WO2002103025A1 - Nouveau saccharide sulfate et procede de production associe - Google Patents

Nouveau saccharide sulfate et procede de production associe Download PDF

Info

Publication number
WO2002103025A1
WO2002103025A1 PCT/JP2002/002716 JP0202716W WO02103025A1 WO 2002103025 A1 WO2002103025 A1 WO 2002103025A1 JP 0202716 W JP0202716 W JP 0202716W WO 02103025 A1 WO02103025 A1 WO 02103025A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfated
represented
general formula
saccharide
hydroxyl group
Prior art date
Application number
PCT/JP2002/002716
Other languages
English (en)
French (fr)
Inventor
Hirotaka Uzawa
Norihiko Minoura
Xiaoxiong Zeng
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to US10/480,383 priority Critical patent/US20050004069A1/en
Priority to JP2003505347A priority patent/JPWO2002103025A1/ja
Priority to EP02705414A priority patent/EP1408116A4/en
Publication of WO2002103025A1 publication Critical patent/WO2002103025A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/203Monocyclic carbocyclic rings other than cyclohexane rings; Bicyclic carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H11/00Compounds containing saccharide radicals esterified by inorganic acids; Metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P11/00Preparation of sulfur-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates

Definitions

  • the present invention relates to a novel sulfated saccharide and a method for producing the same.
  • Known sugars and glycolipids having a sulfate group in the molecule include sulfated Sialyl Lewis X and sulfatide, which can specifically bind to selectin proteins and the like present in leukocytes of humans and animals. Are known. Therefore, these sulfated saccharides exhibit selectin blockers and are expected to be applied to the development and application of pharmaceuticals such as anti-inflammatory drugs and prevention of cancer metastasis.
  • the method (1) only a trace amount of the target substance is generally obtained.
  • the method (3) provides a large amount of the target compound, the reaction step is generally long and requires a lot of labor.
  • the method (2) has relatively many reports on the synthesis of saccharides having no sulfate group, but few examples of synthesis of saccharides having a sulfate group are known.
  • the method (a) is characterized in that a transferase that transfers a sulfate group (sulfotransferase: sulfotransferase) is used, but the transferase used is expensive.
  • sulfotransferase sulfotransferase
  • the transferase used is expensive.
  • the introduction position of the sulfate group is limited to the 6-position on the reducing end side, it is difficult to say that it is difficult to synthesize a sulfated saccharide having a sulfate group introduced on the non-reducing end side.
  • the present inventors have used sulfated sugars as donors in the presence of N-acetylhexosaminidase or N-acetyl darcosaminidase as an enzyme, Was used as an acceptor, and when both were reacted, a sulfated sugar chain could be extended to the non-reducing end of the "other sugar". Also, similarly, sulfated sugar is used for the receptor,
  • N-acetylhexosaminidase or N-acetyldarcosaminidase used in these methods is substantially the same enzyme, but the use of this enzyme can accelerate the reaction.
  • This enzyme is easily available and has no economical problems. As a result, the above reaction can be carried out industrially advantageously.
  • the sugar residue represented by [A] is glucose, galactose, mannose, N-acetyldarcosamine, N-acetylgalactosamine, N-acetylmannosamine or any of them.
  • the sulfated saccharide according to the above (1) which is a saccharide residue derived from a saccharide selected from oligosaccharides composed of saccharides.
  • the sugar residue represented by [C] in the general formula (I) is glucose, galactose, mannose, N-acetinoredalcosamine, N-acetinolegalactosamine, N-acetylmannosamine and the like.
  • the sugar residue represented by [D] is glucose, galactose, mannose, N-acetyldarcosamine, N_acetylgalactosamine, N-acetylmannosamine or a sugar thereof.
  • the sulfated saccharide according to the above (7) which is a saccharide residue derived from a saccharide selected from the following oligosaccharides.
  • [A] one (6 SO 3 -G 1 cNAc) - [B] (la) (wherein, (6 S 0 3 _G 1 c NA c) ⁇ Pi [A] are as defined above, [ B] represents a substituted hydroxyl group or a sugar residue)
  • N-acetylhexaminidase or N-acetylglucosami A method for producing an oxidized sugar chain represented by the general formula (I), wherein the reaction is carried out in the presence of an enzyme.
  • [A] represents a hydroxyl group or a sugar residue.
  • Sugar residues include residues derived from sugars selected from monosaccharides, oligosaccharides and polysaccharides.
  • the monosaccharides include those conventionally known, for example, glucose, galactose, mannose, N-acetinolegnorrecosamine, N-acetylgalatatosamine, N-acetylmannosamine and the like.
  • Oligosaccharides include those monosaccharides, chondroitin sulfate, Matane sulfate, heparin and the like are included.
  • Polysaccharides include those obtained by highly polymerizing the aforementioned monosaccharides and oligosaccharides. These sugars may contain a sulfate group or a phosphate group.
  • [C] represents a sugar residue.
  • Sugar residues include residues derived from sugars selected from monosaccharides, oligosaccharides and polysaccharides.
  • the monosaccharides include those conventionally known, for example, gnorecose, galactose, mannose, N-acetinol regolecosamine, N-acetylgalatatosamine, N-acetyl mannosamine and the like.
  • Oligosaccharides include oligosaccharides composed of those monosaccharides, chondroitin sulfate, dermatan sulfate, heparin and the like.
  • Polysaccharides include those in which the polysaccharides and oligosaccharides are highly polymerized. These brans may contain sulfate or phosphate groups.
  • R represents a hydroxyl group or a substituted hydroxyl group.
  • the substituted hydroxyl group means a group in which hydrogen in the hydroxyl group is substituted with a substituent, and is represented by -OR '.
  • R represents a substituent
  • the substituent R includes an aliphatic group or an aromatic group.
  • An aliphatic group may have an unsaturated bond, and the number of carbon atoms is 1 to 4.
  • Such aliphatic groups include methyl, ethyl, propyl, butyl and the like.
  • Aromatic groups include phenyl and substituted phenyl. Examples of the substituted phenyl include those substituted with a nitro group or an alkoxy group.
  • a preferred substituted phenyl is para-nitrophenyl-ortho-nitrophenyl.
  • [D] represents a hydroxyl group, a substituted hydroxyl group or a sugar residue.
  • Sugar residues include residues derived from sugars selected from monosaccharides, oligosaccharides and polysaccharides.
  • monosaccharides include, for example, glucose, galactose, mannose, and N-acetate. Includes tilgalactosamine, N-acetylmannosamine and the like.
  • Oligosaccharides include oligosaccharides composed of these monosaccharides, chondroitin sulfate, dermatan sulfate, heparin and the like.
  • Polysaccharides include those obtained by highly polymerizing the above-mentioned monosaccharides and oligosaccharides. These sugars may contain a sulfate group or a phosphate group.
  • the substituted hydroxyl group means a group in which hydrogen in the hydroxyl group is substituted with a substituent, and specific examples thereof include those described above.
  • the sulfated saccharide represented by the general formula (I) according to the present invention has the following general formula (la)
  • [B] and (6 S 0 3 _G 1 c NA c) bonding mode between may be either ⁇ binding and binding, [beta] is - attached to the 1-position of (6 S0 3 G 1 cNAc) .
  • [B] If the residues derived from that Ru sugar selected from monosaccharides and oligosaccharides, the 2-position of the [B], 3-position, 4-position or 6-position with [6 -S 0 3 - G 1 c NA c] is bonded to position 1.
  • positions [3], [4], or [6] other than position 1 of [B] are (6-S 0 3 —G l cNAc) is linked to the 1 position.
  • the sulfated saccharide represented by the general formula (Ila) is a known compound, and its natural product And synthetic products are commercially available.
  • [Gal] represents a galactose residue.
  • the galactose residue [G a 1] is a glucose residue, a mannose residue, an N-acetyl dalcosamine residue, an N-acetyl galatatosamine residue or an N_ acetylethyl mannosamine residue, It can be substituted with a rigo sugar residue or the like.
  • R 3 to R 6 are hydrogen, or one of R 3 to R 6 is a sulfate group, a phosphate group or a sugar residue, and the rest are hydrogen.
  • the sugar residue include sugar residues derived from monosaccharides such as glucose and galactose, and sugar residues derived from oligosaccharides of those sugars.
  • R 7 represents an alkyl group, a phenyl group, a substituted phenyl group, hydrogen or a sugar residue, one of R 8 to R reflexis a bond (one), and (6SO 3 —G l cNA c) at position 1 (position to which [B] of the structural formula Ia is bonded), and the rest shows hydrogen, one of which may be substituted with a sulfate group or a phosphate group .
  • R 3 , R s O—, R 7 —, R 80 —, and R 1 (i O_ may be an axial arrangement or an equatorial arrangement.
  • the binding mode between [A] and (6 _ S 0 3 ⁇ G 1 c NA c) is, alpha binding ⁇ Pi i3 may be any binding, [A 1 position and, - are bonded with 3 or 4 position of (6 SO 3 G 1 c NA c).
  • the sixth, second, third or fourth position may be sulfurized or phosphorylated.
  • the sulfated and phosphoric oxides of this saccharide include, for example, galactose in which the 3-position is sulfated and daliose in which the 6-position is phosphorylated.
  • [C] represents a sugar residue.
  • the saccharide residue includes a residue derived from a saccharide selected from a monosaccharide, an oligosaccharide and a polysaccharide.
  • the polysaccharide include those conventionally known, for example, glucose, galactose, mannose, N-acetyldanorecosamine, N-acetylgalactosamine, N-acetylmannosamine and the like.
  • Oligosaccharides include oligosaccharides composed of these monosaccharides, chondroitin sulfate, dermatan sulfate, heparin and the like.
  • Polysaccharides include those obtained by highly polymerizing the aforementioned monosaccharides and oligosaccharides.
  • R represents a hydroxyl group or a substituted hydroxyl group, and specific examples of the substituted hydroxyl group in this case include those described above.
  • the hydroxyl group at the 1-position can be a substituted hydroxyl group.
  • Examples of the substituted hydroxyl group in this case include those described above.
  • R 12 represents hydrogen, a substituent or a sugar residue.
  • One of R 13 to R 16 is a bond (one), and the rest represents hydrogen, one of which is a sugar residue or a sulfate group. It may be an acid group or the like.
  • OR 13 may be NHAc.
  • sugar giving the sugar residue [C] examples include the following.
  • Rata toose galact topyranosyl ⁇ 1 ⁇ 4 darcoviranoside
  • the sulfated saccharide of the general formula (la) and the saccharide of the general formula (la) are reacted.
  • the reaction in this case is a reaction to transfer a sulfate group (S0 3) containing sugars.
  • the raw materials are usually used in a molar ratio of 1 to 1, but either of them may be used in excess.
  • the reaction is carried out in the liquid phase and the reaction temperature ranges from 0 to 80 ° C, preferably from room temperature to 50 ° C.
  • the enzyme used is N-acetylhexosaminidase (or N-acetyl darcosaminidase).
  • the enzyme can be derived from mold, calf organs, bacteria, beans, yeast or recombinant DNA.
  • N-acetylhexosaminidase E. 3.2.1.52
  • N-acetyl darcosaminidase EC 3.2.1.52
  • Carriers include alginic acid resins, ribosomes and the like.
  • the reaction is performed in the presence of a solvent.
  • An aqueous medium is usually used as the solvent.
  • reaction product After completion of the reaction, the reaction product can be obtained in an isolated yield of 1 to 80% based on the raw material. After completion of the reaction, the reaction product can be separated and purified by means such as reverse phase chromatography, molecular sieving, and ion exchange.
  • a commonly used buffer such as a phosphate buffer, Tris-HCl buffer, and HEPES buffer is used.
  • a hydrophilic organic solvent such as acetonitrile and methanol is also added to the buffer.
  • the ratio is 0 to 90%, but preferably 10 to 50%.
  • solvents such as toluene-diethyl ether are also used. However, in this case, it is a two-phase system.
  • the reaction is carried out in a range from 0 ° C to 80 ° C. Desirably, the reaction is performed at around room temperature to 50 ° C.
  • [Alpha] and - binding mode of (6S0 3 GlcNAc) is, o; binding and 3 rather good any binding of 1-position and the [A] - 3-position or 4-position and the bond (6S0 3 GlcNAc) are doing.
  • the compound of the general formula (I) of the present invention is characterized in that it is obtained by treating a sulfated sugar as a sugar chain donor and using another sugar as a sugar chain acceptor. It is a structure with an elongated chain.
  • the by-product corresponding to this target product is sugar B.
  • the compound of the general formula (I) according to the present invention has an action of an anti-inflammatory drug because it effectively binds to the selectin protein present in leukocytes, and is widely used in the field of medicine. Be expected.
  • the sulfated saccharide represented by the general formula ( ⁇ ) according to the present invention has the following general formula (Ila)
  • the [D] is a hydroxyl group, a substituted hydroxyl group or sugar residue.
  • Sugar residues include residues derived from sugars selected from monosaccharides, oligosaccharides and polysaccharides. Examples of the polysaccharide include those conventionally known, for example, glucose, galactose, mannose, N-acetyl darcosamine, N-acetyl galactosamine, N-acetyl methyl mannosamine and the like.
  • Oligosaccharides include oligosaccharides composed of these monosaccharides, chondroitin sulfate, dermatan sulfate, heparin and the like. Polysaccharides include those obtained by highly polymerizing the aforementioned monosaccharides and oligosaccharides. These sugars may contain a sulfate group or a phosphate group. When [Z] and [D] are sugar residues, [Z] is preferably a sugar residue different from [D]. '
  • the substituted hydroxyl group means one in which hydrogen of the hydroxyl group is substituted by a substituent, and specific examples thereof are described above.
  • the sulfated saccharide represented by the above general formula (Ila) acts as a sugar chain acceptor and reacts with HO— (GlcNAc) — [Z] as a sugar chain donor.
  • HO— (GlcNAc) — [Z] a sugar chain donor.
  • a sulfated sugar chain can be extended to the sugar reducing terminal.
  • a preferred sulfated sugar used as a sugar chain receptor in the present invention is p-nitrophenyl] 3-D_
  • the sugar chain donor preferably used in the present invention is, for example, paranitrophenyl ⁇ -acetyldarcosamine ((G1cNAc)-[paraditrophenyl]).
  • the sulfated saccharide of the general formula (II) can be produced.
  • the reactants are usually used at a molar ratio of 1: 1. However, either of them may be used in excess.
  • the reaction is carried out in the liquid phase and the reaction temperature ranges from 0 to 80 ° C, preferably from room temperature to 50 ° C.
  • the enzyme used is N-acetylhexosaminidase (EC 3.2.1.52) or N-acetyl darcosaminidase (EC 3.2.1.52).
  • the origins of these enzymes include mold, calf organs, pacteria, beans, yeast, and recombinant DNA.
  • the enzyme can be used by being supported on various carriers. By using the enzyme supported on a carrier as described above, the reaction can be performed at low cost. Alginate polymer for the carrier And ribosomes.
  • reaction product is obtained in an isolation yield of 1 to 80% based on the raw material.
  • reaction product can be separated and purified by means of reverse phase chromatography, molecular sieving (gel filtration), and ion exchange resin.
  • This reaction uses commonly used buffers such as phosphate buffer, Tris-HCl buffer, and HEPS buffer. Also, a hydrophilic organic solvent such as acetonitrile or methanol can be added to the buffer. The ratio is 0-90%, but preferably 10-50%. Rarely, solvents such as toluene-diethyl ether are also used, but in this case a two-phase system is used.
  • the reaction is carried out in the range of 0 ° C to 80 ° C.
  • the reaction temperature is desirably around room temperature to 50 ° C.
  • the second sulfated sugar chain according to the present invention is represented by the following general formula (II).
  • the sulfated sugar chain of the present invention is a sugar compound characterized by having a sulfated sugar chain on the reducing terminal side of the sugar.
  • the sulfated sugar chain of the general formula (II) according to the present invention has an action of an anti-inflammatory drug because it effectively binds to a selectin protein present in leukocytes, and is widely used in the field of medicine. Is expected.
  • Preferred according to the invention are sulfated sugars of the formula:
  • p-Toluenephenyl j3-D- (6-sulfo) -N-acetyldarcosamine sodium salt (54 mg) and methyl a-D-darcoviranoside (500 mg) were added to a 50 mM sodium phosphate buffer solution ( ⁇ 6 0, 1 mL), add Aspergillus oryzae-derived D-N-acetyl to oxosaminidase (10.5 units) (EC.3.2.1.52, manufactured by Sigma) for 71 hours at 35 ° C. Incubated. The reaction was immersed in water at 100 ° C for 5 minutes to stop the reaction.
  • reaction mixture was purified on a DEAE Sephadex A-25 column (eluent: water ⁇ 0.2 M ammonium acetate solution). Further purification was performed on a Dowex-50W-X8 column (H +) and finally by Bio-Gel P-2 chromatography. As a result, the target product, j3 -D- (6-sulf o ) -GlcNAc- (1 ⁇ 4) - a -Glc-0CH 3 to 9, 8 mg (17%) was obtained.
  • a sulfated saccharide when a sulfated saccharide is used as a donor and another saccharide is used as an acceptor using N-acetylhexosaminidase, which is a commercially available enzyme, the non-reduced terminal is oxidized to the non-reducing terminal. A new sulfated saccharide with an extended saccharide was obtained.
  • a new sulfated saccharide having a sulfated saccharide extended to the reducing end could be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

明細書
新規な硫酸化糖及びその製造方法 技術分野
本発明は、 新規な硫酸化糖及びその製造方法に関する。 背景技術
硫酸基を分子内に有する糖や糖脂質には、 硫酸化シァリールルイス Xやスルフ ァチドなどが知られており、 ヒトゃ動物の白血球に存在するセレクチンタンパク 質などと特異的に結合することが知られている。 従って、 これらの硫酸化糖は、 セレクチンプロッカーを示すことから抗炎症薬やガン転移の防止といった医薬品 などの開発応用に期待されている。
従来、 この種の硫酸化糖及びその製造方法にはいろいろな方法が開発されてお り、 以下のような方法がある。 -
(1) 抽出法や、 クロマトグラフィー等の分離法により天然物から回収する方法
(2) 酵素を用いる方法
(3) 化学合成による方法
(4) 前記 (2) 及び (3) の組み合わせによる方法
前記 (1) の方法は、 一般に極微量の目的物を得られるにすぎない。 前記 (3 ) の方法は大量に目的化合物が得られるものの、 反応ステップが一般に長く、 多 くの労力を必要とする。 前記 (2) の方法は、 次に述べるように、 硫酸基のない 糖合成に関しては、 比較的多くの報告例があるが、 硫酸基を有する糖の合成例は 、 あまり知られていない。
ところで、 酵素を用いる公知の硫酸化糖の合成方法は、 用いる酵素の性質によ り、 2つに分けられている。
(a) 硫酸基転移酵素による合成
GlcNAc β l→4GlcNAc → GlcNAc β l→4(6S03)GlcNAc
GlcNAc β l→4GlcNAc β l→4GlcNAc β l→4GlcNAc → GlcNAc j8 l→4GlcNAc β l→4GlcNAc β 1→4 (6S03) GlcNAc この合成法については、 C. - H. Wong, J. Org. Chem. , 65, 5565-5574 (2000) . J. Am. Chem. Soc., 117, 8031 (1995)に記載されている。
( b ) ガラクトース転移酵素による合成
6S03- GlcNAc β l→3Gal β l→4Glc β→0MPM → Gal β 1→4 (6S03) - GlcNAc β 1→ 3Gal β l→4Glc β→0MPM
この合成法については、 Lubineau, Carbohydrate Res. , 305, 501 (1998)に記 載されている。
前記した如き酵素を用いる反応は、 反応としての有用性は指摘されているが、 実際にその反応を実施するには大きな困難を伴う。
前記(a )の方法では、 硫酸基を転移させる転移酵素 (硫酸基転移酵素:スルフ オトランスフェラーゼ) を使用する点に特徴があるが、 使用する転移酵素は高価 なものであり、 このような高価な酵素を用いて硫酸化糖を製造する結果、 製品が 高価とならざるを得ず、 実際の工業規模で生産を行う場合には、 製造価格の点で 使用できないものとなる。 また、 硫酸基の導入位置も還元末端側の 6位に限られ るため、 非還元末端側に硫酸基を導入した硫酸化糖の合成が困難であるなど一般 的な方法とは言い難い。
次に、 (b ) の方法では、 硫酸基を転移させる転移酵素 (ガラクトース転移酵 素) が用いられるが、 この酵素自体は既に各反応に使用されることから既に開発 されている状態にあるが、 やはり高価であり、 また、 利用される基質も大幅に限 定されており、 実用的な方法であるとは言い難い。
本発明の課題を示すと、 以下の通りである。
( 1 ) 糖の非還元末端側に硫酸化糖鎖を導入した構造を有する新規な硫酸化糖及 びその硫酸化糖の製造方法を提供すること。
( 2 ) 糖の還元末端側に硫酸化糖鎖を導入した構造を有する新規な硫酸化糖及び その硫酸化糖の製造方法を提供すること。 発明の開示
本発明者らは、 酵素として、 N—ァセチルへキソサミニダーゼまたは N—ァセ チルダルコサミニダーゼの存在下において、 硫酸化糖を供与体に用い、 「他の糖 」 を受容体に用いて両者を反応させると、 その 「他の糖」 の非還元末側に硫酸化 糖鎖を伸長させ得ることを見出した。 また、 同じく、 硫酸化糖を受容体に用い、
「他の糖」 を供与体に用いて両者を反応させると、 その 「他の糖」 の還元末端側 に硫酸化糖鎖を伸長させ得ることを見いだした。
これらの方法に用いられる N—ァセチルへキソサミニダーゼ (又は N—ァセチ ルダルコサミニダーゼ) は、 実質上同一の酵素であるが、 この酵素の使用により 前記反応を促進させることができる。 この酵素は、 手に入りやすく、 経済的に問 題がない酵素であり、 結果として前記の反応を工業的に有利に行うことができる
本発明によれば、 以下に示す新規な硫酸化糖及びその製造方法が提供される。
(1) 下記一般式 (I) で表されることを特徴とする硫酸化糖。
[A] — (6 S 03-G 1 cNAc) 一 [C] 一 R (I) (式中、 (6 S 03— G 1 c NAc) は 6—硫酸化 N—ァセチルダルコサミン残 基を示し、 [A] は水酸基又は糖残基を示し、 [C] は糖残基を示し、 Rは水酸 基又は置換水酸基を示す)
(2) 該一般式 (I) における [A] を示す糖残基が、 グルコース、 ガラクトー ス、 マンノース、 N—ァセチルダルコサミン、 N—ァセチルガラクトサミン、 N —ァセチルマンノサミン及ぴそれら糖からなるオリゴ糖の中から選ばれる糖から 誘導された糖残基であることを特徴とする前記 (1) に記載の硫酸化糖。
(3) 該一般式 (I) における [C] を示す置換水酸基が、 パラニトロフエノキ シ基であることを特徴とする前記 (1) 又は (2) に記載の硫酸化糖。
(4) 該 [A] を示す糖残基が、 硫酸基又はリン酸基を含有することを特徴とす る前記 (1) 〜 (3) のいずれかに記載の硫酸化糖。
(5) 該一般式 (I) における [C] を示す糖残基が、 グルコース、 ガラクトー ス、 マンノース、 N—ァセチノレダルコサミン、 N—ァセチノレガラク トサミン、 N 一ァセチルマンノサミン及びそれらの糖からなるオリゴ糖の中から選ばれる糖か ら誘導された糖残基であることを特徴とする前記 (1) 〜 (4) のいずれかに記 載の硫酸化糖。
(6) 該 [C] を示す糖残基が、 硫酸基又はリン酸基を含有することを特徴とす る前記 (5) に記載の硫酸化糖。
(7) 下記一般式 (II) で表されることを特徴とする硫酸化糖。
HO- (G 1 cNAc) - (6 S O3— G 1 c NA c) 一 [D] (II) (式中、 (6 S 03— G 1 c NA c) は 6—硫酸化 N—ァセチルダルコサミン残 基を示し、 (G l cNAc) は N—ァセチルダルコサミン残基を示し、 [D] は 水酸基、 置換水酸基又は糖残基を示す)
(8) 該一般式 (II) における [D] を示す糖残基が、 グルコース、 ガラクトー ス、 マンノース、 N—ァセチルダルコサミン、 N_ァセチルガラク トサミン、 N —ァセチルマンノサミン及びそれら糖からなるオリゴ糖の中から選ばれる糖から 誘導された糖残基であることを特徴とする前記 (7) に記載の硫酸化糖。
(9) 該一般式 (II) における [D] を示す置換水酸基が、 パラニトロフエノキ シ基であることを特徴とする前記 (7) 又は (8) に記載の硫酸化糖。
(10) 該 [D] を示す糖残基が、 硫酸基又はリン酸基を含有することを特徴と する前記 (7) 〜 (9) のいずれかに記載の硫酸化糖。
(1 1) 下記一般式 ( I )
[A] 一 (6 S Os-G 1 cNAc) — [C] 一 R (I) (式中、 (6 S 03— G 1 c NA c) は 6 _硫酸化 N—ァセチルダルコサミン残 基を示し、 [A] は水酸基又は糖残基を示し、 [C] は糖残基を示し、 Rは水酸 基又は置換水酸基を示す)
で表される硫酸化糖を製造する方法において、 下記一般式 (l a)
[A] 一 (6 S O3-G 1 cNAc) - [B] (l a) (式中、 (6 S 03_G 1 c NA c) 及ぴ [A] は前記と同じ意味を有し、 [B ] は置換水酸基又は糖残基を示す)
で表される硫酸化糖鎖と、 下記一般式 (l b)
HO- [C] 一 R (l b) (式中、 [C] 及ぴ Rは前記と同じ意味を有する)
で表される糖とを、 N—ァセチルへキサミニダーゼ又は N—ァセチルグルコサミ ダーゼの存在下で反応させることを特徴とする前記一般式 (I) で表される 酸 化糖鎖の製造方法。
(12) 下記一般式 (II)
HO- (G 1 cNAc) - (6 S03— G l cNAc) ― [D] (II)
(式中、 (6 S03— G 1 cNAc) は 6—硫酸化 N—ァセチルダルコサミン残 基を示し、 (G l cNAc) は N—ァセチルダルコサミン残基を示し、 [D] は 水酸基、 置換水酸基又は糖残基を示す)
で表される硫酸化糖を製造する方法において、 下記一般式 (Ila)
HO (6 S03-G 1 cNAc) - [D] (Ila) (式中、 (6 S03— G 1 cNAc) 及び [D] は前記と同じ意味を有する) で表される硫酸化糖と、 下記一般式 (lib)
HO- (G l cNAc) — [Z] (lib) (式中、 (G l cNAc) は N—ァセチルダルコサミン残基を示し、 [Z] は、 水酸基、 置換水酸基又は糖残基を示す)
で表される糖とを、 N—ァセチルへキサミニダーゼ又は N—ァセチルダルコサミ ダーゼの存在下で反応させることを特徴とする前記一般式 (Π) で表される硫酸 化糖の製造方法。
本発明の第 1の態様によれば、 下記一般式 (I) で表される硫酸化糖及びその 製造方法が提供される。
[A] — (6 S03-G 1 cNAc) — [C] 一 R (I) 前記式中、 (6 S 03— G 1 c NA c ) は 6—硫酸化 N—ァセチルグルコサミ ンから誘導される残基を示す。
前記 [A] は、 水酸基又は糖残基を示す。 糖残基には、 単糖、 オリゴ糖及び多 糖の中から選ばれる糖から誘導される残基が包含される。 単糖には、 従来公知の もの、 例えば、 グルコース、 ガラク トース、 マンノース、 N—ァセチノレグノレコサ ミン、 N—ァセチルガラタ トサミン、 N—ァセチルマンノサミン等が包含される 。 オリゴ糖には、 それらの単糖からなるオリゴ糖や、 コンドロイチン硫酸、 デル マタン硫酸、 へパリン等が包含される。 多糖には、 前記単糖やオリゴ糖が高度に 重合したもの等が包含される。 これらの糖は、 硫酸基やリン酸基を含有していて もよい。
前記 [C] は、 糖残基を示す。 糖残基には、 単糖、 オリゴ糖及び多糖の中から 選ばれる糖から誘導される残基が包含される。 単糖には、 従来公知のもの、 例え ば、 グノレコース、 ガラクトース、 マンノース、 N—ァセチノレグノレコサミン、 N— ァセチルガラタトサミン、 N—ァセチルマンノサミン等が包含される。 オリゴ糖 には、 それらの単糖からなるオリゴ糖や、 コンドロイチン硫酸、 デルマタン硫酸 、 へパリン等が包含される。 多糖には、 前記多糖やオリゴ糖が高度に重合したも の等が包含される。 これらの糠は、 硫酸基やリン酸基を含有していてもよい。
Rは水酸基又は置換水酸基を示す。
前記置換水酸基は、 水酸基における水素が置換基で置換されたものを意味し、 -OR' で表される。 この場合の R, が置換基を示し、 この置換基 R, には、 脂 肪族基や芳香族基が包含される。 脂肪族基には不飽和結合が存在していてもよく 、 その炭素数は 1〜4である。 このような脂肪族基としては、 メチル、 ェチル、 プロピル、 ブチル等が挙げられる。 芳香族基には、 フエニル及び置換フヱニルが 包含される。 置換フエニルとしては、 ニトロ基やアルコキシ基等で置換されたも のが挙げられ、 好ましい置換フエニルは、 パラニトロフエニルゃオルトニトロフ ェニル等である。
本発明の第 2の態様によれば、 下記一般式 (Π) で表される硫酸化糖及びその 製造方法が提供される。
HO- (G 1 cNAc) 一 (6 S03— G l cNAc) — [D] (II) 前記式中、 (6 S03— G 1 c NAc) は前記と同じ意味を示し、 (G l cN Ac) はァセチルダルコサミンから誘導された残基を示す。
前記 [D] は、 水酸基、 置換水酸基又は糖残基を示す。 糖残基には、 単糖、 ォ リゴ糖及び多糖の中から選ばれる糖から誘導される残基が包含される。 単糖には 、 従来公知のもの、 例えば、 グルコース、 ガラクトース、 マンノース、 N—ァセ チルガラクトサミン、 N—ァセチルマンノサミン等が包含される。 オリゴ糖には 、 それらの単糖からなるオリゴ糖や、 コンドロイチン硫酸、 デルマタン硫酸、 へ パリン等が包含される。 多糖には、 前記単糖やオリゴ糖が高度に重合したもの等 が包含される。 これらの糖は、 硫酸基やリン酸基を含有していてもよい。
前記置換水酸基は、 水酸基における水素が置換基で置換されたものを意味し、 その具体例としては前記で示したものを挙げることができる。
本発明による前記一般式 (I) で表される硫酸化糖は、 下記一般式 (l a)
[A] — (6 S03— G 1 cNAc) 一 [B] (l a) (式中、 (6 S 03_G 1 c NA c ) 及ぴ [A] は前記と同じ意味を有し、 [B ] は置換水酸基又は糖残基を示す)
で表される硫酸化糖と、 下記一般式 (l b)
HO- [C] — R (lb) (式中、 [C] は糖残基を示し、 Rは水酸基又は置換水酸基を示す)
で表される糖とを、 N—ァセチルへキサミニダーゼ又は N—ァセチルダルコサミ ダーゼの存在下で反応させることによって製造される。
前記反応は、 以下の反応式で示される。
[A] 一 (6 S03— G l cNAc) - [B] +HO_ [C] _R
→ [A] ― (6 S 03-G 1 cNAc) - [C] -R + B (a) 前記一般式 (I a) において、 [B] と (6 S 03_G 1 c NA c) との間の 結合様式は、 α結合および 結合のいずれでもよく、 [Β] は、 (6 S03— G 1 cNAc) の 1位に結合している。 [B] が単糖及びオリゴ糖の中から選ばれ る糖から誘導された残基の場合、 その [B] の 2位、 3位、 4位又は 6位と [6 —S 03— G 1 c NA c] の 1位とが結合している。 但し、 [B] が N—ァセチ ルダルコサミンや N—ァセチルマンノサミン等から誘導される残基の場合、 その [B] の 1位以外の 3位、 4位又は 6位と (6— S 03—G l cNAc) の 1位 とが結合している。
前記一般式 (Ila) で表される硫酸化糖は、 公知の化合物であり、 その天然品 及ぴ合成品が市販されている。
前記一般式 (Ila) で表される硫酸化糖の具 例を示すと、 以下の通りである
(1) HO- (6 S Os-G 1 cNAc) _OCH3
(2) HO— (6 S 03-G 1 cNAc) _OC2H5
(3) HO- (6 S O3-G 1 cNAc) — OC6H4N02
(N02はオルト又はパラ位が好ましい)
(4) HO- [G a 1 ] ― (6 SO「G l cNAc) — OCH3
(5) HO- [G a 1] ― (6 SO「 G l c NAc) —OC2H5
(6) HO- [G a 1 ] 一 (6 S 03-G 1 cNAc) -OC6H4N02
(N02はオルト又はパラ位が好ましい)
前記式中、 [Ga l ] は、 ガラクトース残基を示す。 ガラクトース残基 [G a 1] は、 グルコース残基、 マンノース残基、 N—ァセチルダルコサミン残基、 N —ァセチルガラタトサミン残基又は N_ァセチルマンノサミン残基、 それらのォ リゴ糖残基等で置換することができる。
前記 [A] — (6 S Os-G 1 c NAc) - [B] の構造式を示すと下記の通 りである。
Figure imgf000010_0001
前記式中、 1^と R2との組合せは以下の通りである。
① [A] 、 R2=H
② [A]
Figure imgf000010_0002
H ( [A] が OHである場合) 前記 [A] を示す糖残基の構造式を示すと下記の通りである (
Figure imgf000011_0001
前記式中、 R3〜R6は水素であるか又は R3〜R6のうちの 1つが硫酸基、 リン 酸基又は糖残基であり、 残りのものは水素である。 糖残基としては、 グルコース 、 ガラクトース等の単糖から誘導される糖残基や、 それらの糖のオリゴ糖等から 誘導される糖残基が包含される。
前記 [B] を示す糖残基の構造式を示すと下記の通りである。
Figure imgf000011_0002
前記式中、 R7はアルキル基、 フヱニル基、 置換フエニル基、 水素又は糖残基 を示し、 R8〜R„のうちの 1つは結合手 (一) であり、 (6 SO3— G l cNA c) の 1位 (構造式 I aの [B] が結合する位置) に結合し、 残りは水素を示す 。 その水素の 1つは硫酸基又はリン酸基で置換されていてもよい。
なお、 前記式 [A] 及び [B] において、 R3〇一、 RsO—、 R7—、 R80— 、 R1(iO_は、 アキシャル配置でも、 ェクアトリアル配置でもよい。 前記一般式 ( I ) 及び (l a ) において、 [A] と (6 _ S 03~ G 1 c N A c ) との間の結合様式は、 α結合及ぴ i3結合のいずれでもよく、 [A] の 1位と 、 ( 6 S O3- G 1 c NA c ) の 3位又は 4位とが結合している。
また、 前記 [A] を示す糖残基において、 その 6位、 2位、 3位又は 4位は硫 酸化又はリン酸化されていてもよい。 この糖の硫酸化物やリン酸化物には、 例え ば、 3位が硫酸化されたガラクトースゃ 6位がリン酸化されたダリコース等が包 含される。
前記 [ C] — Rにおいて、 [ C] は糖残基を示す。 この場合の糖残基には、 単 糖、 オリゴ糖及び多糖の中から選ばれる糖から誘導される残基が包含される。 多 糖には、 従来公知のもの、 例えば、 グルコース、 ガラクトース、 マンノース、 N —ァセチルダノレコサミン、 N—ァセチルガラクトサミン、 N—ァセチルマンノサ ミン等が包含される。 オリゴ糖には、 それらの単糖からなるオリゴ糖や、 コンド ロイチン硫酸、 デルマタン硫酸、 へパリン等が包含される。 多糖には、 前記単糖 やオリゴ糖が高度に重合したもの等が包含される。
Rは水酸基又は置換水酸基を示すが、 この場合の置換水酸基の具体例としては 、 前記したものを挙げることができる。
前記 [ C] を示す糖残基において、 その 1位の水酸基は、 置換水酸基であるこ とができる。 この場合の置換水酸基としては、 前記したものを挙げることができ る。
前記 [C ] を示す糖残基の 1例についてその構造式を示すと、 以下の通りであ る。
Figure imgf000012_0001
前記式中、 R12は水素、 置換基又は糖残基を示す。 R13〜R16のうちの 1つは 結合手 (一) であり、 残りは水素を示すが、 その 1 つは糖残基や、 硫酸基ゃリ ン酸基等であってもよい。 OR13は NHA cであってもよい。
前記、 糖残基 [C] を与える糖としては、 以下のものが挙げられる。
メチル a -ダルコビラノシド、
ラタ トース (ガラク トピラノシル β 1→4ダルコビラノシド)
二 D- Ν-ァセチルダルコサミン
本発明では、 前記一般式 (l a) の硫酸化糖と前記一般式 (l a) の糖とを反 応させる。 この場合の反応は、 硫酸基 (S03) 含有糖を転移させる反応である。 原料の使用割合は、 通常モル比で、 1対 1の割合であるが、 どちらかを過剰量 用いても差し支えない。 反応は液相で行われ、 反応温度は、 0〜8 0°C、 好まし くは室温〜 5 0°Cの範囲である。 用いる酵素は、 N—ァセチルへキソサミニダ一 ゼ (又は N—ァセチルダルコサミニダーゼ) である。 この酵素は、 カビ、 仔牛の 臓器、 バクテリア、 豆、 酵母又は組み換え DNA等に由来するものであることが できる。
酵素である、 N—ァセチルへキソサミニダーゼ(E. 3.2.1.52)または、 N— ァセチルダルコサミニダーゼ(E.C. 3.2.1.52) (両酵素は本質的に同一であるが 、 市販品の中には 2つの異なった名称で市販されている) は、 各種の担体に担持 させて用いることもできる。 酵素を担体に担持させて用いる場合には、 安価に行 うことができる。 担体には、 アルギン酸樹脂、 リボソームなどを挙げることがで きる。
反応は溶媒の存在下に行う。 溶媒としては通常水系媒体が用いられる。
反応終了後反応生成物は原料物質に対して 1〜8 0%の単離収率で得ることが できる。 反応終了後、 反応生成物を逆相クロマトグラフィー、 分子ふるい、 ィォ ン交換などの手段により分離精製することができる。
本反応には、 燐酸緩衝液ゃトリス塩酸緩衝液、 HE PE S緩衝液のような通常 用いられる緩衝液を用いる。 また、 ァセトニトリルやメタノールなどの親水性有 機溶媒もこの緩衝液中に加えられる。 その割合は、 0〜90%であるが、 1 0〜 5 0%が望ましい。 まれに、 トルエンゃジェチルエーテルのような溶媒も用いら れるが、 この場合には、 2相系となる。 反応は、 0°C〜80°Cの範囲で行われる 。 望ましくは、 室温近辺〜 50°Cで行われる。
前記反応で得られる [A] — [6S03- GlcNAc] — [C] 一 Rにおいて、 その ( 6S03-GlcNAc) と [C] との結合様式は、 j3 1→ 2, j3 1→ 3 , β 1→4, β 1 →6, a l→2、 α 1→3、 α 1→ 4、 α 1→6のいずれ力、 もしくは、 これら の混合物である。 [C] が Ν—ァセチルダルコサミンや Ν—ァセチルガラクトサ ミン、 Ν—ァセチルマンノサミンの場合には、 1→2及び α 1→2の結合様式 は除かれる。 [C] に硫酸基やリン酸基が含まれる場合には、 それらのァニオン 性基が存在する位置への結合は除かれる。
[Α] と (6S03- GlcNAc) との結合様式は、 o;結合及び 3結合のいずれでもよ く、 [A] の 1位と (6S03- GlcNAc) の 3位又は 4位とが結合している。
前記一般式 (I) の硫酸化糖の具体的例を示すと、 以下の通りである。
( 1 ) H0-i3 -D- (6-sulfo)—GlcNAc— (1→4) - α一 Glc— 0CH3
(2) HO- (6-sulfo) -GlcNAc β - (1→3 or 6)- Gal j31→4 - Glc
(3) HO- (6-sulfo) -GlcNAc j3 - (1→3 or 4)— GlcNAc
本発明の 般式 (I) の化合物の特徴は、 硫酸化糖を糖鎖供与体に、 他の糖を 糖鎖受容体に用いて処理することにより得られる、 非還元末端側に硫酸化糖鎖を 伸長させた構造体である。 この目的生成物に対応する副生成物は、 糖 Bである。 本発明による前記の一般式 (I) の化合物は、 白血球に存在するセレクチンタ ンパク質と効果的に結合するため、 抗炎症薬の作用を有するものであり、 医薬の 現場などで広く使用されると期待される。
本発明による前記一般式 (Π) で表される硫酸化糖は、 下記一般式 (Ila)
HO— (6 S03-G 1 cNAc) — [D] (Ila) で表される硫酸化糖と、 下記一般式 (lib)
HO- (G 1 c NAc) - [Z] (li ) で表される糖とを、 前記した酵素の存在下で反応させることによって製造される この場合の反応式を示すと以下の通りである。
HO- (6 S 03-G 1 cNAc) ― [D] +HO— (G 1 cNAc) 一 [Z] → HO— (G 1 cNAc)
- (6 S O3-G 1 cNAc) - [D] + Z (b) 前記 [D] は、 水酸基、 置換水酸基又は糖残基を示す。 糖残基には、 単糖、 ォ リゴ糖及び多糖の中から選ばれる糖から誘導される残基が包含される。 多糖には 、 従来公知のもの、 例えば、 グルコース、 ガラクトース、 マンノース、 N—ァセ チルダルコサミン、 N—ァセチルガラクトサミン、 N—ァセチルマンノサミン等 が包含される。 オリゴ糖には、 それらの単糖からなるオリゴ糖や、 コンドロイチ ン硫酸、 デルマタン硫酸、 へパリン等が包含される。 多糖には、 前記単糖やオリ ゴ糖が高度に重合したもの等が包含される。 これらの糖は、 硫酸基やリン酸基を 含有していてもよい。 [Z] 及び [D] が糖残基の場合、 [Z] は [D] と異な る糖残基であることが好ましい。 '
置換水酸基は、 水酸基の水素が置換基によって置換されたものを意味し、 その 具体例については前記に示されている。
この [D] を示す糖残基と 6—硫酸化一 N—ァセチルダルコサミン残基 (6 S 03-G 1 c NA c) との間の結合様式は、 (6 S 03— G 1 c NA c) の 1位と 、 [D] の 2位、 3位、 4位又は 6位との間の結合である。 [D] は、 その 2位 、 3位、 4位及ぴ 6位のうちの (6 S03— G 1 c NAc) と結合していない位 置に存在する水酸基のうちの 1つは、 硫酸化又はリン酸化されていてもよい。 ま た、 [D] が N—ァセチルダルコサミン残基等の場合は、 その 2位が封鎖されて いることから、 その結合位置は 2位を除いた 3位、 4位又は 6位である。
前記一般式 (Ila) で表される硫酸化糖は、 反応に際しては、 糖鎖受容体とし て作用し、 糖鎖供与体としての HO— (G l cNAc) — [Z] と反応させるこ とにより、 その糖還元末端に硫酸化糖鎖を伸長させることができる。 本発明で糖 鎖受容体として用いる好ましい硫酸化糖と'しては、 p—ニトロフヱニル ]3— D_
(6—スルホ) 一N—ァセチルグルコサミンを示すことができる。 前記 HO— (G 1 c NA c) ― [Z] において、 [Z] は (G 1 c NA c) の 1位に結合する。 [Z] が糖残基の場合には、 (G l cNAc) と [Z] との結 合様式は、 α結合及ぴ ]3結合のいずれでもよく、 (G 1 cNAc) の 1位と、 [ Z] の 2位、 3位、 4位又は 6位と結合している。 [Z] において、 その 2位、 3位、 4位及ぴ 6位のうちの (6— S03— G 1 c NAc) と結合していない位 置に存在する水酸基の 1つは硫酸化又はリン酸化されていてもよい。 また、 糖残 基 [Z] が N—ァセチルダルコサミン残基等の 2位が封鎖されている場合には、 その結合位置は 2位を除いた 3位、 4位又は 6位である。
本発明で好ましく用いられる用いられる糖鎖供与体は、 パラニトロフエ二ルー β—ァセチルダルコサミン ( (G 1 c NAc) - [パラ二トロフエニル] ) 等で める。
本発明においては、 前記 HO— (6 S Os-G 1 cNAc) — [D] で表され る硫酸化糖と、 一般式 HO— (G 1 cNAc) - [Z] で表される糖とを反応さ せて、 一般式 HO— (G 1 c NAc) - [Z] の糖鎖 HO— (G 1 c NAc) を 、 一般式 HO— (6 S 03-G 1 c NAc) 一 [D] の硫酸化糖鎖 (6 S 03— G 1 cNAc) に転移させる。 これによつて前記一般式 (II) の硫酸化糖を製造す ることができる。
原料の使用割合は、 通常、 モル比で 1対 1の割合で反応させるが、 どちらかを 過剰量用いても差し支えない。 反応は液相で行われ、 反応温度は、 0〜80°C、 好ましくは室温〜 50°Cの範囲である。
用いる酵素は、 N—ァセチルへキソサミニダーゼ(E. C. 3.2.1.52)又は N—ァ セチルダルコサミニダーゼ(E.C. 3.2.1.52)である。 これら酵素の由来は、 カビ 、 仔牛の臓器、 パクテリア、 豆、 酵母及び組み換え DNA等である。 酵素は各種 の担体に担持させて用いることができる。 このように酵素を担体に担持させて用 いることにより、 安価に反応を行うことができる。 担体には、 アルギン酸ポリマ 一やリボソームなどを挙げることができる。
反応は溶媒の存在下に行う。 溶媒としては、 通常水が用いられる。 反応終了後 、 反応生成物を原料物質に対して 1〜80%の単離収率で得ることができる。 反 応終了後、 反応生成物を逆相クロマトグラフィー、 分子ふるい (ゲル濾過) 、 ィ オン交換樹脂の手段により分離精製することができる。
本反応は、 リン酸緩衝液やトリス塩酸緩衝液、 H E P E S緩衝液のような通常 用いられる緩衝液をもちいる。 また、 ァセトニトリルやメタノールなどの親水性 有機溶媒もこの緩衝液中に加ることができる。 その割合は、 0〜90%であるが 、 10〜50%が望ましい。 まれに、 トルエンゃジェチルエーテルのような溶媒 も用いられるが、 この場合には、 2相系となる。 反応は、 0°C〜80°Cの範囲で 行われる。 反応温度は、 望ましくは、 室温近辺〜 50°Cである。
本発明による第 2の硫酸化糖鎖は、 下記一般式 (II) で表される。
HO- (G 1 cNAc) - (6 S03— G l cNAc) - [D] (II) 前記式中、 [D] は前記と同じ意味を有する。
前記 (G l cNAc) と (6 S 03_G 1 c NA c ) との間の結合様式は、 α 結合及び i3結合のいずれでもよく、 (G 1 c NA c) の 1位と、 (6 S03— G 1 cNAc) の 3位又は 4位とが結合している。 つまり、 本発明の硫酸化糖鎖は 、 糖の還元末端側に硫酸化糖鎖を有することを特徴とする糖化合物である。 本発明による前記一般式 (II) の硫酸化糖鎖は、 白血球に存在するセレクチン タンパク質と効果的に結合するため、 抗炎症薬の作用を有するものであり、 医薬 の現場などでとして広く使用されると期待される。
本発明による好ましいものは、 下記式で表される硫酸化糖である。
β -D-GlcNAc- (1→4) - β - D- (6- sulf ο) - GlcNAc- 0C6H4N02-p 実施例
以下に、 本発明の実施例を示す。 本発明はこれに限定されるものではない。 得られた物質の確認は、 NMRによった。 実施例 1 (一般式 (I) の化合物の合成)
p- ト口フエニル j3-D- (6-スルフォ)- N-ァセチルダルコサミンナトリゥム塩( 54mg)とメチル a- D -ダルコビラノシド(500mg)を、 50mMのリン酸ナトリゥム緩衝 液(ρΗ 6·0、 1 mL)中に溶力 し、 Aspergillus oryzae由来の -D - N -ァセチルへ キソサミニダーゼ (10.5ユニット) (EC.3.2.1.52, シグマ社製) を加え、 3 5 °Cで 7 1時間インキュベートした。 反応液を 1 0 0°Cの水に 5分間浸して反応を 止めた。 次に、 その反応混合液を DEAE セフアデックス A-25カラムで精製した ( 溶離液:水→0.2M酢酸アンモニゥム溶液) 。 Dowex - 50W- X8カラム (H+) でさら に精製し、 最後に Bio- Gel P- 2クロマトグラフィーで精製した。 その結果、 目的 生成物である、 j3 -D- (6-sulf o) -GlcNAc- (1→4) - a -Glc-0CH3 を 9, 8 mg (17%) 得た。
JH NMR (400MHZ, D20): δ 5.187 (d, 1 H, Jli2 3.2 Hz, H— 1), 4.704 (d, 1 H, J1>2 8.4 Hz, Η-Γ) , 3.403 (s, 3H, OMe) , and2.032 (3H, Ac) .
13C NMR: δ 176.23, 100.98, 96.63, 77.66, 75.61, 74.79, 73.23, 72.92, 72.38, 71 .52, 71.25, 62.26, 56.71, 55.79, 23.58.
[a] D + 27.5° (C=0.47, H20)
FAB-MS 522(M+Na)+ 実施例 2
(一般式 ( I ) の化合物の合成)
p-ニトロフエニル ]3- D- (6-スルフォ)- N-ァセチルダルコサミン ナトリウ ム塩(40mg)とラタ トース (ガラタ トビラノシル 1→4ダルコピラノシド) (51 Omg) を 50mMの酢酸ナトリウムの緩衝液(pH 6.0, 1 .4mL)中に溶かし、 bovine ep ididyms (仔牛) 由来の j3 -D-N-ァセチルダルコサミニダーゼ A (EC.3.2.1.52, シグマ社製) (5ユニット /4.2mL) を 1.2 mL加え、 3 5 °Cで 2 9時間インキュ ペートした。 反応液を 1 0 0°Cの水に 5分間浸して反応を止めた。 次に、 その反 応混合液を C一 1 8 OD Sカラム、 DEAE セフアデックス A- 25カラム、 Dowex- 50W- X8カラム (H+) 、 最後に、 Bio- Gel P2カラムの順で精製した。 その結果、 目的生成物である、 (6- sulfo)- GlcNAc^- (1→3)- GaliS 1→4- Glc を 16mg得た。 JH NMR (D20): δ 5.188 (d, 1 H, Jli2 3.6 Hz, H-l a ) , 4.733 (H—l,, ), 4.710 (Η-Γ) , 4.689(H-lj3), and 2.032 (3 H, Ac). 実施例 3
(一般式 ( I ) の化合物の合成)
p -二トロフエニル j3-D- (6-スルフォ)- N-ァセチルダルコサミン ナトリウ ム塩(50mg)と j3- D- N-ァセチルグルコサミン (250mg) を 50mMの酢酸ナトリウム の緩衝液(pH 6.0, 2.0m 中に溶力 し、 Aspergillus oryzae由来の ]3 - D- N-ァセ チルへキソサミニダーゼ (EC.3.2.1.52, シグマ社製) (30ユニット/ 500 μ ΐ) 0. 5mlを加え、 '3 5。Cで 3 7 0時間インキュベートした。 反応液を 1 0 0°Cの水に 5分間浸して反応を止めた。 次に、 その反応混合液を C— 1 8 OD Sカラム、 DEAE セフアデックス A-25カラム、 Dowex- 50W- X8カラム (H+) 、 最後に、 Bio- Gel P2カラムの順で精製した。 その結果、 目的生成物である、 (6- sulfo)- GlcNAc (1→4)— GlcNAc を 7.3mg (38%) 得た。
400MHZ -1 H NMR (D20): δ 5.180 (d, 1 Η, J1>2 2.4 Hz, H-l α ) , 4,693 (d, 1 H, Jli2 7.6 Hz, H— 1 ), 4.591 (d, 1 H, Jr,2, 8.4 Hz, H-l' a), ), 4.582 (d, 1 H, Jj,2, 8.4 Hz, H-l' J3 ) , and 2.054 and 2.032 (3 H, Ac X 2).
[a] D+12° (C=L3, H20)
FAB-MS 548(M+Na)+ 実施例 4
(一般式 (II) の化合物の合成)
p-二トロフエニル jS- D- N-ァセチルダルコサミン(lOOmg)と p-二トロフエ二 ル j3- D- (6-スルフォ)- N-ァセチルグルコサミン(800mg)を 50mMのリン酸ナトリ ゥム緩衝液(pH 6.0, 10 mL)中に溶かし、 Aspergillus oryzae由来の 3 -D- N -ァ セチルへキソサミニダーゼ (シグマ社製) 3ユニットを加え、 3 5°Cで 7時間ィ ンキュペートした。 反応液を 1 0 0°Cの水に 5分間浸して反応を止めた。 次に、 その溶液を直接 C— 1 8 OD S カラムで精製した。 生成物と未反応のァクセ プターの混合したフラクションについて、 2 5 %メタノール溶液を溶離液としト ョパール HW— 40 Sでさらに精製した。 目的とする j3- D_GlcNAc- (1— 4)- /3- D- (6-sulf o) -GlcNAc-0C6H4N02- を 25 mg (14%) 得た。
XH NMR (D20): δ 8.251 (d, 2 H, J 9.2 Hz, m— Ph), 7.191 (d, 2 H, J 9.2 H z, o-Ph) , 5.325 (d, 1 H, J1>2 8.4, H- 1), 4.658 (d, 1 H, Jr>2, 8.4, H— 1,), 2 .102, 2.005 (6H, 2 Ac) .
[a] D— 28° (C=0.6, H20)
FAB-MS 670(M+Na)+ 産業上の利用可能性
本発明によれば、 巿販酵素である N-ァセチルへキソサミニダーゼを用いて、 (1 ) 硫酸化糖を供与'体とし、 他の糖を受容体として反応させると、 非還元末側に硫 酸化糖を伸長させた新規な硫酸化糖を得ることができた。 また、 (2) 硫酸化糖 を受容体に、 他の糖を供与体に用いて処理すると、 還元末側に硫酸化糖を伸張さ せた新規な硫酸化糖を得ることができた。
これらの新規生成物は、 白血球に存在するセレクチンタンパク質と効果的に結 合するため、 抗炎症薬の作用を有するものであり、 医薬の現場などでとして広く 使用されると期待される。

Claims

請求の範囲
(1) 下記一般式 (I) で表されることを特徴とする硫酸化糖。
[A] - (6 S 03-G 1 cNAc) - [C] 一 R (I) (式中、 (6 S 03— G 1 c NA c) は 6—硫酸化 N—ァセチルダルコサミン残 基を示し、 [A] は水酸基又は糖残基を示し、 [C] は糖残基を示し、 Rは水酸 基又は置換水酸基を示す)
(2) 該一般式 (I) における [A] を示す糖残基が、 グルコース、 ガラクトー ス、 マンノース、 N—ァセチルダルコサミン、 N—ァセチルガラタトサミン、 N —ァセチルマンノサミン及びそれら糖からなるオリゴ糖の中から選ばれる糖から 誘導された糖残基であることを特徴とする請求の範囲 (1) に記載の硫酸化糖。
(3) 該一般式 (I) における [C] を示す置換水酸基が、 パラニトロフエノキ シ基であることを特徴とする請求の範囲 (1) 又は (2) に記載の硫酸化糖。
(4) 該 [A] を示す糖残基が、 硫酸基又はリン酸基を含有することを特徴とす る請求の範囲 (1) 〜 (3) のいずれかに記載の硫酸化糖。
(5) 該一般式 (I) における [C] を示す糖残基が、 グリコース、 ガラクトー ス、 マンノース、 N—ァセチルダルコサミン、 ァセチルガラタトサミン、 N 一ァセチルマンノサミン及ぴそれらの糖から^るオリゴ糖の中から選ばれる糖か ら誘導された糖残基であることを特徴とする請求の範囲 (1) 〜 (4) のいずれ かに記載の硫酸化糖。
(6) 該 [C] を示す糖残基が、 硫酸基又はリン酸基を含有することを特徴とす る請求の範囲 (5) に記載の硫酸化糖。
(7) 下記一般式 (Π) で表されることを特徴とする硫酸化糖。
HO- (G 1 cNAc) — (6 SO3— G l cNAc) — [D] (II) (式中、 (6 S 03— G 1 c NA c) は 6—硫酸化 N—ァセチルダルコサミン残 基を示し、 (G l cNAc) は N—ァセチルダルコサミン残基を示し、 [D] は 水酸基、 置換水酸基又は糖残基を示す)
(8) 該一般式 (II) における [D] を示す糖残基が、 ダリコース、 ガラクトー ス、 マンノース、 N—ァセチルダルコサミン、 N—ァセチルガラクトサミン、 N 一ァセチルマンノサミン及びそれらの糖からなるオリゴ糖の中から選ばれる糖か ら誘導された糖残基であることを特徴とする請求の範囲 (7) に記載の硫酸化糖
(9) 該一般式 (Π) における [D] を示す置換水酸基が、 パラニトロフエノキ シ基であることを特徴とする請求の範囲 (7) 又は (8) に記載の硫酸化糖。
(10) 該 [D] を示す糖残基が、 硫酸基又はリン酸基を含有することを特徴と する請求の範囲 (7) 〜 (9) のいずれかに記載の硫酸化糖。
( 1 1 ) 下記一般式 ( I )
[A] - (6 S 03-G 1 cNAc) - [C] 一 R (I) (式中、 (6 S03— G 1 c NAc) は 6—硫酸化 N—ァセチルダルコサミン残 基を示し、 [A] は水酸基又は糖残基を示し、 [C] は糠残基を示し、 Rは水酸 基又は置換水酸基を示す)
で表される硫酸化糖を製造する方法において、 下記一般式 (I a)
[A] — (6 S Oa-G 1 cNAc) - [B] (l a)
(式中、 (6 S03— G 1 cNAc) 及び [A] は前記と同じ意味を有し、 [B ] は置換水酸基又は糖残基を示す)
で表される硫酸化糖と、 下記一般式 (I b)
HO— [C] -R (l b)
(式中、 [C] は糖残基を示し、 Rは水酸基又は置換水酸基を示す)
で表される糠とを、 N—ァセチルへキサミニダーゼ又は N—ァセチルダルコサミ ダーゼの存在下で反応させることを特徴とする前記一般式 (II) で表される硫酸 化糖の製造方法。
(12) 下記一般式 (II)
HO- (G l cNAc) - (6 S03— G 1 c NA c) ― [D] (II) (式中、 (6 S03— G 1 c NAc) は 6—硫酸化 N—ァセチルダルコサミン残 基を示し、 (G l cNAc) は N—ァセチルダルコサミン残基を示し、 [D] は 水酸基、 置換水酸基又は糖残基を示す)
で表される硫酸化糖を製造する方法において、 下記一般式 (Π a)
HO— (6 S03-G 1 c NAc) 一 [D] (Ha) (式中、 (6 S03— G l cNAc) 及び [D] は前記と同じ意味を有する) で表される硫酸化糖と、 下記一般式 (lib)
HO— (G 1 cNAc) — [Z] (lib)
(式中、 (G 1 cNAc) N—ァセチルダルコサミン残基を示し、 [Z] は、 水 酸基、 置換水酸基又は糖残基を示す)
で表される糖とを、 N—ァセチルへキサミニダーゼ又は N—ァセチルダルコサミ ダーゼの存在下で反応させることを特徴とする前記一般式 (II) で表される硫酸 化糖鎖の製造方法。
PCT/JP2002/002716 2001-06-14 2002-03-20 Nouveau saccharide sulfate et procede de production associe WO2002103025A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/480,383 US20050004069A1 (en) 2001-06-14 2002-03-20 Novel sulfated saccharide and process for producing the same
JP2003505347A JPWO2002103025A1 (ja) 2001-06-14 2002-03-20 新規な硫酸化糖及びその製造方法
EP02705414A EP1408116A4 (en) 2001-06-14 2002-03-20 NEW SULFATED SACCHARIDE AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-180163 2001-06-14
JP2001180163 2001-06-14

Publications (1)

Publication Number Publication Date
WO2002103025A1 true WO2002103025A1 (fr) 2002-12-27

Family

ID=19020625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002716 WO2002103025A1 (fr) 2001-06-14 2002-03-20 Nouveau saccharide sulfate et procede de production associe

Country Status (4)

Country Link
US (1) US20050004069A1 (ja)
EP (1) EP1408116A4 (ja)
JP (1) JPWO2002103025A1 (ja)
WO (1) WO2002103025A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541580A1 (en) * 2002-07-10 2005-06-15 Seikagaku Corporation Sulfotransferase inhibitors
WO2017154938A1 (ja) 2016-03-09 2017-09-14 株式会社糖鎖工学研究所 硫酸基および/またはリン酸基を有する糖の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0795560A1 (en) * 1994-12-01 1997-09-17 Seikagaku Corporation Keratan sulfate oligosaccharide fraction and drug containing the same
EP0798385A2 (en) * 1996-03-29 1997-10-01 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Method for producing sulfated lactosamine oligosaccharide
EP0943688A2 (en) * 1998-03-05 1999-09-22 Seikagaku Corporation Polypeptide of N-acetylglucosamine-6-0-sulfotransferase and DNA encoding the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9117523D0 (en) * 1991-08-14 1991-10-02 Unilever Plc Di and tri saccharides, methods of making them and hair growth compositions containing them
DE69521074T2 (de) * 1994-03-30 2001-09-13 Takara Shuzo Co., Ltd. Transglykosylierungsverfahren zur Herstellung eines Kohlenhydrats oder eines Glykokonjugates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0795560A1 (en) * 1994-12-01 1997-09-17 Seikagaku Corporation Keratan sulfate oligosaccharide fraction and drug containing the same
EP0798385A2 (en) * 1996-03-29 1997-10-01 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Method for producing sulfated lactosamine oligosaccharide
EP0943688A2 (en) * 1998-03-05 1999-09-22 Seikagaku Corporation Polypeptide of N-acetylglucosamine-6-0-sulfotransferase and DNA encoding the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUN-HUNG LIN ET AL.: "Enzymatic synthesis and regeneration of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for regioselective sulfation of oligosaccharides", J. AM. CHEM. SOC., vol. 117, 1995, pages 8031 - 8032, XP002954169 *
See also references of EP1408116A4 *
ZENG X. ET AL.: "Synthesis of sulfated disaccharides by use of the transglycosylation of beta-D-N-acetylhexosaminidase", THE JAPANESE SOCIETY OF CARBOHYDRATE RESEARCH NENKAI YOSHISHU, 2 July 2001 (2001-07-02), pages 147, XP002954168 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541580A1 (en) * 2002-07-10 2005-06-15 Seikagaku Corporation Sulfotransferase inhibitors
EP1541580A4 (en) * 2002-07-10 2010-05-19 Seikagaku Kogyo Co Ltd SULFOTRANSFERASE INHIBITORS
US8288139B2 (en) 2002-07-10 2012-10-16 Seikagaku Corporation Sulfotransferase inhibitors
WO2017154938A1 (ja) 2016-03-09 2017-09-14 株式会社糖鎖工学研究所 硫酸基および/またはリン酸基を有する糖の製造方法
KR20180120186A (ko) * 2016-03-09 2018-11-05 가부시키가이샤 도우사 고가쿠 겐큐쇼 설페이트기 및/또는 포스페이트기를 갖는 당의 제조방법
JPWO2017154938A1 (ja) * 2016-03-09 2019-01-10 株式会社糖鎖工学研究所 硫酸基および/またはリン酸基を有する糖の製造方法
KR102468224B1 (ko) * 2016-03-09 2022-11-17 가부시키가이샤 도우사 고가쿠 겐큐쇼 설페이트기 및/또는 포스페이트기를 갖는 당의 제조방법
JP7401882B2 (ja) 2016-03-09 2023-12-20 株式会社糖鎖工学研究所 硫酸基を有する糖の製造方法

Also Published As

Publication number Publication date
EP1408116A1 (en) 2004-04-14
US20050004069A1 (en) 2005-01-06
EP1408116A4 (en) 2006-11-08
JPWO2002103025A1 (ja) 2005-04-07

Similar Documents

Publication Publication Date Title
Krasnova et al. Oligosaccharide synthesis and translational innovation
Sabesan et al. Combined chemical and enzymatic synthesis of sialyloligosaccharides and characterization by 500-MHz and proton and carbon-13 NMR spectroscopy
Huang et al. Stereodirecting effect of C5-carboxylate substituents on the glycosylation stereochemistry of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) thioglycoside donors: Stereoselective synthesis of α-and β-Kdo glycosides
Boons et al. Recent advances in O-sialylation
Wang et al. Preactivation‐based, one‐pot combinatorial synthesis of heparin‐like hexasaccharides for the analysis of heparin–protein interactions
Wong Mimics of complex carbohydrates recognized by receptors
Nilsson Enzymatic synthesis of oligosaccharides
Izumi et al. Microbial Glycosyltransferases for Carbohydrate Synthesis: α-2, 3-Sialyltransferase from Neisseria g onorrheae
Virgilio et al. Enzymatic synthesis of natural and 13C enriched linear poly-N-acetyllactosamines as ligands for galectin-1
Pozsgay et al. Synthesis of kojidextrins and their protein conjugates. Incidence of steric mismatch in oligosaccharide synthesis
CA2385295A1 (en) Novel fucosylated oligosaccharides and process for their preparation
Wang et al. Reagent controlled glycosylations for the assembly of well-defined pel oligosaccharides
Krog-Jensen et al. Stereospecific synthesis of β-d-fructofuranosides using thioglycoside donors and internal aglycon delivery
Santra et al. Regioselective one-pot multienzyme (OPME) chemoenzymatic strategies for systematic synthesis of sialyl core 2 glycans
Nilsson Synthesis with glycosidases
Hansson et al. Syntheses of Anomerically Phosphodiester-Linked Oligomers of the Repeating Units of the Haemophilus i nfluenzae Types c and f Capsular Polysaccharides
Codée et al. The synthesis of well-defined heparin and heparan sulfate fragments
Phang et al. Synthesis of type-I and type-II lacNAc-repeating oligosaccharides as the backbones of tumor-associated lewis antigens
Zhang et al. Stereoselective Synthesis of β-C-Glycosides of 3-Deoxy-d-manno-oct-2-ulosonic Acid (Kdo) via SmI2-Mediated Reformatsky Reactions
Liu et al. Glycan assembly strategy: from concept to application
Yan et al. Simplifying oligosaccharide synthesis: efficient synthesis of lactosamine and siaylated lactosamine oligosaccharide donors
Xu et al. Stereoselective synthesis of the trisaccharide moiety of ganglioside HLG-2
Oscarson et al. Chemical syntheses of inulin and levan structures
WO2002103025A1 (fr) Nouveau saccharide sulfate et procede de production associe
Lio et al. Chemoenzymatic synthesis of spacer-linked oligosaccharides for the preparation of neoglycoproteins

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003505347

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002705414

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002705414

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10480383

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2002705414

Country of ref document: EP