WO2003000962A1 - Silicon single crystal substrate, epitaxial wafer, and method for manufacturing them - Google Patents

Silicon single crystal substrate, epitaxial wafer, and method for manufacturing them Download PDF

Info

Publication number
WO2003000962A1
WO2003000962A1 PCT/JP2002/006101 JP0206101W WO03000962A1 WO 2003000962 A1 WO2003000962 A1 WO 2003000962A1 JP 0206101 W JP0206101 W JP 0206101W WO 03000962 A1 WO03000962 A1 WO 03000962A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
substrate
silicon single
nitrogen
doped
Prior art date
Application number
PCT/JP2002/006101
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Iida
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Publication of WO2003000962A1 publication Critical patent/WO2003000962A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)

Definitions

  • the tree invention further enhances the gettering ability of bulk bunks, and has no defects in epitaxy, such as pZP + epitaxy (hereinafter referred to as pp +- ⁇ P). In some cases) and the method for producing silicon Ui II, which is the K plate.
  • epitaxy such as pZP + epitaxy (hereinafter referred to as pp +- ⁇ P). In some cases) and the method for producing silicon Ui II, which is the K plate.
  • a short circuit from the power supply to the ground may occur on the short path of the semiconductor device through a generator, and if this phenomenon occurs, it may occur. This is called a latchup because the device does not work unless the power is dropped.
  • ⁇ ⁇ +- ⁇ i P ⁇ eha is used in Icheon.
  • This p p + —E P ⁇ A is a boron plate
  • the low boron concentration (p-) epitaxy canola (hereafter referred to as “epipe”) can be applied to the P + plate.
  • epipe low boron concentration epitaxy canola
  • r- concentration boron has a gettering effect and r- concentration boron promotes the precipitation of oxygen. Because of this, there are advantages such as gettering effect and improvement of strength of the board, and so it is used in high-performance devices.
  • the products with nitrogen doping have oxygen concentration, oxygen concentration, V / G [m m 2 K. min] (where, V: pulling speed [mm / min; LG: 1 , tM liquid boundary in the product]
  • V pulling speed [mm / min; LG: 1 , tM liquid boundary in the product]
  • a small dislocation cluster may be formed in a part of the OS-Ding territory.
  • the OSF ring region expands when ⁇ is doped, and a very small amount of ⁇ ⁇ ⁇ ⁇ : appears in the oS fiii region sub-branch in the conventional nitrogen-doped OSF region. (Even though it is not the I-rich fi region) (see [11 (b))). Then, these minute spots are left on the board: if present, the wafers will be turned into w in the process of forming the wafers, so that defects will be formed on the surface of the wafers. You.
  • the present invention has been made in view of such a problem, and forms an epitaxy on a high-concentration boron-doped plate on which nitrogen is doped to form a Pp. + —
  • epitaxy has been used to eliminate product defects and has excellent gettering ability. The main purpose is to provide.
  • the “high-concentration boron” in the present invention means that the boron concentration is low.
  • the lower limit fi of the micro-position generation area in the OSF ring area and the upper limit of the I-rich area were formed. Since the copper plate does not have a large dislocation generation region within the OSF ring region caused by the nitrogen doping on its surface, it does not have a large dislocation generation region. Even if ⁇ is loaded, there is no danger of forming defects in the epi table D3 ⁇ 4 !, and an epitaxy wafer with quality and function can be provided.
  • the silicon-coated product has a resistivity of less than 0.02 ⁇ ⁇ cm and a concentration of doped nitride of 3 ⁇ 10 13 cm 3 or more. This power is preferred.
  • the value of Bon / Ji The effect is that the gettering effect due to the sufficiently high level of oxygen and the gettering effect due to the high concentration of boron accelerating the precipitation of oxygen and the strength of the substrate are improved. There is S.
  • the nitrogen concentration to be dropped is 3 ⁇ 10 is Z cm 3 or more, the oxygen precipitation characteristics can be further improved.
  • An epitaxial wafer of the present invention is obtained by growing an epitaxial layer on the above-mentioned silicon single crystal substrate, and includes an OSF ring region caused by nitrogen doping in the substrate. Since there is no micro dislocation generation region that is likely to occur in the substrate, even if an epitaxial layer is stacked on this substrate, there is no danger of forming a defect on the surface of the epitaxial layer, and a high quality, high performance epitaxial wafer Can be provided.
  • the epitaxial wafer of the present invention is an epitaxial wafer in which an epitaxial layer is formed on a silicon single crystal substrate doped with nitrogen and a high concentration of boron.
  • the feature is that there is no epitaxial layer defect caused by crystal defects of the substrate on the surface of the axial layer.
  • the method for producing a silicon single crystal for epitaxial growth according to the present invention is a silicon single crystal doped with nitrogen and a high concentration of boron by the Czochralski method.
  • a silicon single crystal is pulled under the condition that the VG value is between the lower limit of the small dislocation generation region in the OSF ring and the upper limit of the I-rich region. are doing.
  • the V / G value is the lower limit of the microdislocation generation region in the OSF ring.
  • Single crystal is pulled under the condition that the value is between I and the upper limit of the lithium region. Therefore, the silicon single crystal substrate manufactured from the single crystal does not have a microdislocation generation region which is likely to be generated in the OSF ring region caused by the nitrogen doping in the plane. Even if an epitaxial layer is stacked on the substrate, there is no danger of forming defects on the epi surface.
  • the resistivity of the grown sheet re co down monocrystalline 0. 0 2 ⁇ ⁇ cm or less, arbitrary preferable that the this to the nitrogen concentration 3 XI 0 13 / cm 3 or more.
  • the gettering effect due to the sufficiently high boron concentration and the high concentration of boron promotes the precipitation of oxygen. This has advantages such as an improved gettering effect and improved substrate strength. Further, when the concentration of nitrogen to be doped is set to 3 ⁇ 10 13 cm 3 or more, the oxygen precipitation characteristics can be further improved.
  • an epitaxial layer is grown on a substrate obtained by slicing a silicon single crystal produced by the above-described production method.
  • the silicon single crystal silicon wafer serving as a substrate has an O-type impurity caused by nitrogen doping.
  • FIG. 1 (a) is a view showing the change of crystal defects in the growth direction of nitrogen doping and heavily boron-doped crystal
  • FIG. 1 (b) is a view showing a state of distribution of crystal defects in a nitrogen-doped crystal growth direction of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present inventors have found that even if an epitaxial layer is formed on a silicon single crystal substrate doped with a high concentration of boron for PZP + -EP wafers and also doped with nitrogen.
  • the present inventors have conducted intensive studies and experiments on silicon single crystal growth conditions, and examined the various conditions to determine the present invention. Completed.
  • the remarkably large VZG value can drive the micro dislocation generation region to the periphery of the crystal even in a nitrogen-doped crystal.
  • the parameter VZG value at this rate indicates that the nitrogen doping, and in the case of high boron concentration doping, the OSF ring and the generation of micro-dislocation generation regions in the region are still crystallized. It cannot be extinguished in the surrounding area.
  • the OSF generation region and the micro dislocation generation region inside it are boron
  • the concentration it was confirmed that it was affected by the nitrogen concentration and oxygen concentration. Therefore, when manufacturing a ⁇ ⁇ ⁇ + — EP ⁇ wafer using a high-concentration boron 'nitrogen-doped substrate, the speed must be reduced to such a degree that micro dislocation regions in the OSF region do not occur. The result was that a crystal for a substrate should be manufactured while controlling the in-plane VG value so as not to form a one-rich region.
  • the method for producing a silicon single crystal for epitaxial growth provides a silicon doped with nitrogen and a high concentration of boron by the Czochralski method.
  • the silicon single crystal was pulled under conditions where the VZG value was between the lower limit of the microdislocation generation region in the OSF ring and the upper limit of the I-rich region. (See Fig. 1 (a)).
  • V / G The calculation of V / G can be performed using FEMAG and taking into account HZ.
  • FE MAG is described in the literature (F. D upret, P. Nicodeme, Y. Ryckmans, P. W outers, and M. J. Crochet, Int. J. Heat Mass Transfer, 33, 1849 (1990)) is a comprehensive heat transfer analysis software.
  • the silicon single crystal to be grown has a resistivity of 0.02 ⁇ ⁇ cm or less and a nitrogen concentration of 3 ⁇ 10 13 Zcm 3 or more. Is set to 0.02 ⁇ cm or less, the gettering effect due to the high boron concentration and the gettering due to the high boron concentration accelerating the precipitation of oxygen. There are advantages such as the effect of improving the tiling effect and the strength of the substrate. However, since there is a solid solution limit of boron in a silicon single crystal, the lower limit of the resistance value is about 0.001 ⁇ ⁇ cm.
  • the concentration of nitrogen to be dropped is set to 3 ⁇ 10 13 cm 3 or more, the oxygen precipitation characteristics due to nitrogen can be sufficiently improved. If the concentration is lower than this, the oxygen precipitation effect due to nitrogen doping may be reduced.
  • the upper limit is a concentration of about 5 ⁇ 10 : 5 / cm 3, which does not hinder single crystallization of nitrogen.
  • the oxygen concentration in the crystal may be any concentration in principle. However, depending on the oxygen concentration, the manner in which a small dislocation loop is generated in the OSF ring is changed depending on the oxygen concentration, which affects the difficulty of pulling the VZG value within the range of the present invention. .
  • G value needs to be controlled.
  • an epitaxial layer is grown on a wafer obtained by slicing a silicon single crystal manufactured by the above manufacturing method. .
  • an epitaxy wafer having an extremely high IG capability in which an epi layer having no epi defects is formed.
  • the silicon single crystal of the present invention for epitaxial growth was When growing a silicon single crystal doped with nitrogen and a high concentration of boron by the cZ method, the V-G value is determined by the lower limit of the microdislocation generation region in the OSF ring and the I-value. — It is only necessary to pull up the silicon single crystal under the condition of being within the upper limit of the lithium region, whereby a silicon single crystal substrate having no micro dislocation generation region can be manufactured. was confirmed.
  • the nitrogen concentration at which sufficient BMD is obtained in the substrate is 3 XI 0 13
  • the resistivity is between the normal resistivity (1 to 20 ⁇ ⁇ cm) and the low resistivity (0.1 ⁇ ⁇ cm or less)
  • the VZG value at which the OSF ring occurs does not increase so much.
  • the so-called N region does not expand, it is difficult to pull the crystal with the V / G value within the range of the present invention. Therefore, it is desirable to apply the method of the present invention within a resistivity of 0.1 ⁇ ⁇ cm or less, preferably, of 0.02 ⁇ ⁇ cm or less.
  • the present invention is not limited to this. It can also be applied to silicon single crystals of 100 to 400 mm (4 to 16 inches) or larger. Further, it goes without saying that the present invention can be applied to a so-called MCZ method in which a horizontal magnetic field, a vertical magnetic field, a cusp magnetic field, or the like is applied to a silicon melt.

Abstract

A silicon single crystal substrate is used as a substrate of an epitaxial wafer. The silicon single crystal substrate for an epitaxial wafer is characterized in that the substrate is a single crystal doped with nitrogen and heavily doped with boron, and grown under the condition that the V/G value (where V is the pulling speed, and G is the crystal temperature gradient) lies between the lower limit in the small dislocation region in the OSF ring region and the upper limit in the I-rich region. An epitaxial wafer having an epitaxial layer formed thereon is also disclosed. No crystal defect is present in the epitaxial surface of a p/p+-EP wafer having an epitaxial layer formed on a p+ substrate heavily heavily doped with boron and doped with nitrogen. As a result, an epitaxial wafer high in guttering ability, quality, and function is provided, and a method for manufacturing the same is provided.

Description

m 細 シ リ コ ン ψ-結品 ¾板、 ェ ピタ キシ ャルゥェ  m Thin silicon ψ-product board, epitaxy
お よ びこれ らの製造方法 技術分 If  If manufacturing technology
木発明は、 バルク 屮のゲ ッ タ リ ング能力を さ らに Γ 上 し、 ェ ピタ キシ ャル に欠陥のない p Z P + ェ ピタ キシャルゥェ一 (以下、 p p + - κ P ゥェ一 と い う こ と ある) お よびその K板 と な る シ リ コ ン Ui ¾の製造方法に関する。  The tree invention further enhances the gettering ability of bulk bunks, and has no defects in epitaxy, such as pZP + epitaxy (hereinafter referred to as pp +-κP). In some cases) and the method for producing silicon Ui II, which is the K plate.
11 技術 11 Technology
半 ¾体デバイ スの ¾稍^路では ¾生尜子を通 して電源から グラ ン ドへ のシ ョ ー ト が発生する こ と があ り 、 こ の現象は一^ ¾生する と ¾源を落 さ ない限 り I復せず、 デバイ スが 動作 しな く な るためラ ッチァ ップ と 呼ばれている。 こ の対策 と して、 Ρ ρ + - \i P ゥエーハが利川 され て ヽる。  A short circuit from the power supply to the ground may occur on the short path of the semiconductor device through a generator, and if this phenomenon occurs, it may occur. This is called a latchup because the device does not work unless the power is dropped. As a countermeasure, こ ρ +-\ i P ゥ eha is used in Icheon.
こ の p p + — E P ゥエー と は、 ボロ ンを ;濃度に Hi した ¾板 ( P This p p + —E P ゥ A is a boron plate;
+ Ά板) がゲ ッ タ リ ング効 *を する こ と を利用 し、 P + ¾板上に低ボ ロ ン濃度 ( p - ) のェ ピタ キシャノレ (以下、 ェ ピと レヽ ぅ こ と がある) i を形成した p— Z P + ェ ピタ キシャルゥエーハであ り 、 近年-、 r¾濃度ボ ロ ンによ るゲ ッタ リ ング効 ¾ と 、 r 濃度ボ 口 ンが酸尜の析出を促進する こ と によ るゲ ッ タ リ ング効 ¾、 さ らには ¾板の強度が向上する等の利点 があるため、 高機能デバイ ス等で利用 されている。 Utilizing the effect of gettering effect * on the P + plate, the low boron concentration (p-) epitaxy canola (hereafter referred to as “epipe”) can be applied to the P + plate. A) A p-ZP + epitaxy wafer with i formed. In recent years, r- concentration boron has a gettering effect and r- concentration boron promotes the precipitation of oxygen. Because of this, there are advantages such as gettering effect and improvement of strength of the board, and so it is used in high-performance devices.
¾近では、 さ ら に機能を;£]加するため、 ¾板に窒素を ドープ して、 ェ ピ後の酸尜析出特性を さ ら に【 上 させた ρ ρ + - Ε Ρ ゥエーハも Πίΐ究 されてレ、る。  In recent years, in order to add more functions to the substrate, ρ ρ +-、 ゥ ハ し て 窒 素 し て た し て 窒 素 た 窒 素 窒 素 窒 素 窒 素 窒 素 窒 素 窒 素 窒 素 窒 素 窒 素 ¾ It has been studied.
と こ ろが、 窒尜を ド一プ した結品は、 酸尜濃度、 ¾尜濃度、 V / G [ m m 2 K . m i n ] (こ こ に、 V : 引上げ速度 [ m m / m i n ; L G : 1,: 品中の tM液界 ϊίιί近傍の融 λから 1 4 0 0 X:の の結品軸力. |ή] ίί,,ί Iji勾 « L K /m m ] とする) i等の あ1,: ',引上げ条件に よ って、 O S ド リ ング領城 の一部に微小な転位ク ラ ス タ ーが 4:じ る場合がある。 すなわち、 尜を ドープする と O S F リ ング領域が拡大 し、 従来の窒尜ノ ン ドープの O S F領域にはなカゝつ た微小な 位が o S fiii域の屮に ¾ λ\:する よ う にな る ( I - リ ッチ fi域でないに も かかわ らず) ( [ 1 1 ( b ) 参照)。 そ して、 こ の微小な 位が ¾板にむ:在する と 、 ェ ピ ι成 ¾工 nでェ ピ wに す るため、 ェ ピ表面に欠陥を形成して しま う こ と にな る。 On the other hand, the products with nitrogen doping have oxygen concentration, oxygen concentration, V / G [m m 2 K. min] (where, V: pulling speed [mm / min; LG: 1 , tM liquid boundary in the product] The axial force of the product from the melting λ in the vicinity of ίιί to 1400 X: | ή] ίί ,, ί Iji declination «LK / mm]) i, etc. 1 :: ', Depending on the pulling conditions, a small dislocation cluster may be formed in a part of the OS-Ding territory. May be 4: In other words, the OSF ring region expands when 尜 is doped, and a very small amount of 従 来λ \: appears in the oS fiii region sub-branch in the conventional nitrogen-doped OSF region. (Even though it is not the I-rich fi region) (see [11 (b))). Then, these minute spots are left on the board: if present, the wafers will be turned into w in the process of forming the wafers, so that defects will be formed on the surface of the wafers. You.
p ノ p - - K P ゥエーハの場合、 p - ¾板川 の結品を引上げる mの V ノ G値を ¾ く 設定する等に よ り 、 O S V リ ングを結品の外侧に ^い出 し て、 転位が発生する領域を ¾板上カゝらな く すこ と に よ り 、 こ の よ う なェ ピ欠陥の発生を抑制 してき た (特許願 〗 1 - 2 9 4 5 2 3 -、 特許顾 2 0 0 0 - 1 9 1 0 4 7 -、 K. ornbcrger ot al. J. Crystal Growth 180 (1977) 343-352.参照)。  In the case of p-no p--KP ゥ e-ha, p- ¾ pull up the product of Itakawa and set the V-no-G value of m to a large value, so that the OSV ring goes out of the product. Therefore, the generation of such epi defects has been suppressed by making the region where dislocations are generated less opaque on the board (Patent Application No. 1-2949543-, Patent No. 200 00-1910 47-, K. ornbcrger ot al. J. Crystal Growth 180 (1977) 343-352.).
一方、 高濃度ボロ ン ドープの場介、 O S ド リ ングが発 4:する V G ίϋ'Γ 力;、 Γϊί V / G側にシフ 卜する こ と が、 既に知 られている ( K.】)ornl)ergor et al. J. Crystal Growth 180(1977) 343-352.)。  On the other hand, it is already known that high-concentration boron doping causes a shift to the VG OS 'output; and the VG す る' output; ornl) ergor et al. J. Crystal Growth 180 (1977) 343-352.).
そ こ で、 こ の r¾濃度ボロ ンに よ り O S F リ ングが発生する 介の V Z G値の変化と 、 窒素 ド一プに よ る転位発生について調 した と こ ろ、  Thus, we examined the change in VZG value due to the generation of the OSF ring due to the r¾ concentration boron and the generation of dislocations due to nitrogen doping.
( 1 ) ¾尜を ドープした場合において も 、 M様に O S V リ ン グが発生 する V Z G値は高 V / G側にシフ トする。  (1) Even when ¾ 尜 is doped, the VZG value at which the OSV ring occurs as in M shifts to the higher V / G side.
( 2 ) こ の場合でも O S F リ ング領域の一部に、 【'1様に微小な 位ク ラ スタ一が発生する fifi域が hする。  (2) Even in this case, a fifi region where a small cluster occurs as in ['1] is formed in a part of the OSF ring region.
( 3 ) こ の よ う な転位は、 ボ口 ンの ; 度 ドープだけでは抑制でき な いこ と が確認された。 すなわち p— ¾板と M様に V Z G を ,;';; く した 'ί ', 製法で、 抵抗率を低く した ρ + Κ板を川いて ρノ Ρ + - Ε Ρ ゥェーハを 作製した場合にはェ ピ欠 |¾が発生 して しま う こ と がわかつた。 発明の開示 (3) It has been confirmed that such dislocations cannot be suppressed only by boron doping; In other words, when VZG is made into a p-plate and M like,; ';; ί ί,, ノ, Ρ,,,, 場合 場合 場合 場合 場合I was told that an episode was missing. Disclosure of the invention
そこ で、 本発明はこ のよ う な問 m点に鑑みてな された もので、 窒尜が ド一プされた高濃度ボ ロ ン ドープ ¾板にェ ピタ キシャル ¾を形成 して P p + — E P ゥエ ーハを作製する際に、 ェ ピ衷 ίίιίか ら ί品欠陥が排除 さ れた、 ゲ ッ タ リ ング能力の いェ ピタ キシャルゥェ一ハ、 お ょ ぴその製 造方法を提供する こ と を主た る 口 的 と する。  Therefore, the present invention has been made in view of such a problem, and forms an epitaxy on a high-concentration boron-doped plate on which nitrogen is doped to form a Pp. + — When manufacturing EP wafers, epitaxy has been used to eliminate product defects and has excellent gettering ability. The main purpose is to provide.
上記課題を解決するため、 本 ¾明のェ ピタ キシャルゥエ ーハ川のシ リ コ ン i 結晶基板は、 ェ ピタ キシャルゥエ ーハの ¾板 と な る シ リ コ ン i あ1 i 品基板であっ て、 窒素およ び tE¾濃度のボ口 ンが ド一プされ、 かつ Vノ G (こ こ に、 V : 引上げ速度、 G : 結品中の固液界面近傍の結品軸方 'j U 度勾配と する) 値が O S F リ ング領域内の微小転位発生領域の下限 ||'(と I リ ツチ領域の上限値の問 と な る条件で宵成 された Ψ結品である こ と を特徴と している。 To solve the above problems, shea Li co down i crystal substrate of the present ¾ Ming E pita Kisharuue Doha River, there in Shi Li co down i Ah 1 i article substrate that Do and ¾ plate E pita Kisharuue Doha And the nitrogen and tE¾ concentration ports are dropped, and V is G (where V is the pulling speed, G is the product axis direction near the solid-liquid interface in the product) (It is assumed to be the degree gradient) The value is a product formed under the condition that the lower limit || '(and the upper limit value of the I-rich region) of the small dislocation generation region in the OSF ring region is determined. It is a feature.
尚、 本発明における 「高濃度ボロ ン」 と は、 ボ口 ン 度が少な く と も The “high-concentration boron” in the present invention means that the boron concentration is low.
5 X 1 0 1 7 a t o m s / c m 3 (抵抗率で 0 . ] Ω · c m以下) である こ と を首 う 。 5 X 10 17 atoms / cm 3 (less than .0 Ω · cm in resistivity).
こ の よ う に、 窒尜お よび高濃度ボ口 ン力 ドープされ、 かつ V / G fif'f が Thus, nitrogen and high-concentration boron are doped and V / G fif'f
O S F リ ング領域内の微小 位発生領域の下限 fiと I - リ ッチ領域の上 限値の問 と な る条件で ί成 された -結品か ら製造されたシ リ コ ン -結品 ¾板は、 その面内に、 窒尜 ドープ起因の O S F リ ング顿域内に発 /|.: し ϋ い微小転位発生領域がお- ¾: しないので、 こ の ¾板の上にェ ピタ キシャル Μを積んでもェ ピ表 D¾!に欠陥を形成する恐れはな く 品 Π 、 機能のェ ピタ キシャルゥエ ーハを提供する こ と ができ る。 The lower limit fi of the micro-position generation area in the OSF ring area and the upper limit of the I-rich area were formed. Since the copper plate does not have a large dislocation generation region within the OSF ring region caused by the nitrogen doping on its surface, it does not have a large dislocation generation region. Even if Μ is loaded, there is no danger of forming defects in the epi table D¾ !, and an epitaxy wafer with quality and function can be provided.
こ の場合、 シ リ コ ン 結品 ¾板は、 抵抗率力; 0 . 0 2 Ω · c m以下で あ り 、 ドープされた窒索の濃度が 3 X 1 0 1 3ノ c m 3 以上である こ と 力'' 好ま しい。 In this case, the silicon-coated product has a resistivity of less than 0.02 Ω · cm and a concentration of doped nitride of 3 × 10 13 cm 3 or more. This power is preferred.
こ のよ う に抵抗率を 0 . 0 2 Ω · c m以下 と した ものは、 ボ ン /Ji が十分に高いこ と によ るゲ ッ タ リ ング効果と 高濃度ボロ ンが酸素の析出 を促進する こ と に よ るゲ ッ タ リ ング効果と 基板の強度が向上する等の利^力 Sある。 In the case where the resistivity is 0.02 Ωcm or less, the value of Bon / Ji The effect is that the gettering effect due to the sufficiently high level of oxygen and the gettering effect due to the high concentration of boron accelerating the precipitation of oxygen and the strength of the substrate are improved. There is S.
ま た、 ド一プする窒素濃度を 3 X 1 0 i s Z c m 3 以上 とすれば、 酸素 析出特性を一層向上させる こ と ができ る。 Further, when the nitrogen concentration to be dropped is 3 × 10 is Z cm 3 or more, the oxygen precipitation characteristics can be further improved.
そ して本発明のェ ピタ キシャルゥエ ーハは、 前記シ リ コ ン単結晶基板 の上にェ ピタ キシャル層を成長 させて成る ものであって、 基板中に窒素 ドープ起因の O S F リ ング領域内に発生し易い微小転位発生領域が存在 しないので、 こ の基板の上にェ ピタ キシャル層を積んでもェ ピ表面に欠 陥を形成する恐れはな く 高品質、 高機能のェ ピタ キシャルゥエ ーハを提 供する こ と ができ る。  An epitaxial wafer of the present invention is obtained by growing an epitaxial layer on the above-mentioned silicon single crystal substrate, and includes an OSF ring region caused by nitrogen doping in the substrate. Since there is no micro dislocation generation region that is likely to occur in the substrate, even if an epitaxial layer is stacked on this substrate, there is no danger of forming a defect on the surface of the epitaxial layer, and a high quality, high performance epitaxial wafer Can be provided.
さ らに、 本発明のェ ピタ キシャルゥエーハは、 窒素および高濃度のボ 口 ンを ドープしたシ リ コ ン単結晶基板上にェ ピタ キシャル層 を形成 した ェ ピタ キシャルゥエ ーハであっ て、 ェ ピタ キシャル層表面に基板の結晶 欠陥に起因するェ ピタ キシャル層欠陥が存在しないこ と を特徴と してい る。  Further, the epitaxial wafer of the present invention is an epitaxial wafer in which an epitaxial layer is formed on a silicon single crystal substrate doped with nitrogen and a high concentration of boron. The feature is that there is no epitaxial layer defect caused by crystal defects of the substrate on the surface of the axial layer.
こ のよ う に、 本発明では、 窒素が ドープされた高濃度ボロ ン ドープ基 板を用いているにも かかわ らず、 ェ ピ層欠陥がないェ ピタ キシャルゥェ ーハ とする こ と ができ る。 従っ て、 ェ ピ欠陥がない と と も に I G能力の 極めて高いェ ピタ キシャルゥエーハが提供される。  As described above, according to the present invention, it is possible to provide an epitaxy wafer having no epi layer defects despite the use of a high-concentration boron-doped substrate doped with nitrogen. . Therefore, an epitaxy wafer with extremely low IG capability with no epidemic defect is provided.
また、 本発明にかかわるェ ピタ キシャル成長用のシ リ コ ン単結晶の製 造方法は、 チ ヨ ク ラルスキー法によ り 窒素およ び高濃度のボロ ンを ドー プしたシ リ コ ン単結晶を育成する際に、 V G値が O S F リ ング内微小 転位発生領域の下限値と I ー リ ツチ領域の上限値の間 と なる条件でシ リ コ ン単結晶を引上げる こ と を特徴と している。  Further, the method for producing a silicon single crystal for epitaxial growth according to the present invention is a silicon single crystal doped with nitrogen and a high concentration of boron by the Czochralski method. When growing a crystal, a silicon single crystal is pulled under the condition that the VG value is between the lower limit of the small dislocation generation region in the OSF ring and the upper limit of the I-rich region. are doing.
こ のよ う に、 C Z法によ り 窒素およ び高濃度のボロ ンを ドープしたシ リ コ ン単結晶を育成する際に、 V / G値が O S F リ ング内微小転位発生 領域の下限値と I — リ ツチ領域の上限値の間と なる条件で単結晶を引上 げれば、 その単結晶から製造されたシ リ コ ン単結晶基板は、 その面内に、 窒素 ド一プ起因の O S F リ ング領域内に発生し易い微小転位発生領域が 存在しないので、 この基板の上にェ ピタ キシャル層 を積んでもェ ピ表面 に欠陥を形成する恐れはない。 Thus, when growing a silicon single crystal doped with nitrogen and a high concentration of boron by the CZ method, the V / G value is the lower limit of the microdislocation generation region in the OSF ring. Single crystal is pulled under the condition that the value is between I and the upper limit of the lithium region. Therefore, the silicon single crystal substrate manufactured from the single crystal does not have a microdislocation generation region which is likely to be generated in the OSF ring region caused by the nitrogen doping in the plane. Even if an epitaxial layer is stacked on the substrate, there is no danger of forming defects on the epi surface.
こ の場合、 育成 したシ リ コ ン単結晶の抵抗率を 0 . 0 2 Ω · c m以下、 窒素濃度を 3 X I 0 13/ c m 3 以上 とする こ と が好ま しい。 In this case, the resistivity of the grown sheet re co down monocrystalline 0. 0 2 Ω · cm or less, arbitrary preferable that the this to the nitrogen concentration 3 XI 0 13 / cm 3 or more.
こ の抵抗率を 0 . 0 2 Ω · c m以下 と したも のは、 ボ ロ ン濃度が十分 高いこ と によ るゲ ッタ リ ング効果と 高濃度ボロ ンが酸素の析出を促進す る こ と に よ るゲ ッ タ リ ング効果と基板の強度が向上する等の利点がある。 また、 ドープする窒素濃度を 3 X 1 0 13 c m 3 以上 とすれば、 酸素 析出特性を一層向上させる こ と ができ る。 When the resistivity is set to 0.02 Ωcm or less, the gettering effect due to the sufficiently high boron concentration and the high concentration of boron promotes the precipitation of oxygen. This has advantages such as an improved gettering effect and improved substrate strength. Further, when the concentration of nitrogen to be doped is set to 3 × 10 13 cm 3 or more, the oxygen precipitation characteristics can be further improved.
本発明 のェ ピタ キシャル ゥエ ーハの製造方法は、 上記の製造方法で製 造されたシ リ コ ン単結晶をス ライ ス して得 られる基板上に、 ェ ピタ キシ ャル層 を成長 させる こ と を特徴と してお り 、 こ の よ う な製造方法によれ ば、 基板 と な る シ リ コ ン単結晶 ゥエ ーハの面内に、 窒素 ドープ起因の O According to the method for producing an epitaxial wafer of the present invention, an epitaxial layer is grown on a substrate obtained by slicing a silicon single crystal produced by the above-described production method. According to such a manufacturing method, the silicon single crystal silicon wafer serving as a substrate has an O-type impurity caused by nitrogen doping.
S F リ ング領域内 に発生し易い微小転位発生領域が存在 しないので、 こ の基板の上にェ ピタ キシャル層を積んでもェ ピ表面に欠陥を形成する恐 れはな く 、 高品質、 高機能のェピタ キ シャルゥエ ーハを提供する こ と が でき る。 Since there is no micro dislocation generation region that is likely to occur in the SF ring region, even if an epitaxial layer is deposited on this substrate, there is no danger of forming defects on the epi surface, and high quality and high performance We can provide an epitaxy wafer.
以上説明 したよ う に本発明 によれば、 P P + — E P ゥェ一ハのシ リ コ ン単結晶基板に窒素 を ドープして も 、 ェ ピ層表面か ら欠陥が排除され たゲ ッ タ リ ング能力の極め て高い高品質、 高機能のェ ピ ウエ ーハを製造 する こ と ができ る。 図面の簡単な説明 図 1 ( a ) は、 窒素 ド一プ、 高濃度ボロ ン ドープ結晶成長方向での結 晶欠陥の変化の様子を見た図であ り 、 図 1 ( b ) は、 従来の窒素 ドープ 結晶成長方向での結晶欠陥の分布の様子を見た図である。 発明を実施するための最良の形態 As described above, according to the present invention, even if the silicon single crystal substrate of the PP +-EP wafer is doped with nitrogen, the getter in which defects are eliminated from the surface of the epi layer is obtained. High quality, high performance epi wafers with extremely high ring capacity can be manufactured. BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 (a) is a view showing the change of crystal defects in the growth direction of nitrogen doping and heavily boron-doped crystal, and FIG. 1 (b) FIG. 4 is a view showing a state of distribution of crystal defects in a nitrogen-doped crystal growth direction of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について、 さ らに詳細に説明するが、 本発 明は、 これらに限定される も のではない。  Hereinafter, embodiments of the present invention will be described in more detail, but the present invention is not limited thereto.
本発明者等は、 P Z P + — E P ゥェ一ハ用の高濃度のボロ ンが ドープ され、 かつ、 窒素も ドープされたシ リ コ ン単結晶基板にェ ピタ キシャル 層を形成してもェ ピ層表面に結晶欠陥が形成されないェ ピタ キシャルゥ エ ーハを製造する方法を確立するため、 シ リ コ ン単結晶育成条件につい て鋭意調査、 実験を行い、 諸条件を精査して本発明を完成させた。  The present inventors have found that even if an epitaxial layer is formed on a silicon single crystal substrate doped with a high concentration of boron for PZP + -EP wafers and also doped with nitrogen. In order to establish a method for manufacturing an epitaxial wafer in which no crystal defects are formed on the surface of the silicon layer, the present inventors have conducted intensive studies and experiments on silicon single crystal growth conditions, and examined the various conditions to determine the present invention. Completed.
単結晶の引上げ速度は、 どこまでも 高速に出来るのな ら ば、 V Z G値 を著し く 大き く する こ と によ って、 窒素 ドープ結晶でも微小転位発生領 域を結晶周辺部に追いやる こ と が出来るので問題はないのだが、 実際は、 ある速度を超える と結晶が変形し易 く な り 、 量産 レベルでの引上げが困 難になる速度が存在する。 そ して、 こ の速度におけるパラ メ ータ V Z G 値では、 窒素 ド一プ、 高濃度ボロ ン ドープの場合は、 やは り 、 O S F リ ングおよびその領域内の微小転位発生領域の発生を結晶周辺部に消滅さ せる こ と は出来ない。  If the pulling speed of the single crystal can be increased as high as possible, the remarkably large VZG value can drive the micro dislocation generation region to the periphery of the crystal even in a nitrogen-doped crystal. There is no problem because it can be done, but in reality, at a certain speed, the crystal becomes easily deformed, and there is a speed at which pulling at the mass production level becomes difficult. The parameter VZG value at this rate indicates that the nitrogen doping, and in the case of high boron concentration doping, the OSF ring and the generation of micro-dislocation generation regions in the region are still crystallized. It cannot be extinguished in the surrounding area.
そこで、 O S F リ ングを結晶の内側に配置し、 微小転位が発生しない よ う に、 引上速度を低速化する こ と を試みた。  Therefore, an OSF ring was placed inside the crystal, and an attempt was made to reduce the pulling speed so that micro dislocations did not occur.
通常の抵抗値を有する結晶であれば、 こ のよ う な領域は、 ①極低速で ある、 ②すぐ隣に I 一 リ ッチ領域があ り 、 こ こ にも転位ク ラ ス ターが高 密度に存在する、 と い う 2 つの理由か らェ ピタ ギシャル成長用の基板に 向いている と は考え られないのが普通である (図 1 ( b ) 参照)。  In the case of a crystal having a normal resistance value, such a region is (1) extremely slow, and (2) there is an I-rich region immediately adjacent thereto, where the dislocation cluster is also high. It is usually not considered suitable for epitaxial growth substrates for two reasons: density exists (see Figure 1 (b)).
しかし、 高濃度ボロ ン ド一プの場合は、 こ の よ う な微小転位が発生し ない領域が比較的高速であ り 、 かつ、 I 一 リ ッ チ領域と な る Vノ G値が それほど高 く な らないこ と が、 窒素 ドープ、 高濃度ボロ ン ドープ結晶に おいて も確認でき た。  However, in the case of high-concentration boron bumps, the region where such small dislocations do not occur is relatively fast, and the V-G value, which is the I-rich region, is not so large. The fact that it did not increase was confirmed for nitrogen-doped and high-concentration boron-doped crystals.
また、 O S F発生領域およ びその内部の微小転位発生領域は、 ボロ ン 濃度の他に、 窒素濃度や酸素濃度の影響を受け る こ と が確認された。 従って、 高濃度ボロ ン ' 窒素 ドープ基板を用いた、 Ρ Ζ Ρ + — E P ゥ エ ーハを製造する場合は、 O S F領域内の微小転位領域が発生しない程 度に速度を下げ、 また、 I 一 リ ッチ領域にな らないよ う に、 面内の V G値をコ ン ト ロールしなが ら、 基板用の結晶を製造すればよい と い う 結 果が得られた。 In addition, the OSF generation region and the micro dislocation generation region inside it are boron In addition to the concentration, it was confirmed that it was affected by the nitrogen concentration and oxygen concentration. Therefore, when manufacturing a Ρ Ρ Ρ + — EP た wafer using a high-concentration boron 'nitrogen-doped substrate, the speed must be reduced to such a degree that micro dislocation regions in the OSF region do not occur. The result was that a crystal for a substrate should be manufactured while controlling the in-plane VG value so as not to form a one-rich region.
以上の結果を総合して、 本発明のェ ピタ キシャル成長用のシ リ コ ン単 結晶の製造方法は、 チ ヨ ク ラルスキー法によ り 窒素および高濃度のポロ ンを ド一プしたシ リ コ ン単結晶を育成する際に、 VZG値が O S F リ ン グ内微小転位発生領域の下限値と I 一 リ ツチ領域の上限値の間 と な る条 件でシ リ コ ン単結晶を引上げる こ と と した (図 1 ( a ) 参照)。  Based on the above results, the method for producing a silicon single crystal for epitaxial growth according to the present invention provides a silicon doped with nitrogen and a high concentration of boron by the Czochralski method. When growing a silicon single crystal, the silicon single crystal was pulled under conditions where the VZG value was between the lower limit of the microdislocation generation region in the OSF ring and the upper limit of the I-rich region. (See Fig. 1 (a)).
こ の よ う な条件で引上げ られた単結晶から製造されたシ リ コ ン単結晶 基板は、 その面内に、 窒素 ドープ起因の O S F リ ング領域内に発生 し易 い微小転位発生領域が存在 しないので、 こ の基板の上にェ ピタ キシャル 層を積んでもェ ピ表面に結晶欠陥を形成する恐れはな く 、 しかも ゲ ッタ リ ング効果の非常に高いェ ピタ キシャルゥエ ーハを提供する こ と ができ る。  In a silicon single crystal substrate manufactured from a single crystal pulled under such conditions, there is a micro dislocation generation region in the plane, which is likely to occur in the OSF ring region caused by nitrogen doping. Therefore, even if an epitaxial layer is stacked on this substrate, there is no danger of forming crystal defects on the surface of the epitaxy, and it is possible to provide an epitaxy wafer having a very high gettering effect. And can be.
尚、 V/Gの算出は、 F E MA Gを用い、 H Z を考慮して行 う こ と が でき る。  The calculation of V / G can be performed using FEMAG and taking into account HZ.
こ こ で F E MA Gは、 文献 ( F . D u p r e t , P . N i c o d e m e , Y . R y c k m a n s , P . W o u t e r s , a n d M . J . C r o c h e t , I n t . J . H e a t M a s s T r a n s f e r , 3 3 , 1 8 4 9 ( 1 9 9 0 )) に開示 されている総合伝熱解析ソ フ ト であ る。  Here, FE MAG is described in the literature (F. D upret, P. Nicodeme, Y. Ryckmans, P. W outers, and M. J. Crochet, Int. J. Heat Mass Transfer, 33, 1849 (1990)) is a comprehensive heat transfer analysis software.
こ の場合、 育成する シ リ コ ン単結晶の抵抗率を 0 . 0 2 Ω · c m以下、 窒素濃度を 3 X 1 0 13Z c m 3 以上 とする こ と が好ま し く 、 こ の抵抗率 を 0 . 0 2 Ω · c m以下と したも のは、 ボロ ン濃度が高いこ と によ るゲ ッ タ リ ング効果と 高濃度ボロ ンが酸素の析出を促進する こ と に よ る ゲ ッ タ リ ング効果 と基板の強度が向上する等の利点がある。 但し、 シ リ コ ン 単結晶中のボ ロ ンの固溶限界があるので、 抵抗値は 0 . 0 0 0 1 Ω · c m程度が下限である。 また、 ド一プする窒素濃度を 3 X 1 0 13ノ c m 3 以上とすれば、 窒素によ る酸素析出特性を十分に向上させる こ と ができ る。 この濃度よ り 低い と 、 窒素を ドープしたこ と によ る酸素析出効果が 低く な る恐れがあ る。 また、 窒素 も単結晶化の妨げと な らない 5 X 1 0 : 5/ c m 3程度の濃度が上限である。 In this case, it is preferable that the silicon single crystal to be grown has a resistivity of 0.02 Ω · cm or less and a nitrogen concentration of 3 × 10 13 Zcm 3 or more. Is set to 0.02 Ωcm or less, the gettering effect due to the high boron concentration and the gettering due to the high boron concentration accelerating the precipitation of oxygen. There are advantages such as the effect of improving the tiling effect and the strength of the substrate. However, since there is a solid solution limit of boron in a silicon single crystal, the lower limit of the resistance value is about 0.001 Ω · cm. Further, when the concentration of nitrogen to be dropped is set to 3 × 10 13 cm 3 or more, the oxygen precipitation characteristics due to nitrogen can be sufficiently improved. If the concentration is lower than this, the oxygen precipitation effect due to nitrogen doping may be reduced. The upper limit is a concentration of about 5 × 10 : 5 / cm 3, which does not hinder single crystallization of nitrogen.
本発明においては、 結晶中の酸素濃度は、 原則と して どのよ う な濃度 であっても よい。 但し、 酸素濃度によ って、 O S F リ ングおょぴ O S F リ ング内の微小転位ループの発生の仕方が変化するので、 V Z G値を本 発明の領域内 とする引上げの難易度に影響を及ぼす。  In the present invention, the oxygen concentration in the crystal may be any concentration in principle. However, depending on the oxygen concentration, the manner in which a small dislocation loop is generated in the OSF ring is changed depending on the oxygen concentration, which affects the difficulty of pulling the VZG value within the range of the present invention. .
具体的には、 酸素が全く 存在しなければ、 O S F の核が発生しよ う が な く 、 〇 S F リ ングおよび微小転位ループは共に発生しない。 また、 極 低酸素濃度で結晶を作っ た場合と 、 高酸素濃度で作った場合と では、 明 らかに O S F リ ングおょぴ微小転位ループの発生の仕方が異な り 、 高酸 素では微小転位が発生し易 く なる。  Specifically, if no oxygen is present, no nucleus of OSF is likely to be generated, and neither the 〇SF ring nor the small dislocation loop is generated. In addition, when the crystal is formed at an extremely low oxygen concentration and when the crystal is formed at a high oxygen concentration, the way of generating the OSF ring and the small dislocation loop is clearly different. Dislocations are likely to occur.
従って、 本発明においては、 結晶中の酸素濃度も考慮 して適切な vZ Therefore, in the present invention, an appropriate vZ
G値を制御する必要がある。 G value needs to be controlled.
そ して、 本発明のェ ピタ キシャルゥエーハの製造方法は、 上記の製造 方法で製造されたシ リ コ ン単結晶をス ライ ス して得 られる ゥェ一ハ上に ェ ピタ キシャル層 を成長させる。 これによ り ェ ピ欠陥のないェ ピ層 を形 成 した I G能力の極めて高いェ ピタ キシャルゥェ一ハを提供する こ と が でき る。  According to the method of manufacturing an epitaxial wafer of the present invention, an epitaxial layer is grown on a wafer obtained by slicing a silicon single crystal manufactured by the above manufacturing method. . As a result, it is possible to provide an epitaxy wafer having an extremely high IG capability in which an epi layer having no epi defects is formed.
以下、 本発明の実施例およ び比較例を挙げて よ り 具体的に説明するが、 本発明はこれ らに限定される こ と はない。  Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例、 比較例) (Examples, Comparative Examples)
[試験一 1 ] 特定の H Z (H o t Z o n e , 単結晶引上げ装置内 の炉内構造) を有する引上げ装置を使用して、 原料ポリ シ リ コ ン 1 2 0 k g をチャージし、 窒化膜付き ゥエーハを所定量投入し、 窒素濃度を 3 X 1 0 13/ c m 3 (単結晶棒の肩の部分、 計算値)、 抵抗率を単結晶棒 の肩で 0 . 0 1 5 Ω · ς: πιとなるよ う に不純物 (ボロ ン) を ドープし、 酸素濃度を約 1 4 p p m a ( J E I D A規格、 J E I D A : 日本電子ェ 業振興協会)、 引上げ速度を 1 . O mmノ m i n と して直径 2 0 O mm ( 8 イ ンチ) の単結晶を引上げた。 [Test 1 1] Specific HZ (Hot Z one, in single crystal pulling device) Using a pulling device having a furnace internal structure), 120 kg of the raw material silicon is charged, a predetermined amount of 膜 a wafer with a nitride film is charged, and the nitrogen concentration is set to 3 × 10 13 / cm 3 ( Doped impurities (boron) so that the resistivity becomes 0.015 Ω · ς: πι at the shoulder of the single crystal rod, and calculate the oxygen concentration to about 1 at the shoulder of the single crystal rod. At 4 ppma (JEIDA standard, JEIDA: Japan Electronic Industry Development Association), a single crystal having a diameter of 20 Omm (8 inches) was pulled at a pulling speed of 1.0 mm.
この単結晶から切り 出したゥエーハには、 O S F リ ングが広く 分布し、 その一部に微小転位が発生していた (図 1 ( a ) の V = l . 0 の位置で あ り 、 VZ G = 0 . 2 5 mm2 Z K ' m i n )。 OSF rings were widely distributed in the wafers cut from this single crystal, and microdislocations occurred in some of them (at V = 1.0 in Fig. 1 (a), VZG = 0. 2 5 mm 2 ZK 'min).
さ らに、 結晶の肩近く の直胴からスライ スして作製した鏡面ゥエーハ に、 1 1 3 0 °Cで 5 μ mのェ ピタ キシャル層を成長させたと こ ろ、 微小 転位の発生していた部分に対応するェピ層の表面にェピ欠陥が存在する こ とが、 断面 T E M観察によ り 明 らかとなった。  Furthermore, when a 5 μm epitaxial layer was grown at 110 ° C on a mirror-finished wafer fabricated by slicing from a straight body near the shoulder of the crystal, micro-dislocations were generated. Cross-sectional TEM observation revealed that there were epi defects on the surface of the epi layer corresponding to the eroded portion.
[試験— 2 ] 続いて試験— 1 と同一の H Z構造を有する引上げ装置 を用い、 同一条件にて引上速度を 0. S O mmZm i nまで低下させて 引上げたと こ ろ、 ゥエーハの中心に O S F リ ングそのものは若干残留し ていたが、 微小転位その ものは発生していない領域となった (図 1 ( a ) の V = 0 . 8 の位置であ り 、 V/ G = 0 . S O mmZ ZK ' m i n こ の結晶から鏡面ゥエーハを作製し、 ェピタキシャル層を成長させたと こ ろ、 ェピ表面から欠陥は排除されていた。  [Test-2] Then, using a pulling device having the same HZ structure as in Test-1, the pulling speed was reduced to 0. SO mmZmin under the same conditions, and the OSF was placed at the center of the wafer. However, micro-dislocations themselves were not generated (Fig. 1 (a), where V = 0.8, V / G = 0. SO mmZ ZK 'min A mirror wafer was fabricated from this crystal, and when an epitaxy layer was grown, defects were eliminated from the epi surface.
[試験一 3 ] 最後に試験一 1 と同一の H Z構造を有する引上げ装置 を用い、 同一条件にて引上げ速度を 0 . 6 m m / m i nまで低下させた と こ ろ、 全面がいわゆる I 一 リ ッチ領域と なった (図 1 ( a ) の V = 0 . 6 の位置であ り 、 V/ G = 0 . 1 5 m m2 / K ' m i n )。 こ の領域は、 大きい転位ク ラスターが発生する領域であ り 、 ェピ成長後にその表面に 欠陥が全面に発生していた。 [Test 1-3] Finally, using the same pulling device with the same HZ structure as in Test 1, the pulling speed was reduced to 0.6 mm / min under the same conditions. (V / G = 0.15 mm 2 / K ′ min, where V = 0.6 in FIG. 1 (a)). This region is a region where large dislocation clusters are generated, and defects are generated on the entire surface after epitaxy growth.
以上の試験の結果、 本発明のェピタ キシャル成長用のシリ コ ン単結晶 の製造方法は、 c Z法によ り 窒素および高濃度のボロ ンを ドープしたシ リ コン単結晶を育成する際に、 Vノ G値が O S F リ ング内微小転位発生 領域の下限値と I — リ ツチ領域の上限値の間となる条件でシリ コン単結 晶を引上げれば良く 、 これによ り微小転位発生領域のないシリ コン単結 晶基板を作製するこ とができ るこ とが確め られた。 As a result of the above test, the silicon single crystal of the present invention for epitaxial growth was When growing a silicon single crystal doped with nitrogen and a high concentration of boron by the cZ method, the V-G value is determined by the lower limit of the microdislocation generation region in the OSF ring and the I-value. — It is only necessary to pull up the silicon single crystal under the condition of being within the upper limit of the lithium region, whereby a silicon single crystal substrate having no micro dislocation generation region can be manufactured. Was confirmed.
また、 転位が発生しない領域という のは、 ボロ ン濃度や窒素濃度で大 き く変化する。 基板内に十分な B MDが得られる窒素濃度は 3 X I 0 13 In addition, the region where dislocation does not occur greatly changes depending on boron concentration and nitrogen concentration. The nitrogen concentration at which sufficient BMD is obtained in the substrate is 3 XI 0 13
/ c m 3 以上なので、 この濃度で使用する こ とがゲッタ リ ング能力向上 の観点から望ま しい。 また、 抵抗率が通常抵抗率 ( 1 〜 2 0 Ω · c m) と低抵抗率 ( 0 . 1 Ω · c m以下) と の間では、 さほど、 O S F リ ング が発生する V Z G値が高く ならないこ と と、 いわゆる N領域も拡大しな いので、 V / G値を本発明の範囲内と して結晶を引上げるのは難しい。 よって、 抵抗率は 0 . 1 Ω · c m以下、 好ま しく は 0 . 0 2 Ω · c m以 下の範囲で、 本発明手法を適応するこ とが望ま しい。 / cm 3 or more, it is desirable to use at this concentration from the viewpoint of improving gettering ability. In addition, when the resistivity is between the normal resistivity (1 to 20 Ω · cm) and the low resistivity (0.1 Ω · cm or less), the VZG value at which the OSF ring occurs does not increase so much. In addition, since the so-called N region does not expand, it is difficult to pull the crystal with the V / G value within the range of the present invention. Therefore, it is desirable to apply the method of the present invention within a resistivity of 0.1 Ω · cm or less, preferably, of 0.02 Ω · cm or less.
一方、 窒素濃度が 1 X I 0 14/ c m 3 以上と高い場合には、 微小転位 が発生するよ う な領域が拡大するので、 こ の窒素濃度を使用する場合に は、 単結晶引上げ装置内の H Z を調整して、 結晶中の固液界面近傍の結 晶軸方向温度勾配 Gの面内分布を平坦化する等によ り 、 面内から窒素起 因の転位と、 I ー リ ツチ領域の転位の両方を排除する必要がある。 On the other hand, when the nitrogen concentration is as high as 1 XI 0 14 / cm 3 or more, the region where micro dislocations occur is enlarged. By adjusting the HZ and flattening the in-plane distribution of the crystal axis temperature gradient G near the solid-liquid interface in the crystal, dislocations caused by nitrogen from the in-plane and the I-rich region Both dislocations need to be eliminated.
なお、 本発明は、 上記実施形態に限定されるものではない。 上記実施 形態は、 例示であり、 本発明の特許請求の範囲に記載された技術的思想 と実質的に同一な構成を有し、 同様な作用効果を奏する ものは、 いかな るも のであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above embodiment is an exemplification, and any of those having substantially the same configuration as the technical idea described in the claims of the present invention and having the same function and effect can be obtained. Are also included in the technical scope of the present invention.
例えば、 上記実施形態においては、 直径 2 0 0 m m ( 8イ ンチ) のシ リ コ ン単結晶を育成する場合につき例を挙げて説明 したが、 本発明はこ れには限定されず、 直径 1 0 0 〜 4 0 0 m m ( 4 〜 1 6 イ ンチ) あるい はそれ以上のシリ コン単結晶にも適用でき る。 また、 本発明は、 シ リ コ ン融液に水平磁場、 縦磁場、 カ スプ磁場等を 印加するいわゆる M C Z法にも適用でき るこ と は言う までもない。 For example, in the above embodiment, the case where a silicon single crystal having a diameter of 200 mm (8 inches) is grown has been described by way of example. However, the present invention is not limited to this. It can also be applied to silicon single crystals of 100 to 400 mm (4 to 16 inches) or larger. Further, it goes without saying that the present invention can be applied to a so-called MCZ method in which a horizontal magnetic field, a vertical magnetic field, a cusp magnetic field, or the like is applied to a silicon melt.

Claims

請 求 の 範 囲 The scope of the claims
1 . ェ ピタ キシャル ゥエ ーハの基板 と な る シ リ コ ン単結晶基板であつ て、 窒素および高濃度のボロ ンが ドープされ、 かつ V Z G (こ こ に、 V : 引上げ速度、 G : 結晶中の固液界面近傍の結晶軸方向温度勾配 と する) 値が O S F リ ング領域内の微小転位発生領域の下限値 と I — リ ツチ領域 の上限値の間 と な る条件で育成された単結晶であ る こ と を特徴 と するェ ピタ キシャルゥエ ーハ用のシ リ コ ン単結晶基板。 1. A silicon single crystal substrate to be a substrate of an epitaxial wafer, which is doped with nitrogen and a high concentration of boron, and has a VZG (where, V: pulling speed, G: The temperature was defined as the temperature gradient in the direction of the crystal axis near the solid-liquid interface in the crystal. The value was between the lower limit of the microdislocation generation region in the OSF ring region and the upper limit of the I-rich region. A silicon single crystal substrate for an epitaxial wafer characterized by being a single crystal.
2 . 前記シ リ コ ン単結晶基板は、 抵抗率が 0 . 0 2 Q ' c m以下であ る こ と を特徴 とす る請求項 1 に記載 したェ ピタ キシャルゥエ ーハ用の シ リ コ ン単結晶基板。 2. The silicon for an epitaxial wafer according to claim 1, wherein the silicon single crystal substrate has a resistivity of 0.02 Q'cm or less. Single crystal substrate.
3 . 前記 ドープ された窒素の濃度が 3 X I 0 1 3 / c m 3 以上である と を特徴 と する請求項 1 ま たは請求項 2 に記載 したェ ピタ キ シャルゥェ ー ハ用のシ リ コ ン単結晶基板。 3. The concentration of doped nitrogen claim 1 or characterized TO THE 3 XI 0 1 3 / cm 3 or more is re co down for E pita key Sharuwe Doha according to claim 2 Single crystal substrate.
4 . 請求項 1 ない し請求項 3 のいずれか 1 項に記載 したシ リ コ ン単結 晶基板の上にェ ピタ キ シャル層を成長 させて成る こ と を特徴 と するェ ピ タ キシヤノレゥエ ー ノヽ 。 4. An epitaxy layer formed by growing an epitaxy layer on the silicon single crystal substrate according to any one of claims 1 to 3. No.
5 . 窒素お よ び高濃度のボロ ンを ドープ したシ リ コ ン単結晶基板上に ェピタ キシャ ル層 を形成したェ ピタ キシャルゥェ一ノヽであっ て、 前記ェ ピタ キシャル層表面に基板の結晶欠陥に起因するェ ピタ キシャル層欠陥 が存在しないこ と を特徴と するェ ピタ キシャルゥエーハ。 5. An epitaxial layer having an epitaxial layer formed on a silicon single crystal substrate doped with nitrogen and a high concentration of boron, wherein the surface of the epitaxial layer has crystal defects on the substrate. An epitaxial wafer characterized in that there are no epitaxial layer defects caused by the above.
6 . チ ヨ ク ラルスキー法によ り 窒素およ び高濃度のボ ロ ンを ド一プし たシ リ コ ン単結晶 を育成す る際に、 V Z G値が O S F リ ング内微小転位 発生領域の下限値 と I ー リ ツチ領域の上限値の間 と な る条件でシ リ コ ン 単結晶を引上げる こ と を特徴とす るェ ピタ キシャル成長用のシ リ コ ン単 結晶の製造方法。 6. When growing a silicon single crystal doped with nitrogen and high concentration of boron by the Czochralski method, the VZG value has a small dislocation generation region in the OSF ring. Under the condition between the lower limit of the I-rich region and the upper limit of the I-rich region. A method for producing a silicon single crystal for epitaxial growth, characterized by pulling a single crystal.
7 . 前記育成する シ リ コ ン単結晶の抵抗率を 0 . 0 2 Q ' c m以下、 窒素濃度を 3 X I 0 13/ c m 3 以上 とする こ と を特徴 と する請求項 6 に 記載したシ リ コ ン単結晶の製造方法。 7. The resistivity of the sheet re co down single crystal to be grown 0. 0 2 Q 'cm or less, according to claim 6, characterized that you and the nitrogen concentration 3 XI 0 13 / cm 3 or more sheet Manufacturing method of silicon single crystal.
8 . 請求項 6 ま たは請求項 7 に記載の製造方法で製造されたシ リ コ ン 単結晶 をス ライ ス して得 られる基板上に、 ェ ピタ キ シャ ル層 を成長 させ る こ と を特徴とするェ ピタ キシャルゥエ ーハの製造方法。 8. A method for growing an epitaxial layer on a substrate obtained by slicing a silicon single crystal produced by the production method according to claim 6 or 7. A method for producing an epitaxial wafer characterized by the following.
PCT/JP2002/006101 2001-06-25 2002-06-19 Silicon single crystal substrate, epitaxial wafer, and method for manufacturing them WO2003000962A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-190915 2001-06-25
JP2001190915A JP2003002786A (en) 2001-06-25 2001-06-25 Silicon single crystal substrate, epitaxial wafer and method for producing them

Publications (1)

Publication Number Publication Date
WO2003000962A1 true WO2003000962A1 (en) 2003-01-03

Family

ID=19029612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006101 WO2003000962A1 (en) 2001-06-25 2002-06-19 Silicon single crystal substrate, epitaxial wafer, and method for manufacturing them

Country Status (2)

Country Link
JP (1) JP2003002786A (en)
WO (1) WO2003000962A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040045A1 (en) * 2002-10-31 2004-05-13 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for producing silicon wafer
US8021484B2 (en) 2006-03-30 2011-09-20 Sumco Techxiv Corporation Method of manufacturing epitaxial silicon wafer and apparatus therefor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315258A (en) * 2003-04-14 2004-11-11 Shin Etsu Handotai Co Ltd Production method for single crystal
JP2005015312A (en) 2003-06-27 2005-01-20 Shin Etsu Handotai Co Ltd Method for manufacturing single crystal, and single crystal
SG142208A1 (en) * 2006-10-18 2008-05-28 Siltronic Ag Process for producing p»-doped and epitaxially coated semiconductor wafers from silicon
EP2191130B1 (en) 2007-08-17 2012-08-01 Alex Koleoglou Bearing tooth gears for wind turbine applications
WO2009133720A1 (en) * 2008-04-30 2009-11-05 株式会社Sumco Epitaxial silicon wafer
JP2009292669A (en) * 2008-06-03 2009-12-17 Sumco Corp Silicon wafer
JP5636183B2 (en) * 2009-11-11 2014-12-03 コバレントマテリアル株式会社 Compound semiconductor substrate
DE102014221421B3 (en) * 2014-10-22 2015-12-24 Siltronic Ag Process for producing an epitaxial semiconductor wafer of monocrystalline silicon
JP6354643B2 (en) * 2015-04-06 2018-07-11 信越半導体株式会社 Method for producing silicon single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057344A1 (en) * 1998-05-01 1999-11-11 Nippon Steel Corporation Silicon semiconductor wafer and method for producing the same
EP0959154A1 (en) * 1998-05-22 1999-11-24 Shin-Etsu Handotai Company Limited A method for producing an epitaxial silicon single crystal wafer and the epitaxial single crystal wafer
EP0962556A1 (en) * 1998-06-04 1999-12-08 Shin-Etsu Handotai Company Limited Nitrogen doped single crystal silicon wafer with few defects and method for its production

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3626364B2 (en) * 1998-05-22 2005-03-09 信越半導体株式会社 Epitaxial silicon single crystal wafer manufacturing method and epitaxial silicon single crystal wafer
JP3692812B2 (en) * 1998-06-04 2005-09-07 信越半導体株式会社 Nitrogen-doped low-defect silicon single crystal wafer and manufacturing method thereof
JP4224966B2 (en) * 1999-10-15 2009-02-18 信越半導体株式会社 Manufacturing method of silicon single crystal wafer, manufacturing method of epitaxial wafer, evaluation method of silicon single crystal wafer
WO2002000969A1 (en) * 2000-06-26 2002-01-03 Shin-Etsu Handotai Co., Ltd Method for producing silicon wafer and epitaxial wafer, and epitaxial wafer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057344A1 (en) * 1998-05-01 1999-11-11 Nippon Steel Corporation Silicon semiconductor wafer and method for producing the same
EP0959154A1 (en) * 1998-05-22 1999-11-24 Shin-Etsu Handotai Company Limited A method for producing an epitaxial silicon single crystal wafer and the epitaxial single crystal wafer
EP0962556A1 (en) * 1998-06-04 1999-12-08 Shin-Etsu Handotai Company Limited Nitrogen doped single crystal silicon wafer with few defects and method for its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040045A1 (en) * 2002-10-31 2004-05-13 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for producing silicon wafer
US7329317B2 (en) 2002-10-31 2008-02-12 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for producing silicon wafer
US8021484B2 (en) 2006-03-30 2011-09-20 Sumco Techxiv Corporation Method of manufacturing epitaxial silicon wafer and apparatus therefor
US8888913B2 (en) 2006-03-30 2014-11-18 Sumco Techxiv Corporation Method of manufacturing epitaxial silicon wafer and apparatus therefor

Also Published As

Publication number Publication date
JP2003002786A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP5691504B2 (en) Silicon single crystal growth method
KR100788988B1 (en) Silicon single-crystal wafer for epitaxial wafer, epitaxial wafer, methods for producing them, and evaluating method
WO2006022296A1 (en) Silicon wafer, process for producing the same and method of growing silicon single crystal
KR20030002300A (en) Method of fabricating silicon wafers including argon/ammonia rapid thermal annealing process, silicon wafers fabricated thereby and and czochralski pullers for manufacturing monocrystalline silicon ingots
JP3846627B2 (en) Silicon wafer, silicon epitaxial wafer, annealed wafer, and manufacturing method thereof
JPH11189495A (en) Silicon single crystal and its production
JP4516096B2 (en) Method for producing silicon single crystal
WO2003000962A1 (en) Silicon single crystal substrate, epitaxial wafer, and method for manufacturing them
WO2006117939A1 (en) Method for producing silicon wafer
JP2003124219A (en) Silicon wafer and epitaxial silicon wafer
JP2003313089A (en) Method for manufacturing single crystal silicon and single crystal silicon wafer, seed crystal for manufacturing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
JP2011195414A (en) Method for growing single crystal silicon having square cross section and silicon wafer having square section
JP2001068477A (en) Epitaxial silicon wafer
WO2001073169A1 (en) Silicon wafer and method for producing silicon single crystal
US7518187B2 (en) Soi wafer and a method for producing the same
WO2004007815A1 (en) Silicon wafer for epitaxial growth, epitaxial wafer, and its manufacturing method
JP2011054821A (en) Method of producing epitaxial wafer and epitaxial wafer
JP6719718B2 (en) Si ingot crystal manufacturing method and manufacturing apparatus thereof
WO2004065666A1 (en) Process for producing p doped silicon single crystal and p doped n type silicon single crystal wafe
JP2002198375A (en) Method of heat treatment of semiconductor wafer and semiconducor wafer fabricated therby
JP2002134518A (en) Resistibility-adjusted silicon wafer and its manufacturing method
JP4296740B2 (en) Manufacturing method of silicon single crystal wafer, silicon single crystal wafer and epitaxial wafer
JP4038750B2 (en) Crystal growth method
JP2009073684A (en) Manufacturing method of epitaxial wafer
JP2001039797A (en) Silicon wafer for laminating epitaxial layer and epitaxial wafer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2003134369

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref document number: 2004103744

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase