Aufbau auch einfa­ che Möglichkeiten zur Parallel- und Reihen-Verschaltung sowie zur Brennstoff-Zu- und Abfuhr.Because of its compatibility with conventional microsystems, such a structure not only allows one in principle Integration in such microsystems. Due to the high electrical and thermal conductivity of the silicon as well as the proven, hermetically sealed connection of silicon glass, e.g. B. by anodic bonding, and the Possibility to use low-cost, reproducible and high-quality silicon by dry and wet chemical processes Structuring accuracy and combining it with thin-film processes also opens up this structure Che options for parallel and series connection as well as for fuel supply and discharge.

Gegenwärtig werden Brennstoffzellen, insbesondere PEM-Zellen, realisiert auf der Basis von Schichtstapeln aus der ionenleitenden Membran, eingebettet zwischen zwei mit Katalysatoren beschichteten porösen Graphit­ elektroden, die durch Bleche mit Kanälen zur Brennstoffzufuhr abgeschlossen werden. Während auf diese Weise eine Reihenschaltung von Zellen mit nicht unerheblichem Material- und Montage-Aufwand in einer Stack- Anordnung möglich ist (US 5,858,569 A), ist eine Reihenschaltung in einer Ebene zwar grundsätzlich möglich und auch inzwischen realisiert (z. B. DE 44 43 945 C1, DE 195 02 391 C1), allerdings ohne die möglichen technolo­ gischen Lösungen integrierter Systeme etwa aus der Mikrosystemtechnik zu nutzen.Fuel cells, in particular PEM cells, are currently being produced on the basis of layer stacks the ion-conducting membrane, embedded between two porous graphite coated with catalysts electrodes that are closed off by sheets with channels for fuel supply. While this way a series connection of cells with considerable material and assembly effort in a stack Arrangement is possible (US 5,858,569 A), a series connection in one plane is in principle possible and also realized in the meantime (e.g. DE 44 43 945 C1, DE 195 02 391 C1), but without the possible technolo to use solutions from integrated systems, for example from microsystems technology.

Ein besonderes Interesse für einen vereinfachten Aufbau von Brennstoffzellen mit geringem Platzbedarf besteht für deren Anwendung als Energiequelle in portablen Kleinverbrauchern, wie z. B. tragbaren Computern, Video­ cameras, Telephonen und ähnlichen Geräten. Neben einer platzsparenden Anordnung von Brennstoffzellen in einer Ebene ist für die notwendige Miniaturisierung von Brennstoffzellen der Einsatz von Dünnschicht-Membra­ nen und -Elektroden vorteilhaft und auch bereits bekannt (DE 196 24 887 A1, DE 195 13 292 C1). Diese Syste­ me enthalten jedoch Elemente, insbesondere deren Gehäuse, welche nicht mit den Dünnschichtverfahren kompa­ tibel sind und daher einen erhöhten Montage-Aufwand benötigen. Zudem ergibt sich in den Eigenschaften der Brennstoffzelle mit den dort beschriebenen Dünnschicht-Membranen ein weiterer Nachteil:
Die ionenleitenden Dünnschichten in DE 195 13 292 C1 werden aus verschiedenen Fluorkohlenstoffen in Ver­ bindung mit Trifluormethansulfonsäure hergestellt. Bei der Verwendung von Trifluormethansulfonsäure kommt es im Plasma aufgrund der vergleichbaren Bindungsenergien zwischen der Kohlenstoff/Schwefel-Bindung und den Bindungen in der Sulfonsäure auch zur Fragmentierung der Sulfonsäure. Hierdurch entstehen entweder hochvernetzte Polymere mit sehr geringer Ionenleitfähigkeit, resultierend in erhöhten Zellinnenwiderständen, oder Polymere mit hinreichender Ionenleitfähigkeit aber geringem Vernetzungsgrad und hohem Anteil nicht kovalent an das Polymergerüst gebundener Trifluormethansulfonsäure (siehe dazu: Ber. Bunsenges. Phys. Chem., Bd 98 (1994), Seiten 631 bis 635). Letztere Schichten sind daher nicht langzeitstabil und besitzen aufgrund des geringen Vernetzungsgrades insbesondere bei der Verwendung in direkt Methanol Brennstoffzellen hohe Per­ meationsraten der verwendeten Brennstoffe, welche zu Verlusten der Brennstoffzelle führen.
There is a particular interest in a simplified structure of fuel cells with a small footprint for their use as an energy source in portable small consumers, such as. B. portable computers, video cameras, telephones and similar devices. In addition to a space-saving arrangement of fuel cells in one level, the use of thin-film membranes and electrodes is advantageous and also known for the necessary miniaturization of fuel cells (DE 196 24 887 A1, DE 195 13 292 C1). However, these systems contain elements, in particular their housings, which are not compatible with the thin-film process and therefore require increased assembly effort. In addition, there is another disadvantage in the properties of the fuel cell with the thin-film membranes described there:
The ion-conducting thin layers in DE 195 13 292 C1 are made from various fluorocarbons in combination with trifluoromethanesulfonic acid. When using trifluoromethanesulfonic acid, the sulfonic acid is also fragmented in the plasma due to the comparable binding energies between the carbon / sulfur bond and the bonds in the sulfonic acid. This results in either highly cross-linked polymers with very low ion conductivity, resulting in increased cell internal resistance, or polymers with sufficient ion conductivity but a low degree of cross-linking and a high proportion of trifluoromethanesulfonic acid that is not covalently bound to the polymer structure (see: Ber. Bunsenges. Phys. Chem., Vol. 98 ( 1994 ), Pages 631 to 635). The latter layers are therefore not stable over the long term and, owing to the low degree of crosslinking, in particular when used in direct methanol fuel cells, have high permeation rates of the fuels used, which lead to losses in the fuel cell.

Die Plasmapolymerisation ionenleitender Schichten aus z. B. Ethylen und Carboxylatgruppen (DE 196 24 887 A1) besitzt den Nachteil der Verwendung einer schwach sauren Carboxylatgruppe, welches zu geringer Ionenleit­ fähigkeit führt. Zudem enthalten diese Plasmapolymere aliphatische Wasserstoffatome, welche Angriffsstellen für einen oxidativen Abbau sind.The plasma polymerization of ion-conducting layers from z. B. ethylene and carboxylate groups (DE 196 24 887 A1) has the disadvantage of using a weakly acidic carboxylate group, which leads to insufficient ionic conductivity ability leads. In addition, these plasma polymers contain aliphatic hydrogen atoms which act as targets for are oxidative degradation.

Die genannten Nachteile werden in der vorliegenden Erfindung durch einen einfachen Aufbau einer miniaturi­ sierten Brennstoffzelle gemäß Abb. 1 gelöst, die aus einem Siliziumträger 1 besteht, der poröse Siliziumbe­ reiche 4 enthält und auf dem sich eine mit Katalysator dotierte, vorzugsweise Pt und Pt/Ru, Graphit-Dünnschicht 5, eine ionenleitenden Dünnschicht-Polymermembran 6, welches eine aus einer teflonartigen Matrix mit inte­ grierten Ionenleiterketten, z. B. Phosphor- oder Schwefelsäure-Gruppen, co-plasmapolymerisierte Membran ist und wieder eine mit Katalysator dotierte Graphit-Dünnschicht 7 befindet. Sind die untere Graphitschicht 5 sowie die Membran 6 entsprechend Abb. 1 strukturiert ausgelegt, so ist durch entsprechend strukturierte Auslegung der oberen Graphitschicht 7 eine direkte Verschaltung der Zellen in Reihe zu erreichen. Für eine galvanischer Tren­ nung der Einzelzellen in der Ebene ist eine p-leitende Dünnschicht 2 zwischen diesen angeordnet, so daß sich mit dem Siliziumsubstrat pn-Übergänge ergeben.The disadvantages mentioned are solved in the present invention by a simple structure of a miniaturized fuel cell according to Fig. 1, which consists of a silicon carrier 1 , the porous silicon areas 4 contains and on which there is a catalyst-doped, preferably Pt and Pt / Ru , Graphite thin film 5 , an ion-conducting thin-film polymer membrane 6 , which is made of a Teflon-like matrix with inte grated ion conductor chains, for. B. phosphorus or sulfuric acid groups, co-plasma-polymerized membrane and again a thin film 7 doped with catalyst is located. If the lower graphite layer 5 and the membrane 6 are designed in a structured manner according to FIG. 1, a direct connection of the cells in series can be achieved by appropriately structured design of the upper graphite layer 7 . For a galvanic separation of the individual cells in the plane, a p-type thin layer 2 is arranged between them, so that pn junctions result with the silicon substrate.

Zur Minimierung des Reihenwiderstandes werden die einzeln Zellen gemäß Abb. 2 vorzugsweise als schmale Steifen ausgeführt. Außerdem können die nicht notwendigerweise porösen Bereiche außerhalb der aktiven Berei­ che der Zelle zusätzliche Dünnschicht-Metallisierungen 8 enthalten.To minimize the series resistance, the individual cells according to Fig. 2 are preferably designed as narrow strips. In addition, the not necessarily porous areas outside the active areas of the cell can contain additional thin-layer metallizations 8 .

Der Siliziumträger mit Dünnschicht-Membran-Elektroden Einheit wird durch Glassubstrate (Abb. 1, 11) herme­ tisch dicht nach außen abgeschlossen. Die Glassubstrate sind hierbei vorteilhaft in ihrem thermischen Ausdeh­ nungskoeffizienten dem des Siliziums angepasst (z. B. Tempax oder Pyrex). Für eine gleichmäßige Zufuhr der Brennstoffe von beiden Seiten der Membran her enthalten die Glassubstrate Vertiefungen zur Gasführung und Verteilung. Die Zufuhr der Brennstoffe erfolgt über Kapillaren 9 in die Hohlräume 10 der Glassubstrate 11. The silicon substrate with the thin-film membrane-electrode unit is hermetically sealed to the outside by glass substrates ( Fig. 1, 11). The thermal expansion coefficient of the glass substrates is advantageously adapted to that of silicon (e.g. Tempax or Pyrex). For an even supply of fuel from both sides of the membrane, the glass substrates contain recesses for gas flow and distribution. The fuels are supplied via capillaries 9 into the cavities 10 of the glass substrates 11 .

Aufgrund der hohen Wärmeleitfähigkeit und geringen Wärmekapazität des Siliziums und der geringen Wärme­ leitung im Glas erreicht eine solche Zelle schnell ihre Betriebstemperatur, ohne daß ihre Umgebung wesentlich davon beeinflußt wird.Because of the high thermal conductivity and low heat capacity of the silicon and the low heat In the glass, such a cell quickly reaches its operating temperature without the surroundings being essential is influenced by it.

Eine vorteilhafte Ausführung der erfindungsgemäßen Anordnung ist die Verwendung einer aus Fluorethen und Vinylphosphonsäure co-plasmapolymerisierten Dünnschicht-Membran. Die in der Vinylphosphonsäure vorhan­ dene C/C-Doppelbindung ermöglicht einen kovalenten Einbau der Phosphonsäure in das Polymergerüst ohne Fragmentierung der Phosphonsäuregruppen. Hierdurch ist diese co-plasmapolymerisierte Dünnschicht-Membran chemisch und temperatur-stabil mit hoher Ionenleitfähigkeit bei gleichzeitig hohem Vernetzungsgrad. Der hohe Vernetzungsgrad bewirkt zudem eine Sperrwirkung für Brennstoffe, wie z. B. Methanol, so daß zusätzliche Brennstoff-Sperrschichten aus Pd oder Pd/Ag-Legierungen nicht notwendig sind (siehe z. B. DE 196 46 487 C2 und DE 197 34 634 C1). Diese Eigenschaften der Dünnschicht-Membran führen zu einer deutlichen Verbesse­ rung der Verluste in Brennstoffzellen.An advantageous embodiment of the arrangement according to the invention is the use of a made of fluoroethene and Vinylphosphonic acid co-plasma polymerized thin film membrane. The existing in the vinylphosphonic acid The C / C double bond enables covalent incorporation of the phosphonic acid into the polymer structure without Fragmentation of the phosphonic acid groups. As a result, this co-plasma-polymerized thin-film membrane chemically and temperature-stable with high ion conductivity and at the same time high degree of cross-linking. The height Degree of crosslinking also causes a barrier effect for fuels, such as. B. methanol, so that additional Fuel barrier layers made of Pd or Pd / Ag alloys are not necessary (see e.g. DE 196 46 487 C2 and DE 197 34 634 C1). These properties of the thin-film membrane lead to a significant improvement loss of fuel cells.

Claims (8)

1. PEM-Brennstoffzellensystem in Mikrosystemtechnik, dadurch gekennzeichnet, dass
  • a) in einem Glas-Silizium-Glas-Schichtverbund der Aufbau eines vollständigen Sys­ tems aus PEM-Brennstoffzellen realisiert ist, wozu auf im Siliziumsubstrat erzeug­ ten porösen Trägermembranen jeweils eine vollständige Brennstoffzelle angeordnet ist, die aus zwei mit Katalysatormetallen, insbesondere mit Pt und/oder Pt-Ru- dotierten, porösen Graphit-Dünnschichten und einer dazwischen liegenden ionenlei­ tenden Dünnschicht-Polymerelektrolytmembran besteht, wobei zur seriellen oder parallelen Verschaltung der einzelnen Brennstoffzellen untereinander zwischen den einzelnen Brennstoffzellen Elemente aus leitfähigem Silizium sowie Leiterbahn­ strukturen mit galvanischer Trennung der Einzelzellen in der Ebene über pn- Übergänge im Silizium angeordnet sind, dass
  • b) die Glassubstrate Vertiefungen zur Gasführung und Gasverteilung für die räumlich getrennte Zufuhr der Brennstoffe auf beiden Seiten der Dünnschicht- Polymerelektrolytmembran enthalten, dass
  • c) die Glassubstrate mit der dazwischen angeordneten Siliziumschicht hermetisch dicht verbunden sind, dass
  • d) in die Dünnschicht-Polymermembran ionenleitende Gruppen, insbesondere Phos­ phor- oder Schwefelsäuregruppen, über die Co-Polymerisation von auf Fluorkoh­ lenwasserstoffen basierenden Vorläuferverbindungen und Monomeren unter Bil­ dung einer ionenleitenden Elektrolytmembran eingebunden sind.
1. PEM fuel cell system in microsystem technology, characterized in that
  • a) in a glass-silicon-glass composite, the construction of a complete system of PEM fuel cells is realized, for which purpose a complete fuel cell is arranged on porous carrier membranes produced in the silicon substrate, which consists of two with catalyst metals, in particular with Pt and / or Pt-Ru-doped, porous graphite thin layers and an intervening ion-conducting thin-film polymer electrolyte membrane, elements for conductive or parallel interconnection of the individual fuel cells between the individual fuel cells made of conductive silicon and conductor structures with electrical isolation of the individual cells in the That are arranged above pn junctions in silicon
  • b) the glass substrates contain recesses for gas routing and gas distribution for the spatially separate supply of the fuels on both sides of the thin-film polymer electrolyte membrane that
  • c) the glass substrates are hermetically sealed to the silicon layer arranged between them
  • d) ion-conducting groups, in particular phosphorus or sulfuric acid groups, are incorporated into the thin-film polymer membrane via the copolymerization of precursor compounds and monomers based on fluorocarbons to form an ion-conducting electrolyte membrane.
2. PEM-Brennstoffzellensystem in Mikrosystemtechnik nach Anspruch 1, dadurch ge­ kennzeichnet, dass die Dünnschicht-Polymermembran eine durch Co-Polymeristaion von Fluorethen und Vinylphosphonsäure erhaltene ionenleitende Elektrolytmembran ist.2. PEM fuel cell system in microsystem technology according to claim 1, characterized ge indicates that the thin film polymer membrane is made by a co-polymeristaion Ion-conducting electrolyte membrane obtained from fluoroethene and vinylphosphonic acid is. 3. PEM-Brennstoffzellensystem in Mikrosystemtechnik nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Ausdehnungskoeffizient des zum Verschließen verwendeten Glases an den Ausdehnungskoeffizienten des Silizium angepasst ist.3. PEM fuel cell system in microsystem technology according to claim 1 or 2, characterized characterized that the coefficient of expansion of the used for sealing Glass is adapted to the coefficient of expansion of the silicon. 4. PEM-Brennstoffzellensystem in Mikrosystemtechnik nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die Brennstoffzufuhr über seitliche Öffnungen im Glas erfolgt, in die bevorzugt Kapillaren eingefügt sind. 4. PEM fuel cell system in microsystem technology according to claim 1 to 3, characterized characterized in that the fuel is supplied through side openings in the glass, in which are preferably inserted capillaries.   5. PEM-Brennstoffzellensystem in Mikrosystemtechnik nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die Brennstoffzellen des Brennstoffzellensystems streifenförmig ausgebildet sind.5. PEM fuel cell system in microsystem technology according to claim 1 to 4, characterized characterized in that the fuel cells of the fuel cell system in strips are trained. 6. PEM-Brennstoffzellensystem in Mikrosystemtechnik nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass die elektrische Kontaktierung für eine Reihenverschaltung ent­ lang der Breitseiten der Brennstoffzellen erfolgt.6. PEM fuel cell system in microsystem technology according to claim 1 to 5, characterized characterized in that the electrical contact for a series connection ent takes place along the broad sides of the fuel cells. 7. PEM-Brennstoffzellensystem in Mikrosystemtechnik nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass die elektrische Kontaktierung für eine Parallelschaltung entlang der Schmalseiten der Brennstoffzellen erfolgt.7. PEM fuel cell system in microsystem technology according to claim 1 to 6, characterized characterized that the electrical contacting for a parallel connection along the narrow sides of the fuel cells. 8. PEM-Brennstoffzellensystem in Mikrosystemtechnik nach Anspruch 1 bis 4 dadurch gekennzeichnet, dass die elektrische Verbindung der einzelnen Brennstoffzellen über strukturierte dünne Schichten erfolgt.8. PEM fuel cell system in microsystem technology according to claim 1 to 4 thereby characterized in that the electrical connection of the individual fuel cells via structured thin layers.
DE19914681A 1999-03-31 1999-03-31 Polymer electrolyte membrane Fuel cell system in microsystem technology Expired - Fee Related DE19914681C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19914681A DE19914681C2 (en) 1999-03-31 1999-03-31 Polymer electrolyte membrane Fuel cell system in microsystem technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19914681A DE19914681C2 (en) 1999-03-31 1999-03-31 Polymer electrolyte membrane Fuel cell system in microsystem technology

Publications (2)

Publication Number Publication Date
DE19914681A1 DE19914681A1 (en) 2000-10-05
DE19914681C2 true DE19914681C2 (en) 2002-07-18

Family

ID=7903132

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19914681A Expired - Fee Related DE19914681C2 (en) 1999-03-31 1999-03-31 Polymer electrolyte membrane Fuel cell system in microsystem technology

Country Status (1)

Country Link
DE (1) DE19914681C2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312846B1 (en) 1999-11-24 2001-11-06 Integrated Fuel Cell Technologies, Inc. Fuel cell and power chip technology
US8980492B2 (en) 1999-11-24 2015-03-17 Encite Llc Method and apparatus for controlling an array of power generators
US8834700B2 (en) 1999-11-24 2014-09-16 Encite, Llc Method and apparatus for electro-chemical reaction
US8518594B2 (en) 1999-11-24 2013-08-27 Encite, Llc Power cell and power chip architecture
JP4196374B2 (en) * 2001-03-29 2008-12-17 パナソニック株式会社 POLYMER ELECTROLYTE TYPE THIN FILM FUEL CELL AND METHOD OF OPERATING THE SAME
WO2002086994A1 (en) * 2001-04-19 2002-10-31 Neah Power Systems, Inc. Porous silicon and sol-gel derived electrode structures and assemblies adapted for use with fuel cell systems
EP1258937A1 (en) 2001-05-17 2002-11-20 STMicroelectronics S.r.l. Micro silicon fuel cell, method of fabrication and self-powered semiconductor device integrating a micro fuel cell
FR2826781B1 (en) * 2001-06-29 2003-09-05 Commissariat Energie Atomique BILOUS DIFFUSER FUEL CELL ASSEMBLY AND CREATION METHOD
US7018734B2 (en) 2001-07-27 2006-03-28 Hewlett-Packard Development Company, L.P. Multi-element thin-film fuel cell
US6821666B2 (en) * 2001-09-28 2004-11-23 The Regents Of The Univerosity Of California Method of forming a package for mems-based fuel cell
US20030134172A1 (en) * 2002-01-11 2003-07-17 Grande Wendy C. Integrated fuel cell and electrochemical power system employing the same
DE60309017T2 (en) * 2002-05-09 2007-05-16 Honda Giken Kogyo K.K. FUEL CELL ARRANGEMENT AND ASSOCIATED SEPARATOR
FR2840108B1 (en) * 2002-05-24 2004-06-25 Commissariat Energie Atomique MINIATURE FUEL CELL BASE MODULE WITH MICRO-VOLUMES CROSSED BY ONE OF THE TWO REACTANTS
US7208246B2 (en) 2002-07-23 2007-04-24 Hewlett-Packard Development Company, L.P. Fuel cell with integrated heater and robust construction
ITVA20050034A1 (en) 2005-05-13 2006-11-14 St Microelectronics Srl FUEL CELLS MADE IN A SINGLE MONOCRYSTALLINE SILICON LAYER AND MANUFACTURING PROCESS
DE602005009965D1 (en) 2005-12-16 2008-11-06 St Microelectronics Srl Fuel cell integrally integrated on a monocrystalline silicon circuit and method of manufacture
US9819037B2 (en) 2006-03-02 2017-11-14 Encite Llc Method and apparatus for cleaning catalyst of a power cell
FR2972301A1 (en) * 2011-03-04 2012-09-07 St Microelectronics Sa Method for manufacturing membrane device that is used as electrode of biofuel cell, involves treating porous silicon area to produce electrically conducting porous area that forms electrically conducting porous membrane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3907485A1 (en) * 1989-03-08 1990-09-20 Asea Brown Boveri FUEL CELL ARRANGEMENT
DE4104841A1 (en) * 1991-02-16 1992-08-20 Abb Patent Gmbh FUEL CELL ARRANGEMENT
DE4329819A1 (en) * 1993-07-28 1995-02-02 Fraunhofer Ges Forschung Strip membrane
DE19624887A1 (en) * 1995-06-21 1997-01-02 Fraunhofer Ges Forschung Electrochemical cell including solid electrolyte system formed by thin film technologies
DE19644628A1 (en) * 1996-10-17 1998-04-23 Hahn Meitner Inst Berlin Gmbh Inert cathode for selective oxygen reduction and process for its production
US5750013A (en) * 1996-08-07 1998-05-12 Industrial Technology Research Institute Electrode membrane assembly and method for manufacturing the same
DE19718687A1 (en) * 1997-05-02 1998-11-05 Forschungszentrum Juelich Gmbh Fuel cell stack
DE19833064A1 (en) * 1998-07-22 2000-02-03 Fraunhofer Ges Forschung Fuel cell for high output voltages

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3907485A1 (en) * 1989-03-08 1990-09-20 Asea Brown Boveri FUEL CELL ARRANGEMENT
DE4104841A1 (en) * 1991-02-16 1992-08-20 Abb Patent Gmbh FUEL CELL ARRANGEMENT
DE4329819A1 (en) * 1993-07-28 1995-02-02 Fraunhofer Ges Forschung Strip membrane
DE19624887A1 (en) * 1995-06-21 1997-01-02 Fraunhofer Ges Forschung Electrochemical cell including solid electrolyte system formed by thin film technologies
US5750013A (en) * 1996-08-07 1998-05-12 Industrial Technology Research Institute Electrode membrane assembly and method for manufacturing the same
DE19644628A1 (en) * 1996-10-17 1998-04-23 Hahn Meitner Inst Berlin Gmbh Inert cathode for selective oxygen reduction and process for its production
DE19718687A1 (en) * 1997-05-02 1998-11-05 Forschungszentrum Juelich Gmbh Fuel cell stack
DE19833064A1 (en) * 1998-07-22 2000-02-03 Fraunhofer Ges Forschung Fuel cell for high output voltages

Also Published As

Publication number Publication date
DE19914681A1 (en) 2000-10-05

Similar Documents

Publication Publication Date Title
DE19914681C2 (en) Polymer electrolyte membrane Fuel cell system in microsystem technology
EP0797847B1 (en) Polymer electrolyte membrane fuel cell
US5589017A (en) Preparation of a solid oxide fuel cell having thin electrolyte and interconnect layers
DE19823880A1 (en) Bipolar plate for fuel cell arrangement
EP0797848B1 (en) Pem fuel cell with structured plates
CN107078272A (en) Ionic conduction composite for electrochemical cell
US20070259236A1 (en) Anionic fuel cells, hybrid fuel cells, and methods of fabrication thereof
CN101420043B (en) Fuel cell stack with asymmetric diffusion media on anode and cathode
CN100533783C (en) Electronic junction devices featuring redox electrodes
EP1771902A2 (en) Microstructures and methods of fabrication thereof
EP1721357A2 (en) Microstructures and methods of fabrication thereof
DE102009003074A1 (en) Electrochemical cell for obtaining electrical energy
DE10221397A1 (en) Manufacturing method of a fuel cell electrode and a fuel cell thereof
DE102004031114A1 (en) Fuel cell container e.g. for solid polymer electrolyte type fuel cell, has fluid flow paths at both surfaces of convex portion respectively, and wiring conductor of one unit connected to conductor of another unit, to adjoin convex portions
DE19914571C2 (en) Process for producing a plasma-polymerized ion-conducting barrier layer for polymer electrolyte membranes
EP1522111B1 (en) Electrolyte for a fuel cell
US20030165731A1 (en) Coated fuel cell electrical contact element
DE19833064C2 (en) Fuel cell for high output voltages
WO2006099830A1 (en) Interconnector for high temperature fuel cells
DE102013007637A1 (en) Cathode-electrolyte anode unit of high-temperature fuel cells
JP2003201352A (en) Electrolyte polymer membrane, membrane electrode structure with the same and solid polymer fuel cell with the structure
DE19914661A1 (en) Thin layer polymer electrolytic fuel cell, useful for the direct conversion of methanol, comprises a plasma-copolymerized membrane sandwiched between two porous graphite electrodes
US20110091793A1 (en) Proton conducting electrolyte
US20150093684A1 (en) Fuel cell membrane with crossover barrier
KR101098731B1 (en) Method of protecting membrane for fuel cell, membrane-electrode assembly, and fuel cell

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8327 Change in the person/name/address of the patent owner

Owner name: 3P-ENERGY GMBH, 19061 SCHWERIN, DE

8381 Inventor (new situation)

Inventor name: MUELLER, JOERG, PROF.DR.-ING., 21073 HAMBURG, DE

Inventor name: MEX, LAURENT,DIPL.-PHYS., 21073 HAMBURG, DE

8339 Ceased/non-payment of the annual fee
8327 Change in the person/name/address of the patent owner

Owner name: MUELLER, JOERG, PROF. DR.-ING., 21244 BUCHHOLZ, DE