WO2003002876A1 - Booster - Google Patents

Booster Download PDF

Info

Publication number
WO2003002876A1
WO2003002876A1 PCT/JP2002/006281 JP0206281W WO03002876A1 WO 2003002876 A1 WO2003002876 A1 WO 2003002876A1 JP 0206281 W JP0206281 W JP 0206281W WO 03002876 A1 WO03002876 A1 WO 03002876A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure side
low
fluid
cylinder
Prior art date
Application number
PCT/JP2002/006281
Other languages
French (fr)
Japanese (ja)
Inventor
Yukihiko Karasawa
Original Assignee
Karasawa Fine., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karasawa Fine., Ltd filed Critical Karasawa Fine., Ltd
Publication of WO2003002876A1 publication Critical patent/WO2003002876A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B3/00Intensifiers or fluid-pressure converters, e.g. pressure exchangers; Conveying pressure from one fluid system to another, without contact between the fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/103Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber
    • F04B9/105Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber reciprocating movement of the pumping member being obtained by a double-acting liquid motor
    • F04B9/1053Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber reciprocating movement of the pumping member being obtained by a double-acting liquid motor one side of the double-acting liquid motor being always under the influence of the liquid under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/103Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber
    • F04B9/107Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber rectilinear movement of the pumping member in the working direction being obtained by a single-acting liquid motor, e.g. actuated in the other direction by gravity or a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/117Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other
    • F04B9/1172Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each pump piston in the two directions being obtained by a double-acting piston liquid motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/117Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other
    • F04B9/1176Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor
    • F04B9/1178Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor the movement in the other direction being obtained by a hydraulic connection between the liquid motor cylinders

Definitions

  • the present invention relates to a pressure intensifier for increasing the pressure of a fluid, and more particularly to a pressure intensifier suitable for a device in which a fluid having a high pressure is ejected from an opposed nozzle and the ejected fluids collide with each other.
  • FIG. 2 is a simplified view of the overall configuration of such a system for refining particles.
  • A is the low-pressure side fluid
  • B is the high-pressure side fluid.
  • the pipeline through which the low-pressure side fluid A flows is shown by a solid line
  • the pipeline through which the high-pressure side fluid B flows is shown by a dotted line. I have.
  • Oil is stored in the tank 1 as the low-pressure side fluid A.
  • This low-pressure fluid A is pumped by the pressure pump 2.
  • the low-pressure side fluid A discharged from the pressure pump 2 is adjusted to a predetermined pressure by the regulator 3 and reaches the two switching valves 4, 4. Excess fluid of low-pressure fluid A that reaches regulation 3 is returned to tank 1 by the relief valve in regulation 3.
  • Each switching valve 4, 4 5, the discharge conduit of each it it two are connected.
  • the switching valves 4 and 4 ′ can be switched to either a state in which the low-pressure side fluid A is supplied to one of these pipelines, or a closed state in which the low-pressure side fluid A is not supplied to either of them.
  • Discharge conduit connected to the switching valve 4 is connected to the intensifier 5, a discharge conduit connected to the switching valve 4 'is connected to the intensifier 5 5.
  • FIG. 3 is an enlarged sectional view of the pressure intensifier 5.
  • the pressure intensifier 5 is a stack of two upper and lower cases 51 and 52. Inside the lower pressure cylinder 53 and the high pressure cylinder 54 There are two cylindrical spaces. A piston 55 is fitted inside these.
  • the piston 55 is made up of a large-diameter piston and a small-diameter piston, and is shaped like a disk with a round bar.
  • the disk portion is a large-diameter piston, that is, a low-pressure piston 55a, which divides the low-pressure cylinder 53 into a primary space 53a and a secondary space 53b.
  • the portion of the round bar is a small diameter piston, that is, the high pressure side piston 55b, which moves in the high pressure side cylinder 54.
  • the cross-sectional area of the low-pressure side cylinder 53 and the cross-sectional area of the high-pressure side cylinder 54 are the inverse ratio of the pressure increase ratio of the pressure booster 5. For example, if the pressure increase ratio is 20 times, the sectional area of the high-pressure cylinder 54 is 1 Z20 which is the sectional area of the low-pressure cylinder 53.
  • one on the primary side space 5 3 a, 5 3 a 5, is connected to one of the switching valve 4, 4 5 discharge conduit of the secondary space 5 3 b, 5 3 b 'is The other end of the discharge line is connected.
  • the high pressure side cylinders 54, 54 ' are connected to the pipeline of the high pressure side fluid B, which are connected to the check valves 6, 6, respectively.
  • the check valves 6 and 6 ′ are configured such that the fluid flows in the direction of the arrow in the figure but does not flow in the reverse direction.
  • the high-pressure side fluid B is stored in the tank 7.
  • the high-pressure fluid B refers to a mixture of a plurality of immiscible liquids, such as water and oil, and various slurries.
  • the high-pressure side fluid B in the tank 7 reaches the air pump 8 through a pipe extending from below the tank 7, is sent out by the air pump 8, and is divided into two pipes. To reach check valves 6, 6,.
  • the pistons 55, 55 'descend and the intensifiers 5, 5, 5 are pressurized, the high-pressure fluid B from the air pump 8 cannot pass through the check valves 6, 6'.
  • the piston 5 5, 5 5, intensifier 5 rises, 5 if 5 is being reduced pressure, the higher the direction of pressure of the high-pressure side fluid B of the air first pump 8 side, the high pressure side fluid B is the high pressure side cylinder Enter into 5, 4, 5 and.
  • Reference numeral 9 denotes a jet impingement portion where the jet of the high-pressure fluid impinges. Details of the configuration here are described in Japanese Patent Application Laid-Open No. 6-472264. To explain the point, check valve 6, 6 5 high pressure fluid came through the can, in the jet impingement portion 9, is split into two flow paths, provided opposite to each flow path terminal Injected from nozzles 91 and 91. When the fluid ejected from one nozzle collides with the fluid ejected from the other nozzle, the particles contained in the slurry are pulverized or the water and oil particles become finer and become emulsified. become.
  • the high-pressure side fluid B collided in the jet impingement section 9 returns to the ink tank 7 again, circulates and is repeatedly collided until the desired emulsification degree and particle diameter are reached.
  • the high-pressure fluid B to be increased in pressure is generally an incompressible fluid, but is in a high-pressure region.
  • the compressibility is not negligible (the compressibility of water at 200 MPa is about 8.5%). Therefore, the above-mentioned over-wrapping time also requires a time for compressing the high-pressure side fluid B, which is prolonged accordingly.
  • the pressure pump 2 needs a discharge pressure and a discharge amount capable of simultaneously increasing the pressures of the two pressure intensifiers 5 and 5 ′, and the pressure pump 2 has been increased in size.
  • the switching valve 4, 4 5 is a Sorenoido valve, loud sound when switching occurs, causing noise.
  • the present invention has been made in view of the above facts, and has as its object to provide a pressure intensifier capable of reducing the size of a pump and reducing pulsation during switching. Another object of the present invention is to provide a pressure increasing device which does not require a switching valve, has low noise, and has high durability. Disclosure of the invention
  • a pressure booster of the present invention includes a plurality of pressure boosters and a plurality of pumps for supplying a low-pressure side fluid for driving to the pressure boosters, wherein one of the pumps is a plurality of the plurality of pressure boosters.
  • One of the boosters is supplied with the low-pressure side fluid, and the other pressure boosters are combined with the pumps so that the low-pressure side fluid is not supplied.
  • the pressure intensifier includes a low pressure side cylinder, a high pressure side cylinder, a low pressure side piston that divides the low pressure side cylinder into a primary space and a secondary space, and the high pressure side formed integrally with the low pressure side piston.
  • the pump has a high-pressure side piston that moves forward and backward in the cylinder, and each of the pumps is rotatable forward and backward. The pump is connected to the primary space of each of the low-pressure cylinders. Connected to two or more pressurizers be able to.
  • the pump may be provided in the low-pressure side fluid, or the intensifier may be
  • Two high pressure side cylinders of both boosters are connected to both ends of a first check valve group and a second check valve group arranged in parallel, and the first check valve group is connected to both high pressure side cylinders.
  • the second check valve group is connected in such a direction as to allow the flow from the high pressure side fluid from the middle to the high pressure side fluid. Can be supplied.
  • FIG. 1 is a diagram showing a configuration of a pressure booster of the present invention
  • FIG. 2 is a diagram showing a configuration of a conventional pressure booster
  • FIG. 3 is a cross-sectional view showing a configuration of a pressure booster.
  • FIG. 1 is a diagram showing a configuration of a pressure booster of the present invention.
  • the same components as those of the conventional example, such as the pressure intensifiers 5 and 5 ′, the air pump 8, and the jet impingement section 9, are denoted by the same reference numerals and description thereof is omitted.
  • the tanks 10 and 10 ′ are filled with the low-pressure side fluid A.
  • Tank 10 has a pressure pump 11, and tank 10 ′ has a pressure pump 11 ′, which is immersed in the liquid.
  • the tank 1 0, 1 0 5 need not be divided into two tanks, two pressure pumps 1 1 in a single tank, 1 1 may be immersed.
  • the pressure pump 1 1, 1 I 5 by making crushed immersed in oil as the low-pressure side fluid A, it is possible to downsize and soundproofing spoon pressure pump.
  • the use of a hydraulic pressure-intensifying high-pressure pump in an explosion-proof area is based on the requirement of explosion-proof or intrinsically safe explosion-proof. Except for the above, there is an advantage that this necessity is inevitably eliminated because all the points where sparks such as electric contacts are present in the hydraulic oil.
  • the discharge port of the pressure pump 11 is connected to the primary space 5 3 a of the low-pressure cylinder 5 3 of the booster 5.
  • the discharge port of the pressure pump 11 1 ′ is connected to the low-pressure cylinder 5 3 ′ of the pressure booster 5. It is connected to the primary side space 53 a 5.
  • the discharge pressures of the pressure pumps 11, 11 ' are monitored by pressure gauges 12, 12, and are controlled by a control device (not shown) so as to reach a predetermined pressure.
  • the secondary spaces 53b, 53b 'of the low-pressure cylinders 53, 53' are connected to the pressurizer 13.
  • an accumulator in which gas and fluid are sealed is used as the pressurizer 13.
  • a third pressure pump can be used as the pressurizer 13.
  • the pressure pump 11 is rotated in the forward direction, and the low-pressure side fluid A is sent to the primary space 53 a of the intensifier 5 while monitoring the discharge pressure with the pressure gauge 12.
  • the piston 55 descends, and the high-pressure fluid B in the high-pressure cylinder 54 is pressurized to a high pressure and sent out. Further, the gas contained in the secondary space 53b is compressed and stored in the pressurizer 13.
  • the pressure pump 11 To raise the piston 55 of the pressure intensifier 5, the pressure pump 11 is rotated in the opposite direction. As a result, the low-pressure side fluid A filling the primary space 53a is extracted. The piston 55 is raised by the negative pressure at the time of the removal. Further, since the pressure in the secondary space 53b decreases, the fluid that has entered the pressurizer 13 is pushed by the gas and returns here, and pushes up the piston 55.
  • the pressure intensifier 5 and the pressure intensifier 5 are arranged such that the pressure intensification of the high pressure side fluid B and the pressure fluctuation of the high pressure side fluid B start immediately before the compression stroke of the high pressure side fluid B in one of the pressure intensifiers ends. Pulsation is prevented from occurring. Therefore, the pressurizer 13 generally repeats the state of receiving the compressed gas from the secondary space of one of the pressure intensifiers and supplying the gas to the other secondary space while reversing the state.
  • the first check valve group 14 has two check valves 14a, 14a, both of which are in a direction that allows the flow of the high-pressure side fluid B from the high-pressure side cylinders 54, 54 '. .
  • a pipe is provided between the two check valves 14a and 14a, and the pipe communicates with the jet impingement section 9. That is, the high-pressure fluid B discharged from the high-pressure cylinders 54, 54, whose pistons 55, 55 'are descending, is sent to the jet impingement section 9 through the check valve 14a.
  • the high-pressure side fluid B pressurized to a high pressure is ejected from the opposed nozzles 91, 91 to collide with each other.
  • the second check valve group 15 has two check valves 15a, 15a, both of which are in the direction of blocking the flow of the high-pressure side fluid B from the high-pressure side cylinders 54, 54 '.
  • the pressure increase ratio of the pressure intensifier is determined by the ratio of the cross-sectional areas of the high-pressure cylinder 54 and the low-pressure cylinder 53. However, these are manufactured by machining, and it is difficult to manufacture an equal cross-sectional area ratio for any two intensifiers.
  • the pressure at the jet impingement section 9 will differ when the pressure intensifier 5 is activated and when the pressure intensifier 5 'is activated.
  • the present invention According to this embodiment, the pressure of the low-pressure side fluid A can be made different from each other, so that the pressure fluctuation in the jet impingement section 9 can be suppressed to a small value.
  • the present invention includes a plurality of pressure intensifiers and a plurality of pumps for supplying a low-pressure side fluid for driving to the pressure intensifiers, wherein one of the pumps is one of the plurality of pressure intensifiers
  • the low pressure side fluid is supplied to the pressure booster and the other pressure intensifiers are connected to each other so that the low pressure side fluid is not supplied.
  • the size of the pump can be reduced by eliminating waste of the pump.
  • the pressure intensifier includes a low pressure side cylinder, a high pressure side cylinder, a low pressure side piston that divides the low pressure side cylinder into a primary space and a secondary space, and the high pressure side formed integrally with the low pressure side piston.
  • the pump has a high-pressure side piston that moves forward and backward in the cylinder, and each of the pumps is freely rotatable forward and backward. The pump is connected to the primary space of each of the low-pressure cylinders. If the configuration is connected to two or more pressurizers,
  • the piping can be simplified.
  • the two pressure intensifiers are connected to each other, and the high pressure side cylinders of both pressure intensifiers are connected to both ends of a first check valve group and a second check valve group arranged in parallel.
  • the second check valve group is connected in a direction that allows the flow from the high-pressure side cylinder, allows the high-pressure side fluid to be discharged from the middle, and is connected in a direction that blocks the flow from both high-pressure side cylinders.

Abstract

A booster allowing a pump to be reduced in size, eliminating the need of a selector valve, and emitting less noise, comprising two booster units (5, 5') and pressure pumps (11, 11') for feeding low pressure side fluid (A) to the booster units, the booster units further comprising a low pressure side cylinder (53) and a high pressure side cylinder (54), wherein the low pressure cylinder is divided into a primary side space (53a) and a secondary side space (53b) by a low pressure side piston (55a), the low pressure side piston is formed integrally with a high pressure side piston (55b), the pressure pump (11) is allowed to rotate in forward and reverse directions and connected to the primary side space of the low pressure side cylinder, and the secondary spaces of the low pressure side cylinders are connected to a pressurizer (13), whereby, when the pressure pump (11) is rotated in forward direction, the fluid (A) is fed to the primary side space (53a) to pressurize fluid (B) in the high pressure side cylinder (54) and, when the pressure pump (11) is reversely rotated, gas is fed from the pressurizer (13) to the secondary side space (53b) to raise the piston (55) so as to suck the fluid (B) into the high pressure side cylinder (54).

Description

明 細  Details
増圧装置 技術分野  Booster device technical field
本発明は、 流体を高圧にする増圧装置に関し、 特に、 高圧になった流体を、 対 向するノズルから噴出させ、 噴出させた流体同士を衝突させる装置に適した増圧 装置に関する。 背景技術  The present invention relates to a pressure intensifier for increasing the pressure of a fluid, and more particularly to a pressure intensifier suitable for a device in which a fluid having a high pressure is ejected from an opposed nozzle and the ejected fluids collide with each other. Background art
水と油のような混じり合わない複数の液体の混合物を乳化したり、 スラリー内 の固体の粒子を微細化したりする場合、 これらの流体を高圧にして、 対向するノ ズルから噴射させ、 噴射させた流体同士を衝突させて粒子を微細化する方法が知 られている。  When emulsifying a mixture of multiple immiscible liquids, such as water and oil, or atomizing solid particles in a slurry, these fluids are pressurized and ejected from opposing nozzles. There is known a method in which fluids collide with each other to make particles smaller.
図 2は、 このような粒子を微細化するシステムの全体構成を簡略ィ匕した図であ る。 同図において、 Aは低圧側流体で、 Bは高圧側流体であるが、 便宜的に、 低 圧側流体 Aの流れる管路は実線で示し、 高圧側流体 Bの流れる管路は点線で示し ている。  FIG. 2 is a simplified view of the overall configuration of such a system for refining particles. In the figure, A is the low-pressure side fluid and B is the high-pressure side fluid.For convenience, the pipeline through which the low-pressure side fluid A flows is shown by a solid line, and the pipeline through which the high-pressure side fluid B flows is shown by a dotted line. I have.
タンク 1には低圧側流体 Aとしてオイルが貯留されている。 この低圧側流体 A は圧カポンプ 2により汲み上げられる。 圧力ポンプ 2から吐出された低圧側流体 Aは、レギユレ一夕 3で所定の圧力に調整されて 2つの切換弁 4 , 4, に達する。 レギュレー夕 3に達する低圧側流体 Aのうち、 余った流体は、 レギュレ一夕 3に あるリリーフ弁によってタンク 1に還元される。  Oil is stored in the tank 1 as the low-pressure side fluid A. This low-pressure fluid A is pumped by the pressure pump 2. The low-pressure side fluid A discharged from the pressure pump 2 is adjusted to a predetermined pressure by the regulator 3 and reaches the two switching valves 4, 4. Excess fluid of low-pressure fluid A that reaches regulation 3 is returned to tank 1 by the relief valve in regulation 3.
各切換弁 4 , 4 5 には、 それそれ 2本ずつの吐出管路が接続されている。 切換 弁 4 , 4 ' は、 これらのいずれか一方の管路に低圧側流体 Aを供給するか、 ある いはどちらにも低圧側流体 Aを供給しない閉止状態かのいずれかに切換できる。 切換弁 4に接続された吐出管路は、 増圧機 5に接続され、 切換弁 4 ' に接続され た吐出管路は増圧機 5 5 に接続されている。 Each switching valve 4, 4 5, the discharge conduit of each it it two are connected. The switching valves 4 and 4 ′ can be switched to either a state in which the low-pressure side fluid A is supplied to one of these pipelines, or a closed state in which the low-pressure side fluid A is not supplied to either of them. Discharge conduit connected to the switching valve 4 is connected to the intensifier 5, a discharge conduit connected to the switching valve 4 'is connected to the intensifier 5 5.
図 3は、 増圧機 5の拡大断面図である。 増圧機 5は、 上下 2つのケース 5 1 , 5 2を重ねたもので、 内部には、 低圧側シリンダ 5 3と、 高圧側シリンダ 5 4の 2つの円筒形状をした空間がある。 これらの内部には、 ピストン 5 5が嵌装され ている。 ピストン 5 5は、 大径のピストンと小径のピストンとがー体になったも ので、 円板に丸棒が付いたような形状である。 円板の部分が大径のピストン、 す なわち低圧側ピストン 5 5 aで、 これが低圧側シリンダ 5 3を一次側空間 5 3 a と二次側空間 5 3 bとに分割している。 丸棒の部分は小径のビストン、 すなわち 高圧側ビストン 5 5 bで、 これは高圧側シリンダ 5 4内で進退するようになって いる。 FIG. 3 is an enlarged sectional view of the pressure intensifier 5. The pressure intensifier 5 is a stack of two upper and lower cases 51 and 52. Inside the lower pressure cylinder 53 and the high pressure cylinder 54 There are two cylindrical spaces. A piston 55 is fitted inside these. The piston 55 is made up of a large-diameter piston and a small-diameter piston, and is shaped like a disk with a round bar. The disk portion is a large-diameter piston, that is, a low-pressure piston 55a, which divides the low-pressure cylinder 53 into a primary space 53a and a secondary space 53b. The portion of the round bar is a small diameter piston, that is, the high pressure side piston 55b, which moves in the high pressure side cylinder 54.
圧力ポンプ 2が作動して低圧側流体 Aがー次側空間 5 3 aに供給され、 一次側 空間 5 3 aの圧力が上昇するとピストン 5 5は矢印 a方向に移動し、 高圧側シリ ンダ 5 4内の高圧側流体 Bを加圧して外部に押し出す。 切換弁 4が切り替わって 低圧側流体 Aが二次側空間 5 3 bに流れ込み、 逆に二次側空間 5 3 bの圧力が上 昇すると、 ピストン 5 5は矢印 b方向に移動し、 高圧側シリンダ 5 4内に高圧側 流体 Bを吸入する。  When the pressure pump 2 operates and the low-pressure side fluid A is supplied to the primary space 53a, and the pressure of the primary space 53a rises, the piston 55 moves in the direction of the arrow a, and the high-pressure cylinder 5 Pressurize the high-pressure fluid B in 4 and push it out. When the switching valve 4 is switched and the low-pressure fluid A flows into the secondary space 53b, and conversely, the pressure in the secondary space 53b rises, the piston 55 moves in the direction of the arrow b and the high-pressure side Suction high-pressure fluid B into cylinder 54.
低圧側シリンダ 5 3の断面積と、 高圧側シリンダ 5 4の断面積とは、 増圧機 5 の増圧比の逆比になっている。 たとえば、 増圧比が 2 0倍であれば、 高圧側シリ ンダ 5 4の断面積の方が低圧側シリンダ 5 3の断面積の 1 Z2 0ということにな る。  The cross-sectional area of the low-pressure side cylinder 53 and the cross-sectional area of the high-pressure side cylinder 54 are the inverse ratio of the pressure increase ratio of the pressure booster 5. For example, if the pressure increase ratio is 20 times, the sectional area of the high-pressure cylinder 54 is 1 Z20 which is the sectional area of the low-pressure cylinder 53.
もう一方の増圧機 5 ' も增圧機 5と全く同じ構造であるから、 「' 」を付して増 圧機 5 5 の対応する構成を示すことにする。 たとえば、 5 5 a ' は増圧機 5 ' の 低圧側ピストンを示すという具合である。 'Because it is exactly the same structure as also增圧machine 5, the other intensifier 5 to indicate the corresponding configuration of the intensifier 5 5 denoted by the "'". For example, 55a 'indicates the low pressure side piston of intensifier 5', and so on.
図 2に戻り、 一次側空間 5 3 a, 5 3 a 5 には、 切換弁 4 , 4 5 の吐出管路の 一方が接続され、 二次側空間 5 3 b, 5 3 b ' には、 吐出管路の他方が接続され ている。高圧側シリンダ 5 4 , 5 4 ' には、 高圧側流体 Bの管路が接続され、 そ れそれ逆止弁 6 , 6, に接続される。逆止弁 6 , 6 ' は、 図の矢印方向の流体は 流すが、 逆方向へは流さない構成である。 Returning to Figure 2, one on the primary side space 5 3 a, 5 3 a 5, is connected to one of the switching valve 4, 4 5 discharge conduit of the secondary space 5 3 b, 5 3 b 'is The other end of the discharge line is connected. The high pressure side cylinders 54, 54 'are connected to the pipeline of the high pressure side fluid B, which are connected to the check valves 6, 6, respectively. The check valves 6 and 6 ′ are configured such that the fluid flows in the direction of the arrow in the figure but does not flow in the reverse direction.
タンク 7には、 高圧側流体 Bが貯留されている。 高圧側流体 Bとは、 上述した 水と油のような混ざり合わない複数の液体の混合体や、 各種のスラリーのことを 指す。 タンク 7内の高圧側流体 Bは、 タンク 7の下から出ている管路を通ってェ ァーポンプ 8に達し、 エアーポンプ 8によって送り出され、 2つの管路に分かれ て逆止弁 6 , 6, に達する。 The high-pressure side fluid B is stored in the tank 7. The high-pressure fluid B refers to a mixture of a plurality of immiscible liquids, such as water and oil, and various slurries. The high-pressure side fluid B in the tank 7 reaches the air pump 8 through a pipe extending from below the tank 7, is sent out by the air pump 8, and is divided into two pipes. To reach check valves 6, 6,.
ピストン 5 5 , 5 5 ' が下降して増圧機 5 , 5, が加圧中であれば、 エア一ポ ンプ 8からの高圧側流体 Bは、逆止弁 6 , 6 ' を通過できないが、ピストン 5 5 , 5 5, が上昇して増圧機 5 , 5 5 が減圧中であれば、 エア一ポンプ 8側の高圧側 流体 Bの圧力の方が高くなり、 高圧側流体 Bは高圧側シリンダ 5 4, 5 4, 内に 進入する。 If the pistons 55, 55 'descend and the intensifiers 5, 5, 5 are pressurized, the high-pressure fluid B from the air pump 8 cannot pass through the check valves 6, 6'. the piston 5 5, 5 5, intensifier 5 rises, 5 if 5 is being reduced pressure, the higher the direction of pressure of the high-pressure side fluid B of the air first pump 8 side, the high pressure side fluid B is the high pressure side cylinder Enter into 5, 4, 5 and.
符号 9は、高圧流体の噴流が衝突する噴流衝突部である。ここの構成の詳細は、 特開平 6— 4 7 2 6 4号に記載されている。 要点を説明すると、 逆止弁 6 , 6 5 を通過して来た高圧の流体が、 この噴流衝突部 9で、 2つの流路に分流され、 各 流路の端末に対向して設けられたノズル 9 1, 9 1から噴射される。 そして、一 方のノズルから噴射された流体が他方のノズルから噴射された流体と衝突するこ とで、 スラリーに含まれる粒子が粉砕されたり、 水と油の粒子が細かくなつて乳 化することになる。 Reference numeral 9 denotes a jet impingement portion where the jet of the high-pressure fluid impinges. Details of the configuration here are described in Japanese Patent Application Laid-Open No. 6-472264. To explain the point, check valve 6, 6 5 high pressure fluid came through the can, in the jet impingement portion 9, is split into two flow paths, provided opposite to each flow path terminal Injected from nozzles 91 and 91. When the fluid ejected from one nozzle collides with the fluid ejected from the other nozzle, the particles contained in the slurry are pulverized or the water and oil particles become finer and become emulsified. become.
噴流衝突部 9で衝突させられた高圧側流体 Bは、 再び夕ンク 7に戻り、 循環し て所望の乳化度や粒子径になるまで繰り返し衝突させられる。  The high-pressure side fluid B collided in the jet impingement section 9 returns to the ink tank 7 again, circulates and is repeatedly collided until the desired emulsification degree and particle diameter are reached.
上記の構成において、 2台の増圧機 5, 5 ' を用いているのは、 これらの増圧 機で高圧側流体 Bを交互に加圧して、 噴流衝突部 9では常時噴流の衝突を行わせ られるようにするためである。 発明の課題  In the above configuration, the two boosters 5, 5 'are used because the high-pressure side fluid B is alternately pressurized by these boosters, and the jet impingement section 9 always collides the jet. That is to be done. Problems of the Invention
ところで、 圧力ポンプ 2で 2台の増圧機 5 , 5 5 を交互に駆動して高圧側流体 Bを加圧する場合、 一方の増圧機の加圧が終わり、 次の増圧機の加圧が開始する までの間、 圧力の加わらない時間が生じると、 高圧側流体 Bに脈動が起こる。脈 動はノズル 9 1で乳化又は微粒子化させるときの圧力変動となる。 すなわち、 ノ ズル 9 1での通過流速が一時的に減速されることになり、 衝突時の破碎能力が低 下するので、 均一な乳化物または微粒子ィ匕物が得られない。 In the case of pressurizing the high-pressure side fluid B is driven alternately intensifier 5, 5 5 two pressure pump 2, the end pressurization of one of the intensifier, the pressure of the next intensifier starts If pressure is not applied during this period, pulsation occurs in the high-pressure fluid B. The pulsation becomes a pressure fluctuation when the nozzle 91 emulsifies or atomizes. That is, the flow velocity at the nozzle 91 is temporarily reduced, and the crushing ability at the time of collision is reduced, so that a uniform emulsion or fine particles cannot be obtained.
そこで、 従来は、 一方の増圧機の加圧の終了前に他方の増圧機の加圧を開始さ せ、 双方の加圧時間をオーバ一ラップさせることで脈動を抑制していた。 ところ で、 増圧される高圧側流体 Bは、 一般的に非圧縮性流体であるが、 高圧領域にな ると非圧縮性流体と言えども、 圧縮率は無視できなくなる (2 0 0 MP aにおけ る水の圧縮率は約 8 . 5 %である)。したがって、上記のォ一バーラヅプ時間には、 高圧側流体 Bを圧縮する時間も必要となるので、 その分長くなる。 このような理 由から、 圧力ポンプ 2の能力としては、 2台の増圧機 5 , 5 ' を同時に増圧でき る吐出圧と吐出量が必要とされ、 圧力ポンプ 2が大型化していた。 Therefore, conventionally, pulsation was suppressed by starting pressurization of the other intensifier before the end of pressurization of the one intensifier and overlapping the pressurization time of both. Incidentally, the high-pressure fluid B to be increased in pressure is generally an incompressible fluid, but is in a high-pressure region. Thus, even if it is an incompressible fluid, the compressibility is not negligible (the compressibility of water at 200 MPa is about 8.5%). Therefore, the above-mentioned over-wrapping time also requires a time for compressing the high-pressure side fluid B, which is prolonged accordingly. For such a reason, the pressure pump 2 needs a discharge pressure and a discharge amount capable of simultaneously increasing the pressures of the two pressure intensifiers 5 and 5 ′, and the pressure pump 2 has been increased in size.
逆に、 増圧機の一方だけが加圧している間は、 余分な低圧側流体 Aが圧カポン プ 2から吐出されることになるので、 それだけ無駄があることになる。 また、 圧 力ポンプ 2から吐出された低圧側流体 Aは、 レギユレ一夕 3のリリーフ弁から夕 ンク 1に戻されるのであるが、 加圧されたときに加わったエネルギーが熱ェネル ギ一に変換され、 タンク 1へ戻されるためにタンク 1は温度上昇を続けるので、 中間に冷却器を設け冷却する必要が生じる。 この冷却機は、 戻される流量が大き いことから冷却器も大型化し、 無駄が多い。  Conversely, while only one of the pressure intensifiers is pressurizing, excess low-pressure side fluid A is discharged from the pressure pump 2, so that there is waste. The low-pressure side fluid A discharged from the pressure pump 2 is returned to the ink tank 1 from the relief valve of the regulator 3 at night, but the energy added when pressurized is converted to heat energy. Since the temperature of tank 1 continues to rise in order to be returned to tank 1, it is necessary to provide a cooler in the middle to cool it. This cooler is wasteful because the returned flow is large and the cooler is also large.
また、 切換弁 4, 4 5 は、 ソレノィド弁であるが、 切り換える際に大きな音が 発生して、 騒音の原因となる。 Further, the switching valve 4, 4 5, is a Sorenoido valve, loud sound when switching occurs, causing noise.
本発明は、 上記の事実から考えられたもので、 ポンプを小型化し、 かつ切換時 の脈動を軽減することができる増圧装置を提供することを目的としている。 また、 本発明の他の目的は、 切換弁が不要で、 騒音が少なく耐久性の高い増圧 装置を提供することにある。 発明の開示  The present invention has been made in view of the above facts, and has as its object to provide a pressure intensifier capable of reducing the size of a pump and reducing pulsation during switching. Another object of the present invention is to provide a pressure increasing device which does not require a switching valve, has low noise, and has high durability. Disclosure of the invention
上記の目的を達成するために本発明の増圧装置は、 複数の増圧機と、 増圧機に 駆動用の低圧側流体を供給する複数のポンプとを有し、 該ポンプの 1つが上記複 数の増圧機の 1つに低圧側流体を供給し、 他の増圧機には低圧側流体を供給しな いように各増圧機とポンプとを結合したことを特徴としている。  In order to achieve the above object, a pressure booster of the present invention includes a plurality of pressure boosters and a plurality of pumps for supplying a low-pressure side fluid for driving to the pressure boosters, wherein one of the pumps is a plurality of the plurality of pressure boosters. One of the boosters is supplied with the low-pressure side fluid, and the other pressure boosters are combined with the pumps so that the low-pressure side fluid is not supplied.
上記増圧機が、 低圧側シリンダと、 高圧側シリンダと、 該低圧側シリンダを一 次側空間と二次側空間とに分割する低圧側ピストンと、 該低圧側ピストンと一体 に形成され上記高圧側シリンダ内で進退する高圧側ビストンとを有し、 上記各ポ ンプが正転 .逆転自在で、 上記各低圧側シリンダの一次側空間に接続され、 各低 圧側シリンダの二次側空間が 1又は 2以上の加圧器に接続されている構成とする ことができる。 The pressure intensifier includes a low pressure side cylinder, a high pressure side cylinder, a low pressure side piston that divides the low pressure side cylinder into a primary space and a secondary space, and the high pressure side formed integrally with the low pressure side piston. The pump has a high-pressure side piston that moves forward and backward in the cylinder, and each of the pumps is rotatable forward and backward.The pump is connected to the primary space of each of the low-pressure cylinders. Connected to two or more pressurizers be able to.
上記ポンプが上記低圧側流体内に設けられている構成としたり、 上記増圧機を The pump may be provided in the low-pressure side fluid, or the intensifier may be
2つとし、 両増圧機の上記高圧側シリンダを、 並列配置された第 1逆止弁群と第 2逆止弁群の両端に接続し、、上記第 1逆止弁群は両高圧側シリンダからの流れを 許容する方向に接続され、 中間から高圧側流体を吐出可能とし、 上記第 2逆止弁 群は両高圧側シリンダからの流れを阻止する方向に接続され、 中間から高圧側流 体の供給を可能にした構成とすることができる。 図面の簡単な説明 Two high pressure side cylinders of both boosters are connected to both ends of a first check valve group and a second check valve group arranged in parallel, and the first check valve group is connected to both high pressure side cylinders. The second check valve group is connected in such a direction as to allow the flow from the high pressure side fluid from the middle to the high pressure side fluid. Can be supplied. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の増圧装置の構成を示す図、 図 2は、 従来の増圧装置の構成を 示す図、 図 3は、 増圧機の構成を示す断面図である。 発明を実施するための最良の形態  FIG. 1 is a diagram showing a configuration of a pressure booster of the present invention, FIG. 2 is a diagram showing a configuration of a conventional pressure booster, and FIG. 3 is a cross-sectional view showing a configuration of a pressure booster. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施例を図面によって説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、 本発明の増圧装置の構成を示す図である。増圧機 5 , 5 ' 、 エア一ポ ンプ 8、 噴流衝突部 9などの従来例と同じ構成のものについては、 同じ符号を付 けて説明は省略する。  FIG. 1 is a diagram showing a configuration of a pressure booster of the present invention. The same components as those of the conventional example, such as the pressure intensifiers 5 and 5 ′, the air pump 8, and the jet impingement section 9, are denoted by the same reference numerals and description thereof is omitted.
タンク 1 0及び 1 0 ' には、 低圧側流体 Aが充填されている。 タンク 1 0には 圧力ポンプ 1 1が、 タンク 1 0 ' には圧力ポンプ 1 1 ' があり、 それそれが液中 に浸漬されている。 なお、 タンク 1 0 , 1 0 5 は、 2つのタンクに分ける必要は なく、 1つのタンク内に 2つの圧力ポンプ 1 1 , 1 1, を浸漬してもよい。 また、 圧力ポンプ 1 1 , 1 I 5 をこのように、 低圧側流体 Aとしてのオイルに 浸潰させることで、 圧力ポンプの小型化と防音ィ匕を図ることができる。 また、 防 爆エリアでの油圧増圧式高圧ポンプの使用は、 耐圧防爆か、 本質安全防爆の仕様 が絶対条件となるが、 本実施例のようにオイルに浸漬させる構成にすれば、 計装 部位を除けば電気接点等の火花の出る箇所は全て作動油中に存在するので、 必然 的にこの必要が無くなるという利点がある。 The tanks 10 and 10 ′ are filled with the low-pressure side fluid A. Tank 10 has a pressure pump 11, and tank 10 ′ has a pressure pump 11 ′, which is immersed in the liquid. Incidentally, the tank 1 0, 1 0 5 need not be divided into two tanks, two pressure pumps 1 1 in a single tank, 1 1 may be immersed. Also, as the pressure pump 1 1, 1 I 5, by making crushed immersed in oil as the low-pressure side fluid A, it is possible to downsize and soundproofing spoon pressure pump. The use of a hydraulic pressure-intensifying high-pressure pump in an explosion-proof area is based on the requirement of explosion-proof or intrinsically safe explosion-proof. Except for the above, there is an advantage that this necessity is inevitably eliminated because all the points where sparks such as electric contacts are present in the hydraulic oil.
圧力ポンプ 1 1の吐出口は増圧機 5の低圧側シリンダ 5 3の一次側空間 5 3 a に接続され、 圧力ポンプ 1 1 ' の吐出口は増圧機 5, の低圧側シリンダ 5 3 ' の 一次側空間 53 a5 に接続される。圧力ポンプ 11, 11' の吐出圧は圧力計 1 2, 12, でモニタされ、 所定の圧力になるように図示しない制御装置でコント ロールされる。 The discharge port of the pressure pump 11 is connected to the primary space 5 3 a of the low-pressure cylinder 5 3 of the booster 5. The discharge port of the pressure pump 11 1 ′ is connected to the low-pressure cylinder 5 3 ′ of the pressure booster 5. It is connected to the primary side space 53 a 5. The discharge pressures of the pressure pumps 11, 11 'are monitored by pressure gauges 12, 12, and are controlled by a control device (not shown) so as to reach a predetermined pressure.
低圧側シリンダ 53 , 53' の二次側空間 53b, 53b' は、 加圧器 13に 接続されている。 加圧器 13としては、 本発明の実施例では、 ガスと流体とが封 入されたアキュムレータを使用している。 ただし、 加圧器 13として、 第 3の圧 力ポンプを用いることもできる。  The secondary spaces 53b, 53b 'of the low-pressure cylinders 53, 53' are connected to the pressurizer 13. In the embodiment of the present invention, an accumulator in which gas and fluid are sealed is used as the pressurizer 13. However, a third pressure pump can be used as the pressurizer 13.
増圧機 5のビストン 55を下降させるには、圧力ポンプ 11を正方向に回転し、 圧力計 12で吐出圧をモニタ一しながら低圧側流体 Aを増圧機 5の一次側空間 5 3aに送り込む。 これによつて、 ピストン 55が下降し、 高圧側シリンダ 54に 入っている高圧側流体 Bが高圧に加圧され送り出される。 また、 二次空間 53b に入っていたガスは圧縮され、 加圧器 13に収容される。  To lower the piston 55 of the intensifier 5, the pressure pump 11 is rotated in the forward direction, and the low-pressure side fluid A is sent to the primary space 53 a of the intensifier 5 while monitoring the discharge pressure with the pressure gauge 12. As a result, the piston 55 descends, and the high-pressure fluid B in the high-pressure cylinder 54 is pressurized to a high pressure and sent out. Further, the gas contained in the secondary space 53b is compressed and stored in the pressurizer 13.
増圧機 5のピストン 55を上昇させるには、 圧力ポンプ 11を逆方向に回転す る。 これによつて、 一次側空間 53 aに充満している低圧側流体 Aが抜き取られ る。 この抜き取られるときの負圧でピストン 55は上昇する。 さらに、 二次空間 53 bの圧力が下がるので加圧器 13に入っていた流体が、 ガスに押されてがこ こに戻り、 ピストン 55を押し上げる。  To raise the piston 55 of the pressure intensifier 5, the pressure pump 11 is rotated in the opposite direction. As a result, the low-pressure side fluid A filling the primary space 53a is extracted. The piston 55 is raised by the negative pressure at the time of the removal. Further, since the pressure in the secondary space 53b decreases, the fluid that has entered the pressurizer 13 is pushed by the gas and returns here, and pushes up the piston 55.
以上の作用は、 増圧機 5, のピストン 55' の上昇 '下降についても、 同様で ある。  The above operation is the same when the piston 55 'of the intensifier 5 is raised and lowered.
増圧機 5と増圧機 5, とは、 一方の増圧機における高圧側流体 Bの圧縮行程が 終了する少し前から他方の増圧機が圧縮を開始するようにし、 高圧側流体 Bの圧 力変動や脈動が生じないようにされる。 したがって、 加圧器 13は、 概ね、 一方 の増圧機の二次側空間から圧縮されたガスを受け取り、 他方の二次側空間へガス を供給する状態を反転させながら繰り返すことになる。  The pressure intensifier 5 and the pressure intensifier 5 are arranged such that the pressure intensification of the high pressure side fluid B and the pressure fluctuation of the high pressure side fluid B start immediately before the compression stroke of the high pressure side fluid B in one of the pressure intensifiers ends. Pulsation is prevented from occurring. Therefore, the pressurizer 13 generally repeats the state of receiving the compressed gas from the secondary space of one of the pressure intensifiers and supplying the gas to the other secondary space while reversing the state.
以上の構成にあっては、 圧力ポンプ 11, 11' と増圧機 5, 55 とは一本の 管路のみで接続され、油圧回路が単純化される。また、切換弁が不要となるので、 切換時に発生する音が出なくなった。 また、 配管長も短くなるので、 作動油圧を 高く設定することが可能となる。 さらに、 圧力ポンプ 11, 11' は增圧機 5, 5' が必要とする量の低圧側流体 Aのみを供給することになるので、 リリーフ弁 で余分の低圧側流体 Aを戻す管路が不要となり、 戻す管路に設けられていた熱交«も不要となる。 In the above structure is connected only by a single conduit to the pressure intensifier 5, 5 5 and the pressure pump 11, 11 ', the hydraulic circuit is simplified. In addition, since a switching valve is not required, the sound generated at the time of switching has been eliminated. Also, since the pipe length is shortened, it is possible to set the operating hydraulic pressure high. Furthermore, since the pressure pumps 11 and 11 'supply only the low-pressure side fluid A required by the low pressure machines 5 and 5', the relief valve This eliminates the need for a conduit for returning excess low-pressure fluid A, and eliminates the need for heat exchange provided in the return conduit.
増圧機 5, 5' の高圧側シリンダ 54, 54, は、 並列に接続された第 1逆止 弁群 14と第 2逆止弁群 15との両側に接続される。 第 1逆止弁群 14は、 2つ の逆止弁 14a, 14aを有し、 これらは共に、 高圧側シリンダ 54, 54' か らの高圧側流体 Bの流れを許容する方向になっている。 そして、 2つの逆止弁 1 4a, 14aの中間に管路があり、 この管路は噴流衝突部 9に通じている。 すな わち、 ピストン 55, 55' の下降している方の高圧側シリンダ 54, 54, か ら吐出された高圧側流体 Bは、 逆止弁 14 aを通過して噴流衝突部 9に送られ、 対向配置されたノズル 91, 91から高圧に加圧された高圧側流体 Bを噴射して 衝突させる。  The high-pressure side cylinders 54, 54 of the pressure intensifiers 5, 5 'are connected to both sides of the first check valve group 14 and the second check valve group 15 connected in parallel. The first check valve group 14 has two check valves 14a, 14a, both of which are in a direction that allows the flow of the high-pressure side fluid B from the high-pressure side cylinders 54, 54 '. . A pipe is provided between the two check valves 14a and 14a, and the pipe communicates with the jet impingement section 9. That is, the high-pressure fluid B discharged from the high-pressure cylinders 54, 54, whose pistons 55, 55 'are descending, is sent to the jet impingement section 9 through the check valve 14a. The high-pressure side fluid B pressurized to a high pressure is ejected from the opposed nozzles 91, 91 to collide with each other.
第 2逆止弁群 15は、 2つの逆止弁 15a, 15 aを有し、 これらは共に、 高 圧側シリンダ 54, 54' からの高圧側流体 Bの流れを阻止する方向となってい る。 そして、 2つの逆止弁 15a, 15 aの中間に管路があり、 この管路にタン ク 7から高圧側流体 Bがエア一ポンプ 8により供給される。 すなわち、 高圧側流 体 Bが、 ピストン 55 , 55' の上昇している方の高圧側シリンダ 54, 54' に供給される。 第 1逆止弁群 14と第 2逆止弁群 15とをこのように配置し、 管 路を形成することによって、 高圧側流体 Bの流れる管路を簡略化することができ る。  The second check valve group 15 has two check valves 15a, 15a, both of which are in the direction of blocking the flow of the high-pressure side fluid B from the high-pressure side cylinders 54, 54 '. There is a pipeline between the two check valves 15a, 15a, and the high-pressure fluid B is supplied from the tank 7 to the pipeline by the air pump 8. That is, the high-pressure side fluid B is supplied to the high-pressure side cylinder 54, 54 'of which the piston 55, 55' is rising. By arranging the first check valve group 14 and the second check valve group 15 in this way and forming a pipe, the pipe through which the high-pressure fluid B flows can be simplified.
増圧機毎に圧力ポンプを配置したので、 それぞれの圧力ポンプの作動力は自由 に制御できることになり、 圧力ポンプを切り換えての連続運転時における切り換 時の圧力変動を最小限に制御することが可能となる。 また、 圧力ポンプごとに圧 力の設定が可能であるから、 增圧機 5, 5' に加える低圧側流体 Aの圧力を相違 させることができる。 このことは、 次の点から重要である。 増圧機の増圧比は、 高圧側シリンダ 54と低圧側シリンダ 53の断面積の比により決定される。 しか しながら、 これらは機械加工により製造されるもので、 任意の 2つの増圧機につ いて、 等しい断面積の比に製造するのは困難である。 正確に増圧比が等しくない 2つの増圧機を使用すると、噴流衝突部 9において、増圧機 5が作動したときと、 増圧機 5' が作動したときとの圧力が相違することになる。 これに対し、 本発明 の実施例であれば、 それそれの低圧側流体 Aの圧力を相違させることができるの で、 噴流衝突部 9における圧力変動を小さく抑えることが可能になる。 Since pressure pumps are arranged for each pressure intensifier, the operating force of each pressure pump can be controlled freely, minimizing pressure fluctuations during switching during continuous operation by switching pressure pumps. It becomes possible. Also, since the pressure can be set for each pressure pump, the pressure of the low-pressure fluid A applied to the compressors 5, 5 'can be made different. This is important because: The pressure increase ratio of the pressure intensifier is determined by the ratio of the cross-sectional areas of the high-pressure cylinder 54 and the low-pressure cylinder 53. However, these are manufactured by machining, and it is difficult to manufacture an equal cross-sectional area ratio for any two intensifiers. If two pressure intensifiers with unequal pressure intensification ratios are used, the pressure at the jet impingement section 9 will differ when the pressure intensifier 5 is activated and when the pressure intensifier 5 'is activated. In contrast, the present invention According to this embodiment, the pressure of the low-pressure side fluid A can be made different from each other, so that the pressure fluctuation in the jet impingement section 9 can be suppressed to a small value.
さらに、 従来は、 一方の増圧機が故障しても、 どちらが故障したのかの判断は 簡単ではなかった。 しかし本発明では、 増圧機ごとに油圧発生装置としてのボン プを保有させるので、 高圧側のシールや逆止弁などに消耗や不具合が発生したと き、 不具合のある増圧機を簡単に特定できることになる。 産業上の利用可能性  Furthermore, in the past, even if one booster failed, it was not easy to determine which failed. However, in the present invention, a pump as a hydraulic pressure generator is provided for each booster, so that when a high-pressure side seal or a check valve is worn out or has a problem, the faulty booster can be easily identified. become. Industrial applicability
以上に説明したように本発明は、 複数の増圧機と、 増圧機に駆動用の低圧側流 体を供給する複数のポンプとを有し、 該ポンプの 1つが上記複数の増圧機の 1つ に低圧側流体を供給し、 他の増圧機には低圧側流体を供給しないように各増圧機 とポンプとを結合した構成なので、  As described above, the present invention includes a plurality of pressure intensifiers and a plurality of pumps for supplying a low-pressure side fluid for driving to the pressure intensifiers, wherein one of the pumps is one of the plurality of pressure intensifiers The low pressure side fluid is supplied to the pressure booster and the other pressure intensifiers are connected to each other so that the low pressure side fluid is not supplied.
① ポンプの無駄を排除してポンプを小型化することができる。  (1) The size of the pump can be reduced by eliminating waste of the pump.
② 各ポンプの作動力を自由に制御できるので、 ポンプを切り換えての連続運転 時における切り換時の圧力変動を最小限に制御することが可能となる。  (2) Since the operating force of each pump can be controlled freely, it is possible to minimize pressure fluctuations at the time of switching during continuous operation by switching pumps.
③ ポンプごとに圧力の設定が可能であるから、 增圧機に加える低圧側流体の圧 力を相違させ、 各高圧側シリンダにおける高圧側流体の圧力を正確に一致させる ことができる。 '  (3) Since the pressure can be set for each pump, (4) the pressure of the low-pressure fluid to be applied to the pressure machine can be made different, and the pressure of the high-pressure fluid in each high-pressure cylinder can be accurately matched. '
④ 一の増圧機が故障しても、 どれが故障したのかの判断が簡単にできる。 上記増圧機が、 低圧側シリンダと、 高圧側シリンダと、 該低圧側シリンダを一 次側空間と二次側空間とに分割する低圧側ビストンと、 該低圧側ビストンと一体 に形成され上記高圧側シリンダ内で進退する高圧側ビストンとを有し、 上記各ポ ンプが正転 '逆転自在で、 上記各低圧側シリンダの一次側空間に接続され、 各低 圧側シリンダの二次側空間が 1又は 2以上の加圧器に接続されている構成とすれ ば、  し て も Even if one booster fails, it is easy to determine which one has failed. The pressure intensifier includes a low pressure side cylinder, a high pressure side cylinder, a low pressure side piston that divides the low pressure side cylinder into a primary space and a secondary space, and the high pressure side formed integrally with the low pressure side piston. The pump has a high-pressure side piston that moves forward and backward in the cylinder, and each of the pumps is freely rotatable forward and backward.The pump is connected to the primary space of each of the low-pressure cylinders. If the configuration is connected to two or more pressurizers,
① 配管を単純にすることができる。  ① The piping can be simplified.
② 切換弁が不要となるので、 切換時の騒音を無くすことができる。  ② Since a switching valve is not required, noise during switching can be eliminated.
上記ポンプが上記低圧側流体内に設けられている構成とすれば、 ポンプの小型 ィ匕と防音化を図ることができる。 上記増圧機を 2つとし、 両増圧機の上記高圧側シリンダを、 並列配置された第 1逆止弁群と第 2逆止弁群の両端に接続し、 上記第 1逆止弁群は両高圧側シリン ダからの流れを許容する方向に接続され、 中間から高圧側流体を吐出可能とし、 上記第 2逆止弁群は両高圧側シリンダからの流れを阻止する方向に接続され、 中 間から高圧側流体の供給を可能にした構成とすれば、 高圧側流体の管路も単純か することができる。 If the pump is provided in the low-pressure side fluid, it is possible to reduce the size and sound of the pump. The two pressure intensifiers are connected to each other, and the high pressure side cylinders of both pressure intensifiers are connected to both ends of a first check valve group and a second check valve group arranged in parallel. The second check valve group is connected in a direction that allows the flow from the high-pressure side cylinder, allows the high-pressure side fluid to be discharged from the middle, and is connected in a direction that blocks the flow from both high-pressure side cylinders. If the configuration is such that the supply of the high-pressure fluid is made possible from the above, the pipeline of the high-pressure fluid can also be simplified.

Claims

請 求 の 範 囲 The scope of the claims
1 . 複数の増圧機と、 増圧機に駆動用の低圧側流体を供給する複数のポンプと を有し、 該ポンプの 1つが上記複数の増圧機の 1つに低圧側流体を供給し、 他の 増圧機には低圧側流体を供給しないように各増圧機とポンプとを結合したことを 特徴とする增圧装置。 '  1. A plurality of pressure intensifiers, and a plurality of pumps for supplying a low-pressure side fluid for driving to the pressure intensifier, wherein one of the pumps supplies the low pressure side fluid to one of the plurality of pressure intensifiers. A pressure increasing device characterized in that each pressure booster and a pump are connected so as not to supply the low pressure side fluid to the pressure booster. '
2 . 上記増圧機が、 低圧側シリンダと、 高圧側シリンダと、 該低圧側シリンダ を一次側空間と二次側空間とに分割する低圧側ピストンと、 該低圧側ピストンと 一体に形成され上記高圧側シリンダ内で進退する高圧側ピストンとを有し、 上記 各ポンプが正転 ·逆転自在で、 上記各低圧側シリンダの一次側空間に接続され、 各低圧側シリンダの二次側空間が 1又ば 2以上の加圧器に接続されていることを 特徴とする請求項 1記載の増圧装置。  2. The intensifier includes a low-pressure cylinder, a high-pressure cylinder, a low-pressure piston that divides the low-pressure cylinder into a primary space and a secondary space, and the high-pressure cylinder formed integrally with the low-pressure piston. A high-pressure side piston that moves forward and backward in the side cylinder, each of the pumps is freely rotatable forward and backward, and is connected to a primary space of each of the low-pressure cylinders. 2. The pressure intensifier according to claim 1, wherein the pressure intensifier is connected to at least two pressurizers.
3 . 上記ポンプが上記低圧側流体内に設けられていることを特徴とする請求項 1又は 2記載の増圧装置。 .  3. The pressure intensifier according to claim 1, wherein the pump is provided in the low-pressure fluid. .
4 . 上記増圧機を 2つとし、 両増圧機の上記高圧側シリンダを、 並列配置され た第 1逆止弁群と第 2逆止弁群の両端に接続し、、上記第 1逆止弁群は両高圧側シ リンダからの流れを許容する方向に接続され、 中間から高圧側流体を吐出可能と し、上記第 2逆止弁群は両高圧側シリンダからの流れを阻止する方向に接続され、 中間から高圧側流体の供給を可能にしたことを特徴とする請求項 2又は 3記載の 増圧装置。  4. The two pressure intensifiers are connected to each other, and the high pressure side cylinders of both pressure intensifiers are connected to both ends of the first check valve group and the second check valve group arranged in parallel, and the first check valve is connected. The groups are connected in a direction that allows the flow from both high-pressure cylinders, and the high-pressure side fluid can be discharged from the middle.The second check valve group is connected in a direction that blocks the flow from both high-pressure cylinders 4. The pressure intensifier according to claim 2, wherein a high-pressure side fluid can be supplied from the middle.
PCT/JP2002/006281 2001-06-27 2002-06-24 Booster WO2003002876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-194066 2001-06-27
JP2001194066A JP2003013904A (en) 2001-06-27 2001-06-27 Hydraulic intensifier

Publications (1)

Publication Number Publication Date
WO2003002876A1 true WO2003002876A1 (en) 2003-01-09

Family

ID=19032252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006281 WO2003002876A1 (en) 2001-06-27 2002-06-24 Booster

Country Status (3)

Country Link
JP (1) JP2003013904A (en)
TW (1) TW568982B (en)
WO (1) WO2003002876A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147914A1 (en) * 2006-06-13 2007-12-27 Prextor Systems, S.L. Split-chamber pressure exchangers
ES2321999A1 (en) * 2006-06-13 2009-06-15 Fernando Ruiz del Olmo Split-chamber pressure exchangers
CN102251995A (en) * 2011-07-06 2011-11-23 山东赛克赛斯氢能源有限公司 Hydraulic gas booster
WO2017197023A1 (en) 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L.P. Unpacking 3d printed objects
CN107660258A (en) * 2015-03-27 2018-02-02 郭仓淳 Booster pump integrated formula hydraulic cylinder

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101655420B1 (en) * 2013-03-04 2016-09-22 주식회사 하이시스 Hydraulic Power Cylinder with Booser Pump Equipment
JP6572872B2 (en) 2016-11-22 2019-09-11 Smc株式会社 Booster
CN112555206B (en) * 2020-12-15 2023-01-06 潍柴动力股份有限公司 Hydraulic control system and silage harvester
CN117916473A (en) * 2021-09-21 2024-04-19 伊格尔工业股份有限公司 Fluid circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122402U (en) * 1985-01-18 1986-08-01
JPH03128882A (en) * 1989-10-13 1991-05-31 Mitsubishi Electric Corp Power unit for hydraulic elevator
JPH0727103A (en) * 1993-07-14 1995-01-27 Daikin Ind Ltd Extra high pressure producing device
US5894830A (en) * 1997-12-15 1999-04-20 Caterpillar Inc. Engine having a high pressure hydraulic system and low pressure lubricating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122402U (en) * 1985-01-18 1986-08-01
JPH03128882A (en) * 1989-10-13 1991-05-31 Mitsubishi Electric Corp Power unit for hydraulic elevator
JPH0727103A (en) * 1993-07-14 1995-01-27 Daikin Ind Ltd Extra high pressure producing device
US5894830A (en) * 1997-12-15 1999-04-20 Caterpillar Inc. Engine having a high pressure hydraulic system and low pressure lubricating system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147914A1 (en) * 2006-06-13 2007-12-27 Prextor Systems, S.L. Split-chamber pressure exchangers
ES2321999A1 (en) * 2006-06-13 2009-06-15 Fernando Ruiz del Olmo Split-chamber pressure exchangers
ES2321997A1 (en) * 2006-06-13 2009-06-15 Fernando Ruiz del Olmo Split-chamber pressure exchangers
CN102251995A (en) * 2011-07-06 2011-11-23 山东赛克赛斯氢能源有限公司 Hydraulic gas booster
CN107660258A (en) * 2015-03-27 2018-02-02 郭仓淳 Booster pump integrated formula hydraulic cylinder
CN107660258B (en) * 2015-03-27 2019-08-09 郭仓淳 Booster pump integrated formula hydraulic cylinder
WO2017197023A1 (en) 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L.P. Unpacking 3d printed objects

Also Published As

Publication number Publication date
JP2003013904A (en) 2003-01-15
TW568982B (en) 2004-01-01

Similar Documents

Publication Publication Date Title
US5868122A (en) Compressed natural gas cylinder pump and reverse cascade fuel supply system
JP5058426B2 (en) Control device for hydraulic press and operation method of hydraulic press
EP1610000B1 (en) A gas compression system
WO2003002876A1 (en) Booster
EP3051146A1 (en) Hydraulic pressure generation unit with pneumatic actuation
JP2011529793A (en) Apparatus for operating a processing machine such as a metal forming machine by hydraulic pressure and a method for operating such a metal forming machine
DE102006042918A1 (en) Pistonless compressor
US3496879A (en) Fluid pump with plural accumulators
KR101941723B1 (en) Hydraulic system and operating method
US20050013716A1 (en) High-pressure generating device
WO2003004914A1 (en) Check valve
CN101021208A (en) Liquid pump
WO1994028303A1 (en) Ultrahigh pressure generating device
EP3885584B1 (en) Assembly with pressure-booster output stabilizer and fluid pressure booster
JP2003003966A (en) High pressure generating device
CN111637043B (en) Fluid material storage and transportation system and method driven by power fluid diaphragm tank
CN102575655A (en) Hydraulic pumping device
JP2002174201A (en) Clamping device and booster cylinder used therefor
US1084715A (en) Variable-pressure intensifier.
EP2699789B1 (en) Fluid system and internal combustion engine
JP2903957B2 (en) Ultra high pressure generator
Singh et al. Development of phased intensifier for waterjet cutting
KR100943630B1 (en) With the raising pressure pump the wheel washing system which uses raising pressure pump
JP2002340181A (en) Hydrostatic transmission
KR100549991B1 (en) Liner Motion Continuity Hydraulic Booster

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase