WO2004043249A1 - Organism data sensing device - Google Patents

Organism data sensing device Download PDF

Info

Publication number
WO2004043249A1
WO2004043249A1 PCT/JP2003/014341 JP0314341W WO2004043249A1 WO 2004043249 A1 WO2004043249 A1 WO 2004043249A1 JP 0314341 W JP0314341 W JP 0314341W WO 2004043249 A1 WO2004043249 A1 WO 2004043249A1
Authority
WO
WIPO (PCT)
Prior art keywords
biometric data
subject
strain
component
detected
Prior art date
Application number
PCT/JP2003/014341
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiko Yanaga
Original Assignee
Advanced Medical Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Medical Inc. filed Critical Advanced Medical Inc.
Priority to JP2004551218A priority Critical patent/JP4423603B2/en
Publication of WO2004043249A1 publication Critical patent/WO2004043249A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6891Furniture

Definitions

  • the present invention relates to a biological data detecting device that detects a physiological state of a subject staying on a staying device such as a bed or a chair, for example, a respiratory rate, a pulse rate, snoring, coughing, turning over, and the like.
  • the weight of a subject who is bedridden is measured by placing the subject on a weighing dish or the like with the help of a caregiver or the like, and the weight change during dialysis is measured by circulating the amount of circulation using a dialyzer.
  • a dialyzer was calculated.
  • a living body monitoring device of this type discloses a card-type main body, a light emitting unit and a light receiving unit for detecting a pulse wave, An electrode for detecting at least one of body fat percentage and skin resistance, a temperature detecting section for detecting body temperature and skin temperature, and at least one of body surface vibration due to heartbeat or respiration and body movement due to body movement. It is equipped with a vibration detection unit for detecting.
  • the conventional weight measurement has a problem that the burden on the caregiver is large and a man is inevitably needed.
  • the measurement is performed by attaching the living body monitoring device to the body, it is troublesome for the subject. There was a problem that it promoted.
  • Another problem is that an expensive sensor must be used as a sensor for detection.
  • the present invention provides a biological data detecting device capable of detecting a living body data such as a subject's taking off and landing, a respiratory rate, a pulse rate, a cough, a snoring, a body movement, a turning over, and the like with a low-cost sensor.
  • the living body night detection device includes a strain measurement unit 100 that measures the strain of components constituting the staying device 1 such as a bed and a chair where the subject stays.
  • a distortion fluctuation detecting means 110 for detecting a fluctuation amount of the distortion measured by the distortion measuring means 100; and a fluctuation amount detecting means for detecting a fluctuation amount of the distortion detected by the distortion fluctuation detecting means 110.
  • a biological data detecting means for detecting a biological data of the subject from the amount of change in the distortion detected by the fluctuation detecting means.
  • the apparatus further includes a biological data determination unit 140 that determines biological data detected by the biological data overnight detection unit 130 and, when an abnormality is determined, drives an alarm unit 150.
  • the communication device includes communication means 160 for transmitting the biological data determined by the biological data determination means 140 to a medical center, a care center 170, or the like. Incidentally, it is desirable to use a strain gauge as the strain measuring means 100.
  • the distortion fluctuation detecting unit extracts a DC component and an AC component of the distortion measured by the distortion measuring unit.
  • the biometric data is a detached floor of a subject
  • the biometric data detecting means increases a DC component of the strain detected by the strain variation detecting means by a predetermined value or more with absent as a reference value. In this case, it is desirable to detect the implantation of the subject.
  • the biological data is a respiratory rate of the subject
  • the biological data detecting means includes an AC component of the strain detected by the strain variation detecting means. It is desirable to extract the waveform in the first frequency range from the above, and to detect the respiratory rate from this waveform.
  • the first frequency range is 0.05 Hz to 1.25 Hz, and it is desirable to extract the waveform in this range by filtering.
  • the biological data is the pulse rate of the subject, and the biological data detecting means extracts a waveform in a second frequency range from an AC component of the strain detected by the strain variation detecting means. It is desirable to detect the pulse rate from the waveform.
  • the second frequency range is 0.5 to 4.5 Hz, and it is desirable to extract waveforms within this range by filtering.
  • the biometric data is snoring of a subject, and the biometric data detection means extracts a waveform in a third frequency range from an AC component of the strain detected by the strain variation detecting means, and It is desirable to detect snoring.
  • the biometric data is a subject's cough, and the biometric data determination means extracts a waveform in a third frequency range from an AC component of the strain detected by the strain variation detecting means, and It is desirable to determine a cough.
  • the third frequency range is 20 to 500 Hz, and it is desirable to extract the waveform within this range by filtering.
  • the biometric data is a body motion of the subject, and the biometric data detecting means detects the body motion of the subject from the DC component of the strain and the AC component of the strain detected by the strain variation detecting means. It is desirable to do. Further, it is preferable that the biometric data is a subject's turnover, and the biometric data detecting means detects the subject's turnover from the DC component of the strain and the AC component of the strain detected by the strain variation detecting means. In the case of body motion, the change in the DC component is smaller than that of turning over, which is the detection criterion for both.However, when the center of gravity is detected as described below, the movement of the center of gravity is smaller than that of body turning. Remarkably expressed.
  • the distortion is detected in at least two places of the staying device, and that the biometric data determination unit detects a change in the center of gravity of the subject from a difference between the respective distortions. Since the measured value of the strain gauge on the side closer to the center of gravity is larger than the measured value of the strain gauge on the side closer to the center of gravity, the movement of the center of gravity can be detected.
  • the biometric data is the apnea of the subject, and the biometric data detection means detects the apnea of the subject from at least two phase shifts of the distortion.
  • the staying device is a bed, and the constituent parts are frames.
  • the staying device is a bed, and that a constituent component is a floor plate having a predetermined rigidity.
  • FIG. 1 is a schematic block diagram of a living body data detecting device of the present invention
  • FIG. 2 is an explanatory diagram showing a case where the living body data detecting device of the present invention is mounted on a bed
  • ) Is a side view
  • (b) is a front view
  • FIG. 3 is a schematic configuration diagram of the biometric data detection device
  • FIG. 4 is a schematic configuration diagram of a CPU of the biometric data detection device.
  • FIG. 5 is a diagram showing a waveform extracted to detect a detached bed
  • FIG. 6 is a diagram showing a waveform extracted to detect a respiration rate.
  • FIG. 7 is a diagram showing a waveform extracted to detect a pulse rate;
  • FIG. 1 is a schematic block diagram of a living body data detecting device of the present invention
  • FIG. 2 is an explanatory diagram showing a case where the living body data detecting device of the present invention is mounted on a bed
  • ) Is a side view
  • (b)
  • FIG. 8 is a diagram showing a waveform extracted to detect snoring; The figure shows the waveforms extracted to detect cough; FIG. 10 shows the waveforms extracted to detect body movement It is;
  • first 1 Figure is a diagram showing an extracted waveform in order to detect the turn;
  • first 2 diagram (a) (b) is a mounted state of the strain sensor to the floor plate portion 200
  • FIG. 13 shows the frequency characteristics with respect to the stiffness of the bed
  • Fig. 14 shows the detection state of respiration and pulsation when the stiffness of the pad is increased.
  • Fig. 15 is a diagram showing the state of detection of respiration and pulsation when the stiffness of the bed is reduced;
  • FIG. 17 is a circuit diagram showing an instrumentation circuit;
  • FIG. 17 is a diagram showing an operation state by an instrumentation circuit; Yes;
  • Figure 19 is a diagram showing waveforms for detecting apnea.
  • a predetermined position of a staying device for the subject such as a bed and a chair (in this embodiment, a bed, hereinafter, a bed) 1
  • the strain gauge 3 is arranged in the position.
  • the distortion gauges 3 are arranged on each of the left and right sides of the frame 2 of the bed 1.
  • one may be provided on the head side frame 2 of the blade 1.
  • Each strain gauge 3 is wired to an electric control device housed in a control box 4 provided at a predetermined position of the bed 1.
  • 5 is a temperature detector for temperature compensation of the strain gauge 3.
  • FIG. 3 is a block diagram of the electric control device arranged in the control box 4.
  • the components of the signal output from the strain gauge 3 are emphasized by the DC amplifier 10 and the AC amplifier 12, and are converted into digital signals by the AD converter 14.
  • the digital signal is sent to the CPU 20 and subjected to various processes to calculate a predetermined output signal.
  • the signal is displayed on the display / print unit 30 by the command of the switch unit 40, and is displayed on the communication unit.
  • the information is sent to the medical center and the care center 170 via the port 160.
  • the alarm unit 150 issues an alarm and simultaneously sends a notification to the center 170 via the communication unit 160.
  • the processing performed by the CPU 20 will be described in detail. As shown in FIG.
  • the digital signal changed by the AD converter 14 is a digital signal for departure and landing (D / F)
  • D / F digital signal for departure and landing
  • a predetermined signal, a DC component, and an AC component are extracted by 50, and in particular, the DC component is extracted in a level extraction block 60, and a detached floor of the subject is determined in a detached floor detection block 70.
  • the implantation is detected when the DC component of the distortion variation becomes a predetermined value or more and the AC component of the distortion variation expresses a positive component, and conversely, the DC component returns to the normal value.
  • leaving the bed is detected when a negative component appears in the AC component of the distortion variation.
  • the respiratory D / F 51 and the waveform extraction block 61 extract frequencies in the range of 0.05 to 1.25 Hz, and the waveform as shown in Fig. 6 is extracted. . Then, the respiratory rate detection block 71 detects the time between the peaks (bottoms) of the extracted waveform, and calculates the respiratory rate per minute based on the detected time. Also, the number of peaks (bottoms) per minute may be counted. Thus, the determined respiration rate and waveform can be stored in the storage circuit of the CPU 20.
  • the biological data is a pulse rate
  • a frequency in the range of 0.5 to 4.5 Hz is extracted by the pulse D / F 52 and the waveform extraction block 62, and a waveform as shown in FIG. 7 is extracted.
  • the pulse rate detection block 72 detects the time between the peaks (bottoms) of the extracted waveform, and calculates the pulse rate per minute based on this. Also, the number of peaks (bottoms) per minute may be counted.
  • the obtained pulse rate and waveform are It can also be stored in the storage circuit of the CPU 20.
  • the frequency in the range of 20 to 500 Hz is extracted by the snoring D / F 53 and the waveform extraction block 63, and the waveform as shown in FIG. 8 is obtained. Is extracted.
  • the snoring detection program 73 snoring is detected based on the sustainability of a certain period, the cycle (repetition period), the manner of the envelope (envelope), etc., and the number of times per minute, one hour, and one sleep is counted. If necessary, this waveform is stored together with the above detection result.
  • the cough D / F 54 and the waveform extraction block 64 extract frequencies in the range of 20 to 500 Hz, as shown in Fig. 9. Waveform is extracted. Then, in the cough detection block 74, cough is detected based on the duration of a certain period, the period (repetition period), the manner of the envelope (envelope), etc., and the number of times per minute, hour, and sleep is counted. If necessary, this waveform is stored together with the above detection result.
  • the body motion detection block 75 detects the subject's body motion because the DC component has a small variation and the AC component has a large variation.
  • the turnover detection block 76 detects the subject's turnover because the DC component fluctuates greatly and the AC component fluctuates greatly.
  • the biometric data detected as described above is sent to the abnormality determination block 80, and is compared with, for example, a predetermined threshold value.
  • a predetermined threshold value When the threshold value is the upper limit, when the threshold value is exceeded, or when the threshold value is exceeded. If the value is lower than the threshold value, the alarm unit 150 is activated, and the communication unit is provided with communication means such as a mobile phone, a PHS, a telephone line, and a wireless communication.
  • the detected biological data is transmitted to the sensor 170 together with the abnormal signal.
  • the present biometric data or the past biometric data can be displayed on the display or printed via the display / print unit 30.
  • strain gauges 3 (3a, 3b) are arranged on both sides of the bed 1, the strain gauge of the strain gauge 3a arranged on one side and the strain gauge 3b arranged on the other side. It can also compare with the degree of distortion and detect rollover based on the relative fluctuation.
  • a bed 1 shown in FIGS. 12 (a) and 12 (b) is an embodiment in which a strain gauge 3 is arranged on the bottom surface of a plate 6 having a predetermined rigidity.
  • FIG. 13 shows the rigidity and frequency characteristics of the floor plate 6 of the bed 1.
  • the breathing 0.05 to: L. 25 Hz
  • Pulsation 1.5 to 12.5 Hz
  • snoring 40 to 80 Hz
  • coughing l to 80 Hz :
  • body motion 0.05 to 80 Hz
  • the instrument circuit shown in Fig. 17 is used to amplify a weak signal from the strain gauge 3 using an AC circuit.
  • an instant circuit for shortening the time constant under a predetermined condition is provided.
  • the amplifier gain (A) is obtained by 1 + R4 / R3.
  • the switch U2 is turned on at the stage of (0) when an excessive input is input, and the switch U2 is turned off when the AD conversion input becomes Vref / 2.
  • the solid line indicates the case without an instrument circuit, and indicates that the AD conversion input is saturated until a predetermined time t 2 set by the time constant (320 seconds in this embodiment).
  • the time constant 2 becomes 0.001 seconds.
  • the time until the detectable time t1 shown in FIG. 17 is 0.63 seconds.
  • the undetectable time can be shortened, so that appropriate detection of the biological data can be performed.
  • FIG. 19 shows a method of determining sleep apnea.
  • S1 indicates a signal from the strain sensor 3 arranged near the foot
  • S2 indicates a signal from the strain sensor 3 arranged near the head.
  • Bwl and Bw2 the phases of the two are almost the same, as indicated by Bwl and Bw2.
  • a strain gauge is attached to a staying device such as a bed or a chair in which a subject stays, and the strain gauge detects a variation in strain of the staying device, thereby detecting a living body. Since the data can be detected overnight, it is possible to easily detect biometric data and to achieve a significant cost reduction.

Abstract

A organism data sensing device is provided with at least strain measuring means (100) for measuring the strain of a frame constituting a part of a staying implement (1) such as a bed or a chair where a subject stays, strain variation sensing means (110) for sensing the variation of the measured strain, variation determining means (120) for determining the variation of the sensed strain, and organism data extracting means (130) for extracting organism data on the subject from the determined variation of the strain. An organism signal sensing device for sensing an organism signal representing retirement to bed, leaving from bed, respiratory rate, pulse rate, coughing, snoring, body movement, or roll over by means of an inexpensive sensor.

Description

明 細 書 生体データ検出装置 技術分野  Description Biometric data detector Technical field
この発明は、 ベッ ド、 椅子等の滞在器具に滞在する被験者の生体生理状 態、 例えば呼吸数、 脈拍数、 鼾、 咳、 寝返り等を検出する生体データ検出 装置に関する。 背景技術  The present invention relates to a biological data detecting device that detects a physiological state of a subject staying on a staying device such as a bed or a chair, for example, a respiratory rate, a pulse rate, snoring, coughing, turning over, and the like. Background art
従来、 ベッ ドに寝たきりの状態にある被験者の体重測定は、 介護者等の 手によって被験者を秤皿等に乗せて測定しており、 透析中の体重変化は循 環量を透析器で測定し算出していた。  Conventionally, the weight of a subject who is bedridden is measured by placing the subject on a weighing dish or the like with the help of a caregiver or the like, and the weight change during dialysis is measured by circulating the amount of circulation using a dialyzer. Was calculated.
また、 生体測定は、 呼吸センサ、 脈拍センサを被験者に取り付けて測定 する必要があった。 この種の生体モニタ装置として、 特開平 1 0— 1 1 0 4 6 5号公報が開示する生体モニタ装置は、 カード型の本体に、 脈波を検 出するための発光部と受光部、 心電図、 体脂肪率及び皮膚抵抗の少なくと も一つを検出する電極、 体温や皮膚温を検出するための温度検出部、 心拍 や呼吸による体表面の振動と身体動作による体動の少なくとも一つを検出 するための振動検出部を備えているものである。  In addition, it was necessary to attach a respiratory sensor and a pulse sensor to the subject for in vivo measurement. As a living body monitoring device of this type, a living body monitoring device disclosed in Japanese Patent Application Laid-Open No. H10-110465 discloses a card-type main body, a light emitting unit and a light receiving unit for detecting a pulse wave, An electrode for detecting at least one of body fat percentage and skin resistance, a temperature detecting section for detecting body temperature and skin temperature, and at least one of body surface vibration due to heartbeat or respiration and body movement due to body movement. It is equipped with a vibration detection unit for detecting.
しかしながら、 従来の体重測定では、 介護者への負担が大きく、 どうし ても男手が必要となるという問題点を有し、 また、 生体モニタ装置を身体 に取り付けて測定する場合、 被験者の煩わしさを助長するという問題点が あった。 また、 検出するためのセンサに、 高価なセンサを用いなければな らないという問題点があつた。 このため、 この発明は、 安価なセンサで、 被験者の離着床、 呼吸数、 脈 拍数、 咳、 鼾、 体動、 寝返り等の生体デ一夕を検出することのできる生体 データ検出装置を提供することにある。 発明の開示 However, the conventional weight measurement has a problem that the burden on the caregiver is large and a man is inevitably needed.In addition, when the measurement is performed by attaching the living body monitoring device to the body, it is troublesome for the subject. There was a problem that it promoted. Another problem is that an expensive sensor must be used as a sensor for detection. For this reason, the present invention provides a biological data detecting device capable of detecting a living body data such as a subject's taking off and landing, a respiratory rate, a pulse rate, a cough, a snoring, a body movement, a turning over, and the like with a low-cost sensor. To provide. Disclosure of the invention
したがって、この発明に係る生体デ一夕検出装置は、図 1で示すように、 被験者が滞在するベッド、 椅子等の滞在器具 1を構成する部品の歪みを測 定する歪み測定手段 1 0 0と、 該歪み測定手段 1 0 0によって測定された 歪みの変動量を検出する歪み変動検出手段 1 1 0と、 該歪み変動検出手段 1 1 0によって検出された歪みの変動量を検出する変動量検出手段 1 2 0 と、 該変動量検出手段 1 2 0によって検出された歪みの変動量から、 被験 者の生体デ一夕を検出する生体データ検出手段 1 3 0とを少なくとも具備 するものである。 また、 前記生体デ一夕検出手段 1 3 0よって検出された 生体データを判定し、 異常の判定された場合に、 警報手段 1 5 0を駆動さ せる生体データ判定手段 1 4 0を具備し、 さらに、 前記生体データ判定手 段 1 4 0によって判定された生体データを、 医療セン夕一、 介護セン夕一 1 7 0等に送信する通信手段 1 6 0を具備するものである。 尚、 歪み測定 手段 1 0 0としては、 歪みゲージを用いることが望ましい。  Therefore, as shown in FIG. 1, the living body night detection device according to the present invention includes a strain measurement unit 100 that measures the strain of components constituting the staying device 1 such as a bed and a chair where the subject stays. A distortion fluctuation detecting means 110 for detecting a fluctuation amount of the distortion measured by the distortion measuring means 100; and a fluctuation amount detecting means for detecting a fluctuation amount of the distortion detected by the distortion fluctuation detecting means 110. And a biological data detecting means for detecting a biological data of the subject from the amount of change in the distortion detected by the fluctuation detecting means. The apparatus further includes a biological data determination unit 140 that determines biological data detected by the biological data overnight detection unit 130 and, when an abnormality is determined, drives an alarm unit 150. Further, the communication device includes communication means 160 for transmitting the biological data determined by the biological data determination means 140 to a medical center, a care center 170, or the like. Incidentally, it is desirable to use a strain gauge as the strain measuring means 100.
また、 前記歪み変動検出手段は、 前記歪み測定手段によって測定された 歪みの直流成分と、 交流成分とを抽出することが望ましい。  In addition, it is preferable that the distortion fluctuation detecting unit extracts a DC component and an AC component of the distortion measured by the distortion measuring unit.
さらに、 前記生体データは、 被験者の離着床であり、 前記生体データ検 出手段は、 前記歪み変動検出手段によって検出された歪みの直流成分が、 不在時を基準値として、 所定値以上増加した場合に、 被験者の着床を検出 することが望ましい。  Further, the biometric data is a detached floor of a subject, and the biometric data detecting means increases a DC component of the strain detected by the strain variation detecting means by a predetermined value or more with absent as a reference value. In this case, it is desirable to detect the implantation of the subject.
さらにまた、 前記生体データは、 被験者の呼吸数であり、 前記生体デ一 夕検出手段は、 前記歪み変動検出手段によって検出された歪みの交流成分 から、 第 1の周波数範囲の波形を抽出し、 この波形から呼吸数を検出する ことが望ましい。 この第 1の周波数範囲は 0 . 0 5 H z〜 1 . 2 5 H zで あり、 この範囲内の波形をフィル夕によって抽出することが望ましい。 また、 前記生体デ一夕は、 被験者の脈拍数であり、 前記生体データ検出 手段は、 前記歪み変動検出手段によって検出された歪みの交流成分から、 第 2の周波数範囲の波形を抽出し、 この波形から脈拍数を検出することが 望ましい。 第 2の周波数範囲は 0 . 5〜4 . 5 H zであり、 この範囲内の 波形をフィル夕によって抽出することが望ましい。 Still further, the biological data is a respiratory rate of the subject, and the biological data detecting means includes an AC component of the strain detected by the strain variation detecting means. It is desirable to extract the waveform in the first frequency range from the above, and to detect the respiratory rate from this waveform. The first frequency range is 0.05 Hz to 1.25 Hz, and it is desirable to extract the waveform in this range by filtering. Further, the biological data is the pulse rate of the subject, and the biological data detecting means extracts a waveform in a second frequency range from an AC component of the strain detected by the strain variation detecting means. It is desirable to detect the pulse rate from the waveform. The second frequency range is 0.5 to 4.5 Hz, and it is desirable to extract waveforms within this range by filtering.
さらに、 前記生体データは、 被験者の鼾であり、 前記生体データ検出手 段は、 前記歪み変動検出手段によって検出された歪みの交流成分から、 第 3の周波数範囲の波形を抽出し、 この波形から鼾を検出することが望まし レ、。 また、 前記生体データは、 被験者の咳であり、 前記生体データ判定手 段は、 前記歪み変動検出手段によって検出された歪みの交流成分から、 第 3の周波数範囲の波形を抽出し、 この波形から咳を判定することが望まし い。 第 3の周波数範囲は、 2 0〜 5 0 0 H zであり、 この範囲内の波形を フィル夕によって抽出することが望ましい。 さらに、 咳と鼾は、 変動量の 大きさ、 ある期間の持続性、 包絡状 (エンベロープ) の相違などによって それぞれ検出することが望ましい。  Further, the biometric data is snoring of a subject, and the biometric data detection means extracts a waveform in a third frequency range from an AC component of the strain detected by the strain variation detecting means, and It is desirable to detect snoring. The biometric data is a subject's cough, and the biometric data determination means extracts a waveform in a third frequency range from an AC component of the strain detected by the strain variation detecting means, and It is desirable to determine a cough. The third frequency range is 20 to 500 Hz, and it is desirable to extract the waveform within this range by filtering. Furthermore, it is desirable to detect cough and snoring based on the magnitude of the fluctuation, the duration of a certain period, and the difference in the envelope.
また、 前記生体データは、 被験者の体動であり、 前記生体デ一夕検出手 段は、 前記歪み変動検出手段によって検出された歪みの直流成分及び歪み の交流成分から、 被験者の体動を検出することが望ましい。 さらに、 前記 生体データは、 被験者の寝返りであり、 前記生体データ検出手段は、 前記 歪み変動検出手段によって検出された歪みの直流成分及び歪みの交流成分 から、 被験者の寝返りを検出することが望ましい。 体動の場合、 直流成分 の変動が寝返りに比べて小さいことが両者の検出基準となるが、 下記する 重心の検出が行われる場合には、 寝返りの場合、 重心の移動が体動に比べ て顕著に発現する。 The biometric data is a body motion of the subject, and the biometric data detecting means detects the body motion of the subject from the DC component of the strain and the AC component of the strain detected by the strain variation detecting means. It is desirable to do. Further, it is preferable that the biometric data is a subject's turnover, and the biometric data detecting means detects the subject's turnover from the DC component of the strain and the AC component of the strain detected by the strain variation detecting means. In the case of body motion, the change in the DC component is smaller than that of turning over, which is the detection criterion for both.However, when the center of gravity is detected as described below, the movement of the center of gravity is smaller than that of body turning. Remarkably expressed.
歪みは、 前記滞在器具の少なくとも 2箇所で検出され、 前記生体データ 判定手段は、 それぞれの歪みの差から、 被験者の重心の変動を検出するこ とが望ましい。 重心が接近する側の歪みゲージの測定値は、 重心が離れる 側の歪みゲージの測定値より大きくなるため、 重心の移動が検出可能とな る。  It is preferable that the distortion is detected in at least two places of the staying device, and that the biometric data determination unit detects a change in the center of gravity of the subject from a difference between the respective distortions. Since the measured value of the strain gauge on the side closer to the center of gravity is larger than the measured value of the strain gauge on the side closer to the center of gravity, the movement of the center of gravity can be detected.
さらに、 前記生体データは、 被験者の無呼吸であり、 前記生体デ一夕検 出手段は、 少なくとも 2力所の歪みの位相のずれから、 被験者の無呼吸を 検出することが望ましい。  Furthermore, it is preferable that the biometric data is the apnea of the subject, and the biometric data detection means detects the apnea of the subject from at least two phase shifts of the distortion.
前記滞在器具はベッドであり、 構成する部品がフレームであることが望 ましい。 また、 前記滞在器具はベッドであり、 構成する部品が所定の剛性 を有する床板であることが望ましい。 図面の簡単な説明  It is preferable that the staying device is a bed, and the constituent parts are frames. In addition, it is preferable that the staying device is a bed, and that a constituent component is a floor plate having a predetermined rigidity. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本願発明の生体デーダ検出装置の概略ブロック図である ; 第 2図は、 本願発明の生体デ一夕検出装置をべッドに装着した場合を示 した説明図で、 (a ) は、 側面図、 (b ) は正面図である ;第 3図は、 前記 生体デ一夕検出装置の概略構成図である ;第 4図は、 前記生体データ検出 装置の C P Uの概略構成図である ;第 5図は、 離着床を検出するために抽 出された波形を示した図である ;第 6図は、 呼吸数を検出するために抽出 された波形を示した図である ;第 7図は、 脈拍数を検出するために抽出さ れた波形を示した図である ;第 8図は、 鼾を検出するために抽出された波 形を示した図である ;第 9図は、 咳を検出するために抽出された波形を示 した図である ;第 1 0図は、 体動を検出するために抽出された波形を示し た図である ;第 1 1図は、 寝返りを検出するために抽出された波形を示し た図である;第 1 2図 (a ) ( b ) は、 歪みセンサを床板部分に装着状態を 200 FIG. 1 is a schematic block diagram of a living body data detecting device of the present invention; FIG. 2 is an explanatory diagram showing a case where the living body data detecting device of the present invention is mounted on a bed; ) Is a side view, (b) is a front view; FIG. 3 is a schematic configuration diagram of the biometric data detection device; FIG. 4 is a schematic configuration diagram of a CPU of the biometric data detection device. FIG. 5 is a diagram showing a waveform extracted to detect a detached bed; and FIG. 6 is a diagram showing a waveform extracted to detect a respiration rate. FIG. 7 is a diagram showing a waveform extracted to detect a pulse rate; FIG. 8 is a diagram showing a waveform extracted to detect snoring; The figure shows the waveforms extracted to detect cough; FIG. 10 shows the waveforms extracted to detect body movement It is; first 1 Figure is a diagram showing an extracted waveform in order to detect the turn; first 2 diagram (a) (b) is a mounted state of the strain sensor to the floor plate portion 200
示した説明図である ;第 1 3図は、 べッドの剛性に対する周波数特性を示 したものである ;第 1 4図は、 ぺッドの剛性を大きくした場合の呼吸及び 脈動の検出状態を示した図である ;第 1 5図は、 べッドの剛性を小さくし た場合の呼吸及び脈動の検出状態を示した図である ;第 1 6図は、 べッド を適正な剛性にした場合の呼吸及び脈動の検出状態を示した図である ;第 1 7図は、 インスト回路を示した回路図である ;第 1 8図は、 インスト回 路による作動状態を示した図である ;第 1 9図は、 無呼吸を検出するため の波形を示した図である。 発明を実施するため最良の形態 Fig. 13 shows the frequency characteristics with respect to the stiffness of the bed; Fig. 14 shows the detection state of respiration and pulsation when the stiffness of the pad is increased. Fig. 15 is a diagram showing the state of detection of respiration and pulsation when the stiffness of the bed is reduced; FIG. 17 is a circuit diagram showing an instrumentation circuit; FIG. 17 is a diagram showing an operation state by an instrumentation circuit; Yes; Figure 19 is a diagram showing waveforms for detecting apnea. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の形態について図面により説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 2図 (a ), ( b ) で示されるように、 べッ ド、 椅子等の被験者の滞在 器具 (この実施の形態では、 べヅドのため、 以下、 ベッ ド) 1の所定の位 置に歪みゲージ 3が配される。 第 2図に示される実施例では、 この歪みゲ —ジ 3は、 基本的に、 ベッ ド 1のフレーム 2の左右側のそれぞれに配され ることが望ましいが、 要求される生体データによって、 所定の位置、 例え ばべヅド 1の頭部側フレーム 2に一つ設けても良いものである。 そして、 各歪みゲージ 3は、 べッド 1の所定の位置に設けられたコント口一ルボッ クス 4内に収納された電気制御機器と配線させる。 尚、 5は、 歪みゲージ 3の温度補償用の温度検出器である。  As shown in FIGS. 2 (a) and 2 (b), a predetermined position of a staying device for the subject such as a bed and a chair (in this embodiment, a bed, hereinafter, a bed) 1 The strain gauge 3 is arranged in the position. In the embodiment shown in FIG. 2, it is basically preferable that the distortion gauges 3 are arranged on each of the left and right sides of the frame 2 of the bed 1. For example, one may be provided on the head side frame 2 of the blade 1. Each strain gauge 3 is wired to an electric control device housed in a control box 4 provided at a predetermined position of the bed 1. In addition, 5 is a temperature detector for temperature compensation of the strain gauge 3.
第 3図は、 前記コントロールボックス 4内の配される電気制御機器のブ ロック構成図である。 前記歪みゲージ 3から出力された信号は、 直流増幅 器 1 0及び交流増幅器 1 2によってその成分が強調され、 A D変換器 1 4 によってデジタル信号に変換される。 このデジタル信号は、 C P U 2 0に 送られ、 種々の処理がなされて、 所定の出力信号が演算され、 スィッチュ ニッ ト 4 0の指令により、 表示/印刷ュニット 3 0に表示され、 通信ュニ ヅト 160を介して医療センター、 介護セン夕一等のセン夕一 170に送 信される。 また、 CPU20において検出された生体データに異常が発見 された場合には、 警報ュニット 150が警報を発すると同時に、 通信ュニ ヅト 160を介してセンター 170へ通報が行くようになつている。 前記 CPU20で行われる処理を具体的に説明すると、 第 4図で示され るように A D変換器 14で変更されたデジ夕ル信号は、 離着床用デジ夕ル フィル夕 (D/F) 50によって所定の信号、 直流成分と交流成分が抽出 され、 レベル抽出ブロック 60において、 特に前記直流成分が抽出され、 離着床検出ブロック 70において被験者の離着床が判定される。 第 5図で 示すように、 歪み変動の直流成分が所定値以上となり、 且つ歪み変動の交 流成分にプラス成分が発現することによって着床が検出され、 反対に直流 成分が通常値に戻り、 且つ歪み変動の交流成分にマイナス成分が発現する ことによって離床が検出される。 FIG. 3 is a block diagram of the electric control device arranged in the control box 4. The components of the signal output from the strain gauge 3 are emphasized by the DC amplifier 10 and the AC amplifier 12, and are converted into digital signals by the AD converter 14. The digital signal is sent to the CPU 20 and subjected to various processes to calculate a predetermined output signal. The signal is displayed on the display / print unit 30 by the command of the switch unit 40, and is displayed on the communication unit. The information is sent to the medical center and the care center 170 via the port 160. When an abnormality is found in the biometric data detected by the CPU 20, the alarm unit 150 issues an alarm and simultaneously sends a notification to the center 170 via the communication unit 160. The processing performed by the CPU 20 will be described in detail. As shown in FIG. 4, the digital signal changed by the AD converter 14 is a digital signal for departure and landing (D / F) A predetermined signal, a DC component, and an AC component are extracted by 50, and in particular, the DC component is extracted in a level extraction block 60, and a detached floor of the subject is determined in a detached floor detection block 70. As shown in FIG. 5, the implantation is detected when the DC component of the distortion variation becomes a predetermined value or more and the AC component of the distortion variation expresses a positive component, and conversely, the DC component returns to the normal value. In addition, leaving the bed is detected when a negative component appears in the AC component of the distortion variation.
生体データが呼吸の場合、 呼吸用 D/F 51及び波形抽出ブロック 61 によって、 0. 05〜1. 25 H zの範囲内の周波数が抽出され、 第 6図 で示すような波形が抽出される。 そして、 呼吸数検出ブロック 71におい て、 抽出された波形のピーク (ボトム) 間の時間を検出し、 これに基づい て 1分間当りの呼吸数を演算する。 また、 1分間当りのピーク (ボトム) の回数をカウントしても良い。 これによつて、 求められた呼吸数及び波形 は、 前記 CPU 20の記憶回路に蓄積することもできる。  When the biometric data is breathing, the respiratory D / F 51 and the waveform extraction block 61 extract frequencies in the range of 0.05 to 1.25 Hz, and the waveform as shown in Fig. 6 is extracted. . Then, the respiratory rate detection block 71 detects the time between the peaks (bottoms) of the extracted waveform, and calculates the respiratory rate per minute based on the detected time. Also, the number of peaks (bottoms) per minute may be counted. Thus, the determined respiration rate and waveform can be stored in the storage circuit of the CPU 20.
生体データが脈拍数の場合、 脈拍用 D/F 52及び波形抽出ブロック 6 2によって、 0. 5〜4. 5 Hzの範囲内の周波数が抽出され、 第 7図で 示すような波形が抽出される。そして、脈拍数検出プロック 72において、 抽出された波形のピーク (ボトム) 間の時間を検出し、 これに基づいて 1 分間当りの脈拍数を演算する。 また、 1分間当りのピーク (ボトム) の回 数をカウントしても良い。 これによつて、 求められた脈拍数及び波形は、 前記 C P U 2 0の記憶回路に蓄積することもできる。 When the biological data is a pulse rate, a frequency in the range of 0.5 to 4.5 Hz is extracted by the pulse D / F 52 and the waveform extraction block 62, and a waveform as shown in FIG. 7 is extracted. You. Then, the pulse rate detection block 72 detects the time between the peaks (bottoms) of the extracted waveform, and calculates the pulse rate per minute based on this. Also, the number of peaks (bottoms) per minute may be counted. Thus, the obtained pulse rate and waveform are It can also be stored in the storage circuit of the CPU 20.
生体データが鼾の場合、 鼾用 D / F 5 3及び波形抽出ブロック 6 3によ つて、 2 0〜 5 0 0 H zの範囲内の周波数が抽出され、 第 8図で示すよう な波形が抽出される。 そして、 鼾検出プロヅク 7 3において、 ある期間の 持続性、周期(繰り返し期間)、包絡状(エンベロープ)のあり方などから、 鼾を検出し、 1分、 1時間、 1睡眠当りの回数をカウントし、 必要に応じ て、 上記検出結果と共にこの波形を記憶する。  When the biological data is snoring, the frequency in the range of 20 to 500 Hz is extracted by the snoring D / F 53 and the waveform extraction block 63, and the waveform as shown in FIG. 8 is obtained. Is extracted. In the snoring detection program 73, snoring is detected based on the sustainability of a certain period, the cycle (repetition period), the manner of the envelope (envelope), etc., and the number of times per minute, one hour, and one sleep is counted. If necessary, this waveform is stored together with the above detection result.
生体デ一夕が咳の場合、 咳用 D / F 5 4及び波形抽出ブロック.6 4によ つて、 2 0〜 5 0 0 H zの範囲内の周波数が抽出され、 第 9図で示すよう な波形が抽出される。 そして、 咳検出ブロック 7 4において、 ある期間の 持続性、周期(繰り返し期間)、包絡状(エンベロープ)のあり方などから、 咳を検出し、 1分、 1時間、 1睡眠当りの回数をカウントし、 必要に応じ て、 上記検出結果と共にこの波形を記憶する。  If the living body is a cough, the cough D / F 54 and the waveform extraction block 64 extract frequencies in the range of 20 to 500 Hz, as shown in Fig. 9. Waveform is extracted. Then, in the cough detection block 74, cough is detected based on the duration of a certain period, the period (repetition period), the manner of the envelope (envelope), etc., and the number of times per minute, hour, and sleep is counted. If necessary, this waveform is stored together with the above detection result.
生体データが体動の場合、 体動用 D Z F 5 5及び波形抽出プロック 6 5 によって、 第 1 0図で示すような波形が抽出される。 これによつて、 体動 検出ブロック 7 5では、 直流成分の変動が少なく、 交流成分の変動が大き いことから、 被験者の体動が検出される。  When the biometric data is body motion, a waveform as shown in FIG. 10 is extracted by the body motion DZF 55 and the waveform extraction block 65. As a result, the body motion detection block 75 detects the subject's body motion because the DC component has a small variation and the AC component has a large variation.
また、 生体デ一夕が寝返りの場合、 寝返り用 D / F 5 6及び波形抽出ブ ロック 6 6によって第 1 1図で示すような波形が抽出される。 これによつ て、 寝返り検出ブロック 7 6では、 直流成分の変動が大きく、 交流成分の 変動も大きいことから、 被験者の寝返りが検出される。  In addition, when the living body data is turned over, a waveform as shown in FIG. 11 is extracted by the turnover D / F 56 and the waveform extraction block 66. Thus, the turnover detection block 76 detects the subject's turnover because the DC component fluctuates greatly and the AC component fluctuates greatly.
以上によって検出された生体データは、 異常判定プロック 8 0に送られ て、 例えば予め設定された所定の閾値と比較され、 その閾値が上限である 場合にはその閾値を超えた時、 若しくはその閾値が加減である場合にはそ の閾値より低いときに、警報ュニット 1 5 0を作動させると共に、例えば、 携帯電話、 P H S、 電話回線、 無線等の通信手段を具備する通信ユニット 160を作動させてセン夕一 170へ異常信号と共に、 検出された生体デ 一夕を送信するものである。 The biometric data detected as described above is sent to the abnormality determination block 80, and is compared with, for example, a predetermined threshold value. When the threshold value is the upper limit, when the threshold value is exceeded, or when the threshold value is exceeded. If the value is lower than the threshold value, the alarm unit 150 is activated, and the communication unit is provided with communication means such as a mobile phone, a PHS, a telephone line, and a wireless communication. By operating 160, the detected biological data is transmitted to the sensor 170 together with the abnormal signal.
また、 前記スィッチユニット 40の選択により、 現在の生体データ又は 過去の生体データを表示/印刷ュニッ ト 30を介してディスプレー表示又 は印刷表示を行うことができるものである。  Further, by selecting the switch unit 40, the present biometric data or the past biometric data can be displayed on the display or printed via the display / print unit 30.
さらに、 上記歪みゲージ 3 (3 a, 3 b) がベッド 1の両側に配置され る場合、 一方側に配された歪みゲージ 3 aの歪み度と、 他方側に配された 歪みゲージ 3 bの歪み度とを比較し、 その相対的な変動に基づいて寝返り を検出することもできるものである。  Further, when the strain gauges 3 (3a, 3b) are arranged on both sides of the bed 1, the strain gauge of the strain gauge 3a arranged on one side and the strain gauge 3b arranged on the other side. It can also compare with the degree of distortion and detect rollover based on the relative fluctuation.
第 12図 (a), (b) に示すべヅド 1は、 所定の剛性を有する^板 6の 底面に歪みゲージ 3を配した実施例である。 この実施例において、 第 13 図に示すものは、 ベッド 1の床板 6の剛性と周波数特性を示したものであ る。 この図から明らかなように、 床板 6の剛性をあげた場合の特性 SHで は、周波数に対して振幅が小さいため、第 14図で示すように、呼吸(0. 05〜: L. 25Hz)、 脈動 (1. 5〜; 12. 5Hz)、 鼾 (40〜80H z ), 咳 ( l〜80Hz:)、 体動 (0. 05〜 80Hz) などの交流成分信 号が検出し難い状態となる。  A bed 1 shown in FIGS. 12 (a) and 12 (b) is an embodiment in which a strain gauge 3 is arranged on the bottom surface of a plate 6 having a predetermined rigidity. In this embodiment, what is shown in FIG. 13 shows the rigidity and frequency characteristics of the floor plate 6 of the bed 1. As is clear from this figure, in the characteristic SH when the rigidity of the floorboard 6 is increased, since the amplitude is small with respect to the frequency, as shown in FIG. 14, the breathing (0.05 to: L. 25 Hz) , Pulsation (1.5 to 12.5 Hz), snoring (40 to 80 Hz), coughing (l to 80 Hz :), body motion (0.05 to 80 Hz), etc. Become.
また、 第 13図で示すように、 床板 6の剛性を下げた場合の特性 S Lで は、 周波数に対して振幅が大きくなるため、 第 15図で示すように、 呼吸 信号は良好に検出できるものの脈動信号等の微弱な信号の検出が不可能と なる。 このため、 ベッド 1自体には、 検出が適切である剛性が存在する。 剛性が適正であるべッド 1では、 第 13図の S Aで示すように周波数に 対して適正な振幅が得られるので、 第 16図で示すように脈動波形及び呼 吸波形を含む信号が得られるものである。  In addition, as shown in FIG. 13, in the characteristic SL when the rigidity of the floor plate 6 is reduced, the amplitude becomes larger with respect to the frequency, so that as shown in FIG. 15, although the respiration signal can be detected well, It becomes impossible to detect weak signals such as pulsation signals. For this reason, the bed 1 itself has rigidity that is appropriate for detection. In Bed 1, which has proper stiffness, an appropriate amplitude can be obtained for the frequency as shown by SA in Fig. 13, so that a signal containing a pulsation waveform and an expiration waveform is obtained as shown in Fig. 16. It is something that can be done.
第 17図で示すインスト回路は、 歪みゲージ 3からの微弱な信号を AC 回路を用いて増幅する場合に、 体動等の大きな信号入力があると、 増幅ァ ンプが飽和したり、 後段処理で A D変換器の入力範囲を超えてしまい波形 が検出できなくなるという不具合が生じる。 この時間は、 AC結合の時定 数で決定される。 例えば、 呼吸波形を認識する場合には、 時定数て =3. 2秒 (f c = 0. 05Hz) 程度であり、 アンプ利得を 100倍とした場 合、 過大入力の AD C入力が飽和している時間は、 320秒となる。 この 時間以上は波形として認識できなくなる。 The instrument circuit shown in Fig. 17 is used to amplify a weak signal from the strain gauge 3 using an AC circuit. The amplifier will saturate or will exceed the input range of the AD converter in the post-processing, causing the waveform to be undetectable. This time is determined by the time constant of the AC coupling. For example, when recognizing a respiratory waveform, the time constant is about 3.2 seconds (fc = 0.05 Hz). If the amplifier gain is set to 100 times, the ADC input of the excessive input will saturate. The duration is 320 seconds. After this time, it cannot be recognized as a waveform.
このため、所定の条件の時に時定数てを短くするィンスト回路を設ける。 第 16図で示すィンス ト回路において、 通常スィツチ U 2はオフ状態で あり、 I Nから入力される信号は、 C 1及び R 1で決定される時定数て 1 (= C 1 X 1 ) にてオペアンプ U 1に入力され、 増幅された OUT (A DC) から出力される。 尚、 前記オペアンプ U 1での非反転増幅の場合、 アンプ利得 (A) は、 1 +R 4/R 3で得られる。  Therefore, an instant circuit for shortening the time constant under a predetermined condition is provided. In the impedance circuit shown in FIG. 16, the switch U 2 is normally in the off state, and the signal input from IN has a time constant determined by C 1 and R 1 of 1 (= C 1 X 1). Input to operational amplifier U 1 and output from amplified OUT (A DC). In the case of the non-inverting amplification by the operational amplifier U1, the amplifier gain (A) is obtained by 1 + R4 / R3.
過大入力が入ってオペアンプ U 1が飽和し、 A DC値がオーバ一した場 合、 スイッチ U 2が CPUによって切り替えられ、 時定数て 2 (=C 1 X (R 1 R 2 ) / ( 1 +R 2 )) は小さくなる。 尚、 R 2 <<R 1である。 さらに、 この場合、 VIは、 ADCのリファレンス電圧 (Vr ef) の 1 /2とする。  If the operational amplifier U1 saturates due to excessive input and the ADC value exceeds the limit, the switch U2 is switched by the CPU, and the time constant is 2 (= C1X (R1R2) / (1+ R 2)) becomes smaller. Note that R 2 << R 1. In this case, VI is 1/2 of the ADC reference voltage (Vref).
これによつて、 第 18図で示すように、 過大入力が入った場合 (0) の 段階で、 スイッチ U2をオンにし、 AD変換入力が Vr e f /2になった らスィッチ U2をオフすることにより、 非常に短い時間で波形認識を可能 にするものである。 尚、 第 18図において、 実線はインスト回路なしの場 合で、 AD変換入力が時定数によって設定される所定時間 t 2まで (この 実施例では、 320秒) 飽和していることを示している。 尚、 破線で示す インスト回路有りの場合、 例えば、 C 1 = 1〃F、 R 1 = 3. 2ΜΩ、 R 2 = 1 Κ Ωとした場合、 時定数て 2は、 0. 001秒となり、 第 17図で 示す検出可能時間 t 1までの時間は、 0. 63秒である。 以上のように、 インスト回路を設けることによって、 検出不能時間を短 くすることができるため、 適切な生体デ一夕の検出が可能となるものであ る。 As a result, as shown in Fig. 18, the switch U2 is turned on at the stage of (0) when an excessive input is input, and the switch U2 is turned off when the AD conversion input becomes Vref / 2. This enables waveform recognition in a very short time. In FIG. 18, the solid line indicates the case without an instrument circuit, and indicates that the AD conversion input is saturated until a predetermined time t 2 set by the time constant (320 seconds in this embodiment). . When there is an instrument circuit indicated by a broken line, for example, when C 1 = 1〃F, R 1 = 3.2ΜΩ, and R 2 = 1ΚΩ, the time constant 2 becomes 0.001 seconds. The time until the detectable time t1 shown in FIG. 17 is 0.63 seconds. As described above, by providing the instrument circuit, the undetectable time can be shortened, so that appropriate detection of the biological data can be performed.
また、 第 1 9図は、 睡眠時無呼吸を判定する方法を示したものである。 第 1 9図において、 S 1は足部近傍に配置された歪みセンサ 3からの信号 を示し、 S 2は頭部近傍に配置された歪みセンサ 3からの信号を示す。 通 常、 正常な呼吸の場合、 B w l及び B w 2で示しように両者の位相は略同 一である。  FIG. 19 shows a method of determining sleep apnea. In FIG. 19, S1 indicates a signal from the strain sensor 3 arranged near the foot, and S2 indicates a signal from the strain sensor 3 arranged near the head. Normally, in the case of normal breathing, the phases of the two are almost the same, as indicated by Bwl and Bw2.
べッ ド 1上に滞在する被験者が閉鎖性無呼吸を引き起こした場合、 第 1 9図に示すように B w l 'と B w 2 'の間に位相ずれが生じる。このため、 上下波形に位相ずれがある場合には、 閉鎖性無呼吸と判定することができ る。 また、 呼吸波形信号が消滅した場合には、 中枢性無呼吸と判定するこ とができる。 さらに、 閉鎖性無呼吸と中枢性無呼吸の両者が検出された場 合には、 混合性無呼吸と判定することができるものである。 産業上の利用可能性  When a subject staying on bed 1 causes closed apnea, a phase shift occurs between Bw l 'and B w 2', as shown in Fig. 19. Therefore, if there is a phase shift between the upper and lower waveforms, it can be determined that the apnea is closed. When the respiratory waveform signal disappears, it can be determined that the patient has central apnea. Furthermore, if both closed apnea and central apnea are detected, it can be determined that the patient has mixed apnea. Industrial applicability
以上説明したように、 この発明によれば、 歪みゲージを、 被験者の滞在 するベッド、 椅子等の滞在器具に装着し、 この歪みゲージが検出する滞在 器具の歪みの変動量を検出することによって生体デ一夕を検出できるので、 生体データの検出を容易に行うことが可能となると共に、 大幅なコストダ ゥンを達成できるものである。  As described above, according to the present invention, a strain gauge is attached to a staying device such as a bed or a chair in which a subject stays, and the strain gauge detects a variation in strain of the staying device, thereby detecting a living body. Since the data can be detected overnight, it is possible to easily detect biometric data and to achieve a significant cost reduction.

Claims

請 求 の 範 囲 The scope of the claims
1 . 被験者が滞在する滞在器具を構成する部品の歪みを測定する歪み 測定手段と、 1. A distortion measuring means for measuring distortion of a part constituting a staying device in which a subject stays,
該歪み測定手段によって測定された歪みの変動量を検出する歪み変動検 出手段と、  Distortion variation detecting means for detecting a variation amount of the distortion measured by the distortion measuring means;
該歪み変動検出手段によって検出された歪みの変動量を検出する変動量 検出手段と、  A fluctuation amount detecting means for detecting a fluctuation amount of the distortion detected by the distortion fluctuation detecting means,
該変動量検出手段によって検出された変動量から、 被験者の生体デ一夕 を検出する生体データ検出手段とを少なくとも具備する生体デ一夕検出装  A biometric data detection unit including at least a biometric data detection unit configured to detect a biometric data of a subject from the variation detected by the variation detection unit.
2 . 前記生体デ一夕検出手段よつて検出された生体デ一夕を判定し、 異常の判定された場合に、 警報手段を駆動させる生体データ判定手段を具 備することを特徴とする請求の範囲第 1項記載の生体データ検出装置。 2. A biometric data judging means for judging the biometric data detected by the biometric data detecting means and, when an abnormality is judged, driving an alarm means. 2. The biological data detection device according to claim 1, wherein:
3 . 前記生体データ判定手段によって判定された生体データを、 医療 センター、 介護セン夕一等に送信する通信手段を具備することを特徴とす る請求の範囲第 2項記載の生体デ一夕検出装置。  3. The biometric data detection according to claim 2, further comprising communication means for transmitting the biometric data determined by the biometric data determination means to a medical center, a care center, or the like. apparatus.
4 . 前記歪み変動検出手段は、 前記歪み測定手段によって測定された 歪みの直流成分と、 交流成分とを抽出することを特徴とする請求の範囲第 1項、 第 2項又は第 3項記載の生体データ検出装置。  4. The distortion variation detection means according to claim 1, 2 or 3, wherein the distortion variation detection means extracts a DC component and an AC component of the distortion measured by the distortion measurement means. Biometric data detection device.
5 . 前記生体データは、 被験者の離着床であり、 前記生体データ検出 手段は、 前記歪み変動検出手段によって検出された歪みの直流成分が、 不 在時を基準値として、 所定値以上増加した場合に、 被験者の着床を検出す ることを特徴とする請求の範囲第 4項記載の生体デ一夕検出装置。  5. The biometric data is a detached floor of the subject, and the biometric data detection unit increases a DC component of the strain detected by the strain variation detection unit by a predetermined value or more with the absence of the component as a reference value. 5. The living body data detection apparatus according to claim 4, wherein in this case, the implantation of the subject is detected.
6 . 前記生体データは、 被験者の呼吸数であり、 前記生体データ検出 手段は、 前記歪み変動検出手段によって検出された歪みの交流成分から、 第 1の周波数範囲の波形を抽出し、 この波形から呼吸数を検出することを 特徴とする請求の範囲第 4項又は第 5項記載の生体データ検出装置。 6. The biometric data is the respiratory rate of the subject, and the biometric data detection unit is configured to calculate, from the AC component of the strain detected by the strain variation detection unit, 6. The biological data detection device according to claim 4, wherein a waveform in a first frequency range is extracted, and a respiratory rate is detected from the waveform.
7 . 前記生体デ一夕は、 被験者の脈拍数であり、 前記生体データ検出 手段は、 前記歪み変動検出手段によって検出された歪みの交流成分から、 第 2の周波数範囲の波形を抽出し、 この波形から脈拍数を検出することを 特徴とする請求の範囲第 4項、 第 5項又は第 6項記載の生体データ検出装  7. The biometric data is the pulse rate of the subject, and the biometric data detection means extracts a waveform in a second frequency range from the AC component of the strain detected by the strain variation detection means. 7. The biological data detecting device according to claim 4, wherein the pulse rate is detected from the waveform.
8 . 前記生体データは、 被験者の鼾であり、 前記生体データ検出手段 は、 前記歪み変動検出手段によって検出された歪みの交流成分から、 第 3 の周波数範囲の波形を抽出し、 この波形から鼾を検出することを特徴とす る請求の範囲第 4項〜第 7項のいずれか一つに記載の生体データ検出装置 c 8. The biometric data is a subject's snoring, and the biometric data detecting means extracts a waveform in a third frequency range from an AC component of the strain detected by the strain variation detecting means, and snores from this waveform. The biological data detecting device c according to any one of claims 4 to 7, wherein the biological data detecting device c detects
9 . 前記生体データは、 被験者の咳であり、 前記生体データ検出手段 は、 前記歪み変動検出手段によって検出された歪みの交流成分から、 第 3 の周波数範囲の波形を抽出し、 この波形から咳を検出することを特徴どす る請求の範囲第 4項〜第 8項のいずれか一つに記載の生体データ検出装置 c9. The biometric data is a subject's cough, and the biometric data detection unit extracts a waveform in a third frequency range from an AC component of the strain detected by the strain variation detection unit. The biological data detection device according to any one of claims 4 to 8, wherein the biological data detection device c detects
1 0 . 前記第 2の周波数範囲は、 第 1の周波数範囲よりも高く、 第 3の 周波数範囲は、 前記第 2の周波数範囲よりも高いことを特徴とする請求の 範囲第 6項〜第 9項のいずれか一つに記載の生体データ検出装置。 10. The second frequency range is higher than the first frequency range, and the third frequency range is higher than the second frequency range. The biological data detection device according to any one of the above items.
1 1 . 前記生体デ一夕は、 被験者の体動であり、 前記生体デ一夕検出手 段は、 前記歪み変動検出手段によって検出された歪みの直流成分及び歪み の交流成分から、 被験者の体動を検出する請求の範囲第 4項〜第 1 0項の いずれか一つに記載の生体データ検出装置。  11. The living body image is a body motion of the subject, and the living body image detecting means calculates the body of the subject from the DC component and the AC component of the strain detected by the strain variation detecting means. The biological data detection device according to any one of claims 4 to 10, which detects movement.
1 2 . 前記生体デ一夕は、 被験者の寝返りであり、 前記生体データ検出 手段は、 前記歪み変動検出手段によって検出された歪みの直流成分及び歪 みの交流成分から、 被験者の寝返りを検出する請求の範囲第 4項〜第 1 1 項のいずれか一つに記載の生体データ検出装置。 12. The living body data is a turn of the subject, and the biometric data detecting means detects the turn of the subject from the DC component and the AC component of the strain detected by the strain variation detecting means. The biological data detection device according to any one of claims 4 to 11.
1 3 . 前記歪み測定手段は、 前記滞在器具を構成する部品の少なくとも 2箇所の歪みを検出し、 前記生体デ一夕検出手段は、 それぞれの歪みの差 から、 被験者の重心の変動を検出することを特徴とする請求の範囲第 2項 〜第 1 2項のいずれか一つに記載の生体デ一夕検出装置。 13. The strain measuring means detects at least two strains of components constituting the staying device, and the living body data detecting means detects a change in the center of gravity of the subject from a difference between the respective strains. The living body data detection apparatus according to any one of claims 2 to 12, characterized in that:
1 4 . 前記生体デ一夕は、 被験者の無呼吸であり、 前記生体データ検出手 段は、 少なくとも 2力所の歪みの位相のずれから、 被験者の無呼吸を検出 することを特徴とする請求の範囲第 2項〜第 1 3項のいずれか一つに記載 の生体データ検出装置。  14. The living body data is a subject's apnea, and the biological data detecting means detects the subject's apnea from a phase shift of at least two force points. The biological data detection device according to any one of Items 2 to 13 above.
1 5 . 前記滞在器具はベッドであり、 構成する部品がフレームであること を特徴とする請求の範囲第 1項〜第 1 4項のいずれか一つに記載の生体デ 一夕検出装置。  15. The living body detection apparatus according to any one of claims 1 to 14, wherein the staying device is a bed, and a constituent component is a frame.
1 6 . 前記滞在器具はベッドであり、 構成する部品が所定の剛性を有する 床板であることを特徴とする請求の範囲第 1項〜第 1 4項のいずれか一つ に記載の生体データ検出装置。  16. The biometric data detection according to any one of claims 1 to 14, wherein the staying device is a bed, and a constituent component is a floor plate having a predetermined rigidity. apparatus.
PCT/JP2003/014341 2002-11-14 2003-11-12 Organism data sensing device WO2004043249A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004551218A JP4423603B2 (en) 2002-11-14 2003-11-12 Biological data detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002330407 2002-11-14
JP2002-330407 2002-11-14

Publications (1)

Publication Number Publication Date
WO2004043249A1 true WO2004043249A1 (en) 2004-05-27

Family

ID=32310592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014341 WO2004043249A1 (en) 2002-11-14 2003-11-12 Organism data sensing device

Country Status (2)

Country Link
JP (1) JP4423603B2 (en)
WO (1) WO2004043249A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7716988B2 (en) 2006-05-30 2010-05-18 Nexense Ltd. Apparatus for use in controlling snoring and sensor unit particularly useful therein
JP2011120874A (en) * 2009-09-18 2011-06-23 Hill-Rom Services Inc Apparatuses for supporting person and monitoring condition of person
JP2014504536A (en) * 2011-02-03 2014-02-24 パルティ、ヨーラム Transthoracic cardiopulmonary monitor
JP2016529966A (en) * 2013-07-22 2016-09-29 クヴィアム ユーケー リミテッドQuvium Uk Ltd Cough detection, analysis and communication platform
WO2016186067A1 (en) * 2015-05-19 2016-11-24 パラマウントベッド株式会社 User position detection device and method
JP2016214839A (en) * 2015-05-19 2016-12-22 パラマウントベッド株式会社 User position detection device and method
JP2020114292A (en) * 2019-01-17 2020-07-30 株式会社Taos研究所 Action state determination system and action state determination method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330873Y2 (en) * 1973-12-19 1978-08-01
JPH0415038A (en) * 1990-05-10 1992-01-20 Matsushita Electric Ind Co Ltd Living body monitoring device
JPH0880285A (en) * 1994-09-14 1996-03-26 Matsushita Electric Ind Co Ltd Monitor
JPH08131421A (en) * 1994-11-11 1996-05-28 Matsushita Electric Ind Co Ltd Apparatus for measuring information on respiration during sleeping
JPH11151209A (en) * 1997-09-17 1999-06-08 Matsushita Electric Ind Co Ltd System for detecting state of being in bed
JP2000271103A (en) * 1999-03-24 2000-10-03 Arata Nemoto Apnea detecting apparatus
JP2000316915A (en) * 1999-05-06 2000-11-21 Kawasaki Heavy Ind Ltd Help supporting device
JP2002065639A (en) * 2000-08-24 2002-03-05 Keiso Kenkyusho:Kk Measurement method, management method, measurement device, management device and management system
WO2003000126A1 (en) * 2001-06-25 2003-01-03 Advanced Medical Inc. Biophysiological detector
JP2003210434A (en) * 2002-01-23 2003-07-29 M I Labs:Kk Bio-information acquiring device using hermetically closed pneumatic sound sensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330873Y2 (en) * 1973-12-19 1978-08-01
JPH0415038A (en) * 1990-05-10 1992-01-20 Matsushita Electric Ind Co Ltd Living body monitoring device
JPH0880285A (en) * 1994-09-14 1996-03-26 Matsushita Electric Ind Co Ltd Monitor
JPH08131421A (en) * 1994-11-11 1996-05-28 Matsushita Electric Ind Co Ltd Apparatus for measuring information on respiration during sleeping
JPH11151209A (en) * 1997-09-17 1999-06-08 Matsushita Electric Ind Co Ltd System for detecting state of being in bed
JP2000271103A (en) * 1999-03-24 2000-10-03 Arata Nemoto Apnea detecting apparatus
JP2000316915A (en) * 1999-05-06 2000-11-21 Kawasaki Heavy Ind Ltd Help supporting device
JP2002065639A (en) * 2000-08-24 2002-03-05 Keiso Kenkyusho:Kk Measurement method, management method, measurement device, management device and management system
WO2003000126A1 (en) * 2001-06-25 2003-01-03 Advanced Medical Inc. Biophysiological detector
JP2003210434A (en) * 2002-01-23 2003-07-29 M I Labs:Kk Bio-information acquiring device using hermetically closed pneumatic sound sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7716988B2 (en) 2006-05-30 2010-05-18 Nexense Ltd. Apparatus for use in controlling snoring and sensor unit particularly useful therein
JP2011120874A (en) * 2009-09-18 2011-06-23 Hill-Rom Services Inc Apparatuses for supporting person and monitoring condition of person
JP2014504536A (en) * 2011-02-03 2014-02-24 パルティ、ヨーラム Transthoracic cardiopulmonary monitor
JP2016529966A (en) * 2013-07-22 2016-09-29 クヴィアム ユーケー リミテッドQuvium Uk Ltd Cough detection, analysis and communication platform
WO2016186067A1 (en) * 2015-05-19 2016-11-24 パラマウントベッド株式会社 User position detection device and method
JP2016214839A (en) * 2015-05-19 2016-12-22 パラマウントベッド株式会社 User position detection device and method
JP2020114292A (en) * 2019-01-17 2020-07-30 株式会社Taos研究所 Action state determination system and action state determination method

Also Published As

Publication number Publication date
JP4423603B2 (en) 2010-03-03
JPWO2004043249A1 (en) 2006-04-13

Similar Documents

Publication Publication Date Title
US5448996A (en) Patient monitor sheets
US5964720A (en) Method and system for monitoring the physiological condition of a patient
US9119566B2 (en) Present-on-bed determination apparatus and sleep measurement apparatus
JP4686281B2 (en) Respiratory state determination device, respiratory state measurement method, and respiratory state determination program
US20090119841A1 (en) Bed apparatus and method of determining body movement
JP4883380B2 (en) Biological physiology detection device
JP2004154512A (en) Biomedical signal intensity measuring method, sleeping state determination method, and sleeping state monitoring device
JP2004130012A (en) Method for measuring biosignal strength, and determination method and monitoring device for sleeping conditions
KR20160084980A (en) A real-time sleep monitoring system using a smartphone
JP6262379B1 (en) Load measuring pin sensor, watching bed and watching system
WO2004043249A1 (en) Organism data sensing device
EP3659565B1 (en) On-bed state monitoring system
EP3766424B1 (en) Sleep/wake determination system
JP2007151979A (en) Subject&#39;s health condition monitoring device
US20230157584A1 (en) Body motion determination system
JP5036261B2 (en) Biological information measurement panel
JP4411580B2 (en) Biological data detection device
JP4669915B2 (en) Respiratory state detection device
JP6345322B1 (en) Watch system
JP2008173280A (en) Cough detecting system
CN111788614B (en) In-bed state monitoring system and bed provided with same
JP2008099957A (en) Sheet for measuring biometric information
JP2015194445A (en) thin film sensor device
EP4249862A1 (en) Weight management device and biological information monitoring system
JPH06165770A (en) Sleeping apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004551218

Country of ref document: JP

122 Ep: pct application non-entry in european phase