WO2003000126A1 - Biophysiological detector - Google Patents

Biophysiological detector Download PDF

Info

Publication number
WO2003000126A1
WO2003000126A1 PCT/JP2001/010071 JP0110071W WO03000126A1 WO 2003000126 A1 WO2003000126 A1 WO 2003000126A1 JP 0110071 W JP0110071 W JP 0110071W WO 03000126 A1 WO03000126 A1 WO 03000126A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
subject
frequency
detecting
detected
Prior art date
Application number
PCT/JP2001/010071
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiko Yanaga
Original Assignee
Advanced Medical Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Medical Inc. filed Critical Advanced Medical Inc.
Publication of WO2003000126A1 publication Critical patent/WO2003000126A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6891Furniture

Definitions

  • the present invention relates to a biological physiology detecting device that detects biological physiology information such as a body weight, a respiratory rate, a pulse rate, a cough, and a turn of a subject on a bed.
  • the weight of a subject who is bedridden is measured by placing the subject on a weighing dish with the caregiver's hand, and the change in weight during dialysis is measured by measuring the circulating volume with a dialyzer.
  • the change in weight during dialysis is measured by measuring the circulating volume with a dialyzer.
  • This living body monitoring device has a card-type main body, a light-emitting part and a light-receiving part for detecting a pulse wave, an electrocardiogram, an electrode for detecting at least one of body fat percentage and skin resistance, a body temperature and skin. It has a temperature detecting unit for detecting temperature, and a vibration detecting unit for detecting at least one of body surface vibration due to heartbeat or breathing and body movement due to body movement.
  • the living body monitoring device disclosed in Japanese Patent Application Laid-Open No. H10-2299773 determines a blood circulation dynamics such as a pulse rate, a blood pressure value, an arterial stiffness, and a cardiac output of a human body, and detects a signal. Eliminates the discomfort associated with the mounting of the means Displacement sensor (vibration detecting means) for detecting body vibration caused by liquid circulation, calculating means for calculating body vibration characteristics caused by blood circulation of the human body from the detected vibration, and blood circulation of the human body based on the calculated value It is composed of judgment means for judging dynamics.
  • a blood circulation dynamics such as a pulse rate, a blood pressure value, an arterial stiffness, and a cardiac output of a human body
  • the living body sensing unit attached to the bed of the remote care support system disclosed in Japanese Patent Application Laid-Open No. 2000-349933 has a predetermined space between the bed base and the mattress unit. It is composed of a plurality of magnetic sensors arranged at intervals and a soft magnetic material sheet arranged above the magnetic sensors.
  • fluctuations of the living body movement and heartbeat of the living body due to respiration
  • the mechanical movement of the soft magnetic sheet changes the magnetic field, and the magnetic field changes.
  • the change is sensed by the magnetic sensor.
  • the fluctuation of the magnetic field by the magnetic sensor stops it is determined that an abnormal situation has occurred, and an alarm is issued via the communication means.
  • a plurality of load sensors installed under a bedding, inside, or on a surface with a predetermined distribution and outputting a load signal corresponding to an applied load are disclosed.
  • Respiratory signal generating means for generating a respiratory signal corresponding to the respiratory state of the living body based on the plurality of load signals; respiratory state grasping means for detecting the respiratory state of the living body based on the respiratory signal;
  • a living body motor device including a notifying unit for notifying the respiratory state of the living body is disclosed.
  • this living body monitoring device includes a sleeping posture calculating means for extracting a posture characteristic amount from a load signal to calculate a sleeping posture of the living body, and / or integrating all loads to generate a living posture.
  • a weight calculating means for calculating the body weight is provided.
  • a plurality of load sensors must be arranged in a predetermined distribution on the bed, so that the production cost of the bed increases.
  • U.S.P.No. 5, 47 9 and 93 39 disclose a sleep detecting device.
  • an infrared sensor or a piezoelectric sensor is provided, and a sleep state of a subject is detected from a signal waveform from the sensor.
  • the piezoelectric sensor is disposed directly on the bed, the trouble of the subject is promoted. Disclosure of the invention
  • An object of the present invention is to provide a living body physiology detecting device that can easily detect the living body physiology information of a subject by measuring the load of a bed on which the subject stays.
  • the present invention measures a load on a bed on which a subject stays; detects a change state of the load from the measurement result; obtains a frequency distribution based on the change state of the load; The magnitude of the load is detected from the measurement result; and the biological physiological data of the subject is obtained from the frequency distribution and the magnitude of the load.
  • data such as frequency and magnitude (amplitude) is obtained from the waveform indicating the fluctuation of the measured load, and the physiological information of the subject is obtained based on this data.
  • the present invention provides a load measuring means for measuring a load of a bed on which a subject stays, a load fluctuation detecting means for detecting a fluctuation state of a load measured by the load measuring means, and a load fluctuation detecting means.
  • Frequency distribution calculating means for calculating a frequency distribution based on the fluctuation state of the load detected by the load;
  • a fluctuation amount detecting means for detecting the magnitude of the fluctuation of the load detected by the heavy fluctuation detecting means; a frequency distribution calculated by the frequency distribution calculating means; and a magnitude of the load detected by the fluctuation amount detecting means. Therefore, a biological physiological state detecting means for obtaining biological physiological data of a subject is provided.
  • a frequency that remarkably appears in the first frequency domain in other words, a frequency that is greater than or equal to a predetermined value in the first frequency domain, is a fundamental frequency of a respiratory rate. And detect this as the respiratory rate of the subject.
  • a harmonic component of the fundamental frequency of the respiration is excluded from the frequency distribution, and a frequency remarkably appearing in a second frequency region higher than the first frequency region is defined as a fundamental frequency of a pulse rate. This is detected as the pulse rate of the subject. Further, when the magnitude of the frequency in the third frequency region higher than the second frequency region increases from the frequency distribution, it is detected that the subject is snoring.
  • the load sensor comprises at least four load sensors for measuring the four corner loads of the bed on which the subject stays, and these load sensors are preferably mounted on the legs of the bed.
  • the movement of the subject's center of gravity is detected from the detection results of the four load sensors, and the subject's turnover can be detected based on the movement of the center of gravity.
  • Figure 1 is a block diagram showing the configuration of the present invention
  • FIG. 2 is a schematic configuration diagram of an apparatus according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a signal processing circuit according to an embodiment of the present invention.
  • FIG. 4 is a flowchart showing the calculation of the detected value fluctuation waveform in the signal processing according to the embodiment of the present invention.
  • Figure 5 is a characteristic diagram showing an example of the detected value fluctuation waveform (time-series data).
  • FIG. 6 is a flowchart illustrating a process of detecting biological physiological information according to the embodiment of the present invention
  • FIG. 7 is a characteristic diagram illustrating an example of frequency analysis
  • Figure 8 is a characteristic diagram showing the subject snoring
  • Figure 9 is a characteristic diagram showing the subject coughing
  • Figure 10 shows the waveform when the subject coughed
  • FIG. 11 is a diagram showing a waveform when a subject turns over
  • FIG. 12A is a flowchart showing another embodiment for detecting a turn over
  • FIG. 12B is a center of gravity. It is explanatory drawing which showed the change of the position.
  • the load was measured by the load measuring means 100 for measuring the load of the bed 1 on which the subject stays, and the load measuring means 100
  • Load fluctuation detecting means 110 for detecting a load fluctuation state
  • frequency distribution calculating means 120 for calculating a frequency distribution based on the load fluctuation state detected by the load fluctuation detecting means 110
  • a fluctuation amount detecting means 130 for detecting the magnitude of the fluctuation of the load detected by the load fluctuation detecting means 110
  • a biological physiological state detecting means 140 for obtaining biological physiological data of the subject from the magnitude of the load detected by 140 is provided.
  • the load on the bed 1 on which the subject stays is measured, the frequency and the magnitude (amplitude) of the variation are determined from the waveform indicating the variation of the measured load, and based on these data. It can obtain the physiological information of the subject.
  • the biological physiological state detecting means 140 sets a frequency that remarkably appears in the first frequency region based on the frequency distribution calculated by the frequency distribution calculating means 120 as a fundamental frequency of a respiratory rate. In addition to the above, it is desirable to provide a respiratory rate judging means for using this as a subject's respiratory rate.
  • the physiological condition detecting means 140 removes, from the frequency distribution calculated by the frequency distribution calculating means 120, harmonic components of the fundamental frequency of the respiratory rate determined by the respiratory rate determining means. It is desirable to include a pulse rate judging means which sets a frequency which appears remarkably in the second frequency range higher than the first frequency range as a fundamental frequency of a pulse rate and which absorbs the pulse of the subject. No.
  • the biological physiological condition detecting means 140 may include, in the frequency distribution calculated by the load frequency distribution calculating means 120, a magnitude of a frequency in a third frequency region higher than the second frequency region. It is desirable to include a snoring determination means for determining that the subject is snoring when the level increases. Further, the physiological condition detecting means 140 may include the fluctuation amount detecting means 130 It is desirable to include a ⁇ determination means for determining that the subject coughs when the amount of change in the load detected by ⁇ ⁇ ⁇ ⁇ suddenly increases.
  • the biological physiological state detecting means 140 includes a turnover determining means for determining that the subject has turned over when the variation in the load detected by the variation detecting means 130 is equal to or greater than a predetermined value. It is desirable to have.
  • the load measuring means 100 comprises at least four load sensors for measuring the four corners of the bed on which the subject stays.
  • the biological physiological condition detecting means 1 Reference numeral 40 denotes a center-of-gravity shift detecting means for detecting the shift of the center of gravity of the subject based on load signals from at least four load sensors of the load measuring means 100, and the center-of-gravity shift detecting means detects the shift of the center of gravity. It is desirable to have a turning determination means for determining that the subject has turned over when detected.
  • an alarm unit 160 that issues an alarm when the turnover is not detected for a predetermined time by the turnover determination unit.
  • a communication unit 150 for transmitting the biological physiological data detected by the biological physiological state detecting unit 140.
  • biophysiological data can be communicated to the management center 170 of a nursing center, a nurse center, a hospital, etc., and early response is possible.
  • the load detecting sensor 3 (3) for detecting the load on the leg 2 is attached to the end of the four legs 2 of the bed 1 where the subject stays. a, 3 b, 3 c, 3 d) are attached, and the signal from each load detection sensor 3 is transmitted to a signal processing circuit 5 provided in the unit box 4 for processing, and an alarm signal, These are output as communication signals and display signals.
  • the signal processing circuit 5 adds and amplifies a small signal of a load variation from the load detection sensor 3 (3a, 3b, 3c, 3d).
  • An addition circuit 6 for converting the signal from the addition circuit 6 and the analog signal from the load detection sensor 3 into a digital signal; a digital signal of the load output from the AD conversion circuit 7;
  • a control unit (CZU) 8 that executes predetermined signal processing based on the setting signal from 9 and an external command or the like input through Z or the communication unit 10 and outputs a physiological information signal.
  • a display unit 11 for displaying biological physiological information (weight, respiratory rate, pulse rate, snoring, turning over, etc.) based on the biological physiological information signal from the controller unit 8, and a biological physiological information based on the biological organizing information signal.
  • an alarm unit 12 that issues an alarm when there is an abnormality.
  • the fluctuation waveform of the detected value is calculated based on the load data Wb detected by the load detection sensor 3.
  • This processing is shown, for example, in the flowchart of FIG. In this flowchart, which is started periodically and continuously from step 40, the detected value Wb is read in step 42, and the detected value Wb is accumulated in step 44. This process is continuously performed for a predetermined time t1 from the start. After the predetermined time t1, the process proceeds to step 48 to calculate a fluctuation waveform (time-series data) of the detected value.
  • the fluctuation waveform (time-series data) of the load obtained in this way is, for example, shown in FIG. Further, the weight of the subject and the change in the weight can be simply measured from the detected value Wb.
  • the flowchart shown in FIG. 6 shows an example of a biological physiology information detecting process for detecting various biological physiology information from the load fluctuation waveform (time-series data).
  • the fluctuation waveform (time-series data) calculated in the above-described flowchart is read in step 52, and in step 54, for example, the FFT method is used. Therefore, a frequency analysis is performed, and for example, a frequency graph as shown in FIG. 7 is obtained.
  • a prominent frequency is selected in a low frequency band (for example, 0.01 to 1 Hz), and this is detected as the respiratory rate Fb.
  • b is compared with, for example, the previous respiratory rate or a predetermined value. If it is determined that there is no problem (normal), the process proceeds to the next step 60. Also, if the respiratory rate Fb is abnormal, for example, if it is very low or high compared to the previous detection value, if it is much higher or lower than the specified value If so, proceed to step 76 to issue an alarm.
  • the process proceeds to step 78 to transmit the data, and that the alarm is issued is transmitted to a nursing center or the like. It may be possible to proceed to step 60 in order to continue.
  • the pulse rate Fp is detected.
  • the respiration rate Fp as the fundamental wave
  • its harmonic components two and three times the components
  • a predetermined frequency range 0.5 to 3 Hz.
  • the pulse rate Fp is compared with, for example, the previous pulse rate or a predetermined value, and if it is determined that there is no problem (normal), the process proceeds to the next step 64. move on.
  • the pulse rate Fp is abnormal, for example, when it is extremely small or large compared to the previous detection value, when it is very large or small than a predetermined value.
  • step 76 If so, proceed to step 76 to issue an alarm.
  • the process proceeds to step 78 to transmit data, and the fact that this alarm is issued is transmitted to a nursing center or the like. However, please proceed to the next step 64 to continue the detection. It is a good thing.
  • step 64 snoring is detected. As shown in Fig. 8, when a peak Fs is seen in a high frequency region (1 Hz or more), it is detected as snoring. Then, in step 66, it is determined whether or not this snoring is normal. For example, if snoring is detected at regular intervals and at a certain degree of regularity, it is determined to be normal, and if snoring changes irregularly or abnormally large, or if there is a state where it stops for a predetermined time, Judge as abnormal. As a result, if normal, the process proceeds to the next step 68, and if abnormal, the process proceeds to step 76 as described above.
  • step 68 cough detection is performed. For example, as shown in FIG. 9, when a large peak Fc is detected as a whole in the frequency graph, it is detected that the subject has coughed.
  • step 70 a cough determination is made. For example, if the subject has coughed continuously, it is determined to be abnormal and the process proceeds to step 76. If no cough is detected, the process proceeds to the next step 72 as normal.
  • the subject coughs as shown in FIG. 10, when the part F c ′ where the amplitude of the above-mentioned fluctuation waveform (time-series data) greatly changes is detected, the subject takes a seat. It may be determined that it has been done.
  • step 72 it is determined whether or not the subject has turned over c.
  • the change in the amplitude of the fluctuation waveform is greater than in the case of the cough described above. Is large and the cycle of change is large, it can be determined that the subject has turned over.
  • step 74 the rollover state of the subject is determined. In this determination, for example, in the case where turning over is not determined for a predetermined period of time, the possibility of bedsore becomes high, so that it is determined to be abnormal and the process proceeds to step 76 to issue an alarm.
  • step 78 the data is transferred to the nursing care center via a communication means such as a telephone line or wireless communication. This is transmitted to the hospital, etc., and returns to the beginning of the control from step 80.
  • FIG. 12 discloses another method for detecting the rollover described above. Fig. 1 2
  • step 721 is based on the subject's center of gravity based on the loads Wa, Wb, Wc, Wd detected by the four load detection sensors 3a, 3b, 3c, 3d. It calculates the position Wp.
  • each load can be easily obtained by vector composition.
  • the calculated center-of-gravity position Wp is set as the current value Wp (n) and compared with the previous value Wp (n-1), and the current value Wp (n) and the previous value Wp (n) are compared. -If 1) is not equal, it is determined that the subject has turned over and that the subject has turned over in step 723. If the current value Wp (n) is equal to the previous value Wp (n-1), step 723 is bypassed, and no turnover of the subject is detected.
  • the living body arrangement information of the subject can be detected by measuring the load on the bed, there is no need to attach a detection instrument to the subject or move the subject. It does not contribute to the discomfort of the subject, and can continuously trace the subject's condition while the subject stays in bed.
  • an alarm can be issued, so that the caregiver can take a rest with peace of mind. Because it is possible to grasp the abnormalities, it is possible to respond promptly when the test subject has an abnormality.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A biophysiological detector for collecting biophysiological information on a subject by measuring the load on a bed where the subject exists. The load on a bed (1) where the subject exists is measured, the frequency distribution and the magnitude of variation (amplitude) are determined from a waveform indicative of the variation of the measured load and then the biophysiological information on the subject is acquired from these data. More specifically, a frequency appearing noticeably in a first frequency region is regarded as the respiration rate and a frequency appearing noticeably in a second frequency region higher than the first frequency region is regarded as the pulse rate. The subject is judged to be snoring if the variation in a thirst frequency region higher than the second frequency region increases. The subject judged to cough if the variation increases suddenly. Furthermore, the subject is judged to turn from side to side if the variation of the load exceeds a specified level.

Description

生体生理検出装置 Biological physiology detector
技術分野 Technical field
この発明は、 ベッド上にある被験者の体重、 呼吸数、 脈拍数、 咳、 寝返り 等の生体生理情報を検出する生体生理検出装置に関する。  The present invention relates to a biological physiology detecting device that detects biological physiology information such as a body weight, a respiratory rate, a pulse rate, a cough, and a turn of a subject on a bed.
明 田  Akita
背景技術 Background art
従来、 ベッドに寝たきりの状態にある被験者の体重測定は、 介護者の手に よって被験者を秤皿に乗せて測定しており、 さらに、 透析中の体重変化は、 循環量を透析器で測定し算出していた。  Conventionally, the weight of a subject who is bedridden is measured by placing the subject on a weighing dish with the caregiver's hand, and the change in weight during dialysis is measured by measuring the circulating volume with a dialyzer. Was calculated.
また、 呼吸数、 脈拍数等の生体生理測定は、 呼吸センサ、 脈拍センサを被 験者に取り付けて測定する必要があった。 この種の生体モニタ装置として、 特願平 1 0— 1 1 0 4 6 5号 (特開平 1 1一 2 9 9 7 4 0号) が開示する生 体モニタ装置がある。 この生体モニタ装置は、 カード型の本体に、 脈波を検 出するための発光部及ぴ受光部、 心電図、 体脂肪率及ぴ皮膚抵抗の少なくと も一つを検出する電極、 体温や皮膚温を検出するための温度検出部、 心拍や 呼吸による体表面の振動と身体動作による体動の少なくとも一つを検出する ための振動検出部を備えているものである。  In addition, it was necessary to attach a respiratory sensor and a pulse sensor to the subject for measurement of biological physiology such as respiratory rate and pulse rate. As this kind of living body monitoring apparatus, there is a living body monitoring apparatus disclosed in Japanese Patent Application No. Hei 10-110465 (Japanese Patent Application Laid-Open No. 11-129974). This living body monitoring device has a card-type main body, a light-emitting part and a light-receiving part for detecting a pulse wave, an electrocardiogram, an electrode for detecting at least one of body fat percentage and skin resistance, a body temperature and skin. It has a temperature detecting unit for detecting temperature, and a vibration detecting unit for detecting at least one of body surface vibration due to heartbeat or breathing and body movement due to body movement.
しかしながら、 従来の体重測定では、 介護者への負担が大きくなるという 問題点を有し、 生体モニタ装置を身体に取り付けて測定する場合には、 被験 者のわずらわしさが助長されるという問題点がある。  However, conventional weight measurement has a problem in that the burden on the caregiver is increased, and when the measurement is performed with the living body monitoring device attached to the body, the troublesomeness of the subject is promoted. is there.
特開平 1 0— 2 2 9 9 7 3号に開示される生体モニタ装置は、 人体の脈拍 数、 血圧値、 動脈硬化度、 心拍出量等の血液循環動態を判定すると共に、 信 号検出手段装着に伴う不快感を解消するもので、 べッドに存在する人体の血 液循環により生じる身体の振動を検出する変位センサ (振動検出手段) と、 検出した振動から人体の血液循環により生じる身体の振動特性量を演算する 演算手段と、 その演算値に基づき人体の血液循環動態を判定する判定手段で 構成される。 The living body monitoring device disclosed in Japanese Patent Application Laid-Open No. H10-2299773 determines a blood circulation dynamics such as a pulse rate, a blood pressure value, an arterial stiffness, and a cardiac output of a human body, and detects a signal. Eliminates the discomfort associated with the mounting of the means Displacement sensor (vibration detecting means) for detecting body vibration caused by liquid circulation, calculating means for calculating body vibration characteristics caused by blood circulation of the human body from the detected vibration, and blood circulation of the human body based on the calculated value It is composed of judgment means for judging dynamics.
しかしながら、 振動検出手段としての圧電センサの検出能力と、 被験者の 寝心地との間には相反する関係にあるため、 検出能力を高めるためにはどう しても被験者の寝心地がわるくなるという不具合が生じる。  However, there is a conflicting relationship between the detection capability of the piezoelectric sensor as the vibration detection means and the subject's comfort, and there is a problem that the subject's comfort may become worse in order to increase the detection capability. .
特開 2000— 349 93 3号 (P 2000— 3499 3 3 A) に開示さ れる遠隔介護支援システムのべッドに装着される生体感知部は、 べッド基部 とマットレス部の間に所定の間隔で配された複数の磁気センサと、 この磁気 センサの上方に配された軟磁性体シートによって構成される。 これによつて、 生体の変動 (呼吸に伴う生体の動き及び心拍) がマッ トレス部を通じて前記 軟磁性体シートに伝わり、 この軟磁性体シートの機械的な動きが磁界を変化 させ、 この磁界の変化を前記磁気センサで感知する。 そして、 磁気センサに よる磁界の変動が停止した時に異常事態が発生したことが判定され、 通信手 段を介して警報が発信される。  The living body sensing unit attached to the bed of the remote care support system disclosed in Japanese Patent Application Laid-Open No. 2000-349933 (P2000-349933A) has a predetermined space between the bed base and the mattress unit. It is composed of a plurality of magnetic sensors arranged at intervals and a soft magnetic material sheet arranged above the magnetic sensors. As a result, fluctuations of the living body (movement and heartbeat of the living body due to respiration) are transmitted to the soft magnetic sheet through the mattress portion, and the mechanical movement of the soft magnetic sheet changes the magnetic field, and the magnetic field changes. The change is sensed by the magnetic sensor. Then, when the fluctuation of the magnetic field by the magnetic sensor stops, it is determined that an abnormal situation has occurred, and an alarm is issued via the communication means.
この引例では、 生体感知部をベッドに内蔵しなければならないので、 べッ ドの製造コストが上昇するという不具合がある。  In this reference, since the living body sensing unit must be built in the bed, there is a problem that the manufacturing cost of the bed increases.
さらに、 特開 2001— 70256号 (P 200 1— 70256 A) では、 寝具の下、 内部、 又は表面に所定の分布で設置され、 印加荷重に対応した荷 重信号を出力する複数の荷重センサと、 これら複数の荷重信号に基づいて、 生体の呼吸状態に対応した呼吸信号を生成する呼吸信号生成手段と、 この呼 吸信号に基づいて、 生体の呼吸状態を検出する呼吸状態把握手段と、 把握し た生体の呼吸状態を報知する報知手段とを備える生体モ-タ装置が開示され る。 また、 この生体モニタ装置は、 荷重信号から姿勢特徴量を抽出して生体 の寝姿を算出する寝姿算出手段、 及び 若しくはすべての荷重を積算して生 体の体重を算出する体重算出手段を具備する。 Further, in Japanese Patent Application Laid-Open No. 2001-70256 (P2001-70256A), a plurality of load sensors installed under a bedding, inside, or on a surface with a predetermined distribution and outputting a load signal corresponding to an applied load are disclosed. Respiratory signal generating means for generating a respiratory signal corresponding to the respiratory state of the living body based on the plurality of load signals; respiratory state grasping means for detecting the respiratory state of the living body based on the respiratory signal; A living body motor device including a notifying unit for notifying the respiratory state of the living body is disclosed. In addition, this living body monitoring device includes a sleeping posture calculating means for extracting a posture characteristic amount from a load signal to calculate a sleeping posture of the living body, and / or integrating all loads to generate a living posture. A weight calculating means for calculating the body weight is provided.
この引例も、 上記引例と同様に、 ベッドに所定の分布で複数の荷重センサ を配置しなければならないので、 べッドの製造コストが上昇するという不具 合がある。  In this reference as well, as in the above-mentioned reference, a plurality of load sensors must be arranged in a predetermined distribution on the bed, so that the production cost of the bed increases.
U . S . P . N o . 5, 4 7 9, 9 3 9は、 睡眠検出装置 (Sleep Detecting Device) を開示する。 これは、 赤外線センサ又は圧電センサを設 け、 このセンサからの信号波形から被験者の睡眠状態を検出するものである。 この装置では、 前記圧電センサがベッド上に直に配置されるので、 被験者 のわずらわしさが助長される。 発明の開示  U.S.P.No. 5, 47 9 and 93 39 disclose a sleep detecting device. In this method, an infrared sensor or a piezoelectric sensor is provided, and a sleep state of a subject is detected from a signal waveform from the sensor. In this device, since the piezoelectric sensor is disposed directly on the bed, the trouble of the subject is promoted. Disclosure of the invention
この発明は、 被験者が滞在するベッドの荷重を測定することによって、 簡 易に被験者の生体生理情報を検出することのできる生体生理検出装置を提供 することにある。  An object of the present invention is to provide a living body physiology detecting device that can easily detect the living body physiology information of a subject by measuring the load of a bed on which the subject stays.
これを達成するために、 この発明は、 被験者が滞在するベッドの荷重を測 定し; この測定結果から荷重の変動状態を検出し; この荷重の変動状態に基 づいて周波数分布を求め;前記測定結果から荷重の大きさを検出し;前記周 波数分布及び荷重の大きさから被験者の生体生理データを求めるようにした ものである。  In order to achieve this, the present invention measures a load on a bed on which a subject stays; detects a change state of the load from the measurement result; obtains a frequency distribution based on the change state of the load; The magnitude of the load is detected from the measurement result; and the biological physiological data of the subject is obtained from the frequency distribution and the magnitude of the load.
つまり、 測定された荷重の変動を示す波形から周波数及び大きさ (振幅) 等のデータを求め、 このデータに基づいて被験者の生体生理情報を得るよう にしたものである。  In other words, data such as frequency and magnitude (amplitude) is obtained from the waveform indicating the fluctuation of the measured load, and the physiological information of the subject is obtained based on this data.
したがって、 この発明は、 被験者が滞在するベッドの荷重を測定する荷 重測定手段と、 該荷重測定手段によつて測定された荷重の変動状態を検出 する荷重変動検出手段と、 該荷重変動検出手段によって検出された荷重の 変動状態に基づいて周波数分布を演算する周波数分布演算手段と、 前記荷 重変動検出手段によって検出された荷重の変動の大きさを検出する変動量 検出手段と、 前記周波数分布演算手段によつて演算された周波数分布及び 前記変動量検出手段によって検出された荷重の大きさから、 被験者の生体 生理データを求める生体生理状態検出手段を具備することにある。 Therefore, the present invention provides a load measuring means for measuring a load of a bed on which a subject stays, a load fluctuation detecting means for detecting a fluctuation state of a load measured by the load measuring means, and a load fluctuation detecting means. Frequency distribution calculating means for calculating a frequency distribution based on the fluctuation state of the load detected by the load; A fluctuation amount detecting means for detecting the magnitude of the fluctuation of the load detected by the heavy fluctuation detecting means; a frequency distribution calculated by the frequency distribution calculating means; and a magnitude of the load detected by the fluctuation amount detecting means. Therefore, a biological physiological state detecting means for obtaining biological physiological data of a subject is provided.
具体的には、 前記周波数分布に基づいて第 1の周波数領域に顕著に表れた 周波数、 言い換えると、 第 1の周波数領域におけて所定以上の大きさを示す 周波数を、 呼吸数の基本波周波数として設定すると共に、 これを被験者の呼 吸数として検出する。  Specifically, based on the frequency distribution, a frequency that remarkably appears in the first frequency domain, in other words, a frequency that is greater than or equal to a predetermined value in the first frequency domain, is a fundamental frequency of a respiratory rate. And detect this as the respiratory rate of the subject.
さらに、 前記周波数分布から、 前記呼吸の基本波周波数の高調波成分を除 外し、 前記第 1の周波数領域よりも高い第 2の周波数領域に顕著に現れた周 波数を脈拍数の基本周波数として、 これを被験者の脈拍数として検出する。 また、 前記周波数分布から、 前記第 2の周波数領域よりも高い第 3の周波 数領域の周波数の大きさが増大した場合、 被験者が鼾をかいていることを検 出する。  Furthermore, a harmonic component of the fundamental frequency of the respiration is excluded from the frequency distribution, and a frequency remarkably appearing in a second frequency region higher than the first frequency region is defined as a fundamental frequency of a pulse rate. This is detected as the pulse rate of the subject. Further, when the magnitude of the frequency in the third frequency region higher than the second frequency region increases from the frequency distribution, it is detected that the subject is snoring.
また、 前記測定された荷重が突発的に大きくなつた場合、 被験者が咳をし たことを検出する。  When the measured load suddenly increases, it is detected that the subject coughed.
さらに、 荷重の変動量が所定値以上である場合には、 被験者が寝返りをう つたことを検出する。  Further, when the amount of change in the load is equal to or greater than a predetermined value, it is detected that the subject has turned over.
また、 前記荷重センサは、 被験者滞在するベッドの 4角の荷重を測定する 少なくとも 4つの荷重センサからなり、 それらの荷重センサはベッドの脚部 に装着されることが望ましい。  Preferably, the load sensor comprises at least four load sensors for measuring the four corner loads of the bed on which the subject stays, and these load sensors are preferably mounted on the legs of the bed.
また、 4つの荷重センサのそれぞれの検出結果から、 被験者の重心の移動 を検出し、 この重心の移動によつて被験者の寝返りを検出することができる ものである。  In addition, the movement of the subject's center of gravity is detected from the detection results of the four load sensors, and the subject's turnover can be detected based on the movement of the center of gravity.
さらに、 所定時間、 被験者の寝返りが検出されない場合には、 警報を発し- 被験者が異常事態にあることを通知することが望ましい。 また、 この検出結果は、 通信手段を介して介護センター、 ナースセンター、 病院等の管理センターに連絡されることが望ましい。 Furthermore, if the subject is not detected to turn over for a predetermined time, it is desirable to issue an alarm-to notify that the subject is in an abnormal state. It is desirable that this detection result be communicated to management centers such as nursing centers, nurse centers, and hospitals via communication means.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本願発明の構成を示したブロック構成図である ;  Figure 1 is a block diagram showing the configuration of the present invention;
図 2は、 本願発明の実施の形態に係る装置の概略構成図である ;  FIG. 2 is a schematic configuration diagram of an apparatus according to an embodiment of the present invention;
図 3は、 本願発明の実施の形態に係る信号処理回路のプロック構成図であ る ;  FIG. 3 is a block diagram of a signal processing circuit according to an embodiment of the present invention;
図 4は、 本願発明の実施の形態に係る信号処理における検出値変動波形の 演算を示すフローチャート図である ;  FIG. 4 is a flowchart showing the calculation of the detected value fluctuation waveform in the signal processing according to the embodiment of the present invention;
図 5は、 検出値変動波形 (時系列データ) の一例を示した特性線図であ る ;  Figure 5 is a characteristic diagram showing an example of the detected value fluctuation waveform (time-series data);
図 6は、 本願発明の実施の形態に係る生体生理情報の検出処理を示したフ ローチャート図である ; 図 7は、 周波数分析の一例を示した特性図である;  FIG. 6 is a flowchart illustrating a process of detecting biological physiological information according to the embodiment of the present invention; FIG. 7 is a characteristic diagram illustrating an example of frequency analysis;
図 8は、 被験者が鼾をかいた状態を示した特性図である ;  Figure 8 is a characteristic diagram showing the subject snoring;
図 9は、 被験者が咳をした状態を示した特性図である ;  Figure 9 is a characteristic diagram showing the subject coughing;
図 1 0は、 被験者が咳をした時の波形を示した図である ;  Figure 10 shows the waveform when the subject coughed;
図 1 1は、 被験者が寝返りをした時の波形を示した図である ;そして 図 1 2 Aは、 寝返りを検出する他の実施の形態を示したフローチャート図 であり、 図 1 2 Bは重心位置の変動を示した説明図である。  FIG. 11 is a diagram showing a waveform when a subject turns over; FIG. 12A is a flowchart showing another embodiment for detecting a turn over, and FIG. 12B is a center of gravity. It is explanatory drawing which showed the change of the position.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の形態を図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
この発明は、 図 1に示すように、 被験者が滞在するベッド 1の荷重を測 定する荷重測定手段 1 0 0と、 該荷重測定手段 1 0 0によって測定された 荷重の変動状態を検出する荷重変動検出手段 1 1 0と、 該荷重変動検出手 段 1 1 0によって検出された荷重の変動状態に基づいて周波数分布を演算 する周波数分布演算手段 1 2 0と、 前記荷重変動検出手段 1 1 0によって 検出された荷重の変動の大きさを検出する変動量検出手段 1 3 0と、 前記 周波数分布演算手段 1 2 0によって演算された周波数分布及び前記変動量 検出手段 1 3 0によって検出された荷重の大きさから、 被験者の生体生理 データを求める生体生理状態検出手段 1 4 0を具備することにある。 In the present invention, as shown in FIG. 1, the load was measured by the load measuring means 100 for measuring the load of the bed 1 on which the subject stays, and the load measuring means 100 Load fluctuation detecting means 110 for detecting a load fluctuation state; frequency distribution calculating means 120 for calculating a frequency distribution based on the load fluctuation state detected by the load fluctuation detecting means 110; A fluctuation amount detecting means 130 for detecting the magnitude of the fluctuation of the load detected by the load fluctuation detecting means 110; a frequency distribution calculated by the frequency distribution calculating means 120 and the fluctuation amount detecting means A biological physiological state detecting means 140 for obtaining biological physiological data of the subject from the magnitude of the load detected by 140 is provided.
したがって、 この発明によれば、 被験者が滞在するベッド 1の荷重を測 定し、 この測定された荷重の変動を示す波形から周波数及び変動の大きさ (振幅) を求め、 これらのデータに基づいて被験者の生体生理情報を得る ことができるものである。  Therefore, according to the present invention, the load on the bed 1 on which the subject stays is measured, the frequency and the magnitude (amplitude) of the variation are determined from the waveform indicating the variation of the measured load, and based on these data. It can obtain the physiological information of the subject.
また、 前記生体生理状態検出手段 1 4 0は、 前記周波数分布演算手段 1 2 0によって演算された周波数分布に基づいて第 1の周波数領域に顕著に 現れた周波数を呼吸数の基本波周波数として設定すると共に、 これを被験 者の呼吸数とする呼吸数判定手段を具備することが望ましい。  In addition, the biological physiological state detecting means 140 sets a frequency that remarkably appears in the first frequency region based on the frequency distribution calculated by the frequency distribution calculating means 120 as a fundamental frequency of a respiratory rate. In addition to the above, it is desirable to provide a respiratory rate judging means for using this as a subject's respiratory rate.
さらに、 前記生体生理状態検出手段 1 4 0は、 前記周波数分布演算手段 1 2 0によって演算された周波数分布から、 呼吸数判定手段によって判定 された呼吸数の基本波周波数の高調波成分を除外し、 前記第 1の周波数領 域よりも高い第 2の周波数領域に顕著に現れた周波数を脈拍数の基本波周 波数とし、 これ被験者の脈拍吸とする脈拍数判定手段を具備することが望 ましい。  Further, the physiological condition detecting means 140 removes, from the frequency distribution calculated by the frequency distribution calculating means 120, harmonic components of the fundamental frequency of the respiratory rate determined by the respiratory rate determining means. It is desirable to include a pulse rate judging means which sets a frequency which appears remarkably in the second frequency range higher than the first frequency range as a fundamental frequency of a pulse rate and which absorbs the pulse of the subject. No.
さらにまた、 前記生体生理状態検出手段 1 4 0は、 前記荷周波数分布演 算手段 1 2 0によって演算された周波数分布において、 前記第 2の周波数 領域よりも高い第 3の周波数領域の周波数の大きさが増大した場合に、 被 験者が鼾をかいていると判定する鼾判定手段を具備することが望ましい。 また、 前記生体生理状態検出手段 1 4 0は、 前記変動量検出手段 1 3 0 によって検出された荷重の変動量が、 突発的に大きくなった場合に被験者 が咳をしたと判定する晐判定手段を具備することが望ましい。 Still further, the biological physiological condition detecting means 140 may include, in the frequency distribution calculated by the load frequency distribution calculating means 120, a magnitude of a frequency in a third frequency region higher than the second frequency region. It is desirable to include a snoring determination means for determining that the subject is snoring when the level increases. Further, the physiological condition detecting means 140 may include the fluctuation amount detecting means 130 It is desirable to include a 晐 determination means for determining that the subject coughs when the amount of change in the load detected by に よ っ て suddenly increases.
さらに、 前記生体生理状態検出手段 1 4 0は、 前記変動検出手段 1 3 0 によって検出された荷重の変動量が、 所定値以上である場合に、 被験者が 寝返りをしたと判定する寝返り判定手段とを具備することが望ましい。  Further, the biological physiological state detecting means 140 includes a turnover determining means for determining that the subject has turned over when the variation in the load detected by the variation detecting means 130 is equal to or greater than a predetermined value. It is desirable to have.
さらにまた、 前記荷重測定手段 1 0 0は、 被験者が滞在するベッドの 4 角の荷重を測定する少なくとも 4つの荷重センサーからなることが望まし く、 この場合には、 前記生体生理状態検出手段 1 4 0は、 前記荷重測定手 段 1 0 0の少なくとも 4つの荷重センサーからの荷重信号によって被験者 の重心の移動を検出する重心移動検出手段と、 該重心移動検出手段によつ て重心の移動が検出された場合に被験者が寝返り したと判定する寝返り判 定手段とを具備することが望ましい。  Furthermore, it is desirable that the load measuring means 100 comprises at least four load sensors for measuring the four corners of the bed on which the subject stays. In this case, the biological physiological condition detecting means 1 Reference numeral 40 denotes a center-of-gravity shift detecting means for detecting the shift of the center of gravity of the subject based on load signals from at least four load sensors of the load measuring means 100, and the center-of-gravity shift detecting means detects the shift of the center of gravity. It is desirable to have a turning determination means for determining that the subject has turned over when detected.
さらに、 前記寝返り判定手段により、 寝返りが所定時間検出されない場 合に警報を発する警報手段 1 6 0を具備することが望ましい。  Further, it is desirable to include an alarm unit 160 that issues an alarm when the turnover is not detected for a predetermined time by the turnover determination unit.
さらにまた、 前記生体生理状態検出手段 1 4 0によって検出された生体 生理データを送信する通信手段 1 5 0を具備することが望ましい。 これに よって、 生体生理データを介護センター、 看護婦センター、 病院等の管理 センター 1 7 0に連絡することができ、 早期対応が可能となる。  Furthermore, it is preferable to include a communication unit 150 for transmitting the biological physiological data detected by the biological physiological state detecting unit 140. As a result, biophysiological data can be communicated to the management center 170 of a nursing center, a nurse center, a hospital, etc., and early response is possible.
図 2で示すように、 この発明の実施の形態では、 被験者が滞在するべッ ド 1の 4つの脚部 2の端部に、 脚部 2に係る荷重を検出する荷重検出セン サ 3 ( 3 a , 3 b , 3 c, 3 d ) が装着され、 それぞれの荷重検出センサ 3からの信号は、 ュニットボックス 4内に設けられた信号処理回路 5に伝 達されて処理され、 警報信号、 通信信号、 表示信号等として出力されるも のである。  As shown in FIG. 2, in the embodiment of the present invention, the load detecting sensor 3 (3) for detecting the load on the leg 2 is attached to the end of the four legs 2 of the bed 1 where the subject stays. a, 3 b, 3 c, 3 d) are attached, and the signal from each load detection sensor 3 is transmitted to a signal processing circuit 5 provided in the unit box 4 for processing, and an alarm signal, These are output as communication signals and display signals.
前記信号処理回路 5は、 例えば図 3に示すように、 前記荷重検出センサ 3 ( 3 a , 3 b, 3 c, 3 d ) からの荷重変動の微小信号を加算して増幅 する加算回路 6と、 この加算回路 6からの信号及び前記荷重検出センサ 3 からのアナログ信号をデジタル信号に変換する A D変換回路 7と、 A D変 換回路 7から出力された荷重のデジタル信号、 スィツチュニット 9からの 設定信号及び Z又は通信ュニット 1 0を介して入力される外部からの指令 等に基づいて所定の信号処理を実行し、 生体生理情報信号を出力するコン トローノレユニッ ト (C ZU) 8と、 コントローノレユニット 8からの生体生 理情報信号に基づいて生体生理情報 (体重、 呼吸数、 脈拍数、 鼾、 寝返り 等) を表示する表示ュニット 1 1と、 生体整理情報信号に基づく生体生理 情報に異常がある場合に警報を発する警報ュニット 1 2とによって少なく とも構成される。 For example, as shown in FIG. 3, the signal processing circuit 5 adds and amplifies a small signal of a load variation from the load detection sensor 3 (3a, 3b, 3c, 3d). An addition circuit 6 for converting the signal from the addition circuit 6 and the analog signal from the load detection sensor 3 into a digital signal; a digital signal of the load output from the AD conversion circuit 7; A control unit (CZU) 8 that executes predetermined signal processing based on the setting signal from 9 and an external command or the like input through Z or the communication unit 10 and outputs a physiological information signal. A display unit 11 for displaying biological physiological information (weight, respiratory rate, pulse rate, snoring, turning over, etc.) based on the biological physiological information signal from the controller unit 8, and a biological physiological information based on the biological organizing information signal. And an alarm unit 12 that issues an alarm when there is an abnormality.
さらに、 前記コントロールュニット 8において実行される処理について 説明すると、 前記荷重検出センサー 3によって検出された荷重データ W b に基づいて検出値の変動波形が演算される。 この処理は、 例えば、 図 4の フローチヤ一トで示されるものである。 ステップ 4 0から定期的且つ連続 的に開始されるこのフローチャートは、 ステップ 4 2において前記検出値 W bを読み込み、 ステップ 4 4においてこの検出値 W bを蓄積する。 この 処理は、 開始から所定時間 t 1の間継続して行われ、 所定時間 t 1経過後 にステップ 4 8に進んで検出値の変動波形 (時系列データ) を演算する。 これによつて求めらた荷重の変動波形 (時系列データ) は、 例えば図 5で 示されるものである。 また、 前記検出値 W bから被験者の体重、 体重の変 動を単純に測定することができる。  Further, the processing executed in the control unit 8 will be described. The fluctuation waveform of the detected value is calculated based on the load data Wb detected by the load detection sensor 3. This processing is shown, for example, in the flowchart of FIG. In this flowchart, which is started periodically and continuously from step 40, the detected value Wb is read in step 42, and the detected value Wb is accumulated in step 44. This process is continuously performed for a predetermined time t1 from the start. After the predetermined time t1, the process proceeds to step 48 to calculate a fluctuation waveform (time-series data) of the detected value. The fluctuation waveform (time-series data) of the load obtained in this way is, for example, shown in FIG. Further, the weight of the subject and the change in the weight can be simply measured from the detected value Wb.
図 6で示すフローチャートは、 前記荷重の変動波形 (時系列データ) か ら各種の生体生理情報を検出する生体生理情報検出処理の一例を示すもの である。 ステップ 5 0から始まる生体生理情報検出処理において、 ステツ プ 5 2において前述したフローチャートにおいて演算された変動波形 (時 系列データ) が読み込まれ、 ステップ 5 4において、 例えば F F T法等に よって周波数解析がなされ、 例えば図 7に示すような周波数グラフが得ら れる。 The flowchart shown in FIG. 6 shows an example of a biological physiology information detecting process for detecting various biological physiology information from the load fluctuation waveform (time-series data). In the biological physiological information detection process starting from step 50, the fluctuation waveform (time-series data) calculated in the above-described flowchart is read in step 52, and in step 54, for example, the FFT method is used. Therefore, a frequency analysis is performed, and for example, a frequency graph as shown in FIG. 7 is obtained.
そして、 ステップ 5 6において、 低い周波数帯域 (例えば、 0 . 0 1〜 1 H z ) の中で突出する周波数を選択し、 これを呼吸数 F bとして検出し、 ステップ 5 8においてこの呼吸数 F bを、 例えば前回の呼吸数又は所定の 値と比較し、 「問題ない」 と判定 (正常) された場合には、 次なるステツ プ 6 0に進む。 また、 この呼吸数 F bに異常が見られる場合、 例えば、 前 回の検出値に対して非常に少なくなつた場合又は多くなった場合、 所定の 値よりも非常に大きくなった場合又は小さくなった場合には、 ステップ 7 6に進んで警報を発信する。 尚、 このフローチャートでは、 ステップ 7 6 による警報の発信後、 ステップ 7 8に進んでデータを送信してこの警報が 発せられたことを、 看護センター等に送信するようになっているが、 検出 を続行するために、 ステップ 6 0に進むようにしても良いものである。  Then, in step 56, a prominent frequency is selected in a low frequency band (for example, 0.01 to 1 Hz), and this is detected as the respiratory rate Fb. b is compared with, for example, the previous respiratory rate or a predetermined value. If it is determined that there is no problem (normal), the process proceeds to the next step 60. Also, if the respiratory rate Fb is abnormal, for example, if it is very low or high compared to the previous detection value, if it is much higher or lower than the specified value If so, proceed to step 76 to issue an alarm. In this flowchart, after the alarm is issued in step 76, the process proceeds to step 78 to transmit the data, and that the alarm is issued is transmitted to a nursing center or the like. It may be possible to proceed to step 60 in order to continue.
上述の呼吸数の検出の後、 ステップ 6 0では脈拍数 F pの検出が行われ る。 この場合、 呼吸数 F pを基本波としてその高調波成分 (2, 3倍の成 分) を前述して周波数グラフから除外し、 所定の周波数範囲 (0 . 5〜3 H z ) に突出する周波数を選択し、 脈拍数 F pを検出する。 そして、 ステ ップ 6 2において、 この脈拍数 F pを、 例えば前回の脈拍数又は所定の値 と比較し、 「問題ない」 と判定 (正常) された場合には、 次なるステップ 6 4に進む。 また、 この脈拍数 F pに異常が見られる場合、 例えば、 前回 の検出値に対して非常に少なくなつた場合又は多くなった場合、 所定の値 よりも非常に大きくなつた場合又は小さくなった場合には、 ステップ 7 6 に進んで警報を発信する。 尚、 前述の場合と同様に、 このフローチャート では、 ステップ 7 6による警報の発信後、 ステップ 7 8に進んでデータを 送信してこの警報が発せられたことを、 看護センター等に送信するように なっているが、 検出を続行するために、 次なるステップ 6 4に進むように しても良いものである。 After the above detection of the respiration rate, in step 60, the pulse rate Fp is detected. In this case, with the respiration rate Fp as the fundamental wave, its harmonic components (two and three times the components) are excluded from the frequency graph as described above, and protrude into a predetermined frequency range (0.5 to 3 Hz). Select the frequency and detect the pulse rate Fp. Then, in step 62, the pulse rate Fp is compared with, for example, the previous pulse rate or a predetermined value, and if it is determined that there is no problem (normal), the process proceeds to the next step 64. move on. In addition, when the pulse rate Fp is abnormal, for example, when it is extremely small or large compared to the previous detection value, when it is very large or small than a predetermined value. If so, proceed to step 76 to issue an alarm. As described above, in this flowchart, after the alarm is issued in step 76, the process proceeds to step 78 to transmit data, and the fact that this alarm is issued is transmitted to a nursing center or the like. However, please proceed to the next step 64 to continue the detection. It is a good thing.
ステップ 6 4では、 鼾の検出が行われる。 図 8に示すように、 高い周波 数領域 (1 H z以上) に山 F sが見られる場合には鼾として検出する。 そ して、 ステップ 6 6ではこの鼾が正常か否かの判定を行う。 例えば、 鼾が 所定の間隔で、 ある程度規則正しく検出される場合には正常と判定し、 ま た、 鼾が不規則に変化したり、 異常に大きい場合、 所定時間停止する状態 がある場合には、 異常と判定する。 これによつて、 正常の場合には、 次な るステップ 6 8に進み、 異常の場合には、 前述と同様にステップ 7 6に進 むものである。  In step 64, snoring is detected. As shown in Fig. 8, when a peak Fs is seen in a high frequency region (1 Hz or more), it is detected as snoring. Then, in step 66, it is determined whether or not this snoring is normal. For example, if snoring is detected at regular intervals and at a certain degree of regularity, it is determined to be normal, and if snoring changes irregularly or abnormally large, or if there is a state where it stops for a predetermined time, Judge as abnormal. As a result, if normal, the process proceeds to the next step 68, and if abnormal, the process proceeds to step 76 as described above.
ステップ 6 8では、 咳の検出が行われる。 例えば、 周波数グラフが、 図 9で示すように、 全体的に大きな山 F cが検出された場合には、 被験者が 咳をしたことが検出される。 ステップ 7 0では、 咳の判定が行われる。 例 えば、 被験者が咳を連続してした場合には、 異常であるとしてステップ 7 6に進み、 咳が検出されない場合には、 正常として次なるステップ 7 2に 進む。 また、 被験者が咳をした場合の判定は、 図 1 0で示すように、 前述 した変動波形 (時系列データ) の振幅が大きく変化した部分 F c ' が検出 された場合に、 被験者が席をしたと判定するようにしても良いものである。 そして、 ステップ 7 2では、 被験者が寝返りをしたか否かが判定される c この場合、 図 1 1で示すように、 前述した咳の場合よりも変動波形 (時系 列データ) の振幅の変化が大きく、 さらに変化の周期が大きい場合には、 被験者が寝返りをしたと判定することができるものである。 そして、 ステ ップ 7 4では、 被験者の寝返り状態の判定が行われる。 この判定は、 例え ば、 所定時間寝返りが判定されない場合には、 床ずれの可能性がたかくな ることから、 異常と判定してステップ 7 6に進んで警報を発する。 In step 68, cough detection is performed. For example, as shown in FIG. 9, when a large peak Fc is detected as a whole in the frequency graph, it is detected that the subject has coughed. In step 70, a cough determination is made. For example, if the subject has coughed continuously, it is determined to be abnormal and the process proceeds to step 76. If no cough is detected, the process proceeds to the next step 72 as normal. In addition, when the subject coughs, as shown in FIG. 10, when the part F c ′ where the amplitude of the above-mentioned fluctuation waveform (time-series data) greatly changes is detected, the subject takes a seat. It may be determined that it has been done. Then, in step 72, it is determined whether or not the subject has turned over c. In this case, as shown in FIG. 11, the change in the amplitude of the fluctuation waveform (time series data) is greater than in the case of the cough described above. Is large and the cycle of change is large, it can be determined that the subject has turned over. Then, in step 74, the rollover state of the subject is determined. In this determination, for example, in the case where turning over is not determined for a predetermined period of time, the possibility of bedsore becomes high, so that it is determined to be abnormal and the process proceeds to step 76 to issue an alarm.
以上のように、 各生体生理情報を検出した後、 ステップ 7 8においてそ れらのデータを、 電話回線、 無線等の通信手段を介して、 介護センター、 病院等に送信し、 ステップ 80から制御の最初に回帰するものである。 図 1 2は、 前述した寝返りを検出する別の方法を開示する。 図 1 2As described above, after each biological physiological information is detected, in step 78, the data is transferred to the nursing care center via a communication means such as a telephone line or wireless communication. This is transmitted to the hospital, etc., and returns to the beginning of the control from step 80. FIG. 12 discloses another method for detecting the rollover described above. Fig. 1 2
(a) で示すフローチャートにおいて、 ステップ 72 1は、 前記 4つの荷 重検出センサー 3 a, 3 b, 3 c , 3 dによって検出された荷重 W a, W b , W c , Wdから被験者の重心位置 Wpを演算するもので、 図 1 2In the flowchart shown in (a), step 721 is based on the subject's center of gravity based on the loads Wa, Wb, Wc, Wd detected by the four load detection sensors 3a, 3b, 3c, 3d. It calculates the position Wp.
(b) で示すように、 それぞれの荷重をベク トル合成することで容易に得 られる。 ステップ 72 2では、 この演算された重心位置 Wpを今回の値 W p (n) とし、 前回の値 Wp (n - 1 ) と比較し、 今回の値 Wp (n) と 前回の値 Wp (n- 1 ) が等しくない場合には、 被験者の寝返りしたと判 定し、 ステップ 723において被験者の寝返りが検出されたものとするも のである。 尚、 今回の値 Wp (n) と前回の値 Wp (n - 1 ) が等しい場 合には、 ステップ 723を迂回し、 被験者の寝返りが検出されないとする ものである。 産業上の利用可能性 As shown in (b), each load can be easily obtained by vector composition. In step 722, the calculated center-of-gravity position Wp is set as the current value Wp (n) and compared with the previous value Wp (n-1), and the current value Wp (n) and the previous value Wp (n) are compared. -If 1) is not equal, it is determined that the subject has turned over and that the subject has turned over in step 723. If the current value Wp (n) is equal to the previous value Wp (n-1), step 723 is bypassed, and no turnover of the subject is detected. Industrial applicability
以上説明したように、 この発明によれば、 ベッドの荷重を測定すること によって被験者の生体整理情報を検出することができるために、 被験者に 検出器具を取り付けたり、 被験者を移動させることがないので、 被験者の 不快感を助長することがなく、 また被験者がベッドに滞在している間、 継 続して被験者の状態をトレースすることができるものである。  As described above, according to the present invention, since the living body arrangement information of the subject can be detected by measuring the load on the bed, there is no need to attach a detection instrument to the subject or move the subject. It does not contribute to the discomfort of the subject, and can continuously trace the subject's condition while the subject stays in bed.
さらに、 検出された生体生理情報に異常がある場合には、 警報を発する ことができるので、 介護者が安心して休憩を取ることができ、 'さらに情報 をセンターに通信できるので、 常に被験者の状態を把握できるので、 被験 者に異常が合った場合に迅速に対応することできるものである。  Furthermore, if there is an abnormality in the detected biological physiological information, an alarm can be issued, so that the caregiver can take a rest with peace of mind. Because it is possible to grasp the abnormalities, it is possible to respond promptly when the test subject has an abnormality.

Claims

請 求 の 範 囲 The scope of the claims
1 . 生体生理検出装置であって: 1. A biological physiology detector:
被験者が滞在するべッドの荷重を測定する荷重測定手段と、  Load measuring means for measuring the load of the bed where the subject stays,
該荷重測定手段によって測定された荷重の変動状態を検出する荷重変動 検出手段と、  Load fluctuation detecting means for detecting a fluctuation state of the load measured by the load measuring means,
該荷重変動検出手段によって検出された荷重の変動状態に基づいて周波 数分布を演算する周波数分布演算手段と、  Frequency distribution calculating means for calculating a frequency distribution based on the load fluctuation state detected by the load fluctuation detecting means;
前記荷重変動検出手段によって検出された荷重の変動の大きさを検出す る変動量検出手段と、  A fluctuation amount detecting means for detecting a magnitude of fluctuation of the load detected by the load fluctuation detecting means;
前記周波数分布演算手段によって演算された周波数分布及び前記変動量 検出手段によって検出された荷重の大きさから、 被験者の生体生理データ を求める生体生理状態検出手段を具備するもの。  A biological physiological state detecting means for obtaining biological physiological data of a subject from the frequency distribution calculated by the frequency distribution calculating means and the magnitude of the load detected by the fluctuation amount detecting means.
2 . 請求項 1記載の生体生理検出装置において:  2. The living body physiological detecting device according to claim 1:
前記生体生理状態検出手段は、 前記周波数分布演算手段によって演算さ れた周波数分布に基づいて第 1の周波数領域に顕著に現れた周波数を呼吸 数の基本波周波数として設定すると共に、 これを被験者の呼吸数とする呼 吸数判定手段を具備するもの。  The biological physiological condition detecting means sets a frequency that remarkably appears in the first frequency region based on the frequency distribution calculated by the frequency distribution calculating means as a fundamental frequency of a respiratory rate, and A device equipped with a respiratory rate determining means for determining the respiratory rate.
3 . 請求項 2記載の生体生理検出装置において:  3. The living body physiological detecting device according to claim 2:
. 前記生体生理状態検出手段は、 前記周波数分布演算手段によって演算さ れた周波数分布から、 呼吸数判定手段によって判定された呼吸数の基本波 周波数の高調波成分を除外し、 前記第 1の周波数領域よりも高い第 2の周 波数領域に顕著に現れた周波数を脈拍数の基本波周波数とし、 これを被験 者の脈拍数とする脈拍数判定手段を具備するもの。 The biological physiological condition detecting means excludes a harmonic component of a fundamental frequency of a respiratory rate determined by a respiratory rate determining means from the frequency distribution calculated by the frequency distribution calculating means, and the first frequency A pulse rate determining means for setting a frequency which appears remarkably in a second frequency area higher than the area as a fundamental frequency of the pulse rate and using this as a pulse rate of the subject.
4 . 請求項 3記載の生体生理検出装置において:  4. The living body physiological detecting device according to claim 3, wherein:
前記生体生理状態検出手段は、 前記荷周波数分布演算手段によって演算 された周波数分布から、 前記第 2の周波数領域よりも高い第 3の周波数領 域の変動量が増大した場合に、 被験者が鼾をかいていると判定する鼾判定 手段を具備するもの。 The physiological condition detecting means is calculated by the load frequency distribution calculating means. A snoring determining means for judging that the subject is snoring when a variation amount of a third frequency region higher than the second frequency region increases from the obtained frequency distribution.
5 . 請求項 4記載の生体生理検出装置において:  5. The living body physiological detecting device according to claim 4, wherein:
前記生体生理状態検出手段は、 前記変動量検出手段によって検出された 荷重の変動量が、 突発的に大きくなった場合に被験者が咳をしたと判定す る咳判定手段を具備するもの。  The biological physiological state detecting means includes cough determining means for determining that the subject has coughed when the variation in the load detected by the variation detecting means suddenly increases.
6 . 請求項 5記載の生体生理検出装置において:  6. The living body physiological detecting device according to claim 5, wherein:
前記生体生理状態検出手段は、 前記変動検出手段によつて検出された荷 重の変動量が、 所定値以上である場合に、 被験者が寝返りをしたと判定す る寝返り判定手段とを具備するもの。  The biological physiological condition detecting means includes turnover determining means for determining that the subject has turned over when the amount of change in the load detected by the change detecting means is equal to or greater than a predetermined value. .
7 . 請求項 6記載の生体生理検出装置において:  7. The living body physiological detecting device according to claim 6, wherein:
前記寝返り判定手段により、 寝返りが所定時間検出されない場合に警報 を発する警報手段を具備するもの。  An apparatus comprising: an alarm unit that issues an alarm when a turnover is not detected for a predetermined time by the turnover determination unit.
8 . 請求項 7記載の生体生理検出装置において:  8. The living body physiological detecting device according to claim 7, wherein:
前記生体生理状態検出手段によって検出された生体生理データを送信す る通信手段を具備するもの。  A communication device for transmitting the physiological data detected by the physiological condition detecting means.
9 . 請求項 5記載の生体生理検出装置において:  9. The living body physiological detecting device according to claim 5, wherein:
前記荷重測定手段は、 被験者が滞在するべッドの 4角の荷重を測定する 少なくとも 4つの荷重センサーからなるもの。  The load measuring means comprises at least four load sensors for measuring the four corners of the bed on which the subject stays.
1 0 . 請求項 9記載の生体生理検出装置において:  10. The biological physiology detecting device according to claim 9, wherein:
前記生体生理状態検出手段は、 前記荷重測定手段の少なくとも 4つの荷 重センサーからの荷重信号によつて被験者の重心の移動を検出する重心移 動検出手段と、 該重心移動検出手段によって重心の移動が検出された場合 に被験者が寝返りしたと判定する寝返り判定手段とを具備するもの。  The biological physiological condition detecting means includes: a center of gravity shift detecting means for detecting a shift of the center of gravity of the subject based on load signals from at least four load sensors of the load measuring means; and a shift of the center of gravity by the center of gravity shift detecting means. A turn-over determining means for determining that the subject has turned over when is detected.
1 1 . 請求項 1 0記載の生体生理検出装置において: 前記寝返り判定手段により、 寝返りが所定時間検出されない場合に警報 を発する警報手段を具備するもの。 11. The biophysiological detection device according to claim 10: An apparatus comprising: an alarm unit that issues an alarm when a turnover is not detected for a predetermined time by the turnover determination unit.
1 2 . 請求項 1 1記載の生体生理検出装置において:  12. The biophysiological detection device according to claim 11, wherein:
前記生体生理状態検出手段によって検出された生体生理データを送信す る通信手段を具備するもの。  A communication device for transmitting the physiological data detected by the physiological condition detecting means.
1 3 . 請求項 1記載の生体生理検出装置において:  1 3. In the biological physiology detecting device according to claim 1:
前記生体生理状態検出手段は、 前記周波数分布演算手段によつて演算さ れた周波数分布から、 呼吸数判定手段によって判定された呼吸数の基本波 周波数の高調波成分を除外し、 前記第 1の周波数領域よりも高い第 2の周 波数領域に顕著に現れた周波数を脈拍数の基本波周波数とし、 これを被験 者の脈拍数とする脈拍数判定手段を具備するもの。  The biological physiological state detecting means excludes a harmonic component of a fundamental frequency of a respiratory rate determined by a respiratory rate determining means from the frequency distribution calculated by the frequency distribution calculating means, A device comprising a pulse rate determining means for setting a frequency which remarkably appears in a second frequency range higher than the frequency range as a fundamental frequency of the pulse rate, and using this as a pulse rate of the subject.
1 4 . 請求項 1記載の生体生理検出装置において:  14. In the biological physiology detecting device according to claim 1:
前記生体生理状態検出手段は、 前記荷周波数分布演算手段によつて演算 された周波数分布から、 前記第 2の周波数領域よりも高い第 3の周波数領 域が増大した場合に、 被験者が鼾をかいていると判定する鼾判定手段を具 備するもの。  The living body physiological state detecting means, when the third frequency region higher than the second frequency region increases from the frequency distribution calculated by the load frequency distribution calculating means, the subject snores. Equipped with snoring determination means for determining that
1 5 . 請求項 1記載の生体生理検出装置において:  15. The biological physiology detecting device according to claim 1, wherein:
前記生体生理状態検出手段は、 前記変動量検出手段によって検出された 荷重の変動量が、 突発的に大きくなった場合に被験者が咳をしたと判定す る咳判定手段を具備するもの。  The biological physiological state detecting means includes cough determining means for determining that the subject has coughed when the variation in the load detected by the variation detecting means suddenly increases.
1 6 . 請求項 1記載の生体生理検出装置において :  16. In the biological physiology detecting device according to claim 1:
前記生体生理状態検出手段は、 前記変動検出手段によって検出された荷 重の変動量が、 所定値以上である場合に、 被験者が寝返りをしたと判定す る寝返り判定手段とを具備するもの。  The physiological condition detecting means includes turnover determining means for determining that the subject has turned over when the amount of change in the load detected by the change detecting means is equal to or greater than a predetermined value.
1 7 . 請求項 1 6記載の生体生理検出装置において:  17. The biological physiological detecting device according to claim 16, wherein:
前記寝返り判定手段により、 寝返りが所定時間検出されない場合に警報 を発する警報手段を具備するもの。 The turning-over determining means provides an alarm when turning over is not detected for a predetermined time. With alarm means for issuing
1 8 . 請求項 1記載の生体生理検出装置において:  18. The biological physiology detecting device according to claim 1, wherein:
前記荷重測定手段は、 被験者が滞在するべッドの 4角の荷重を測定する 少なくとも 4つの荷重センサーからなるもの。  The load measuring means comprises at least four load sensors for measuring the four corners of the bed on which the subject stays.
1 9 . 請求項 1 8記載の生体生理検出装置において:  19. The biophysiological detection device according to claim 18, wherein:
前記生体生理状態検出手段は、 前記荷重測定手段の少なくとも 4つの荷 重センサ一からの荷重信号によつて被験者の重心の移動を検出する重心移 動検出手段と、 該重心移動検出手段によつて重心の移動が検出された場合 に被験者が寝返りしたと判定する寝返り判定手段とを具備するもの。  The biological physiological state detecting means includes: a center-of-gravity shift detecting unit configured to detect a shift of the center of gravity of the subject based on a load signal from at least four load sensors of the load measuring unit; A device comprising a turn-over determining means for determining that the subject has turned over when the movement of the center of gravity is detected.
2 0 . 請求項 1 9記載の生体生理検出装置において:  20. In the living body physiological detecting device according to claim 19:
前記寝返り判定手段により、 寝返りが所定時間検出されない場合に警報 を発する警報手段を具備するもの。  A device comprising an alarming means for issuing an alarm when turning over is not detected for a predetermined time by the turnover determining means.
PCT/JP2001/010071 2001-06-25 2001-11-19 Biophysiological detector WO2003000126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-190928 2001-06-25
JP2001190928A JP4883380B2 (en) 2001-06-25 2001-06-25 Biological physiology detection device

Publications (1)

Publication Number Publication Date
WO2003000126A1 true WO2003000126A1 (en) 2003-01-03

Family

ID=19029625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010071 WO2003000126A1 (en) 2001-06-25 2001-11-19 Biophysiological detector

Country Status (2)

Country Link
JP (1) JP4883380B2 (en)
WO (1) WO2003000126A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043249A1 (en) * 2002-11-14 2004-05-27 Advanced Medical Inc. Organism data sensing device
CN109475322A (en) * 2016-05-17 2019-03-15 美蓓亚三美株式会社 Respiratory waveform trace system

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329098A (en) * 2004-05-21 2005-12-02 Advanced Medical Kk Load variation detecting device and biological and physiological detecting device using the same
JP4901309B2 (en) 2006-05-31 2012-03-21 株式会社デンソー Biological state detection device, control device, and pulse wave sensor mounting device
JP5019908B2 (en) * 2007-02-27 2012-09-05 パラマウントベッド株式会社 Rolling up promotion device
JP5400603B2 (en) 2009-12-28 2014-01-29 忠男 倉田 Weight variation measuring system by body part, etc., measuring method, use system thereof, and use method
WO2016159347A1 (en) * 2015-04-02 2016-10-06 パラマウントベッド株式会社 State determining device
JP6757155B2 (en) * 2015-04-02 2020-09-16 パラマウントベッド株式会社 Status judgment device
JP6122188B1 (en) * 2015-07-30 2017-04-26 ミネベアミツミ株式会社 Body condition detection device, body condition detection method, and bed system
WO2017018506A1 (en) * 2015-07-30 2017-02-02 ミネベア株式会社 Physical condition detecting device, physical condition detecting method and bed system
JP6105703B1 (en) 2015-09-29 2017-03-29 ミネベアミツミ株式会社 Biological information monitoring system
JP6268219B2 (en) 2016-05-17 2018-01-24 ミネベアミツミ株式会社 Respiratory waveform drawing system and biological information monitoring system
JP6268218B2 (en) * 2016-05-17 2018-01-24 ミネベアミツミ株式会社 Respiration waveform drawing system and respiration waveform drawing method
JP6284574B2 (en) 2016-05-20 2018-02-28 ミネベアミツミ株式会社 Biological information monitoring system
JP6321719B2 (en) 2016-05-20 2018-05-09 ミネベアミツミ株式会社 Biological information monitoring system
JP6767193B2 (en) * 2016-08-01 2020-10-14 ミネベアミツミ株式会社 Physical condition monitoring system
JP6951701B2 (en) 2017-02-10 2021-10-20 ミネベアミツミ株式会社 Bed monitoring system
JP6829841B2 (en) 2018-04-26 2021-02-17 ミネベアミツミ株式会社 Biological condition monitoring system
JP6670881B2 (en) 2018-04-26 2020-03-25 ミネベアミツミ株式会社 Biological condition monitoring system
JP7369455B2 (en) * 2018-05-24 2023-10-26 国立大学法人東海国立大学機構 Living body occupancy detection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204166A (en) * 1994-01-26 1995-08-08 Matsushita Electric Ind Co Ltd Monitoring device
JPH0880285A (en) * 1994-09-14 1996-03-26 Matsushita Electric Ind Co Ltd Monitor
JPH1014889A (en) * 1996-07-04 1998-01-20 Matsushita Electric Ind Co Ltd Vital signal sensing device
JP2000316915A (en) * 1999-05-06 2000-11-21 Kawasaki Heavy Ind Ltd Help supporting device
JP2001057996A (en) * 1999-05-06 2001-03-06 Kawasaki Heavy Ind Ltd Nursing aid device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392577A (en) * 1977-01-22 1978-08-14 Anima Corp Method of measuring respiration and heart motion
JPH07376A (en) * 1993-06-15 1995-01-06 Chiesuto M I Kk Cough recording system
JPH1128195A (en) * 1997-07-09 1999-02-02 Arata Nemoto Health management monitoring method and its device
JP2000000214A (en) * 1998-06-15 2000-01-07 Arata Nemoto Sleeping monitor device
JP2000271103A (en) * 1999-03-24 2000-10-03 Arata Nemoto Apnea detecting apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204166A (en) * 1994-01-26 1995-08-08 Matsushita Electric Ind Co Ltd Monitoring device
JPH0880285A (en) * 1994-09-14 1996-03-26 Matsushita Electric Ind Co Ltd Monitor
JPH1014889A (en) * 1996-07-04 1998-01-20 Matsushita Electric Ind Co Ltd Vital signal sensing device
JP2000316915A (en) * 1999-05-06 2000-11-21 Kawasaki Heavy Ind Ltd Help supporting device
JP2001057996A (en) * 1999-05-06 2001-03-06 Kawasaki Heavy Ind Ltd Nursing aid device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043249A1 (en) * 2002-11-14 2004-05-27 Advanced Medical Inc. Organism data sensing device
CN109475322A (en) * 2016-05-17 2019-03-15 美蓓亚三美株式会社 Respiratory waveform trace system
US10617326B2 (en) 2016-05-17 2020-04-14 Minebea Mitsumi Inc. Respiration waveform drawing system

Also Published As

Publication number Publication date
JP2003000552A (en) 2003-01-07
JP4883380B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
WO2003000126A1 (en) Biophysiological detector
US5964720A (en) Method and system for monitoring the physiological condition of a patient
JP3820811B2 (en) Respiratory system disease monitoring device
EP2040614B1 (en) A system for detecting and monitoring vital signs
JP3543392B2 (en) Sleep respiration information measurement device
JP2959376B2 (en) Monitoring device
KR101027741B1 (en) Apparatus and method for non-constrained analysis of sleeping status using air-mattress
JP3057438B2 (en) Non-contact cardiopulmonary function monitoring device
KR20070030266A (en) Biological information measuring panel, and biological information measuring device
JP2000000214A (en) Sleeping monitor device
JP4607611B2 (en) Biological information measurement panel, biological information measuring device, and biological information measuring method
EP2432391B1 (en) Heart rate measuring device
JP4993565B2 (en) Nursing care support system
WO2004043248A1 (en) Method for measuring biological signal strength, method for judging sleeping state, and device for monitoring sleeping state
JP4584689B2 (en) Biological information measuring device, bed for biological information measuring device, and biological information measuring method
JP2001187030A5 (en) Unrestrained biological information detection mat and biological information detection device
JP2001187030A (en) Unrestrained physiological information detecting mat
JP6139615B2 (en) Anomaly reporting system, anomaly reporting method and program
JP2004130012A (en) Method for measuring biosignal strength, and determination method and monitoring device for sleeping conditions
JP2021178198A (en) Abnormality determination device and program used for the same
JP5019908B2 (en) Rolling up promotion device
JP2002052010A (en) Sleeping condition monitoring device
JP2007135862A (en) Monitoring device for monitoring state of subject and monitoring system
CA3100475C (en) Apparatus and a method for monitoring a patient during his sleep
JP5036261B2 (en) Biological information measurement panel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase