WO2002101729A1 - Attenuateur de bruit - Google Patents

Attenuateur de bruit Download PDF

Info

Publication number
WO2002101729A1
WO2002101729A1 PCT/JP2002/005061 JP0205061W WO02101729A1 WO 2002101729 A1 WO2002101729 A1 WO 2002101729A1 JP 0205061 W JP0205061 W JP 0205061W WO 02101729 A1 WO02101729 A1 WO 02101729A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
spectrum
amplitude
weight
auditory
Prior art date
Application number
PCT/JP2002/005061
Other languages
English (en)
French (fr)
Inventor
Satoru Furuta
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US10/343,744 priority Critical patent/US7302065B2/en
Priority to DE60234343T priority patent/DE60234343D1/de
Priority to EP02726490A priority patent/EP1403855B1/en
Publication of WO2002101729A1 publication Critical patent/WO2002101729A1/ja

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0264Noise filtering characterised by the type of parameter measurement, e.g. correlation techniques, zero crossing techniques or predictive techniques

Definitions

  • the present invention relates to a noise suppression device for suppressing noise other than a target signal in a speech communication system, a speech recognition system, and the like used in various noise environments.
  • noise suppression device that enhances a speech signal or the like as a target signal by suppressing noise as a non-target signal from an input signal mixed with noise, for example, 200 0 0 — 3 4 7 6 8 8 It is disclosed in the gazette. This is the average separately estimated from the amplitude spectrum shown in the literature (Steven F-Boll, "Suppression of Acoustic noise in speech using spectral subtraction", IEEE Trans. ASSP, Vol. ASSP-27, No. 2, April 1979). This is based on the so-called spectral sub-fraction method in which noise is suppressed by subtracting a typical noise spectrum.
  • FIG. 1 is a block diagram showing the configuration of a conventional noise suppression device disclosed in Japanese Patent Application Laid-Open No. 2000-3476788, where 1 is an input terminal, and 2 is an input terminal.
  • Time-frequency converter 3 is a noise likeness analyzer
  • 4 is a noise spectrum estimator
  • 5 is a band SNR calculator
  • 6 is an auditory weight calculator
  • 7 is an auditory weight corrector
  • 8 is a spec.
  • 9 is the spectrum suppression section
  • 10 is the frequency
  • Time converter 11 is an output terminal. Also, in the noise likeness analysis unit 3 in Fig. 1, 12 is a mouth-to-pass filter, 13 is an inverse filter, 14 is an autocorrelation analysis unit, 15 is a linear prediction analysis unit, and 16 is an update speed. The decision unit. Next, the operation will be described.
  • the input signal S [t] mixed with noise is sampled at a predetermined sampling frequency (for example, 8 kHz), divided into frames at a predetermined frame period (for example, 20 ms), and input. .
  • the time-frequency converter 2 performs frequency analysis of the input signal s [t] using, for example, a 256-point FFT (Fast Fourier Transform), and performs an amplitude spectrum S [f] and a phase spectrum. Convert to torque P [f].
  • FFT Fast Fourier Transform
  • the input signal s [t] is filtered at the low-pass filter 12 to obtain a low-pass fill signal s1 [t].
  • the linear prediction analysis unit 15 performs a linear prediction analysis of the mouth-to-pass fill evening signal s i [t], and obtains, for example, a linear prediction coefficient and frame power P OW fr of the 10th order.
  • the inverse filter 13 performs inverse filter processing on the low-pass filter signal si [t] using linear prediction coefficients, and performs a one-pass linear prediction residual signal (hereinafter, a low-pass residual signal). Outputs res [t].
  • the autocorrelation analysis section 14 performs autocorrelation analysis of the one-pass residual signal: res [t], and obtains a positive peak value of the autocorrelation number from the autocorrelation coefficient sequence rac [t]. This is RA Cmax.
  • the update rate determination unit 16 uses, for example, the positive peak value RAC max of the autocorrelation coefficient, the power P 0W res of the low-pass residual signal res [t], and the frame power P 0W fr to generate a noise likeness signal. Noise is determined, and a noise spectrum update rate coefficient r corresponding to the determined noise likeness signal N 0 isse is determined and output.
  • FIG. 2 is a diagram showing the relationship between the noise likelihood signal Noise and the noise spectrum update rate coefficient r.
  • the update speed determining unit 16 determines the noise likeness signal N 0 ise from, for example, one of the five levels shown in FIG. 2, and updates the noise spectrum according to the determined noise likeness signal Noise. Determine and output the new speed coefficient ⁇ .
  • the noise spectrum estimating unit 4 stores the noise spectrum updating coefficient r output from the noise likeness analyzing unit 3 and the amplitude spectrum S [f] output from the time-frequency converting unit 2,
  • the noise spectrum N [f] is updated as shown in the following equation (1) from the past average noise spectrum N o 1 d [f].
  • the band S / N ratio calculator 5 outputs the amplitude spectrum S [ f] and the noise spectrum N [f] output by the noise spectrum estimator 4, the signal-to-noise ratio (band SNR) SNR [f] for each band f is calculated by the following equation (2). . However, it is set to 0 when SNR [f] is negative.
  • fc is the Nyquist frequency.
  • Band SN ratio calculation unit 5 outputs band SN ratio SNR [f] For example, according to the following equation (4), if the band SN ratio S NR [f] is small, the first auditory weight w (f) and the second auditory weight /? W ( f) is corrected to a small value, and is adjusted to a value corresponding to the SN ratio of each band so as to increase as the band SNR SNR [f] increases.
  • the c c [f] and the third hearing weight w w [f] are output to the spectrum subtraction unit 8, and the corrected second hearing weight /? C [f] is output to the spectrum suppression unit 9.
  • MIN—GA IN a and MIN_G AI are predetermined constants, which are the maximum suppression amount of the first hearing weight w (f) and the second hearing weight /? W (f) [d B ].
  • FIG. 3 shows frequency direction weighting control of the first auditory weight c [f] and the second auditory weight /? C [f] used for later-described spectral subtraction and spectral amplitude suppression.
  • 101 is the spectrum subtraction amount c [f], which is the first auditory weight
  • 102 is the spectral amplitude suppression amount, which is the second auditory weight.
  • ? c [f] 103 is the speech spectrum
  • 104 is the noise spectrum.
  • the auditory weight correction unit? Decreases the difference between? C [f] and /? C [0] and /? C [fc].
  • the slope of /? C [f] in FIG. 3 becomes small.
  • the difference between ac [0] and c [fc] decreases, that is, the slope of c [f] decreases, and conversely, Ni /? C [0]
  • the difference between? C [fC] is larger, that is,? The slope of [f] increases.
  • the spectrum subtraction unit 8 multiplies the noise spectrum N [f] by the corrected first auditory weight c [f] to obtain the amplitude spectrum S [f] as in the following equation (6). ] Is subtracted, and the noise removal spectrum S s [f] is output. If the noise subtraction spectrum S s [f] becomes negative as a result of the spectrum subtraction, for example, the amplitude spectrum S [f] of the input signal is multiplied by the third auditory weight w [f]. Then, a backfilling process is performed with the noise removal vector S s [f].
  • the spectrum suppression unit 9 is modified to the noise removal spectrum S s [f] by the following equation (7). Multiplied by the obtained second auditory weight /? C [f] to output a noise suppression spectrum Sr [f] in which the noise amplitude is reduced.
  • the frequency-time conversion unit 10 takes the reverse procedure of the processing performed by the time-frequency conversion unit 2 described above. For example, the frequency-time conversion unit 10 performs inverse FF ⁇ to generate the noise suppression spectrum S r [f] and the time-frequency conversion. Using the phase spectrum P [f] output from the part 2 to convert it to a time signal, partially superimposing the time signal component of the previous frame, and converting the noise suppression signal sr [t] to the output signal terminal 1 As described above, the conventional noise suppressor is based on the band SNR SNR [f]. And the first and second perceptual weights c [f] and? C [f] weighted in the frequency direction based on the average SNR SNR ave of the current frame.
  • Subtraction and spectral amplitude suppression are performed. That is, in the frequency domain where the band SNR SNR [f] is large, the first auditory weight c [f] and the second auditory weight /? C [f] increase, and the band SNR SNR [f] increases. In the small frequency region, the first auditory weight c [f] and the second auditory weight /? C [f] are controlled so as to be small. Therefore, in the spectral subtraction processing, the region where the SN ratio is large ( Noise is largely subtracted in the low frequency range and small in the low S / N ratio (mainly the high frequency range), effectively suppressing vehicle running noise with large components in the low frequency range. And prevents excessive subtraction of the spectrum.
  • the amplitude suppression is weakened in the low frequency range and the amplitude suppression is strengthened in the high frequency range, so that unnatural and unpleasant sounds called musical noise (musical noise) are caused.
  • musical noise musical noise
  • the conventional noise suppressor is configured as described above, for example, when a certain amount of noise is subtracted by the first auditory weight c [f], the second auditory weight / There is no mechanism in the conventional noise suppressor to limit the noise amplitude suppression by? c [f], and the first auditory weight c [f.] and the second auditory weight /? c [f] are Since they are controlled independently of each other, the total noise suppression amount (hereinafter, referred to as the total noise suppression amount) is determined by the first auditory weight c [f] and the second auditory weight /? C [f]. ) Is not constant for each frame, and the output signal has a sense of instability in the time direction, which is unfavorable in terms of hearing.
  • the present invention has been made to solve the above-described problems, and it is possible to suppress noise that is desirable in terms of hearing, and to reduce noise with low quality deterioration even under high noise.
  • the aim is to obtain a suppression device. Disclosure of the invention
  • a noise suppression apparatus includes: an amplitude suppression amount calculating unit that calculates an amplitude suppression amount that is a noise suppression level of a current frame from a noise likeness signal and a noise spectrum; an amplitude suppression amount and a noise likeness An auditory weighting parameter that determines the spectral subtraction amount, which is the first auditory weight, and the spectral characteristic distribution amount, which is the spectral amplitude suppression amount, which is the second auditory weight, from the signal.
  • the evening adjustment unit and the spectral subtraction amount, which is the first auditory weight given by the auditory weight distribution pattern, and the spectral amplitude suppression amount, which is the second auditory weight, are corrected by the band SN ratio.
  • the auditory weight correction unit that outputs the corrected spectral subtraction amount and the corrected spectrum amplitude suppression amount, and the noise spectrum corrected from the amplitude spectrum Decrease the vector multiplied by the vector subtraction amount And a spectrum subtraction unit for obtaining a noise removal spectrum and a spectrum suppression unit for obtaining a noise suppression spectrum by multiplying the noise removal spectrum by the corrected spectrum amplitude suppression amount. And a part.
  • the auditory weight correction unit increases the spectral subtraction amount as the first auditory weight and the spectral amount as the second auditory weight in a low band where the band SN ratio is large.
  • the spectral subtraction amount, which is the first auditory weight is reduced, and the spectral amplitude suppression amount, which is the second auditory weight, is increased It is intended to do so.
  • the vehicle running noise having a large low-frequency noise component is reduced. It is possible to effectively suppress the noise, prevent excessive removal of the spectrum in the high frequency range, and prevent the sound spectrum from being deformed. This has the effect of suppressing high-frequency residual noise that could not be completely removed by the spectral subtraction processing on the superimposed audio signal.
  • the auditory weight pattern adjustment unit is a basic auditory weight distribution including a plurality of frequency characteristic patterns corresponding to noise likeness signals, which is a basis for determining an auditory weight distribution pattern.
  • a frequency characteristic pattern corresponding to the noise-likeness signal output by the noise-likeness analyzer is selected from the hearing weight basic distribution patterns, and the hearing weight distribution pattern is selected. Is decided.
  • the hearing weight pattern adjustment unit includes a hearing weight basic distribution pattern including a plurality of frequency characteristic patterns arbitrarily changed according to a use environment.
  • the noise suppression device includes an auditory weight pattern changing unit that obtains a ratio of the high frequency power to the low frequency power of the amplitude spectrum, and the auditory weight pattern adjustment unit includes the amplitude spectrum.
  • the auditory weight distribution pattern is determined based on the ratio of the high frequency power to the low frequency power.
  • a noise suppression device includes an auditory weight pattern changing unit that obtains a ratio of a high frequency power to a low frequency power of a noise spectrum, and wherein the auditory weight pattern adjusting unit includes a noise spectrum.
  • the auditory weight distribution pattern is determined based on the ratio of the high frequency power to the low frequency power.
  • the noise suppression device includes an auditory weight pattern changing unit that obtains a ratio of a high band power to a low band power of an average spectrum obtained by weighted averaging of the amplitude spectrum and the noise spectrum.
  • the auditory weight pattern adjustment unit determines the auditory weight distribution pattern based on the ratio of the high frequency power to the low frequency power of the average spectrum.
  • the spectrum subtraction unit uses, when the subtraction result is negative, an amplitude spectrum, an amplitude suppression amount, and a third auditory weight whose weight becomes larger as the frequency becomes higher.
  • the noise removal spectrum is obtained.
  • the spectrum subtraction unit uses the noise spectrum, the amount of amplitude suppression, and the third auditory weight whose weight increases as the frequency increases. In addition, a noise removal spectrum is obtained.
  • the weight increases as the average spectrum, the amount of amplitude suppression, and the higher band obtained by the auditory weight pattern changing unit increase.
  • the third auditory weight is used to determine the noise subtraction spectrum.
  • the amplitude spectrum of the input signal and the noise spectrum can be added to the spectrum of the residual noise, so that the naturalness of the residual noise is improved, and noise suppression that is preferable for hearing is performed. There is an effect that can be.
  • the auditory weight correction unit increases the weight in the higher frequency band according to the ratio of the high frequency power to the low frequency power of the amplitude spectrum obtained by the auditory weight pattern changing unit.
  • the auditory weight of 3 is changed.
  • the noise suppression device is characterized in that the auditory weight correction unit is configured such that the higher the frequency, the greater the weight in the higher frequency band, based on the ratio of the higher frequency power to the lower frequency power of the noise spectrum obtained by the auditory weight pattern changing unit. In this case, the auditory weight is changed.
  • the auditory weight correction unit is configured to reduce the average spectrum obtained by the weighted average of the amplitude spectrum and the noise spectrum obtained by the auditory weight pattern changing unit. According to the ratio of the high-frequency power to the high-frequency power, the third auditory weight, whose weight increases as the frequency increases, is changed.
  • the auditory weight pattern changing unit obtains an average spectrum based on the noise likeness signal.
  • FIG. 1 is a block diagram showing the configuration of a conventional noise suppression device.
  • FIG. 2 is a diagram showing the relationship between the noise likeness signal Noise and the noise spectrum update rate coefficient r.
  • FIG. 3 is a diagram showing an example of a control method of spectrum subtraction and spectrum amplitude suppression in a conventional noise suppression device.
  • FIG. 4 shows a configuration of a noise suppression device according to Embodiment 1 of the present invention. It is a block diagram.
  • FIG. 5 is a diagram showing an example of an auditory weight basic distribution pattern in the noise suppression device according to Embodiment 1 of the present invention.
  • FIGS. 6A to 6C are diagrams showing an example of distribution pattern adjustment of a spectrum subtraction amount and a spectrum amplitude suppression amount in the noise suppression apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is a block diagram showing a configuration of a noise suppression device according to Embodiment 3 of the present invention.
  • FIGS. 8A and 8B are diagrams showing an example of a method for controlling the change of the auditory weight distribution pattern in the noise suppression apparatus according to Embodiment 3 of the present invention.
  • FIG. 9 shows the embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating a configuration of a noise suppression device according to a fourth embodiment.
  • FIG. 10 is a block diagram showing a configuration of a noise suppression device according to Embodiment 5 of the present invention.
  • FIG. 11 is a block diagram showing a configuration of a noise suppression device according to Embodiment 6 of the present invention.
  • FIG. 12 is a diagram showing an example of a third audible weight frequency direction pattern in the noise suppression device according to Embodiment 6 of the present invention.
  • FIGS. 13A and 13B are diagrams showing an example of a noise removal spectrum in the case where no auditory weighting is performed in the noise suppressor according to the sixth embodiment of the present invention.
  • FIGS. 14A and 14B are diagrams showing an example of a noise subtraction spectrum in the case where the auditory weighting is performed in the noise suppressor according to the sixth embodiment of the present invention.
  • FIG. 15 shows a configuration of a noise suppressing apparatus according to Embodiment 8 of the present invention.
  • FIG. 16 is a block diagram showing a configuration of a noise suppression device according to Embodiment 9 of the present invention.
  • FIG. 17 is a block diagram showing a configuration of a noise suppression device according to Embodiment 10 of the present invention.
  • FIG. 18 is a block diagram showing a configuration of a noise suppression device according to Embodiment 11 of the present invention.
  • FIG. 4 is a block diagram showing a configuration of a noise suppression device according to Embodiment 1 of the present invention.
  • 1 is an input terminal for inputting an input signal s [t]
  • 2 is a time for converting the input signal s [t] into a frequency spectrum S [f] and a phase spectrum P [f] by frequency analysis.
  • the frequency conversion unit 3 determines the likelihood of noise from the input signal s [t], outputs a noise likeness signal Noise, and updates the noise spectrum corresponding to the noise likeness signal Noise. This is the noise likeness analyzer that outputs the coefficient r.
  • 4 is based on the noise spectrum update coefficient r, the amplitude spectrum S [f], and the past average noise spectrum N old [f] held internally.
  • a noise spectrum estimating unit that updates and outputs a noise spectrum N [f], and a band SN that is a signal-to-noise ratio for each band f from the amplitude spectrum S [f] and the noise spectrum N [f]. It is a band SN ratio calculation unit that calculates the ratio S NR [f].
  • reference numeral 20 denotes the noise likeness signal Noise and the noise noise.
  • an amplitude suppression amount calculation unit that calculates the amplitude suppression amount min-gain, which is the noise suppression level of the current frame, and 21 is a second unit based on the amplitude suppression amount min_g ain and the noise likeness signal Noise
  • the auditory weight distribution pattern min — gain— pat [ which is the frequency characteristic distribution pattern of the spectral subtraction amount [f], which is the auditory weight of 1, and the spectral amplitude suppression amount, [f], which is the second auditory weight
  • the auditory weight pattern adjusting unit 7 determines the spectral subtraction amount [f], which is the first auditory weight given by the auditory weight distribution pattern min_gain_pat [f], and the second The spectral amplitude suppression amount /?
  • 8 subtracts a spectrum obtained by multiplying the noise spectrum N [f] by the corrected spectrum subtraction amount c [f] from the amplitude spectrum S [f]. And a spectrum subtraction unit for calculating a noise subtraction spectrum S s [f]. 9 multiplies the noise subtraction spectrum S s [f] by the corrected vector amplitude suppression amount /? C [f]. Is a spectrum suppression unit that obtains a noise suppression spectrum S r [f] by using the noise suppression spectrum S r [f], and converts the noise suppression spectrum S r [f] into a time signal by using the phase spectrum P [f]. A frequency-to-time converter that outputs sr [t], 11 is an output terminal of the noise suppression signal sr [t].
  • the time-frequency conversion unit 2 analyzes the frequency of the input signal s [t] and converts it into an amplitude spectrum S [f] and a phase spectrum P [f] in the same manner as in the past, and outputs it. .
  • the noise likeness analyzer 3 determines the likelihood of noise from the input signal s [t], outputs a noise likelihood signal Noise, and outputs the noise likelihood signal. Outputs the noise spectrum update speed coefficient r corresponding to Noise.
  • the noise spectrum estimating unit 4 retains the noise spectrum updating coefficient r from the noise likeness analyzing unit 3 and the amplitude spectrum S [f] from the time-frequency converting unit 2, as in the past.
  • the noise spectrum N [f] is updated from the past average noise spectrum N o I d [f] and output.
  • the band SN ratio calculation unit 5 also uses the amplitude spectrum S [f] from the time-frequency conversion unit 2 and the noise spectrum N [f] from the noise spectrum estimation unit 4 as follows.
  • a band SN ratio S NR [f] which is a signal-to-noise ratio for each band f, is calculated.
  • the amplitude suppression amount calculation unit 20 uses the noise likeness signal Noise from the noise likeness analysis unit 3 and the noise spectrum N [f] from the noise spectrum estimation unit 4 as follows. Then, the amplitude suppression amount min-gain, which is the noise suppression level of the current frame, is calculated. First, the amplitude suppression amount calculation unit 20 calculates the power of the noise spectrum N [f] according to the following equation (8), and obtains the noise power Npow of the current frame. F c in equation (8) is the Nyquist frequency. -
  • the amplitude suppression amount calculation unit 20 calculates the maximum amplitude suppression amount MIN—GAIN, which is a predetermined constant, according to the following equation (9), and the noise obtained by the above equation (8).
  • the noise power Npow is compared with the power Npow. If the noise power Npow exceeds the maximum amplitude suppression MIN-GAIN, the amplitude suppression min-gain is limited to MIN-GAIN.
  • the maximum amplitude suppression amount MIN-GAIN is set to a relatively small value of, for example, about 10 dB, the equation (9) shows that when N pow and MIN-GAIN, the input signal s [t] has almost no noise.
  • amplitude suppression min-gain is set to MIN-GAIN Is done. That is, when there is noise, the noise suppression level is constant at the value of MIN-GAIN.
  • the amplitude suppression amount min_gain is set to Npow.
  • the auditory weight parameter adjustment unit 21 calculates the amplitude suppression amount min-gain obtained by the above expression (9) and the noise from the noise likeness analysis unit 3.
  • MIN—GA IN—PAT [i] [f] from the basic perceptual weight distribution of the perceptual weight, the spectral subtraction amount [f], which is the first perceptual weight, and the second perceptual weight Determine and output the auditory weight distribution pattern min-gain-pat [f], which is the frequency characteristic distribution pattern of a certain spectral amplitude suppression amount [f].
  • FIG. 5 is a diagram showing an example of a basic hearing weight distribution pattern MIN-GAIN-PAT [i] [f] used for determining a hearing weight distribution pattern min-gain-pat [f].
  • reference numeral 101 denotes a spectrum subtraction amount c [f]
  • 102 denotes a spectrum amplitude suppression amount /? C [f]
  • 150 denotes a memory.
  • the hearing weight basic distribution pattern MI N_GAIN— PAT [i] [f] the amplitude suppression amount having various frequency characteristics corresponding to the noiseiness signal Noise is provided.
  • the auditory weight pattern adjustment unit 21 calculates the basic auditory weight distribution pattern MIN—GAIN—PAT [Noise] [f] corresponding to the noise likeness signal Noise by the following equation (10).
  • the spectrum subtraction amount [f] which is the first hearing weight
  • the spectrum which is the second hearing weight
  • the auditory weight distribution pattern min_g ain — pat [f] which is the frequency characteristic distribution pattern of the torque amplitude suppression amount [f].
  • the auditory weight correction unit 7 includes the bandwidth SN ratio S NR [f] from the bandwidth SN ratio calculation unit 5 and the auditory weight from the auditory weight pattern adjustment unit 21 obtained by the above equation (10).
  • the allocation pattern min—gain—pat [f] the following equation (11) to equation (13) are used to correct the first auditory weight, the vector subtraction amount c [ f] and the corrected second auditory weight, the spectral amplitude suppression? c [f], is determined and output.
  • the auditory weight correction unit 7 stabilizes the band SN ratio S NR [f] according to the following equation (11), and obtains a stabilized SN ratio SNR lim [f].
  • S NR—TH LD [f] is the spectrum amplitude suppression? [F] of the equation (12) described later when the band SNR S NR [f] is extremely small. This is a predetermined constant threshold value for stabilizing by stabilizing the value of the hearing weight distribution pattern min-gain-pat [f].
  • the auditory weight correction unit 7 obtains the corrected vector amplitude suppression? C [f] by the following equation (12).
  • GAIN [f '] is a predetermined constant.
  • the gain is set so as to increase as the frequency becomes higher, and the corrected spectral subtraction amount a: c [f] and the corrected This is an acceleration coefficient that makes the spectral amplitude suppression ⁇ c [f] more sensitive to changes in SNR [f] as the frequency becomes higher.
  • the band SN ratio SNR [f] increases, the first term of equation (12) (
  • SNR lim [f] is limited to SNR—THLD [f], so the corrected spectral amplitude suppression /? C [f] is min—gain—pat [ f] has a constant value.
  • the noise likelihood signal Noise has the smallest noise likelihood (in the case of Noise 2 3 and 4).
  • the degree of spectral amplitude suppression increases.
  • (a) in FIG. 5 shows the case where Niise 2 3 and 4,
  • Fig. 6B shows the range that can be corrected by the SN ratio of the allocation of the spectrum subtraction amount c [f] in Fig.
  • Fig. 6A shows the spectrum amplitude suppression in Fig. 6A. Indicates the range that can be modified by the signal-to-noise ratio of the assignment? C [f].
  • Fig. 6 A In the example shown in FIG. 3, similar to the conventional spectral subtraction amount and amplitude suppression amount control of the noise suppression device shown in FIG. Although the degree of spectral amplitude suppression is large, the difference from the conventional control shown in FIG. 3 is that the corrected spectral subtraction amount c [f] and the corrected spectral amplitude suppression amount are different. ? c [f] does not mutually exceed the auditory weight distribution pattern min-gain-pat [f] in Fig. 6A.
  • the total noise suppression due to the corrected spectral subtraction c [f] and the corrected spectral amplitude suppression? C [f] is min_gain-constant
  • excessive spectral subtraction and spectral amplitude suppression can be prevented, and the amount of amplitude suppression between frames is constant, so that a sense of discontinuity can be reduced.
  • the spectrum subtraction unit 8 calculates the spectrum subtraction amount c [f from the amplitude spectrum S [f] to the noise spectrum N [f] according to the following equation (14). Is subtracted, and the noise-reduced spectrum S s [f] is output.
  • the noise removal spectrum S s [f] is negative, the amplitude suppression amount min—gain (dB) output from the amplitude suppression amount calculation unit 20 is converted into a linear value min—gain—1 in, The result is multiplied by the amplitude spectrum S [f] of the input signal, and the noise is removed to perform backfilling as the spectrum S s [f].
  • the spectrum suppression unit 9 calculates the corrected spectrum amplitude suppression amount /? C [f] (dB value) obtained by the above equation (12) as a linear value. /? — Convert to 1 [f] According to the following equation (15), the noise removal spectrum S s [f] is multiplied by the spectrum amplitude suppression amount /? — 1 [f] to obtain a noise suppression spectrum S r [f]. Is output.
  • the frequency-time conversion unit 10 converts the noise suppression spectrum S r [f] to the time-frequency conversion unit 2 output phase.
  • the signal is converted to a time signal using the spectrum P [f], partially overlapped with the signal of the previous frame, and the noise suppression signal sr [t] is output from the output terminal 11.
  • the spectrum amplitude that is the corrected second auditory weight is obtained.
  • the value of the spectrum subtraction amount c [f] which is the modified first auditory weight, is determined according to the value of the suppression amount 5c [f], and thus the modified spectral amplitude suppression amount c is obtained. [f] and the corrected spectral subtraction amount? c
  • the total noise suppression amount due to [f] is a fixed min-gain, and the output signal after noise suppression is stabilized in the time direction, so that the noise suppression is preferable for hearing. In addition to this, it is possible to obtain the effect that noise suppression with little quality degradation can be performed even under high noise.
  • the corrected spectrum subtraction amount c Since the spectral subtraction by [f] is not performed, the total noise suppression is constant for each frame. Further, according to the first embodiment, although there is a difference in the value depending on the shape of the noise spectrum, voiced sound has a large low-frequency component, so that the SN ratio is generally higher in the lower frequency band. 6 As shown in Fig. A, in the auditory weight distribution pattern min-gain-pat [f], the degree of the corrected first auditory weight, the spectral subtraction amount c [f], is large in the low frequency range.
  • the noise is greatly reduced in the low frequency range where the SN ratio is large, so that the vehicle running noise having a large noise component in the low frequency range can be effectively suppressed and the SN ratio can be reduced.
  • the SNR is the spectral amplitude suppression? C [f] that is the modified second auditory weight.
  • the hearing weight basic distribution pattern MIN-GAIN-PAT [i] [f] of the first and second hearing weights is converted into a plurality of frequency characteristics as shown in FIG.
  • FIG. 4 of the first embodiment The block diagram showing the configuration of the noise suppression device according to the second embodiment of the present invention is the same as FIG. 4 of the first embodiment.
  • This embodiment is based on the hearing weight basic distribution pattern MIN—GAIN—PAT shown in FIG. 5 of Embodiment 1. [i] and [f] are arbitrarily changed according to the usage environment.
  • the average frequency characteristics of the noise spectrum N [f] and the distribution of the band SN ratio according to the usage environment are investigated in advance, and the basic distribution pattern of hearing weights MIN—GA IN—PAT [i] [f MIN — GA IN— PAT [i] [f] by optimally learning the perceptual weight distribution pattern based on the input signal data obtained from the usage environment.
  • MIN— GAIN— PAT [i] [f] is adapted to the usage environment.
  • the modified spectrum is obtained by arbitrarily changing the hearing weight basic distribution pattern MIN—GA IN—PAT [i] [f] according to the usage environment.
  • the accuracy of the torque subtraction amount c [f] and the corrected spectrum amplitude suppression amount? C [f] can be improved, and the effect that noise suppression with less quality deterioration can be performed can be obtained.
  • FIG. 7 is a block diagram showing a configuration of a noise suppression device according to Embodiment 3 of the present invention.
  • reference numeral 22 denotes an auditory weight pattern changing unit for calculating the ratio of the low band pattern to the high band power of the amplitude spectrum S [f], and other configurations are the same as in FIG. Description is omitted because there is.
  • an amplitude spectrum S [f] obtained from an input signal s [t] of the current frame is divided into a low band and a high band, and a low band pulse and a high band are respectively obtained. The power is obtained, and the hearing weight distribution pattern min-gain-pat [f] of the first and second hearing weights is changed according to the ratio of the low-frequency power to the high-frequency power.
  • the auditory weight pattern changing unit 22 uses the following equation (16) to calculate, for example, 0 to 63 points in the low-frequency range.
  • the low-frequency power P ow-1 and the high-frequency power P ow-h are calculated for each of the vectors, 64 points to 127 points as the high-frequency spectrum, and the low-frequency power P obtained is calculated.
  • the high / low power ratio PV is calculated from 0 w-1 and the high frequency power P 0 w-h and output.
  • the PV is limited to PV—H, and the high band / low band power ratio exceeds the predetermined lower threshold PV—L. If less, limit PV to PV-L.
  • the auditory weight pattern adjustment unit 21 receives the amplitude suppression amount min—gain from the amplitude suppression calculation unit 20 and the noise likeness analysis unit 3 From the noise likeness signal Noise and the high / low frequency power ratio PV from the auditory weight pattern changing unit 22, the spectral subtraction amount, which is the first auditory weight, is calculated by the following equation (17).
  • the auditory weight distribution pattern min-gain-pat [f] of [f] and the second auditory weight, the spectrum amplitude suppression amount /? [f], is determined.
  • Equation (17) MIN—GAIN—PAT [Noise] [f] is a noise-like signal The basic allocation pattern selected by the signal Noise, and Pv—inv is the high band obtained from Equation (16) above. / Low frequency power ratio It is the reciprocal of PV. If the auditory weight distribution pattern min-gain-pat [f] exceeds the amplitude suppression amount min-gain, the value is limited to the amplitude suppression amount min-gain. Fc in Eq. (17) is the Nyquist frequency.
  • min—gain—pat [f] min—gain ⁇ MIN-one GAIN—PAT [Noise] [f] (1.0 ⁇ (fc-f) + P v_ inv ⁇ f) / fc
  • FIGS. 8A and 8B are diagrams showing an example of a method of controlling the change of the auditory weight distribution pattern, and the auditory weights of the first and second auditory weights are calculated by the above-described method.
  • FIG. 11 is an image diagram when the min-gain-pat [f] is changed.
  • Fig. 8A shows the case where the high-frequency power P ow-h is larger than the low-frequency power P ow- 1
  • Fig. 8B shows the case where the low-frequency power P ow- 1 is larger than the high-frequency power P ow- h
  • the same reference numerals are given to the same elements as those in FIG. 5, and the description thereof will be omitted.
  • the auditory weight distribution pattern min—gai n_p Slowly change the slope of at [f] to increase the degree of higher frequency spectral subtraction.
  • the auditory weight distribution pattern min — gain Changes the steepness of pat [f] steeply, increasing the degree of high-frequency spectral amplitude suppression.
  • the amplitude spectrum S [f] of the input signal includes many voice signal components, and the amplitude vector S [f]
  • the auditory weight distribution pattern min-gain-pat [f] By changing the auditory weight distribution pattern min-gain-pat [f], the auditory weight distribution pattern min-gainpa
  • t [f] By adapting t [f] to the spectrum shape of the voice section and performing spectrum subtraction and spectrum amplitude suppression adapted to the frequency characteristics of the voice signal, noise perception that is more favorable to the sense of hearing is further improved. The effect is obtained that it can be performed.
  • FIG. 9 is a block diagram showing a configuration of a noise suppression device according to Embodiment 4 of the present invention.
  • reference numeral 22 denotes an auditory weight pattern changing unit for calculating the ratio of the low-band power to the high-band power of the noise spectrum N [f] in the noise section. This is the same as Fig. 7.
  • a noise spectrum N [f] is divided into a low band and a high band instead of the amplitude spectrum S [f] in a noise section, and the low band power P ow-1 and the high band
  • the power P ow — h is obtained, and the ratio PV of the low-frequency power P ow — 1 to the high-frequency power P 0 w — h is used to determine the hearing weight distribution pattern of the first and second hearing weights min—gain—pat It changes [f].
  • the noise section the amplitude spectrum S [f] of the input signal fluctuates greatly with time and frequency, and the auditory weight distribution pattern min—gain—pat [ f] is inappropriate to change. Therefore, the noise weight N [f], which is stable in the time and frequency directions while maintaining the average noise spectrum shape, allows the auditory weight pattern adjustment unit 21 to adjust the auditory weight. Changes the allocation pattern min—gain—pat [f].
  • the low-frequency power Pow-1 of the noise spectrum N [f], which is stable in the time and frequency directions, is high and high.
  • the auditory weight distribution pattern of the first and second auditory weights min—gain—pat [f] based on the ratio Pv of the band power Pow—h
  • the auditory weight distribution pattern min is stable.
  • Gain— pat [f] is adapted to the average spectrum shape of the noise section, and spectrum subtraction and spectrum amplitude suppression adapted to the frequency characteristics of the noise section are performed. The effect that noise suppression can be performed is obtained.
  • Embodiment 5 is adapted to the average spectrum shape of the noise section, and spectrum subtraction and spectrum amplitude suppression adapted to the frequency characteristics of the noise section are performed. The effect that noise suppression can be performed is obtained.
  • FIG. 10 is a block diagram showing a configuration of a noise suppression device according to Embodiment 5 of the present invention.
  • 22 is the average obtained by weighting the amplitude spectrum S [f] and the noise spectrum N [f] based on the noise-like signal Noise in the speech transition section such as consonants.
  • This is an auditory weight pattern changing unit that obtains the ratio between the low-frequency power and the high-frequency power of spectrum A [f].
  • the other configuration is the same as that in FIG. 9 of the fourth embodiment.
  • the average obtained by the weighted average of the amplitude spectrum S [f] and the noise spectrum N [f] instead of the amplitude spectrum S [f] in the voice transient section such as a consonant is divided into a low band and a high band, and the low band power P ow-1 and the high band power P 0 w—h are obtained.
  • the low band power P ow-1 and the high band power P The hearing weight distribution pattern min_g ain_p at [f] of the first and second hearing weights is changed by the ratio Pv of ow-h.
  • the auditory weight pattern changing unit 22 includes a 128-point amplitude spectrum S [f] output from the time-frequency conversion unit 2 and a noise spectrum N [output from the noise spectrum estimation unit 4]. f] and calculate the average vector A [f] by the following equation (18).
  • a [f] (l-Cn) -S [f] + Cn-N [f] (18)
  • the auditory weight parameter changing unit 22 calculates the average obtained by the above equation (18). From spectrum A [f], for example, according to the following equation (19), for example, points 0 to 63 are defined as a low-frequency spectrum, and points 64 to 127 are defined as a high-frequency spectrum. Then, the low-pass power P 0 w ⁇ 1 and the high-pass power Pow_h are calculated. The auditory weight pattern changing unit 22 calculates and outputs a high / low-band power ratio PV from the obtained low-band power Pow-1 and high-band power Pow-h.
  • the PV is limited to Pv_H, and the high / low range power ratio PV is set to a predetermined lower threshold PV—L. If less, limit PV to PV-L.
  • the amplitude spectrum S [f] and the noise spectrum N [f] of the input signal are obtained.
  • the input signal is applied to the auditory weight distribution pattern min-gain-pat [f] in sections such as consonants and speech transients where it is difficult to judge as a speech section, which is often misjudged as a noise section.
  • the average spectrum A [f] of the amplitude spectrum S [f] of the input signal and the noise spectrum N [f] is obtained based on the noise likeness signal Noise. Therefore, compared to the case where the weighting coefficient C n is fixed, it is possible to obtain an average spectrum A [f] that is more adapted to the state of sound and noise in the current frame, and furthermore, The effect is obtained that favorable noise suppression can be performed.
  • FIG. 11 is a block diagram showing a configuration of a noise suppression device according to Embodiment 6 of the present invention.
  • reference numeral 7 denotes a spectrum subtraction amount c [f], which is a modified first auditory weight, and a spectrum amplitude suppression amount,? C [f], which is a modified second auditory weight.
  • a third auditory weight correction unit that outputs a third auditory weight c c [f].
  • Other configurations are the same as those shown in FIG. 4 of the first embodiment.
  • the amplitude signal of the input signal is added to the spectrum signal used for the backfilling process when the noise removal spectrum S s [f] becomes negative, for example, in the voice section.
  • the vector S [f] is used by weighting it in the frequency direction.
  • the spectrum subtraction unit 8 calculates a spectrum subtraction amount c that is corrected from the amplitude spectrum S [f1 to the noise spectrum N [] by the following equation (20). Subtract the spectrum multiplied by [f] and output the noise-reduced spectrum S s [f]. If the noise removal spectrum S s [f] is negative, the amplitude suppression amount min-gain is multiplied by the amplitude spectrum S [f], and the weight increases as the frequency increases. The noise is subtracted from the result of multiplying the third auditory weight c [f] output by the unit 7 to obtain a spectrum S s [f].
  • SNR-MAX and C-snr in the above equation (21) are constants having predetermined positive values, and control the third auditory weight a c [f] based on the SN ratio. .
  • the value of c c [f] decreases as the band SN ratio increases, and the value of c c [f] decreases as the band SN ratio decreases. growing.
  • the input voice signal when driving a white car is S
  • the N ratio decreases, the absolute value of the noise spectrum component power also decreases. Therefore, the result of spectral subtraction is likely to be one of the causes of musical noise because the signal-to-noise ratio becomes smaller as the frequency becomes higher, which is considered to be one of the causes of musical noise.
  • the possibility of generation of spectral components increases. Therefore, as shown in FIG. 12, the third auditory weighting factor c [f] for weighting the amplitude spectrum S [f] of the input signal used for backfilling with auditory weighting is increased as the frequency becomes higher as shown in FIG. As a result, the amount of backfill is increased in the higher frequency range, thereby preventing the generation of sharp spectral components.
  • reference numeral 103 denotes an example of a speech spectrum
  • reference numeral 106 denotes an example of a pattern in the frequency direction of a third auditory weight a c [f].
  • FIGS. 13A and 14B are diagrams showing examples of the noise subtraction spectrum S s [f].
  • FIGS. 13A and 13B are amplitude spectra of the input signal.
  • 14A and 14B are weighted by the third auditory weighting function c [f] shown in Fig. 12 in the case of backfilling the file S [f] with an unweighted vector. This is when backfilling with a spectrum.
  • 104 is the noise spectrum
  • 107 is the spectrum subtraction: S [f] — c c [f].
  • FIG. 13B is a diagram in which the portion where the spectral component of FIG. 13A becomes negative is back-filled
  • FIG. 14B is a diagram where the spectral component of FIG. 14A becomes negative. It is the figure which performed the backfilling process of the part.
  • auditory weighting is performed such that the amplitude spectrum S [f] used in the backfilling process is weighted to increase as the frequency becomes higher.
  • the higher the frequency the larger the amplitude of the backfill spectral component, that is, the larger the amount of backfill, so that a sharp spectrum isolated on the frequency axis, which is considered to be one of the causes of musical noise, is generated. The effect of being able to suppress is obtained.
  • the spectrum shape of the high-frequency residual noise can be made similar to the amplitude spectrum S [f] of the input signal, so that the high-frequency residual noise is reduced.
  • the naturalness is improved in a similar manner to the audio signal, and the effect of being able to perform noise suppression that is preferable in terms of hearing is obtained.
  • the block diagram showing the configuration of the noise suppression device according to the seventh embodiment of the present invention is the same as the configuration shown in FIG. 11 of the sixth embodiment.
  • the spectrum subtraction unit 8 uses, for example, a noise spectrum N [f] instead of the amplitude spectrum S [f] of the input signal used in the backfilling process in a noise section.
  • the spectrum subtractor 8 calculates the amplitude spectrum S [f] in the above equation (20). Instead, the noise spectrum N [f], which is stable in the time and frequency directions, which retains the average noise spectrum shape, is used as the backfilled spectrum, and c c [f]-min _ gain ⁇ N By setting [f] to the noise removal spectrum S s [f], the residual noise is stabilized in the time and frequency directions.
  • auditory weighting is performed such that the noise spectrum N [f] used for the backfilling process is weighted to increase as the frequency becomes higher.
  • the higher the frequency the larger the amplitude of the backfill spectral component, that is, the larger the amount of backfill, so the sharp spectrum isolated on the frequency axis is considered to be one of the causes of musical noise. Can be suppressed.
  • the spectrum shape of the high-frequency residual noise is maintained in the time / frequency direction while maintaining the average noise spectrum shape. Since it can be made to resemble the torque N [f], it is possible to stabilize the high-frequency residual noise in the time and frequency directions, and it is possible to obtain an effect that it is possible to perform noise suppression that is preferable in terms of hearing.
  • FIG. 15 is a block diagram showing a configuration of a noise suppression device according to Embodiment 8 of the present invention.
  • the auditory weight pattern changing unit 22 calculates the average spectrum A g [f] obtained in addition to the function of the auditory weight pattern changing unit 22 shown in FIG. 10 of the fifth embodiment. Output to the torque subtraction unit 8.
  • the auditory weight correction unit ⁇ is the same as the auditory correction unit 7 shown in FIG. 11 of Embodiment 6, and the spectrum subtraction unit 8 is used for backfilling in the voice transient section such as consonants.
  • the average spectrum A g [obtained from the weighted average of the input signal amplitude spectrum S [f] and the noise spectrum N [f] is used. f].
  • the auditory weight pattern changing unit 22 is, for example, as described in the fifth embodiment.
  • the amplitude spectrum S [f] of the 12 points output by the time-frequency converter 2 and the noise spectrum output by the noise spectrum estimator 4 are obtained.
  • the noise-likeness signal Noise is 3 or 4
  • a g [f] (1-C ng) ⁇ S [f] + C ng ⁇ N [f]
  • the spectral subtraction unit 8 calculates the spectral subtraction amount c [f from the amplitude spectrum S [f] to the noise spectrum N [f] according to the following equation (23). Is subtracted, and the noise removal spectrum S s [f] is output.
  • the noise removal spectrum S s [f] is negative, the amplitude suppression amount min—gain is multiplied by the average spectrum A g [f] obtained by the above equation (22), and The noise is subtracted from the product of the third auditory weight ⁇ c [f], whose weight increases as the band becomes higher, and the back-up processing is performed as the spectrum S s [f].
  • the amplitude spectrum S [f] and the noise spectrum N [f] of the input signal used for the backfilling processing are used.
  • the input signal is included in the spectrum of high-frequency residual noise. Since the amplitude spectrum S [f] and the noise spectrum N [f] can be taken into account, the naturalness of the residual noise is improved, and the effect of suppressing noise that is preferable for hearing can be obtained.
  • the average spectrum A g [f] of input signal amplitude spectrum S [f] and noise spectrum N [f] is obtained.
  • the average spectrum A g [f] can be obtained that is more suitable for the sound / noise mode of the current frame than when the weighting coefficient C ng is fixed.
  • FIG. 16 is a block diagram showing a configuration of a noise suppression device according to Embodiment 9 of the present invention.
  • the hearing weight pattern changing unit 22 outputs the ratio PV of the low-frequency power to the high-frequency power of the amplitude spectrum S [f] to the hearing weight adjusting unit 21 and the hearing weight correcting unit 7, and
  • the correction unit 7 changes the third auditory weighting factor c [f] based on the ratio PV between the low-frequency power and the high-frequency power of the amplitude spectrum S [f], and the corrected spectrum subtraction amount c [f]. ],
  • the modified spectral amplitude suppression? C [f] the modified third auditory weight c [f] Output.
  • the amplitude spectrum S [f] obtained from the input signal of the current frame is divided into a low band and a high band, and the low band power Pow_1 and the high band
  • the power P 0 w—h is obtained, and the third auditory weight c c [f] is changed based on the ratio PV between the low-frequency power and the high-frequency power.
  • the hearing weight correction unit 7 uses the high / low frequency power ratio PV of the amplitude spectrum S [f] output from the hearing weight pattern changing unit 22 to calculate the third hearing weight c c [f]. It is changed by the following equation (24).
  • F c in Eq. (24) is the Nyquist frequency.
  • a c [f] a c [f] ⁇ (1.0 ⁇ (f c-f) + v_in v-f) / f c
  • the amplitude spectrum S [f ] 1.0; a c [f]> 1.0 (24)
  • the amplitude spectrum S [f Contains a lot of audio signal components, and by changing the third auditory weight a c [f] by the ratio PV of the low-pass power and the high-pass power of this amplitude spectrum S [f].
  • the emphasis weights the spectral components to be back-filled so as to approximate the frequency characteristics of the audio signal, and makes the signal components in the back-filled frequency band more similar to the audio signal, adapting to the frequency characteristics of the audio section
  • FIG. 17 shows a configuration of a noise suppressing apparatus according to Embodiment 10 of the present invention.
  • the hearing weight pattern changing unit 22 outputs the ratio Pv between the low-frequency power and the high-frequency power of the noise spectrum N [f] to the hearing weight adjusting unit 21 and the hearing weight correcting unit 7, and
  • the weight correction unit 7 changes the third auditory weight c c [f] according to the ratio P v between the low-band power and the high-band power of the noise spectrum N f, and obtains the corrected spectrum subtraction amount c c [f], the corrected vector amplitude suppression /? c [f], and the changed third auditory weight c [f] are output.
  • the noise spectrum N [f] is divided into a low band and a high band instead of the amplitude spectrum S [f] of the input signal, and the low band power Pow-1 And the high-frequency power Pow-h is obtained, and the third auditory weighting function c [f] is changed by the ratio Pv of the low-frequency power Pow-1 and the high-frequency power Pow-h.
  • the average noise spectrum shape is used.
  • FIG. 18 is a block diagram showing a configuration of a noise suppression device according to Embodiment 11 of the present invention.
  • the auditory weight parameter change unit 22 The ratio Pv between the low-frequency power and the high-frequency power of the average spectrum Ag [f] obtained by the weighted average of the vector S [f] and the noise spectrum N [f] The output is output to the adjustment unit 21 and the auditory weight correction unit 7, and the auditory weight correction unit 7 uses the ratio Pv of the low-band power and the high-band power of the average spectrum Ag [f] to obtain the third auditory weighting unit.
  • c [f] is changed, and the modified spectral subtraction amount c [f3, the corrected spectral amplitude suppression amount?
  • the modified third auditory weight c [f] are changed.
  • Output
  • the amplitude spectrum S [f] and the noise obtained in the above-described embodiment 8 are used instead of the amplitude spectrum S [f] of the input signal.
  • the average spectrum A g [f] obtained by the weighted average of the spectrum N [f] is divided into a low band and a high band, and the low band power P ow-1 and the high band power P ow — Using h, change the third auditory weight with the ratio PV of the low band power to the high band power.
  • the low frequency power and the high frequency power of the average spectrum A g [f] of the amplitude spectrum S [f] and the noise spectrum N [f] of the input signal are obtained.
  • the third auditory weighting factor [f] with the ratio PV of the local power, it is difficult to judge as a voice section, and in many cases, in a voice transient section such as a consonant that is erroneously determined as a noise section
  • the backfilling spectrum is weighted by the auditory sense so as to approximate the frequency characteristics of the amplitude spectrum S [f] of the input signal and the noise spectrum N [f].
  • the noise likelihood signal Noise is used.
  • the noise suppression device is suitable for suppressing noise other than the target signal in a voice communication system, a voice recognition system, or the like used in various noise environments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Noise Elimination (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

明 細 雑音抑圧装置 技術分野
この発明は、 種々の雑音環境下で用いられる音声通信システムや音声 認識システム等において、 目的信号以外の雑音を抑圧する雑音抑圧装置 に関するものである。 背景技術
雑音が混入した入力信号から目的外信号である雑音を抑圧することで 、 目的信号である音声信号等を強調する雑音抑圧装置と して、 例えば特 閧 2 0 0 0 — 3 4 7 6 8 8公報に開示されている。 これは、 文献 ( Steven F - Boll, " Suppression of Acoustic noise in speech using spectral subtraction " , IEEE Trans. ASSP, Vol. ASSP-27, No.2, April 1979) に示す振幅スペク トルから別途推定した平均的な雑音スぺ ク トルを減算することによ り雑音抑圧を行う、 いわゆるスぺク トルサブ トラクシヨン法を基本とするものである。
第 1図は特開 2 0 0 0 - 3 4 7 6 8 8公報に開示されている従来の雑 音抑圧装置の構成を示すブロ ック図であり、 図において、 1は入力端子 、 2は時間 · 周波数変換部、 3は雑音ら しさ分析部、 4は雑音スぺク ト ル推定部、 5は帯域 S N比計算部、 6は聴覚重み算出部、 7は聴覚重み 修正部、 8はスペク トル減算部、 9はスペク トル抑圧部、 1 0は周波数
• 時間変換部、 1 1は出力端子である。 また、 第 1図の雑音ら しさ分析 部 3において、 1 2は口一パスフィル夕、 1 3は逆フィルタ、 1 4は自 己相関分析部、 1 5は線形予測分析部、 1 6は更新速度決定部である。 次に動作について説明する。
雑音が混入した入力信号 S [ t ] が、 所定のサンプリ ング周波数 (例 えば 8 k H z ) でサンプリ ングされ、 所定のフ レーム周期 (例えば 2 0 m s ) にフ レーム分割されて入力される。 時間 · 周波数変換部 2は、 例 えば 2 5 6点 F F T (Fast Fourier Transform: 高速フー リエ変換) を 用いて、 入力信号 s [ t ] を周波数分析して振幅スペク トル S [ f ] と 位相スペク トル P [ f ] に変換する。 なお F F Tは周知の手法であるの で説明は省略する。
雑音ら しさ分析部 3において、 まず、 ローパスフ ィ ル夕 1 2で入力信 号 s [ t ] のフ ィ ル夕処理を行いローパスフィル夕信号 s 1 [ t ] を得 る。 次に、 線形予測分析部 1 5で口一パスフィル夕信号 s i [ t ] の線 形予測分析を行い、 例えば 1 0次のひパラメ一夕の線形予測係数とフ レ ームパワー P OW f rを得る。 逆フ ィル夕 1 3は、 ローパスフ ィ ル夕信 号 s i [ t ] を線形予測係数を用いて逆フ ィル夕処理を行い、 口一パス 線形予測残差信号 (以下、 ローパス残差信号と略する) r e s [ t ] を 出力する。 続いて、 自己相関分析部 1 4で、 口一パス残差信号: r e s [ t ] の自己相関分析を行い、 自己相関係数系列 r a c [ t ] から 自己相 関係数の正のピーク値を求めてこれを R A Cm a xとする。
更新速度決定部 1 6は、 例えば、 自己相関係数の正ピーク値 R A C m a xとローパス残差信号 r e s [ t ] のパワー P 0W r e s、 フ レーム パワー P 0 W f rを用いて、 雑音ら しさ信号 N o i s eを決定し、 決定 した雑音ら しさ信号 N 0 i s eに応じた雑音スぺク トル更新速度係数 r を決定して出力する。 第 2図は雑音ら しさ信号 N o i s e と雑音スぺク トル更新速度係数 rの関係を示す図である。 更新速度決定部 1 6は、 雑 音ら しさ信号 N 0 i s eを例えば第 2図に示す 5 レベルの中から 1つを 決定し、 決定した雑音ら しさ信号 N o i s eに応じた雑音スペク トル更 新速度係数 Γを決定して出力する。
雑音スペク トル推定部 4は、 雑音ら しさ分析部 3が出力する雑音スぺ ク トル更新係数 rと、 時間 · 周波数変換部 2が出力する振幅スペク トル S [ f ] と、 内部に保有している過去の平均的雑音スペク トル N o 1 d [ f ] とから、 次の ( 1 ) 式に示すように雑音スペク トル N [ f ] の更 新を行う。
N [ f ] = ( 1 - r ) - N o l d [ f ] + r - S [ f ] ( 1 ) 帯域 S N比計算部 5は、 時間 · 周波数変換部 2 が出力する振幅スぺク トル S [ f ] と雑音スペク トル推定部 4が出力する雑音スペク トル N [ f ] から、 次の ( 2 ) 式によ り帯域 f 毎の信号対雑音比 (帯域 S N比) S N R [ f ] を計算する。 ただし、 S N R [ f ] が負の場合には 0 とす る。
S N R [ f ] = 2 0 - l o g l O ( S [ f ] /N [ f ] ) ( d B )
; S [ f ] > N [ f ]
= 0 ( d B ) ; 上記以外 ( 2 ) 聴覚重み算出部 6は、 所定の定数ひ、 a ' (例えばひ = 1 . 2 , ひ , = 0. 5 ) 、 β , β ' (例えば/? = 0. 8 , β 5 = 0 . 1 ) 及びァ, γ , (例えばァ = 0. 2 5 , ァ, = 0. 4 ) を入力し、 次の ( 3 ) 式よ り 周波数方向に重み付けされた第 1の聴覚重みひ w ( f ) 、 第 2の聴覚重 み/? w ( f ) 及び第 3の聴覚重みァ w [ f ] を算出する。 なお、 ( 3 ) 式における: f cはナイキス ト周波数である。
aw [ f ] = ( a ' - a ) - f / f c + a
? w [ f ] = ( ? ' - β ) - f /f c + β
ァ w [ f ] = (ァ, —ァ) · f /f c +ァ ( 3 ) 聴覚重み修正部 7は、 第 1の聴覚重みひ w [ f ] 及び第 2の聴覚重み ? w [ f ] を、 帯域 S N比計算部 5が出力する帯域 S N比 S N R [ f ] に基づいて、 例えば次の ( 4 ) 式によ り、 帯域 S N比 S NR [ f ] が小 さい場合には、 第 1の聴覚重みひ w ( f ) 、 第 2の聴覚重み/? w ( f ) を小さい値に修正し、 帯域 S N比 S NR [ f ] が大き くなるにつれて大 き く するように、 各帯域の S N比に応じた値に修正し、 修正された第 1 の聴覚重みひ c [ f ] と第 3の聴覚重みァ w [ f ] をスペク トル減算部 8に出力し、 修正された第 2の聴覚重み/? c [ f ] をスペク トル抑圧部 9に出力する。
a c [ f ] = a w ( f ) · S NR [ f ] - M I N_G A I N a β c [ f ] = J3w ( f ) · S R [ f ] - M I N_G A I N ^ ( 4 ) なお、 上記 ( 4 ) 式において、 M I N— GA I Na, M I N_G A I は所定の定数であ り、 それそれ第 1の聴覚重みひ w ( f ) 、 第 2の 聴覚重み/? w ( f ) の最大抑圧量 [ d B ] を示している。
第 3図は、 後述するスぺク トル減算及びスぺク トル振幅抑圧に用いる 、 第 1の聴覚重みひ c [ f ] 及び第 2の聴覚重み/? c [ f ] の周波数方 向重み付け制御の一例を示す図であ り、 図において、 1 0 1は第 1の聴 覚重みであるスペク トル減算量ひ c [ f ] 、 1 0 2は第 2の聴覚重みで あるスペク トル振幅抑圧量 ? c [ f ] 、 1 0 3は音声スペク トル、 1 0 4は雑音スペク トルを示す。 聴覚重み修正部 7は、 次の ( 5 ) 式に示す 現フ レームの平均 S N比 S N R a v eが高い場合には、 ひ c [ 0 ] と ひ c [ f c ] の値の差が大き く なるように設定する。 すなわち、 第 3図に おけるひ c [ f ] の傾斜が大きくなる。 また、 聴覚重み修正部 Ίは、 平 均 S N比 S N R a V eが高い場合に、 ? c [ f ] は逆に/? c [ 0 ] と /? c [ f c ] との差を小さ くなるように設定する。 すなわち、 第 3図にお ける /? c [ f ] の傾斜が小さ く なる。 そして、 現フ レームの平均 S N比 S NR a v eが小さ くなるにつれて、 a c [ 0 ] と ひ c [ f c ] との差 を小さ く し、 すなわちひ c [ f ] の傾斜は小さ くなり、 逆に/? c [ 0 ] と ? C [ f C ] の差は大き く なり、 すなわち ? 。 [ f ] の傾斜は大き く なる。
S N R a v e二∑ ( S N R [ f ] ) / f c , f = 0 , . . . , f c
( 5 ) スペク トル減算部 8は、 雑音スペク トル N [ f ] に修正された第 1 の 聴覚重みひ c [ f ] を乗じて、 次の ( 6 ) 式のように振幅スペク トル S [ f ] の減算を行い、 雑音引き去りスペク トル S s [ f ] を出力する。 また、 スペク トル減算の結果、 雑音引き去りスペク トル S s [ f ] が負 になった場合には、 例えば入力信号の振幅スペク トル S [ f ] に第 3の 聴覚重みァ w [ f ] を乗じたものに置換し、 これを雑音引き去りスぺク トル S s [ f ] とする埋め戻し処理を行う。
S s [ f ] = S [ f ] - a c [ f ] · N [ f ]
; S [ f ] > a c [ f ] · N [ f ]
= 7 W [ f ] · S [ f ] ; 上記以外の場合 ( 6 ) スペク トル抑圧部 9は、 次の ( 7 ) 式によ り、 雑音引き去りスぺク ト ル S s [ f ] に修正された第 2の聴覚重み/? c [ f ] を乗じて、 雑音の 振幅を減少させた雑音抑圧スペク トル S r [ f ] を出力する。
S r [ f ] = 1 0 A ( - /5 c [ f ] ) - S s [ f ] ( 7 ) ここで、 1 0 A ( _ ? c [ f ] ) = 1 0 -β ΐ[η である。
周波数 · 時間変換部 1 0は、 上記の時間 · 周波数変換部 2が行う処理 の逆の手順をと り、 例えば逆 F F Τを行って雑音抑圧スペク トル S r [ f ] と、 時間 ' 周波数変換部 2が出力する位相スペク トル P [ f ] とを 用いて時間信号に変換し、 前フ レームの時間信号成分と一部重ね合わせ 処理を行い、 雑音抑圧信号 s r [ t ] を出力信号端子 1 1 より出力する このように、 従来の雑音抑圧装置は、 帯域 S N比 S N R [ f ] に基づ いて修正されると共に、 現フレームの平均 S N比 S N R a v eに基づい て周波数方向に重み付けされた第 1の聴覚重みひ c [ f ] 及び第 2の聴 覚重み ? c [ f ] を用いてスペク トル減算及びスペク トル振幅抑圧を行 つている。 すなわち、 帯域 S N比 S N R [ f ] が大きい周波数領域では 、 第 1の聴覚重みひ c [ f ] 及び第 2の聴覚重み/? c [ f ] が大きく な り、 帯域 S N比 S N R [ f ] が小さい周波数領域では、 第 1の聴覚重み c [ f ] 及び第 2の聴覚重み/? c [ f ] が小さ くなるように制御して いるので、 スペク トル減算処理において、 S N比が大きい領域 (主に低 域) では雑音を大き く減算し、 S N比が小さい領域 (主に高域) では小 さ く減算するので、 低域に大きな成分を持つ自動車走行騒音等を効果的 に雑音抑圧することができると共にスぺク トルの過度の減算が防止され る。 また、 スペク トル振幅抑圧においては、 低域では振幅抑圧を弱め、 高域になるに従って振幅抑圧を強めるようにしているので、 ミュ一ジカ ルノイズ (楽音的雑音) と称される不自然かつ不快な残留雑音の発生を 防止することができる。
従来の雑音抑圧装置は以上のように構成されているので、 例えば、 第 1の聴覚重みひ c [ f ] によ りある一定量以上雑音減算を行った場合に は、 第 2の聴覚重み/? c [ f ] による雑音振幅抑圧に制限を加えるよう な機構が従来の雑音抑圧装置にはなく、 第 1の聴覚重みひ c [ f .] 及び 第 2の聴覚重み/? c [ f ] はそれそれ独立して制御されているので、 第 1の聴覚重みひ c [ f ] 及び第 2の聴覚重み/? c [ f ] による総合の雑 音抑圧量 (以下、 トータルの雑音抑圧量と称する) がフレーム毎に一定 しておらず、 出力信号に時間方向の不安定感が発生し聴感上好ま しく な いという課題があつた。
この発明は上記のような課題を解決するためになされたもので、 聴感 上好ま しい雑音抑圧が可能で、 かつ高雑音下でも品質劣化の少ない雑音 抑圧装置を得ることを目的とする。 発明の開示
この発明に係る雑音抑圧装置は、 雑音ら しさ信号と雑音スぺク トルか ら、 現フレームの雑音抑圧レベルである振幅抑圧量を算出する振幅抑圧 量算出部と、 振幅抑圧量と雑音ら しさ信号から、 第 1の聴覚重みである スペク トル減算量と、 第 2の聴覚重みであるスペク トル振幅抑圧量の周 波数特性配分パ夕ンである聴覚重み配分パ夕ンを決定する聴覚重みパ夕 ン調整部と、 聴覚重み配分パタンによ り与えられる第 1の聴覚重みであ るスペク トル減算量と、 第 2の聴覚重みであるスペク トル振幅抑圧量を 、 帯域 S N比によ り修正して、 修正されたスペク トル減算量と、 修正さ れたスぺク トル振幅抑圧量を出力する聴覚重み修正部と、 振幅スぺク ト ルから、 雑音スぺク トルに修正されたスぺク トル減算量を乗じたスぺク トルを減算して、 雑音引去りスペク トルを求めるスペク トル減算部と、 雑音引き去りスぺク トルに修正されたスぺク トル振幅抑圧量を乗じて雑 音抑圧スぺク トルを求めるスぺク トル抑圧部とを備えたものである。
このこ とによって、 雑音抑圧後の出力信号が時間方向に安定するので 、 聴感上好ま しい雑音抑圧を行うことができる共に、 高雑音下でも品質 劣化の少ない雑音抑圧を行う ことができるという効果がある。
この発明に係る雑音抑圧装置は、 聴覚重み修正部が、 帯域 S N比が大 きい低域では、 第 1の聴覚重みであるスペク トル減算量を大き くすると 共に、 第 2の聴覚重みであるスペク トル振幅抑圧量を小さ く し、 帯域 S N比が小さい高域では、 第 1の聴覚重みであるスペク トル減算量を小さ くすると共に、 第 2の聴覚重みであるスペク トル振幅抑圧量を大き く す るようにしたものである。
このこ とによって、 低域に大きな雑音成分を有する自動車走行騒音を 有効に抑圧することができ、 高域ではスペク トルの過度の引き去りを防 止して音声スぺク トルの変形を防止することができると共に、 低域に大 きな成分を持つ自動車走行騒音が重畳した音声信号に対し、 スぺク トル 減算処理で除去しきれなかった高域の残留雑音を抑圧できるという効果 がある。
この発明に係る雑音抑圧装置は、 聴覚重みパタン調整部が、 聴覚重み 配分パタンを決定するための基本となる、 雑音ら しさ信号に対応した複 数の周波数特性パ夕ンからなる聴覚重み基本配分パ夕ンを備え、 この聴 覚重み基本配分パ夕ンの中から、 雑音ら しさ分析部が出力する雑音ら し さ信号に対応した周波数特性パ夕ンを選択して、 聴覚重み配分パ夕ンを 決定するようにしたものである。
このことによって、 雑音ら しさ信号の雑音ら しさが小さい場合に、 低 域でスぺク トル減算の度合いを大き くするで、 大きな雑音抑圧量を得る ことができると共に、 雑音ら しさが大き くなるに従って低域のスぺク 卜 ル減算の度合いを小さ くすることで、 スペク トル変形を防止することが できるという効果がある。
この発明に係る雑音抑圧装置は、 聴覚重みパタン調整部が、 使用環境 に応じて任意に変更される複数の周波数特性パタンからなる聴覚重み基 本配分パ夕ンを備えたものである。
このこ とによって、 修正されたスぺク トル減算量と修正されたスぺク トル振幅抑圧量の精度が高められ、 さらに品質劣化の少ない雑音抑圧を 行うことができるという効果がある。
この発明に係る雑音抑圧装置は、 振幅スぺク トルの低域パワーに対す る高域パワーの比を求める聴覚重みパタン変更部を備え、 聴覚重みパ夕 ン調整部が、 振幅スぺク トルの低域パワーに対する高域パワーの比によ り聴覚重み配分パタンを決定するようにしたものである。 このことによって、 聴覚重み配分パタンを音声区間のスぺク トル形状 に適応させ、 さらに聴感上好ましい雑音抑圧を行うことができるという 効果がある。
この発明に係る雑音抑圧装置は、 雑音スぺク トルの低域パワーに対す る高域パワーの比を求める聴覚重みパタン変更部を備え、 聴覚重みパ夕 ン調整部が、 雑音スぺク トルの低域パワーに対する高域パワーの比によ り聴覚重み配分パタンを決定するようにしたものである。
このことによって、 安定して聴覚重み配分パ夕ンを雑音区間の平均的 なスぺク トル形状に適応させ、 さらに聴感上好ましい雑音抑圧を行う こ とができるという効果がある。
この発明に係る雑音抑圧装置は、 振幅スぺク トルと雑音スぺク トルの 重み付け平均によって得られる平均スぺク トルの低域パワーに対する高 域パワーの比を求める聴覚重みパタン変更部を備え、 聴覚重みパタン調 整部が、 平均スぺク トルの低域パワーに対する高域パワーの比によ り聴 覚重み配分パタンを決定するようにしたものである。
このことによって、 聴覚重み配分パタンに入力信号の振幅スぺク トル と雑音スペク トルの形状を加味させ、 さらに聴感上好ま しい雑音抑圧を 行うことができるという効果がある。
この発明に係る雑音抑圧装置は、 スペク トル減算部が、 減算結果が負 となる場合に、 振幅スペク トル、 振幅抑圧量及び高域になるほど重みが 大き く なる第 3の聴覚重みによ り、 雑音引去りスペク トルを求めるよう にしたものである。
このことによって、 ミュージカルノイズの発生要因の一つと考えられ る、 周波数軸上に孤立する尖鋭スぺク トルの生成を抑制することができ ると共に、 音声区間において、 高域の残留雑音のスペク トル形状を入力 信号の振幅スぺク トルに類似させることができるので、 高域の残留雑音 が音声信号に類似して自然性が向上し、 聴感上好ましい雑音抑圧を行う ことができるという効果がある。
この発明に係る雑音抑圧装置は、 スペク トル減算部が、 減算結果が負 となる場合に、 雑音スぺク トル、 振幅抑圧量及び高域になるほど重みが 大き く なる第 3の聴覚重みによ り、 雑音引去りスペク トルを求めるよう にしたものである。
このことによ り、 ミュージカルノイズの発生要因の一つと考えられる 、 周波数軸上に孤立する尖鋭スぺク トルの生成を抑制することができる と共に、 高域の残留雑音の時間 · 周波数方向の安定化を図ることができ 、 聴感上好ま しい雑音抑圧を行うことができるという効果がある。
この発明に係る雑音抑圧装置は、 スペク トル減算部が、 減算結果が負 となる場合に、 聴覚重みパタン変更部が求めた平均スペク トル、 振幅抑 圧量及び高域になるほど重みが大き くなる第 3の聴覚重みによ り、 雑音 引去りスぺク トルを求めるようにしたものである。
このことによって、 ミュージカルノイズの発生要因の一つと考えられ る、 周波数軸上に孤立する尖鋭スぺク トルの生成を抑制することができ ると共に、 子音等の過渡部区間においても、 高域の残留雑音のスぺク ト ルに、 入力信号の振幅スぺク トルと雑音スぺク トルを加味することがで きるので残留雑音の自然性が向上し、 聴感上好ましい雑音抑圧を行う こ とができるという効果がある。
この発明に係る雑音抑圧装置は、 聴覚重み修正部が、 聴覚重みパタン 変更部が求めた振幅スペク トルの低域パワーに対する高域パワーの比に よ り、 高域になるほど重みが大き く なる第 3の聴覚重みを変更するよう にしたものである。
このことによって、 ミ ュージカルノイズの発生を抑止できると共に、 さらに聴感上好ましい雑音抑圧を行う ことができるという効果がある。 この発明に係る雑音抑圧装置は、 聴覚重み修正部が、 聴覚重みパタン 変更部が求めた雑音スペク トルの低域パワーに対する高域パワーの比に よ り、 高域になるほど重みが大きく なる第 3の聴覚重みを変更するよう にしたものである。
このことによって、 ミュージカルノイズの発生を抑止できると共に、 さらに聴感上好ましい雑音抑圧を行う ことができるという効果がある。 この発明に係る雑音抑圧装置は、 聴覚重み修正部が、 聴覚重みパタン 変更部が求めた振幅スぺク トルと雑音スぺク トルの重み付け平均によつ て得られる平均スぺク トルの低域パワーに対する高域パワーの比によ り 、 高域になるほど重みが大き くなる第 3の聴覚重みを変更するようにし たものである。
このことによって、 ミ ユージカルノイズの発生を抑止できると共に、 さらに聴感上好ましい雑音抑圧を行う ことができるという効果が得られ る。
この発明に係る雑音抑圧装置は、 聴覚重みパタン変更部が、 雑音ら し さ信号に基づいて平均スペク トルを求めるようにしたものである。
このことによって、 聴感上好ましい雑音抑圧を行う ことができるとい う効果がある。 図面の簡単な説明
第 1 図は、 従来の雑音抑圧装置の構成を示すブロ ック図である。
第 2図は、 雑音ら しさ信号 N o i s e と雑音スペク トル更新速度係数 rの関係を示す図である。
第 3図は、 従来の雑音抑圧装置におけるスぺク トル減算及びスぺク ト ル振幅抑圧の制御方法の一例を示す図である。
第 4図は、 この発明の実施の形態 1 による雑音抑圧装置の構成を示す ブロ ック図である。
第 5図は、 この発明の実施の形態 1 による雑音抑圧装置における聴覚 重み基本配分パタンの一例を示す図である。
第 6図 A乃至第 6図 Cは、 この発明の実施の形態 1 による雑音抑圧装 置におけるスぺク トル減算量とスぺク トル振幅抑圧量の配分パタン調整 の一例を示す図である。
第 7図は、 この発明の実施の形態 3による雑音抑圧装置の構成を示す ブロ ック図である。
第 8図 Aおよび第 8図 Bは、 この発明の実施の形態 3による雑音抑圧 装置における聴覚重み配分パ夕ンの変更制御方法の一例を示す図である 第 9図は、 この発明の実施の形態 4による雑音抑圧装置の構成を示す ブロ ック図である。
第 1 0図は、 この発明の実施の形態 5 による雑音抑圧装置の構成を示 すブロック図である。
第 1 1図は、 この発明の実施の形態 6 による雑音抑圧装置の構成を示 すプロ ック図である。
第 1 2図.は、 この発明の実施の形態 6 による雑音抑圧装置における第 3の聴覚重みの周波数方向パタンの一例を示す図である。
第 1 3図 Aおよび第 1 3図 Bは、 この発明の実施の形態 6による雑音 抑圧装置における聴覚重み付けを しない場合の雑音引き去りスぺク トル の一例を示す図である。
第 1 4図 Aおよび第 1 4図 Bは、 この発明の実施の形態 6による雑音 抑圧装置における聴覚重み付けをする場合の雑音引き去りスぺク トルの 一例を示す図である。
第 1 5図は、 この発明の実施の形態 8による雑音抑圧装置の構成を示 すブロ ック図である。
第 1 6図は、 この発明の実施の形態 9による雑音抑圧装置の構成を示 すブロ ック図である。
第 1 7図は、 この発明の実施の形態 1 0による雑音抑圧装置の構成を 示すブロック図である。
第 1 8図は、 この発明の実施の形態 1 1による雑音抑圧装置の構成を 示すブロック図である。
発明を実施するための最良の形態
以下、 この発明をよ り詳細に説明するために、 この発明を実施するた めの最良の形態について、 添付の図面にしたがって説明する。
実施の形態 1.
第 4図はこの発明の実施の形態 1による雑音抑圧装置の構成を示すブ ロック図である。 図において、 1は入力信号 s [ t ] を入力する入力端 子、 2は入力信号 s [ t ] を周波数分析して振幅スペク トル S [ f ] と 位相スペク トル P [ f ] に変換する時間 · 周波数変換部、 3は入力信号 s [t ] から雑音ら しさを判定して雑音ら しさ信号 N o i s eを出力す ると共に、 雑音ら しさ信号 N o i s eに対応した雑音スぺク トル更新速 度係数 rを出力する雑音ら しさ分析部である。
また、 第 4図において、 4は雑音スぺク トル更新係数 rと、 振幅スぺ ク トル S [ f ] と、 内部に保有している過去の平均的雑音スペク トル N o l d [ f ] とから、 雑音スペク トル N [ f ] を更新して出力する雑音 スペク トル推定部、 5は振幅スペク トル S [ f ] と雑音スペク トル N [ f ] から帯域 f 毎の信号対雑音比である帯域 S N比 S NR [ f ] を算出 する帯域 S N比計算部である。
さらに、 第 4図において、 2 0は雑音ら しさ信号 N o i s eと雑音ス ベク トル N [ f ] から、 現フレームの雑音抑圧レベルである振幅抑圧量 m i n— g a i nを算出する振幅抑圧量算出部、 2 1は振幅抑圧量 m i n_g a i nと雑音ら しさ信号 N o i s eから、 第 1の聴覚重みである スペク トル減算量ひ [ f ] と、 第 2の聴覚重みであるスペク トル振幅抑 圧量 ? [ f ] の周波数特性配分パタンである聴覚重み配分パタン m i n — g a i n— p a t [ f ] を決定する聴覚重みパタン調整部、 7は聴覚 重み配分パタン m i n— g a i n_p a t [ f ] によ り与えられる第 1 の聴覚重みであるスペク トル減算量ひ [ f ] と、 第 2の聴覚重みである スペク トル振幅抑圧量/? [ f ] を、 帯域 S N比 S N R [ f ] によ り修正 して、 修正された第 1の聴覚重みであるスペク トル減算量ひ c [ f ] と 、 修正された第 2の聴覚重みであるスペク トル振幅抑圧量/? c [ f ] を 出力する聴覚重み修正部である。
さらに、 第 4図において、 8は振幅スペク トル S [ f ] から、 雑音ス ベク トル N [ f ] に修正されたスペク トル減算量ひ c [ f ] を乗じたス ぺク トルを減算して、 雑音引去りスペク トル S s [ f ] を求めるスぺク トル減算部、 9は雑音引き去りスペク トル S s [ f ] に、 修正されたス ベク トル振幅抑圧量/? c [ f ] を乗じて雑音抑圧スペク トル S r [ f ] を求めるスペク トル抑圧部、 1 0は雑音抑圧スペク トル S r [ f ] を位 相スペク トル P [ f ] によ り時間信号に変換して雑音抑圧信号 s r [ t ] を出力する周波数 · 時間変換部、 1 1は雑音抑圧信号 s r [ t ] の出 力端子である。
次に動作について説明する。
時間 · 周波数変換部 2は従来と同様にして、 入力信号 s [ t ] を周波 数分析して振幅スぺク トル S [ f ] と位相スぺク トル P [ f ] に変換し て出力する。 雑音ら しさ分析部 3は入力信号 s [ t ] から雑音ら しさを 判定して雑音ら しさ信号 N o i s eを出力すると共に、 雑音ら しさ信号 N o i s eに対応した雑音スぺク トル更新速度係数 rを出力する。
雑音スペク トル推定部 4は従来と同様に、 雑音ら しさ分析部 3からの 雑音スペク トル更新係数 rと、 時間 · 周波数変換部 2からの振幅スぺク トル S [ f ] と、 内部に保有している過去の平均的雑音スペク トル N o I d [ f ] とから、 雑音スペク トル N [ f ] を更新して出力する。 また 、 帯域 S N比計算部 5も従来と同様に、 時間 · 周波数変換部 2からの振 幅スペク トル S [ f ] と雑音スペク トル推定部 4からの雑音スペク トル N [ f ] によ り、 帯域 f 毎の信号対雑音比である帯域 SN比 S NR [ f ] を算出する。
振幅抑圧量算出部 2 0は、 雑音ら しさ分析部 3からの雑音ら しさ信号 N o i s eと、 雑音スぺク トル推定部 4からの雑音スぺク トル N [ f ] とから、 以下のようにして、 現フ レームの雑音抑圧レベルである振幅抑 圧量 m i n— g a i nを算出する。 まず、 振幅抑圧量算出部 2 0は、 次 の ( 8 ) 式によ り雑音スぺク トル N [ f ] のパワー計算を行い、 現フ レ ームの雑音パワー Np owを得る。 なお、 ( 8 ) 式における f cはナイ キス ト周波数である。 -
Np ow= 1 0 - l o g l O (∑ N [ f ] ) , f = 0 , . . . , f c
( 8 ) 続いて、 振幅抑圧量算出部 2 0は、 次の ( 9 ) 式によ り、 所定の定数 である最大振幅抑圧量 M I N— G A I Nと、 上記 ( 8 ) 式で得られた雑 音パワー Np owとの比較を行い、 雑音パワー Np owが最大振幅抑圧 量 M I N— GA I Nを超える場合には、 振幅抑圧量 m i n— g a i nを M I N— G A I Nに制限する。 なお、 最大振幅抑圧量 M I N— G A I N を例えば 1 0 d B程度の比較的小さい値に設定した場合、 ( 9 ) 式で N p o wく M I N— G A I Nのとき (入力信号 s [ t ] に雑音が殆どない とき) を除き、 振幅抑圧量 m i n— g a i nは M I N— G A I Nに設定 される。 すなわち、 雑音がある場合には雑音抑圧レベルは M I N— G A I Nの値に一定となる。 また、 入力信号 s [ t ] に雑音が殆どないとき は、 振幅抑圧量 m i n_ g a i nは Np owに設定される。
m i n— g a i n = M I N一 G A I N ( d B )
; p o w > M I N一 G A I N
= N p o w ( d B ) ; 上記以外 ( 9 ) 聴覚重みパ夕ン調整部 2 1は、 上記 ( 9 ) 式で求めた振幅抑圧量 m i n— g a i nと、 雑音ら しさ分析部 3からの雑音ら しさ信号 N o i s e と、 第 1の聴覚重みであるスペク トル減算量ひ [ f ] と第 2の聴覚重み であるスぺク トル振幅抑圧量/? [ f ] の範囲を定める聴覚重み配分パ夕 ンの基本となる聴覚重み基本配分パ夕ン M I N— GA I N— PAT [ i ] [ f ] とから、 第 1の聴覚重みであるスペク トル減算量ひ [ f ] と、 第 2の聴覚重みであるスぺク トル振幅抑圧量^ [ f ] の周波数特性配分 パタンである聴覚重み配分パタン m i n— g a i n— p a t [ f ] を決 定し出力する。
第 5図は聴覚重み配分パタン m i n— g a i n— p a t [ f ] を決定 するために用いる聴覚重み基本配分パタン M I N— GA I N— PAT [ i ] [f ] の例を示す図である。 ここで、 iは雑音ら しさ信号 N o i s eの値によって変化し、 例えば i = 0〜 4である。 第 5図において、 1 0 1はスぺク トル減算量ひ c [ f ] 、 1 0 2はスぺク トル振幅抑圧量/? c [f ] 、 1 5 0はメモリを示す。 第 5図に示すように、 聴覚重み基本 配分パタン M I N_G A I N— P A T [ i ] [ f ] として、 雑音ら しさ 信号 N o i s eに対応して、 種々の周波数特性を持った振幅抑圧量が用 意されており、 聴覚重みパタン調整部 2 1内の R OMテーブル等のメモ リ (図示せず) に記憶されており、 雑音ら しさ分析部 3からの雑音ら し さ信号 N o i s eに対応する聴覚重み基本配分パタン M I N GA I N — PAT [N o i s e ] [f ] がメモリから出力される。
続いて、 聴覚重みパタン調整部 2 1は、 次の ( 1 0 ) 式により、 雑音 ら しさ信号 N o i s eに対応した聴覚重み基本配分パ夕ン M I N— G A I N— PAT [N o i s e] [ f ] に、 振幅抑圧量算出部 2 0からの振 幅抑圧量 m i n— g a i nを乗じて、 第 1の聴覚重みであるスぺク トル 減算量ひ [ f ] と、 第 2の聴覚重みであるスぺク トル振幅抑圧量 ? [ f ] の周波数特性配分パタンである聴覚重み配分パタン m i n_g a i n — p a t [ f ] を決定して出力する。
m i n― g a i n― p a t [ f ]
= m i n— g a i n · Μ Ι Ν— GA I N— PAT [N o i s e] [ f ]
( 1 0 ) 聴覚重み修正部 7は、 帯域 S N比計算部 5からの帯域 S N比 S NR [ f ] と、 上記 ( 1 0 ) 式で求められた聴覚重みパタン調整部 2 1からの 聴覚重み配分パタン m i n— g a i n— p a t [ f ] を用いて、 次の ( 1 1 ) 式〜 ( 1 3 ) 式によ り、 修正された第 1の聴覚重みであるスぺク トル減算量ひ c [ f ] と修正された第 2の聴覚重みであるスペク トル振 幅抑圧量 ? c [ f ] を決定して出力する。
まず、 聴覚重み修正部 7は、 帯域 S N比 S NR [ f ] を次の ( 1 1 ) 式によ り安定化を行い、 安定化した S N比 SNR l i m [ f ] を求める 。 ( 1 1 ) 式において、 S NR— T H LD [f ] は帯域 S N比 S NR [ f ] がごく小さい場合、 後述の ( 1 2 ) 式のスぺク トル振幅抑圧量 ? [ f ] を、 聴覚重み配分パタン m i n— g a i n— p a t [ f ] の値に一 定化させて安定化を図るための所定の定数閾値である。
S NR l i m [ f ] = S NR— T H LD [ f ]
; S NR [ f ] < S N R_T H L D [ f ] = S N R [ f ] ; 上記以外 ( 1 1 ) 次に、 聴覚重み修正部 7は、 下記の ( 1 2 ) 式によ り、 修正されたス ベク トル振幅抑圧量 ? c [ f ] を求める。 ( 1 2 ) 式において、 G A I N [ f '] は所定の定数であり、 例えば高域になるに従って大き く なるよ うに設定して、 修正されたスペク トル減算量 a: c [ f ] 及び修正された スペク トル振幅抑圧量^ c [ f ] が、 高域になるほど S N R [ f ] の変 化に敏感に反応するようにするための加速係数である。 ( 1 2 ) 式によ れば、 帯域 S N比 S N R [ f ] が大きく なれば、 ( 1 2 ) 式の第 1項 (
( S N R l i m [ f ] — S N R— T H L D [ f ]' ) - GA I N [ f ] ) が大き くなり、 第 1項 ( S N R l i m [ f ] > S N R_T H L D [ f ] ならば正値) が第 2項 (m i n— g a i n_p a t [ f ] ) よ り小さい 場合には、 修正されたスペク トル振幅抑圧量 ? c [ f ] は負数を取るが 、 第 1項が大きくなるにつれて c [ f ] の絶対値は小さ くなるので負 のゲイ ンは小さ くなる。 すなわち、 振幅抑圧は弱まる。 逆に帯域 S N比 S N R [ f ] が小さ く なれば、 修正されたスぺク トル振幅抑圧量/? c [ f ] は大き くなるので負のゲイ ンは大き くなる。 すなわち振幅抑圧が強 まる。 なお、 修正されたスペク トル振幅抑圧量/? c [ f ] が 0 ( d B ) を越える場合には、 0 ( d B ) に制限して振幅抑圧を行わない。 また、 帯域 S N比 S N R [ f ] が S N R— T H L D [ f ] 以下の場合は、 上記
( 1 1 ) 式によ り、 S N R l i m [ f ] は S N R— T H L D [ f ] に制 限されているので、 修正されたスペク トル振幅抑圧量/? c [ f ] は m i n— g a i n— p a t [ f ] に一定の値となる。
β c [ f ] = ( S N R l i m [ f ] — S N R— T H L D [ f ] )
• G A I N [ f ] -m i n_g a i n_p a t [ f ] = 0 ( d B ) \ β c [ f ] > 0 ( 1 2 ) 聴覚重み修正部 7は、 上記 ( 1 2 ) 式で修正されたスペク トル振幅抑 圧量/? c [ f ] を求めた後、 次の ( 1 3 ) 式によ り、 修正されたスぺク トル振幅抑圧量 ? c [ f ] を用いて、 修正されたスペク トル減算量 a c [ f ] を求める。
a c [ f ] =m i n_g a i n - ? c [ f ] ( 1 3 ) 第 5図に示す例では、 雑音ら しさ信号 N o i s eの雑音ら しさが最も 小さい場合 (N o i s e二 3, 4の場合) に低域でスペク トル減算の度 合いが最も大き く、 雑音ら しさが大き くなる (N 0 i s e = 2 , 1 ) 'に 従って低域のスペク トル減算の度合いが小さ くなり、 相対的にスぺク ト ル振幅抑圧の度合いが大き くなる。 ここで、 第 5図における ( a ) は N o i s e二 3 , 4の場合、 ( b ) は N o i s e = 2の場合、 ( c ) は N o i s e = 0の場合を示す。 こうすることで、 雑音ら しさが小さい場合 (有音である確率が高い場合) には、 現フレームの全帯域の平均 S N比 が大きいのでスペク トル減算によ り大きな雑音抑圧量を得ることができ る。 一方、 雑音ら しさが大きい場合 (雑音である確率が高い場合) には 、 現フレームの全帯域の平均 S N比が小さいので、 スペク トル減算の度 合いが小さ く なることで相対的にスぺク トル振幅抑圧の度合いが大き く なり、 スペク トル変形を防止することができる。
第 6図 Aは、 現フレームが有音の場合で雑音ら しさ信号 N o i s e = 4、 m i n_g a i nが 1 0 d Bの場合における、 修正された第 1の聴 覚重みであるスペク トル減算量ひ c [ f ] と修正された第 2の聴覚重み であるスペク トル振幅抑圧量 ? c [ f ] の配分パタン調整の一例を示す 図であり、 図において、 1 0 3は音声スペク トル、 1 0 4は雑音スぺク トル、 1 0 5は m i n— g a i n = 1 0 d Bを示し、 第 5図と共通する 要素を示すには同一符号を付し、 その説明を省略する。 また、 第 6図 B は第 6図 Aにおけるスペク トル減算量ひ c [ f ] の割り当ての S N比で 修正できる範囲を示し、 第 6図 Cは第 6図 Aにおけるスぺク トル振幅抑 圧量 ? c [ f ] の割り当ての S N比で修正できる範囲を示す。 第 6図 A の例では、 従来の第 3図に示す雑音抑圧装置のスペク トル減算量 · 振幅 抑圧量制御と同様に、 低域では後述するスぺク トル減算の度合いが大き く、 高域になるに従って後述するスペク トル振幅抑圧の度合いが大き く なっているが、 第 3図に示す従来技術の制御と異なる点は、 修正された スペク トル減算量ひ c [ f ] 、 修正されたスペク トル振幅抑圧量 ? c [ f ] が、 相互に第 6図 Aにおける聴覚重み配分パタン m i n— g a i n — p a t [ f ] を越えて大き くならないことである。
すなわち、 全周波数帯域にわたって、 修正されたスぺク トル減算量ひ c [ f ] と修正されたスペク トル振幅抑圧量 ? c [ f ] による トータル の雑音抑圧量は m i n_g a i n—定であるので、 過度のスぺク トル減 算及びスぺク トル振幅抑圧が防止できると共に、 フ レーム間の振幅抑圧 量が一定となり不連続感が低減できる。
スペク トル減算部 8は、 次の ( 1 4 ) 式によ り、 振幅スペク トル S [ f ] から、 雑音スぺク トル N [ f ] に修正されたスぺク トル減算量ひ c [ f ] を乗じたスペク トルを減算し、 雑音引き去りスペク トル S s [ f ] を出力する。 雑音引き去りスペク トル S s [ f ] が負になる場合には 、 振幅抑圧量算出部 2 0が出力する振幅抑圧量 m i n— g a i n ( d B ) を リニア値 m i n— g a i n— 1 i nに変換し、 それを入力信号の振 幅スペク トル S [ f ] に乗じたものを雑音引き去りスペク トル S s [ f ] とする埋め戻し処理を行う。
S s [ f ] 二 S [ f ] - ひ c [ f ] · Ν [ f ]
; S [ f ] > a c [ f ] · N [ f ]
= S [ f ] · m i n― a i n― 1 i n
; 上記以外 ( 1 4 ) スぺク トル抑圧部 9は、 上記 ( 1 2 ) 式で求めた修正されたスぺク ト ル振幅抑圧量/? c [ f ] ( d B値) を リニア値/?— 1 [ f ] に変換し、 次の ( 1 5 ) 式によ り、 雑音引き去りスぺグトル S s [ f ] にスぺク ト ル振幅抑圧量/?— 1 [ f ] を乗じて、 雑音抑圧スペク トル S r [ f ] を 出力する。
S r [ f ] = ?_1 [ f ] · S s [ f ] ( 1 5 ) 周波数 · 時間変換部 1 0は、 雑音抑圧スペク トル S r [ f ] を時間 · 周波数変換部 2が出力する位相スペク トル P [ f ] を用いて時間信号に 変換し、 前フ レームの信号と一部重ね合わせを行い、 雑音抑圧信号 s r [ t ] を出力端子 1 1 よ り出力する。
以上のように、 この実施の形態 1 によれば、 第 6図 A乃至第 6図 Cお よび ( 1 3 ) 式に示すように、 修正された第 2の聴覚重みであるスぺク トル振幅抑圧量 5 c [ f ] の値に応じて、 修正された第 1の聴覚重みで あるスペク トル減算量ひ c [ f ] の値が決まるので、 修正されたスぺク トル振幅抑圧量ひ c [ f ] と修正されたスペク トル減算量 ? c [ f ] に よる トータルの雑音抑圧量は一定の m i n— g a i nとなり、 雑音抑圧 後の出力信号が時間方向に安定するので、 聴感上好ましい雑音抑圧を行 うことができると共に、 高雑音下でも品質劣化の少ない雑音抑圧を行う ことができるという効果が得られる。
例えば、 修正されたスぺク トル振幅抑圧量 ? c [ f ] によ り振幅抑圧 量 m i n— g a i nいっぱいまでスぺク トル振幅抑圧を行った場合には 、 修正されたスペク トル減算量ひ c [ f ] によるスペク トル減算は行わ れなく なるので、 トータルの雑音抑圧量がフ レーム毎に一定となる。 また、 この実施の形態 1によれば、 雑音スぺク トルの形状によって値 の差はあるものの、 有声音は低域成分が大きいので一般に低域の方が S N比は大き く なるので、 第 6図 Aに示すように、 聴覚重み配分パタン m i n— g a i n— p a t [ f ] において、 修正された第 1の聴覚重みで あるスペク トル減算量ひ c [ f ] の度合いを低域では大き く、 高域にな るに従ってその度合いを小さ く し、 S N比が大きい低域では雑音を大き く減算することによ り、 低域に大きな雑音成分を有する自動車走行騒音 を有効に抑圧することができると共に、 S N比が小さい高域では減算量 を小さ く することにより、 スペク トルの過度の引き去りを防止して、 高 域成分の音声スぺク トルの変形を防止することができるという効果が得 られる。 . さらに、 この実施の形態 1 によれば、 第 6図 A乃至第 6図 Cに示すよ うに、 修正された第 2の聴覚重みであるスペク トル振幅抑圧量 ? c [ f ] を S N比が大きい低域ではスペク トル振幅抑圧の度合いを小さ く し、 S N比が小さ くなる高域になるに従ってスペク トル振幅抑圧の度合いを 大き くすることで、 低域に大きな成分を持つ自動車走行騒音が重畳した 音声信号に対し、 スぺク トル減算処理で除去しきれなかった高域の残留 雑音を抑圧できるという効果が得られる。
さらに、 この実施の形態 1 によれば、 第 1及び第 2の聴覚重みの聴覚 重み基本配分パタン M I N— G A I N— P A T [ i ] [ f ] を、 例えば 第 5図に示すような複数の周波数特性の中から雑音ら しさ信号 N o i s eに応じて選択することで、 雑音ら しさ信号 N o i s eの雑音ら しさが 小さい場合に、 低域でスぺク トル減算の度合いを大き く することによ り 大きな雑音抑圧量を得ることができると共に、 雑音ら しさが大き く な るに従って低域のスぺク トル減算の度合いを小さ くすることによ り、 ス ベク トル変形を防止することができるという効果が得られる。 実施の形態 2 .
この発明の実施の形態 2 による雑音抑圧装置の構成を示すブロ ック図 は、 実施の形態 1の第 4図と同一である。 この実施の形態は、 実施の形 態 1の第 5図に示す聴覚重み基本配分パタン M I N— G A I N— P A T [ i ] [ f ] を、 使用環境に応じて任意に変更するものである。
次に動作について説明する。
例えば、 あらかじめ使用環境に応じた雑音スペク トル N [ f ] の平均 的な周波数特性や帯域 S N比の分布等を調査して、 聴覚重み基本配分パ タン M I N— GA I N— PAT [ i ] [ f ] を修正した り、 又は、 使用 環境から得られる入力信号データによ り聴覚重み基本配分パ夕ン M I N — GA I N— PAT [ i ] [ f ] を最適学習することで、 聴覚重み基本 配分パタン M I N— G A I N— P A T [ i ] [ f ] を使用環境に適応さ せる。
以上のように、 この実施の形態 2によれば、 聴覚重み基本配分パタン M I N— GA I N— PAT [ i ] [ f ] を使用環境に応じて任意に変更 することによ り、 修正されたスペク トル減算量ひ c [ f ] と修正された スペク トル振幅抑圧量 ? c [f ] の精度が高められ、 さらに品質劣化の 少ない雑音抑圧を行う ことができるという効果が得られる。 実施の形態 3.
第 7図はこの発明の実施の形態 3による雑音抑圧装置の構成を示すブ ロック図である。 図において、 2 2は振幅スぺク トル S [ f ] の低域パ ヮ一と高域パワーの比を求める聴覚重みパタン変更部であ り、 その他の 構成については、 第 4図と同様であるので説明は省略する。 この実施の 形態 3は、 音声区間において、 現フレームの入力信号 s [ t ] から得ら れる振幅スペク トル S [ f ] を低域と高域に分割し、 それそれ低域パヮ 一及び高域パワーを求めて、 その低域パワーと高域パワーの比によ り、 第 1及び第 2の聴覚重みの聴覚重み配分パタン m i n— g a i n— p a t [ f ] を変更するものである。
次に動作について説明する。 聴覚重みパタン変更部 2 2は、 時間 · 周波数変換部 2が出力する振幅 スペク トル S [ f ] から、 次の ( 1 6 ) 式によ り、 例えば 0〜 6 3点ま でを低域スぺク トル、 6 4点〜 1 2 7点までを高域スぺク トルとして、 それそれ低域パワー P o w— 1及び高域パワー P o w— hを計算し、 得 られた低域パワー P 0 w— 1 と高域パヮ一 P 0 w— hとから高域/低域 パワー比 P Vを求めて出力する。 ただし、 高域/低域パワー比 P Vが所 定の上限閾値 P V— Hを上回る場合には、 P Vは P V— Hに制限し、 高 域/低域パワー比が所定の下限閾値 P V— Lを下回る場合には、 P Vは P V— Lに制限する。
P o w— 1 =∑ S [ f ] ; f = 0, . . . , 6 3
P o w— h =∑ S [ f ] ; f 二 6 4, . . . , 1 2 7
P v = P o w― h/P o w― 1
ただし、 P v = P v— H ; P v > P v_H
P v = P v— L ; P v < P v_L ( 1 6 ) 聴覚重みパタン調整部 2 1は、 振幅抑圧量算出部 2 0からの振幅抑圧 量 m i n— g a i n、 雑音ら しさ分析部 3からの雑音ら しさ信号 N o i s e、 聴覚重みパタン変更部 2 2からの高域/低域パワー比 P Vとから 、 次の ( 1 7 ) 式によ り、 第 1の聴覚重みであるスペク トル減算量ひ [ f ] と、 第 2の聴覚重みであるスぺク トル振幅抑圧量/? [ f ] の聴覚重 み配分パタン m i n— g a i n— p a t [ f ] を決定する。 ( 1 7 ) 式 における M I N— GA I N— P A T [N o i s e ] [ f ] は雑音ら しさ 信号 N o i s eが選択する基本配分パタン、 P v— i n vは上記 ( 1 6 ) 式よ り求められる高域/低域パワー比 P Vの逆数である。 また、 聴覚 重み配分パタン m i n— g a i n— p a t [ f ] が振幅抑圧量 m i n— g a i nを越える場合には、 振幅抑圧量 m i n— g a i nに値を制限す る。 また、 ( 1 7 ) 式における f cはナイキス ト周波数である。 m i n— g a i n— p a t [ f ] =m i n― g a i n · M I N一 G A I N— PAT [N o i s e ] [ f ] ( 1. 0 · ( f c - f ) + P v_ i n v · f ) /f c
ただし、 P v— i nv= l . 0 / P v
m i n― g a i n― p a t [ f ] =m i n― a i n
; m i n― a i n― a t [ f ] > m i n― g a i n
( 1 7 ) 第 8図 Aおよび第 8図 Bは聴覚重み配分パ夕ンの変更制御方法の一例 を示す図であり、 上述の方法によ り、 第 1及び第 2の聴覚重みの聴覚重 み配分パタン m i n— g a i n— p a t [ f ] を変更した場合のィメー ジ図である。 第 8図 Aは高域パワー P ow— hが低域パワー P ow— 1 よ りも大きい場合で、 第 8図 Bは低域パワー P o w— 1が高域パワー P o w— hより も大きい場合であり、 それぞれの図において、 第 5図と共 通する要素には同一符号を付し、 その説明を省略する。
一般に、 高域パワー P o w— hが低域パワー P ow— 1より も大きい 場合には高域の S N比が大きく なるので、 第 8図 Aに示すように聴覚重 み配分パタン m i n— g a i n_p a t [ f ] の傾斜を緩やかに変更し 、 より高域のスペク トル減算の度合いが大き くする。 一方、 高域パワー P o w— hよ り も低域パワー P 0 w— 1が大きい場合には低域の S N比 が大き く なるので、 第 8図 Bに示すように聴覚重み配分パタン m i n— g a i n— p a t [ f ] の傾斜を急峻に変更し、 高域のスペク トル振幅 抑圧の度合いを大き く する。
以上のように、 この実施の形態 3によれば、 音声区間では、 入力信号 の振幅スペク トル S [ f ] に音声信号成分が多く含まれており、 振幅ス ベク トル S [ f ] によ り聴覚重み配分パタン m i n— g a i n— p a t [ f ] を変更することで、 聴覚重み配分パタン m i n— g a i n p a t [ f ] を音声区間のスペク トル形状に適応させ、 音声信号の周波数特 性に適応したスぺク トル減算及びスぺク トル振幅抑圧を行うことによ り 、 さらに聴感上好ま しい雑音抑圧を行う ことができるという効果が得ら れる。 実施の形態 4 .
第 9図はこの発明の実施の形態 4による雑音抑圧装置の構成を示すブ ロ ック図である。 図において、 2 2は雑音区間において、 雑音スぺク ト ル N [ f ] の低域パワーと高域パワーの比を求める聴覚重みパタン変更 部であり、 その他の構成については、 実施の形態 3の第 7図と同様であ る。 この実施の形態は、 雑音区間において、 振幅スぺク トル S [ f ] の 代わりに雑音スペク トル N [ f ] を低域と高域に分割して、 低域パワー P o w— 1及び高域パワー P o w— hを求め、 その低域パワー P o w— 1 と高域パワー P 0 w— hの比 P Vによ り、 第 1及び第 2の聴覚重みの 聴覚重み配分パタン m i n— g a i n— p a t [ f ] を変更するもので ある。
次に動作について説明する。
雑音区間では、 入力信号の振幅スペク トル S [ f ] は時間 . 周波数共 に大きく変動しており、 不安定な入力信号の振幅スペク トル S [ f ] で 聴覚重み配分パタン m i n— g a i n— p a t [ f ] を変更することは 不適である。 そこで、 平均的な雑音スぺク トル形状を保持している、 時 間 · 周波数方向に安定な雑音スぺク トル N [ f ] によ り、 聴覚重みパ夕 ン調整部 2 1 が聴覚重み配分パタン m i n— g a i n— p a t [ f ] の 変更を行う。
以上のように、 この実施の形琴 4によれば、 雑音区間では、 時間 · 周 波数方向に安定な雑音スペク トル N [ f ] の低域パワー P o w— 1 と高 域パワー P o w— hの比 P vによ り、 第 1及び第 2の聴覚重みの聴覚重 み配分パタン m i n— g a i n— p a t [ f ] を変更することで、 安定 して聴覚重み配分パタン m i n— g a i n— p a t [ f ] を雑音区間の 平均的なスぺク トル形状に適応させ、 雑音区間の周波数特性に適応した スペク トル減算とスペク トル振幅抑圧を行うことによ り、 さらに聴感上 好ましい雑音抑圧を行うことができるという効果が得られる。 実施の形態 5.
第 1 0図はこの発明の実施の形態 5による雑音抑圧装置の構成を示す ブロック図である。 図において、 2 2は子音等の音声過渡部区間におい て、 雑音ら しさ信号 N o i s eに基づき、 振幅スペク トル S [ f ] と雑 音スペク トル N [ f ] の重み付け平均によ り得られる平均スペク トル A [ f ] の低域パワーと高域パワーの比を求める聴覚重みパタン変更部で あ り、 その他の構成については、 実施の形態 4の第 9図と同様である。
この実施の形態は、 子音等の音声過渡部区間では、 振幅スペク トル S [ f ] の代わりに、 振幅スペク トル S [ f ] と雑音スペク トル N [ f ] の重み付け平均によ り得られる平均スペク トル A [ f ] を低域と高域に 分割して、 低域パワー P o w— 1及び高域パワー P 0 w— hを求め、 そ の低域パワー P o w— 1 と高域パワー P o w— hの比 P vによ り、 第 1 及び第 2の聴覚重みの聴覚重み配分パタン m i n_g a i n_p a t [ f ] を変更するものである。
次に動作について説明する。
聴覚重みパタン変更部 2 2は、 まず、 時間 · 周波数変換部 2が出力す る 1 2 8点の振幅スペク トル S [ f ] と、 雑音スペク トル推定部 4が出 力する雑音スペク トル N [ f ] を入力し、 次の ( 1 8 ) 式によ り平均ス ベク トル A [ f ] を求める。 ( 1 8 ) 式における C nは、 例えば上記第 2図に示す雑音ら しさ信号 N o i s eの様態によって決まる所定の重み 付け係数であり、 第 2図における雑音ら しさ信号 N 0 i s eが 0〜 2の 範囲であれば、 現フ レームは雑音区間の可能性が高いので C n = 0. 7 と し、 雑音スペク トル N [ f ] に重みを置く。 一方、 雑音ら しさ信号 N o i s eが 3ないし 4であれば、 現フレームは音声区間の可能性が高い ので C n = 0. 3 と し、 入力信号の振幅スペク トル S [ f ] に重みを置
< o
A [ f ] = ( l - C n) - S [ f ] + C n - N [ f ] ( 1 8 ) 聴覚重みパ夕ン変更部 2 2は、 上記 ( 1 8 ) 式で得られた平均スぺク トル A [ f ] から、 次の ( 1 9 ) 式によ り、 例えば 0〜 6 3点までを低 域スペク トル、 6 4点〜 1 2 7点までを高域スペク トルと して、 それそ れ低域パヮー P 0 w— 1及び高域パヮ一 P o w_hを計算する。 聴覚重 みパタン変更部 2 2は、 得られた低域パワー P o w— 1 と高域パワー P o w—hとから高域/低域パワー比 P Vを求めて出力する。 ただし、 高 域/低域パワー比 P Vが所定の上限閾値 P v— Hを上回る場合には、 P Vを P v_Hに制限し、 高域/低域パワー比 P Vが所定の下限閾値 P V — Lを下回る場合には、 P Vを P V— Lに制限する。
P o w_ l =∑ A [ f ] ; f = 0 , . . . , 6 3
Ρ ο w— h =∑ A [ f ] ; f = 6 4 , . . . , 1 2 7
Ρ ν = Ρ o w— h/P o w— 1
ただし、 Ρ ν = Ρ ν— Η ; Ρ ν > Ρ ν_Η
Ρ ν = Ρ v_L ; Ρ ν < Ρ v_L ( 1 9 ) 以上のように、 この実施の形態 5 によれば、 入力信号の振幅スぺク ト ル S [ f ] と雑音スペク トル N [ f ] の平均スペク トル A [ f ] の低域 パワー P 0 w— 1 と高域パヮー P 0 w— hの比 P Vによ り、 第 1及び第 2の聴覚重みの聴覚重み配分パタン m i n a i n . a t [ f 1 を 変更することで、 多くは雑音区間として誤判定される、 音声区間として の判定が困難な子音や音声過渡部等の区間において、 聴覚重み配分パ夕 ン m i n— g a i n— p a t [ f ] に入力信号の振幅スペク トル S [ f ] と雑音スペク トル N [ f ] の形状を加味させることで、 過渡部区間の 周波数特性に適応してスぺク トル減算とスぺク トル振幅抑圧を行う こと ができ、 さらに聴感上好ましい雑音抑圧を行う ことができるという効果 が得られる。
また、 この実施の形態 5によれば、 雑音ら しさ信号 N o i s eに基づ いて、 入力信号の振幅スペク トル S [ f ] と雑音スペク トル N [ f ] の 平均スペク トル A [ f ] を求めているので、 重み付け係数 C nを固定値 にした場合と比較して、 よ り現フレームの有音 · 雑音の様態に適応した 平均スペク トル A [ f ] を得ることができ、 さらに、 聴感上好ま しい雑 音抑圧を行う ことができるという効果が得られる。 実施の形態 6 .
第 1 1 図はこの発明の実施の形態 6 による雑音抑圧装置の構成を示す ブロック図である。 図において、 7は修正された第 1の聴覚重みである スペク トル減算量ひ c [ f ] と、 修正された第 2の聴覚重みであるスぺ ク トル振幅抑圧量/? c [ f ] と、 第 3の聴覚重みァ c [ f ] を出力する 聴覚重み修正部である。 その他の構成は、 実施の形態 1の第 4図に示す 構成と同様である。 この実施の形態では、 スペク トル減算部 8 において 、 雑音引き去りスペク トル S s [ f ] が負になった場合の埋め戻し処理 に用いるスペク トル信号に、 例えば、 音声区間では、 入力信号の振幅ス ベク トル S [ f ] に周波数方向の重み付けを行ったものを用いる。
スペク トル減算部 8は、 次の ( 2 0 ) 式によ り、 振幅スペク トル S [ f 1 から、 雑音スペク トル N [ ] に修正されたスペク トル減算量ひ c [ f ] を乗じたスペク トルを減算し、 雑音引き去りスペク トル S s [ f ] を出力する。 雑音引き去りスペク トル S s [ f ] が負になる場合には 、 振幅抑圧量 m i n— g a i nを振幅スペク トル S [ f ] に乗じ、 さ ら に、 高域になるほど重みが大き く なる聴覚重み修正部 7が出力する第 3 の聴覚重みァ c [ f ] を乗じたものを雑音引き去りスペク トル S s [ f ] とする埋め戻し処理を行う。
S s [ f ] = S [ f ] - a c [ f ] · N [ f ]
; S [ f ] > a c [ f ] · N [ f ]
=ァ 〇 [ f ] ' m i n— g a i n ' s [ f ] ; 上記以外
( 2 0 ) なお、 上記 ( 2 0 ) 式における第 3の聴覚重みァ c [: f ] は、 次の ( 2 1 ) 式によ り生成される。
S N R_g = ( S N R_MAX - S N R [ f ] ) - C_ s n r ァ c [ f ] =ァ„ [ f ] ; ァ w [ f ] - S N R— g > 7 H [ f ]
=ァ w [ f ] · S N R_g
; ァ L [ f ] < = y w [ f ] ' S NR— gく =ァ„ [ f ] = 7L [ f ] ; ァ w [ f ] ' S N R— ^ [ f ]
( 2 1 ) 上記 ( 2 1 ) 式における S N R— MAX及び C— s n rは、 所定の正 値をとる定数であり、 第 3の聴覚重みァ c [ f ] の S N比による制御を つかさどるものである。 また、 ァ H [ f ] 及びァ L [ f ] は帯域 f 毎に 定められた定数であ り、 0 く y L [ f ] くァ H [ f ] , f = 0 , . . . , f cなる関係をとる。 すなわち、 上記 ( 2 1 ) 式によれば、 帯域 S N 比が大きく なればァ c [ f ] の値は小さ く な り、 逆に帯域 S N比が小さ くなればァ c [ f ] の値は大き く なる。
白動車走行時における入力音声信号は、 一般に高域になるに従って S N比が小さ くなるが、 雑音のスぺク トル成分パワーの絶対値も小さ く な る。 従って、 スペク トル減算の結果は、 高域になるに従って S N比が小 さくなるためにスぺク トル成分が負になる場合が多く なり、 ミュージカ ルノイズの発生要因の一つと考えられ、 孤立した尖鋭スぺク トル成分が 発生する可能性が大き くなる。 そこで、 埋め戻しに用いる入力信号の振 幅スペク トル S [ f ] に聴覚重み付けする第 3の聴覚重みァ c [f ] を 、 第 1 2図に示すように、 高域になるに従って重みを大き くすることに よ り、 高域ほど埋め戻し量を大きく し尖鋭スぺク トル成分の発生を防止 する。 ここで、 第 1 2図において、 1 0 3は音声スペク トル、 1 0 6は 第 3の聴覚重みァ c [ f ] の周波数方向パ夕ンの一例を示す。
第 1 3図 A乃至第 1 4図 Bは雑音引き去りスペク トル S s [f ] の一 例を示す図であり、 第 1 3図 A、 第 1 3図 Bは入力信号の振幅スぺク ト ル S [ f ] を重み付けしないスぺク トルで埋め戻す場合で、 第 1 4図 A 、 第 1 4図 Bは第 1 2図に示す第 3の聴覚重みァ c [ f ] で重み付けし たスぺク トルで埋め戻す場合である。 第 1 3図 A、 第 1 4図 Aにおいて 、 1 04は雑音スペク トル、 1 0 7はスペク トル減算 : S [f ] —ひ c [ f ] . N [ f ] によるスペク トル形状、 1 0 8はスペク トル成分が負 になる部分、 1 0 9は入力振幅スぺク トルに m i n_g a i nを乗じた 埋め戻しスぺク トル、 1 1 2は入力振幅スぺク トルに m i n— g a i n と第 3の聴覚重みを乗じた埋め戻しスペク トルを示す。 また、 第 1 3図 B、 第 1 4図 Bにおいて、 1 1 0は雑音引き去りスペク トル S s [ f ] 、 1 1 1は孤立したスぺク トル成分を示す。 第 1 3図 Bは第 1 3図 Aの スペク トル成分が負になる部分を埋め戻し処理した図であり、 第 1 4図 Bは第 1 4図 Aのスぺク トル成分が負になる部分を埋め戻し処理をした 図である。
第 1 3図 Bと第 1 4図 Bとを比較すると、 第 1 3図 Bで発生していた 高域の尖鋭スぺク トル成分が第 1 4図 Bでは消失しており、 ミュージカ ルノイズを軽減できることが分かる。
以上のように、 この実施の形態 6 によれば、 埋め戻し処理に用いる振 幅スペク トル S [ f ] に対し、 高域になるに従って重みを大き くする聴 覚重み付けを行う ことによ り、 高域になるに従って埋め戻しスペク トル 成分の振幅を大き く し、 すなわち埋め戻し量を大きくするので、 ミュー ジカルノイズの発生要因の一つと考えられる、 周波数軸上に孤立する尖 鋭スペク トルの生成を抑制することができるという効果が得られる。
また、 この実施の形態 6によれば、 音声区間において、 高域の残留雑 音のスペク トル形状を入力信号の振幅スペク トル S [ f ] に類似させる ことができるので、 高域の残留雑音が音声信号に類似して自然性が向上 し、 聴感上好ましい雑音抑圧を行うことができるという効果が得られる
実施の形態 7 .
この発明の実施の形態 7による雑音抑圧装置の構成を示すブロ ック図 は、 実施の形態 6の第 1 1図に示す構成と同一である。 この実施の形態 では、 スペク トル減算部 8において、 例えば、 雑音区間では、 埋め戻し 処理に用いる入力信号の振幅スペク トル S [ f ] の代わりに、 雑音スぺ ク トル N [ f ] を用いる。
次に動作について説明する。
雑音区間では、 入力信号の振幅スペク トル S [ f ] は時間 · 周波数共 に大きく変動しているので、 スぺク トル減算部 8において、 上記 ( 2 0 ) 式における振幅スペク トル S [ f ] の代わりに、 平均的な雑音スぺク トル形状を保持している、 時間 ' 周波数方向に安定な雑音スべク トル N [ f ] を埋め戻しスペク トルと し、 ァ c [ f ] - m i n _ g a i n · N [ f ] を雑音引き去りスペク トル S s [ f ] とするこ とで、 残留雑音の 時間 · 周波数方向の安定化を図る。
以上のように、 この実施の形態 7によれば、 埋め戻し処理に用いる雑 音スペク トル N [ f ] に対し、 高域になるに従って重みを大き くする聴 覚重み付けを行う ことによ り、 高域になるに従って埋め戻しスペク トル 成分の振幅を大き く し、 すなわち埋め戻し量を大き くできるので、 ミ ュ ージカルノイズの発生要因の一つと考えられる、 周波数軸上に孤立する 尖鋭スぺク トルの生成を抑制することができるという効果が得られる。
また、 この実施の形態 7によれば、 雑音区間において、 高域の残留雑 音のスぺク トル形状を、 平均的雑音スぺク トル形状を保持しかつ時間 · 周波数方向に安定な雑音スペク トル N [ f ] に類似させることができる ので、 高域の残留雑音の時間 · 周波数方向の安定化を図ることができ、 聴感上好ましい雑音抑圧を行うことができるという効果が得られる。 実施の形態 8 .
第 1 5図はこの発明の実施の形態 8による雑音抑圧装置の構成を示す ブロ ック図である。 図において、 聴覚重みパタン変更部 2 2は、 実施の 形態 5の第 1 0図に示す聴覚重みパタン変更部 2 2の機能の他に、 求め た平均スペク トル A g [ f ] をスぺク トル減算部 8に出力する。 また、 聴覚重み修正部 Ίは実施の形態 6の第 1 1 図に示す聴覚修正部 7 と同じ であり、 スペク トル減算部 8は、 子音等の音声過渡部区間では、 埋め戻 し処理に用いる入力信号の振幅スペク トル S [ f ] の代わりに、 入力信 号の振幅スぺク トル S [ f ] と雑音スぺク トル N [ f ] の重み付き平均 から得られる平均スペク トル A g [ f ] を用いる。
次に動作について説明する。
聴覚重みパタン変更部 2 2は、 例えば、 上記の実施の形態 5で述べた のと同様な方法によ り、 時間 · 周波数変換部 2が出力する 1 2 8点の振 幅スぺク トル S [ f ] と、 雑音スぺク トル推定部 4が出力する雑音スぺ ク トル N [ f ] を入力し、 次の ( 2 2 ) 式から平均スペク トル A g [ f ] を求める。 ( 2 2 ) 式における C n gは例えば第 2図に示す雑音ら し さ信号 N o i s eの様態によって決まる所定の重み付け係数であり、 第 2図における雑音ら しさ信号 N o i s eが 0〜 2の範囲にあるならば、 現フレームは雑音区間である可能性が高いので C n g = 0 . 7 とし、 雑 音スペク トル N [ f ] に重みを置く。 一方、 雑音ら しさ信号 N o i s e が 3ないし 4であれば、 現フレームは音声区間の可能性が高いので C n g = 0 . 3 とし、 入力信号の振幅スペク トル S [ f ] に重みを置く。
A g [ f ] = ( 1 - C n g ) · S [ f ] + C n g · N [ f ]
( 2 2 ) スペク トル減算部 8は、 次の ( 2 3 ) 式によ り、 振幅スペク トル S [ f ] から、 雑音スペク トル N [ f ] に修正されたスペク トル減算量ひ c [ f ] を乗じたスぺク トルを減算し、 雑音引き去りスペク トル S s [ f ] を出力する。 雑音引き去りスペク トル S s [ f ] が負になる場合には 、 振幅抑圧量 m i n— g a i nを上記 ( 2 2 ) 式で得られた平均スぺク トル A g [ f ] に乗じ、 さらに、 高域になるほど重みが大きくなる第 3 の聴覚重みァ c [ f ] を乗じたものを雑音引き去りスペク トル S s [ f ] とする埋め戻し処理を行う。
S s [ f ] 二 S [ f ] — a c [ f ] · N [ f ]
; S [ f ] > a c [ f ] · N [ f ]
=ァ c [ f ] · m i n― g a i n · A g [ f ]
; 上記以外 ( 2 3 ) 以上のように、 この実施の形態 8によれば、 埋め戻し処理に用い ¾入 力信号の振幅スぺク トル S [ f ] と雑音スぺク トル N [ f ] の平均スぺ ク トル A g [ f ] に対し、 高域になるに従って重みを大き くする聴覚重 み付けを行う ことによ り、 高域になるに従って埋め戻しスぺク トル成分 の振幅を大き く し、 埋め戻し量を大き くできるので、 ミュージカルノィ ズの発生要因の一つと考えられる、 周波数軸上に孤立する尖鋭スぺク ト ルの生成を抑制することができるという効果が得られる。
また、 この実施の形態 8によれば、 音声区間としての判定が困難な、 多くは雑音区間として誤判定される子音等の過渡部区間においても、 高 域の残留雑音のスペク トルに、 入力信号の振幅スペク トル S [ f ] と雑 音スペク トル N [ f ] を加味することができるので残留雑音の自然性が 向上し、 聴感上好ましい雑音抑圧を行う ことができるという効果が得ら れる。
さらに、 この実施の形態 8 によれば、 雑音ら しさ信号 N o i s eに基 づいて、 入力信号の振幅スペク トル S [ f ] と雑音スペク トル N [ f ] の平均スぺク トル A g [ f ] を求めているので、 重み付け係数 C n gを 固定値にした場合と比較して、 よ り現フレームの有音 ' 雑音の様態に適 応した平均スペク トル A g [ f ] を得ることができ、 さらに聴感上好ま しい雑音抑圧を行うことができるという効果が得られる。 寒施の形態 9 .
第 1 6図はこの発明の実施の形態 9 による雑音抑圧装置の構成を示す ブロック図である。 ここでは、 聴覚重みパタン変更部 2 2は振幅スぺク トル S [ f ] の低域パワーと高域パワーの比 P Vを聴覚重み調整部 2 1 と聴覚重み修正部 7に出力し、 聴覚重み修正部 7は振幅スペク トル S [ f ] の低域パワーと高域パワーの比 P Vによ り第 3の聴覚重みァ c [ f ] を変更し、 修正されたスペク トル減算量ひ c [ f ] 、 修正されたスぺ ク トル振幅抑圧量 ? c [ f ] 、 変更された第 3の聴覚重みァ c [ f ] を 出力する。 この実施の形態では、 例えば、 音声区間では、 現フレームの 入力信号から得られる振幅スペク トル S [ f ] を低域と高域に分割して 、 それそれ低域パワー P o w_ 1及び高域パワー P 0 w— hを求め、 そ の低域パワーと高域パワーの比 P Vによ り、 第 3の聴覚重みァ c [ f ] を変更する。
次に動作について説明する。
聴覚重み修正部 7は、 聴覚重みパタン変更部 2 2が出力する振幅スぺ ク トル S [ f ] の高域/低域パワー比 P Vを用いて、 第 3の聴覚重みァ c [ f ] を次の ( 2 4 ) 式により変更する。 なお、 ( 2 4 ) 式における f cはナイキス ト周波数である。
ァ c [ f ] =ァ c [ f ] · ( 1. 0 · ( f c - f ) + v_i n v - f ) /f c
ただし、 P v— i n v = l . 0 / P v
ァ c [ f ] = 1. 0 ; ァ c [ f ] > 1 . 0 ( 2 4 ) 以上のように、 この実施の形態 9によれば、 音声区間では、 入力信号 の振幅スペク トル S [ f ] に音声信号成分が多く含まれており、 この振 幅スペク トル S [ f ] の低域パワーと高域パワーの比 P Vで、 第 3の聴 覚重みァ c [ f ] を変更することで、 埋め戻すスペク トル成分に対して 音声信号の周波数特性に近似するように聴覚重み付けを行い、 埋め戻し された周波数帯域の信号成分がよ り音声信号に類似させ、 音声区間の周 波数特性に適応したスぺク トル減算及びスぺク トル振幅抑圧を行うこ と によ り、 ミュージカルノイズの発生を抑止できると共に、 さらに聴感上 好ま しい雑音抑圧を行う ことができるという効果が得られる。 実施の形態 1 0 ·
第 1 7図はこの発明の実施の形態 1 0による雑音抑圧装置の構成を示 すブロ ック図である。 ここでは、 聴覚重みパタン変更部 2 2は雑音スぺ ク トル N [ f ] の低域パワーと高域パワーの比 P vを聴覚重み調整部 2 1 と聴覚重み修正部 7に出力し、 聴覚重み修正部 7は雑音スペク トル N [ f ] の低域パワーと高域パワーの比 P vによ り第 3の聴覚重みァ c [ f ] を変更し、 修正されたスペク トル減算量ひ c [ f ] 、 修正されたス ベク トル振幅抑圧量/? c [ f ] 、 変更された第 3の聴覚重みァ c [ f ] を出力する。 この実施の形態では、 例えば、 雑音区間では、 入力信号の 振幅スペク トル S [ f ] の代わりに、 雑音スペク トル N [ f ] を低域と 高域に分割して低域パヮー P o w— 1及び高域パヮー P o w— hを求め 、 その低域パワー P o w— 1 と高域パワー P o w— hの比 P vで第 3の 聴覚重みァ c [ f ] を変更する。
以上のように、 この実施の形態 1 0によれば、 雑音区間においては、 時間 ' 周波数方向に不安定な入力信号の振幅スペク トル S [ f ] の代わ り に、 平均的な雑音スペク トル形状を保持している、 時間 ·周波数方向 に安定な雑音スぺク トル N [ f ] の低域パワーと高域パワーの比 P Vで 、 第 3の聴覚重みァ c [ f ] を変更することで、 埋め戻すスペク トル成 分に対して、 雑音スペク トル N [ f ] の周波数特性に近似するように聴 覚重み付けを行い、 埋め戻しスペク トルを時間 · 周波数方向に安定化さ せ、 雑音区間の周波数特性に適応したスぺク トル減算及びスぺク トル振 幅抑圧を行うことによ り、 ミュージカルノイズの発生を抑止できると共 に、 さらに聴感上好ま しい雑音抑圧を行うことができるという効果が得 られる。 実施の形態 1 1 .
第 1 8図はこの発明の実施の形態 1 1 による雑音抑圧装置の構成を示 すブロ ック図である。 ここでは、 聴覚重みパ夕ン変更部 2 2は、 振幅ス ベク トル S [ f ] と雑音スペク トル N [ f ] の重み付き平均によ り得ら れる平均スぺク トル A g [ f ] の低域パワーと高域パワーの比 P vを聴 覚重み調整部 2 1 と聴覚重み修正部 7に出力し、 聴覚重み修正部 7は平 均スペク トル A g [ f ] の低域パワーと高域パワーの比 P vによ り第 3 の聴覚重みァ c [ f ] を変更し、 修正されたスペク トル減算量ひ c [ f 3 、 修正されたスペク トル振幅抑圧量 ? c [ f ] 、 変更された第 3の聴 覚重みァ c [ f ] を出力する。 この実施の形態では、 例えば、 子音等の 音声過渡部区間では、 入力信号の振幅スペク トル S [ f ] の代わりに、 上記の実施の形態 8で求められる、 振幅スペク トル S [ f ] と雑音スぺ ク トル N [ f ] の重み付き平均によ り得られる平均スペク トル A g [ f ] を低域と高域に分割して、 その低域パワー P o w— 1及び高域パワー P o w— hを用いて、 その低域パワーと高域パワーの比 P Vで第 3の聴 覚重みを変更する。
以上のように、 この実施の形態 1 1 によれば、 入力信号の振幅スぺク トル S [ f ] と雑音スペク トル N [ f ] の平均スペク トル A g [ f ] の 低域パワーと高域パワーの比 P Vで、 第 3の聴覚重みァ [ f ] を変更す ることで、 音声区間としての判定が困難な、 多くは雑音区間として誤判 定される子音等の音声過渡部区間において、 埋め戻すスぺク トルに対し 、 入力信号の振幅スぺク トル S [ f ] と雑音スぺク トル N [ f ] の周波 数特性に近似するように聴覚重み付けし、 埋め戻しスぺク トルを時間 · 周波数方向に安定化させ、 かつ音声信号の周波数特性に類似させて、 過 渡部区間の周波数特性に適応したスぺク トル減算及びスぺク トル振幅抑 圧を行う ことによ り、 ミュージカルノイズの発生を抑止できると共に、 さらに聴感上好ま しい雑音抑圧を行うことができるという効果が得られ る o
また、 この実施の形態 1 1 によれば、 雑音ら しさ信号 N o i s eに基 づいて、 入力信号の振幅スぺク トルと雑音スぺク トルの平均スぺク トル
A g [ f ] を求めているので、 重み付け係数 C n gを固定値にした場合 と比較して、 よ り現フ レームの有音 · 雑音の様態に適応した平均スぺク トルを得ることができ、 さらに聴感上好ましい雑音抑圧を行うことがで きるという効果が得られる。 産業上の利用可能性
以上のように、 この発明に係る雑音抑圧装置は、 種々の雑音環境下で 用いられる音声通信システムや音声認識システム等において、 目的信号 以外の雑音を抑圧するのに適している。

Claims

請 求 の 範 囲
1 . 入力信号を周波数分析して振幅スペク トルと位相スペク トルに変換 する時間 · 周波数変換部と、
上記入力信号から雑音ら しさを判定して雑音ら しさ信号を出力する と 共に、 この雑音ら しさ信号に対応した雑音スぺク トル更新速度係数を出 力する雑音ら しさ分析部と、
上記雑音スペク トル更新係数と、 上記振幅スペク トルと、 内部に保有 している過去の平均的雑音スぺク トルとから、 雑音スぺク トルを更新し て出力する雑音スぺク トル推定部と、
上記振幅スぺク トルと上記雑音スぺク トルから帯域毎の信号対雑音比 である帯域 S N比を算出する帯域 S N比計算部と、
上記雑音ら しさ信号と上記雑音スペク トルから、 現フ レームの雑音抑 圧レベルである振幅抑圧量を算出する振幅抑圧量算出部と、
上記振幅抑圧量と上記雑音ら しさ信号から、 第 1の聴覚重みであるス ぺク トル減算量と、 第 2の聴覚重みであるスぺク トル振幅抑圧量の周波 数特性配分パタンである聴覚重み配分パタンを決定する聴覚重みパタン 調整部と、
上記聴覚重み配分パ夕ンによ り与えられる第 1 の聴覚重みであるスぺ ク トル減算量と、 第 2の聴覚重みであるスペク トル振幅抑圧量を、 上記 帯域 S N比によ り修正して、 修正されたスぺク トル減算量と、 修正され たスぺク トル振幅抑圧量を出力する聴覚重み修正部と、
上記振幅スぺク トルから、 上記雑音スぺク トルに上記修正されたスぺ ク トル減算量を乗じたスペク トルを減算して、 雑音引去りスペク トルを 求めるスぺク トル減算部と、
上記雑音引き去りスぺク トルに上記修正されたスぺク トル振幅抑圧量 を乗じて雑音抑圧スぺク トルを求めるスぺク トル抑圧部と、 上記雑音抑圧スぺク トルを上記位相スぺク トルによ り時間信号に変換 して雑音抑圧信号を出力する周波数 · 時間変換部とを
備えたことを特徴とする雑音抑圧装置。
2 . 聴覚重み修正部は、 帯域 S N比が大きい低域では、 第 1の聴覚重み であるスペク トル減算量を大き くすると共に、 第 2の聴覚重みであるス ベク トル振幅抑圧量を小さ く し、 上記帯域 S N比が小さい高域では、 上 記第 1の聴覚重みであるスぺク トル減算量を小さ くすると共に、 上記第 2の聴覚重みであるスぺク トル振幅抑圧量を大き くする
ことを特徴とする請求の範囲第 1項記載の雑音抑圧装置。
3 . 聴覚重みパタン調整部は、 聴覚重み配分パタンを決定するための基 本となる、 雑音ら しさ信号に対応した複数の周波数特性パタンからなる 聴覚重み基本配分パ夕ンを備え、 この聴覚重み基本配分パ夕ンの中から 、 雑音ら しさ分析部が出力する雑音ら しさ信号に対応した周波数特性パ タンを選択して、 聴覚重み配分パタンを決定する
ことを特徴とする請求の範囲第 1項記載の雑音抑圧装置。
4 . 聴覚重みパタン調整部は、 使用環境に応じて任意に変更される複数 の周波数特性バタンからなる聴覚重み基本配分パ夕ンを備えた
ことを特徴とする請求の範囲第 3項記載の雑音抑圧装置。
5 . 振幅スぺク トルの低域パワーに対する高域パワーの比を求める聴覚 重みパ夕ン変更部を備え、
聴覚重みパタン調整部は、 上記振幅スぺク トルの低域パワーに対する 高域パワーの比によ り聴覚重み配分パタンを決定する
ことを特徴とする請求の範囲第 1項記載の雑音抑圧装置。
6 . 雑音スぺク トルの低域パワーに対する高域パワーの比を求める聴覚 重みパ夕ン変更部を備え、
聴覚重みパタン調整部は、 上記雑音スぺク トルの低域パワーに対する 高域パワーの比によ り聴覚重み配分パタンを決定する
ことを特徴とする請求の範囲第 1項記載の雑音抑圧装置。
7 . 振幅スぺク トルと雑音スぺク トルの重み付け平均によって得られる 平均スペク トルの低域パワーに対する高域パワーの比を求める聴覚重み パ夕ン変更部を備え、
聴覚重みパタン調整部は、 上記平均スペク トルの低域パワーに対する 高域パワーの比によ り聴覚重み配分パタンを決定する
こ とを特徴とする請求の範囲第 1項記載の雑音抑圧装置。
8 . スペク トル減算部は、 減算結果が負となる場合に、 振幅スペク トル 、 振幅抑圧量、 及び高域になるほど重みが大き く なる聴覚重み修正部が 出力する第 3の聴覚重みによ り、 雑音引去りスペク トルを求める
ことを特徴とする請求の範囲第 1項記載の雑音抑圧装置。
9 . スペク トル減算部は、 減算結果が負となる場合に、 雑音スペク トル 、 振幅抑圧量、 及び高域になるほど重みが大き くなる聴覚重み修正部が 出力する第 3の聴覚重みによ り、 雑音引去りスペク トルを求める
ことを特徴とする請求の範囲第 1項記載の雑音抑圧装置。
1 0 . スペク トル減算部は、 減算結果が負となる場合に、 聴覚重みパ夕 ン変更部が求めた平均スペク トル、 振幅抑圧量、 及び高域になるほど重 みが大きくなる聴覚重み修正部が出力する第 3の聴覚重みによ り、 雑音 引去りスぺク トルを求める
ことを特徴とする請求の範囲第 7項記載の雑音抑圧装置。
1 1 . 聴覚重み修正部は、 聴覚重みパタン変更部が求めた振幅スぺク ト ルの低域パワーに対する高域パワーの比によ り、 高域になるほど重みが 大きく なる第 3の聴覚重みを変更する
ことを特徴とする請求の範囲第 5項記載の雑音抑圧装置。
1 2 . 聴覚重み修正部は、 聴覚重みパタン変更部が求めた雑音スぺク ト ルの低域パワーに対する高域パワーの比によ り、 高域になるほど重みが 大きくなる第 3の聴覚重みを変更する
ことを特徴とする請求の範囲第 6項記載の雑音抑圧装置。
1 3 . 聴覚重み修正部は、 聴覚重みパタン変更部が求めた振幅スぺク ト ルと雑音スぺク トルの重み付け平均によって得られる平均スぺク トルの 低域パワーに対する高域パワーの比によ り、 高域になるほど重みが大き く なる第 3の聴覚重みを変更する
ことを特徴とする請求の範囲第 7項記載の雑音抑圧装置。
1 4 . 聴覚重みパタン変更部が、 雑音ら しさ信号に基づいて平均スぺク トルを求める
ことを特徴とする請求の範囲第 7項記載の雑音抑圧装置。
PCT/JP2002/005061 2001-06-06 2002-05-24 Attenuateur de bruit WO2002101729A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/343,744 US7302065B2 (en) 2001-06-06 2002-05-24 Noise suppressor
DE60234343T DE60234343D1 (de) 2001-06-06 2002-05-24 Rauschunterdrücker
EP02726490A EP1403855B1 (en) 2001-06-06 2002-05-24 Noise suppressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-171584 2001-06-06
JP2001171584A JP3457293B2 (ja) 2001-06-06 2001-06-06 雑音抑圧装置及び雑音抑圧方法

Publications (1)

Publication Number Publication Date
WO2002101729A1 true WO2002101729A1 (fr) 2002-12-19

Family

ID=19013334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005061 WO2002101729A1 (fr) 2001-06-06 2002-05-24 Attenuateur de bruit

Country Status (7)

Country Link
US (1) US7302065B2 (ja)
EP (1) EP1403855B1 (ja)
JP (1) JP3457293B2 (ja)
CN (1) CN1308914C (ja)
DE (1) DE60234343D1 (ja)
TW (1) TW594676B (ja)
WO (1) WO2002101729A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100358007C (zh) * 2005-06-07 2007-12-26 苏州海瑞电子科技有限公司 一种利用改进的谱相减法提高语音识别精度的方法

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341339A (ja) * 2003-05-16 2004-12-02 Mitsubishi Electric Corp 雑音抑圧装置
EP1833163B1 (en) * 2004-07-20 2019-12-18 Harman Becker Automotive Systems GmbH Audio enhancement system and method
JP4542399B2 (ja) * 2004-09-15 2010-09-15 日本放送協会 音声スペクトル推定装置および音声スペクトル推定プログラム
JP4381291B2 (ja) * 2004-12-08 2009-12-09 アルパイン株式会社 車載用オーディオ装置
US8170221B2 (en) * 2005-03-21 2012-05-01 Harman Becker Automotive Systems Gmbh Audio enhancement system and method
CN1841500B (zh) * 2005-03-30 2010-04-14 松下电器产业株式会社 一种基于自适应非线性谱减的抗噪方法和装置
DE602005015426D1 (de) 2005-05-04 2009-08-27 Harman Becker Automotive Sys System und Verfahren zur Intensivierung von Audiosignalen
JP4670483B2 (ja) * 2005-05-31 2011-04-13 日本電気株式会社 雑音抑圧の方法及び装置
JP4857652B2 (ja) * 2005-08-17 2012-01-18 ソニー株式会社 ノイズキャンセラ及びマイク装置
CN101091209B (zh) * 2005-09-02 2010-06-09 日本电气株式会社 抑制噪声的方法及装置
JP4863713B2 (ja) * 2005-12-29 2012-01-25 富士通株式会社 雑音抑制装置、雑音抑制方法、及びコンピュータプログラム
US8345890B2 (en) 2006-01-05 2013-01-01 Audience, Inc. System and method for utilizing inter-microphone level differences for speech enhancement
US8744844B2 (en) * 2007-07-06 2014-06-03 Audience, Inc. System and method for adaptive intelligent noise suppression
US8194880B2 (en) 2006-01-30 2012-06-05 Audience, Inc. System and method for utilizing omni-directional microphones for speech enhancement
US8204252B1 (en) 2006-10-10 2012-06-19 Audience, Inc. System and method for providing close microphone adaptive array processing
US9185487B2 (en) 2006-01-30 2015-11-10 Audience, Inc. System and method for providing noise suppression utilizing null processing noise subtraction
US8849231B1 (en) 2007-08-08 2014-09-30 Audience, Inc. System and method for adaptive power control
US8204253B1 (en) 2008-06-30 2012-06-19 Audience, Inc. Self calibration of audio device
US8934641B2 (en) 2006-05-25 2015-01-13 Audience, Inc. Systems and methods for reconstructing decomposed audio signals
US8949120B1 (en) 2006-05-25 2015-02-03 Audience, Inc. Adaptive noise cancelation
US8150065B2 (en) 2006-05-25 2012-04-03 Audience, Inc. System and method for processing an audio signal
JP4827661B2 (ja) * 2006-08-30 2011-11-30 富士通株式会社 信号処理方法及び装置
JP4836720B2 (ja) * 2006-09-07 2011-12-14 株式会社東芝 ノイズサプレス装置
JP4821548B2 (ja) * 2006-10-02 2011-11-24 コニカミノルタホールディングス株式会社 画像処理装置、画像処理装置の制御方法、および画像処理装置の制御プログラム
US8259926B1 (en) 2007-02-23 2012-09-04 Audience, Inc. System and method for 2-channel and 3-channel acoustic echo cancellation
JP2008216720A (ja) * 2007-03-06 2008-09-18 Nec Corp 信号処理の方法、装置、及びプログラム
JP2008219549A (ja) * 2007-03-06 2008-09-18 Nec Corp 信号処理の方法、装置、及びプログラム
KR101009854B1 (ko) * 2007-03-22 2011-01-19 고려대학교 산학협력단 음성 신호의 하모닉스를 이용한 잡음 추정 방법 및 장치
JP5034605B2 (ja) * 2007-03-29 2012-09-26 カシオ計算機株式会社 撮像装置、雑音除去方法及びプログラム
ATE528749T1 (de) * 2007-05-21 2011-10-15 Harman Becker Automotive Sys Verfahren zur verarbeitung eines akustischen eingangssignals zweck sendung eines ausgangssignals mit reduzierter lautstärke
JP2008309955A (ja) * 2007-06-13 2008-12-25 Toshiba Corp ノイズサプレス装置
US8189766B1 (en) 2007-07-26 2012-05-29 Audience, Inc. System and method for blind subband acoustic echo cancellation postfiltering
DE602007004217D1 (de) * 2007-08-31 2010-02-25 Harman Becker Automotive Sys Schnelle Schätzung der Spektraldichte der Rauschleistung zur Sprachsignalverbesserung
US8143620B1 (en) 2007-12-21 2012-03-27 Audience, Inc. System and method for adaptive classification of audio sources
US8180064B1 (en) 2007-12-21 2012-05-15 Audience, Inc. System and method for providing voice equalization
US8194882B2 (en) 2008-02-29 2012-06-05 Audience, Inc. System and method for providing single microphone noise suppression fallback
US8355511B2 (en) 2008-03-18 2013-01-15 Audience, Inc. System and method for envelope-based acoustic echo cancellation
KR101260938B1 (ko) * 2008-03-31 2013-05-06 (주)트란소노 노이지 음성 신호의 처리 방법과 이를 위한 장치 및 컴퓨터판독 가능한 기록매체
US8521530B1 (en) 2008-06-30 2013-08-27 Audience, Inc. System and method for enhancing a monaural audio signal
US8774423B1 (en) 2008-06-30 2014-07-08 Audience, Inc. System and method for controlling adaptivity of signal modification using a phantom coefficient
CN102150206B (zh) * 2008-10-24 2013-06-05 三菱电机株式会社 噪音抑制装置以及声音解码装置
JP5413575B2 (ja) * 2009-03-03 2014-02-12 日本電気株式会社 雑音抑圧の方法、装置、及びプログラム
EP2555191A1 (en) 2009-03-31 2013-02-06 Huawei Technologies Co., Ltd. Method and device for audio signal denoising
US9008329B1 (en) 2010-01-26 2015-04-14 Audience, Inc. Noise reduction using multi-feature cluster tracker
US9558755B1 (en) 2010-05-20 2017-01-31 Knowles Electronics, Llc Noise suppression assisted automatic speech recognition
US9837097B2 (en) * 2010-05-24 2017-12-05 Nec Corporation Single processing method, information processing apparatus and signal processing program
JP5903758B2 (ja) * 2010-09-08 2016-04-13 ソニー株式会社 信号処理装置および方法、プログラム、並びにデータ記録媒体
CA2805933C (en) * 2012-02-16 2018-03-20 Qnx Software Systems Limited System and method for noise estimation with music detection
US9640194B1 (en) 2012-10-04 2017-05-02 Knowles Electronics, Llc Noise suppression for speech processing based on machine-learning mask estimation
JP2014123011A (ja) * 2012-12-21 2014-07-03 Sony Corp 雑音検出装置および方法、並びに、プログラム
US9601125B2 (en) 2013-02-08 2017-03-21 Qualcomm Incorporated Systems and methods of performing noise modulation and gain adjustment
JP6216546B2 (ja) * 2013-06-18 2017-10-18 パイオニア株式会社 ノイズ低減装置、放送受信装置及びノイズ低減方法
US9536540B2 (en) 2013-07-19 2017-01-03 Knowles Electronics, Llc Speech signal separation and synthesis based on auditory scene analysis and speech modeling
US9620134B2 (en) 2013-10-10 2017-04-11 Qualcomm Incorporated Gain shape estimation for improved tracking of high-band temporal characteristics
US10083708B2 (en) 2013-10-11 2018-09-25 Qualcomm Incorporated Estimation of mixing factors to generate high-band excitation signal
US10614816B2 (en) 2013-10-11 2020-04-07 Qualcomm Incorporated Systems and methods of communicating redundant frame information
US9384746B2 (en) 2013-10-14 2016-07-05 Qualcomm Incorporated Systems and methods of energy-scaled signal processing
US10163447B2 (en) 2013-12-16 2018-12-25 Qualcomm Incorporated High-band signal modeling
DE112015003945T5 (de) 2014-08-28 2017-05-11 Knowles Electronics, Llc Mehrquellen-Rauschunterdrückung
CN106303878A (zh) * 2015-05-22 2017-01-04 成都鼎桥通信技术有限公司 一种啸叫检测和抑制方法
CN106782497B (zh) * 2016-11-30 2020-02-07 天津大学 一种基于便携式智能终端的智能语音降噪算法
JP6854967B1 (ja) * 2019-10-09 2021-04-07 三菱電機株式会社 雑音抑圧装置、雑音抑圧方法、及び雑音抑圧プログラム
CN111683319A (zh) * 2020-06-08 2020-09-18 北京爱德发科技有限公司 一种通话拾音降噪方法及耳机、存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0727769A2 (en) * 1995-02-17 1996-08-21 Sony Corporation Method of and apparatus for noise reduction
JPH1097288A (ja) * 1996-09-25 1998-04-14 Oki Electric Ind Co Ltd 背景雑音除去装置及び音声認識装置
US5757937A (en) * 1996-01-31 1998-05-26 Nippon Telegraph And Telephone Corporation Acoustic noise suppressor
JPH10161694A (ja) * 1996-11-28 1998-06-19 Nippon Telegr & Teleph Corp <Ntt> 帯域分割型雑音低減方法
JP2000047697A (ja) * 1998-07-30 2000-02-18 Nec Eng Ltd ノイズキャンセラ
EP1059628A2 (en) * 1999-06-09 2000-12-13 Mitsubishi Denki Kabushiki Kaisha Signal for noise redudction by spectral subtraction
EP1100077A2 (en) * 1999-11-10 2001-05-16 Mitsubishi Denki Kabushiki Kaisha Noise suppression apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US276292A (en) * 1883-04-24 Differential index for machine-tools
US367487A (en) * 1887-08-02 Postmarker and stamp-canceler
US587612A (en) * 1897-08-03 Apparatus foe producing thermal results
US599367A (en) * 1898-02-22 William e
JP2693893B2 (ja) * 1992-03-30 1997-12-24 松下電器産業株式会社 ステレオ音声符号化方法
US6671667B1 (en) * 2000-03-28 2003-12-30 Tellabs Operations, Inc. Speech presence measurement detection techniques

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0727769A2 (en) * 1995-02-17 1996-08-21 Sony Corporation Method of and apparatus for noise reduction
US5757937A (en) * 1996-01-31 1998-05-26 Nippon Telegraph And Telephone Corporation Acoustic noise suppressor
JPH1097288A (ja) * 1996-09-25 1998-04-14 Oki Electric Ind Co Ltd 背景雑音除去装置及び音声認識装置
JPH10161694A (ja) * 1996-11-28 1998-06-19 Nippon Telegr & Teleph Corp <Ntt> 帯域分割型雑音低減方法
JP2000047697A (ja) * 1998-07-30 2000-02-18 Nec Eng Ltd ノイズキャンセラ
EP1059628A2 (en) * 1999-06-09 2000-12-13 Mitsubishi Denki Kabushiki Kaisha Signal for noise redudction by spectral subtraction
EP1100077A2 (en) * 1999-11-10 2001-05-16 Mitsubishi Denki Kabushiki Kaisha Noise suppression apparatus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUSTAFSSON STEFAN, JAX PETER, VARY PETER: "A novel psychoacoustically motivated audio enhancement algorithm preserving background noise characteristics", PROCEEDINGS OF ICASSP-98, vol. 1, 12 May 1998 (1998-05-12), pages 397 - 400, XP000854599 *
ITOH KENZO AND MIZUSHIMA MASAHIDE: "Environmental noise reduction based on speech/non-speech identification for hearing aids", PROCEEDINGS OF ICASSP-97, vol. 1, 21 April 1997 (1997-04-21), pages 419 - 422, XP002956565 *
KUNI FURUTA, MASAYA TAKAHASHI: "Shuhasu omomizuke spectral substraction-ho ni yoru zatsuon yokuatsu", 2000 NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI, vol. 1, 28 March 2000 (2000-03-28), pages 183, XP002958937 *
See also references of EP1403855A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100358007C (zh) * 2005-06-07 2007-12-26 苏州海瑞电子科技有限公司 一种利用改进的谱相减法提高语音识别精度的方法

Also Published As

Publication number Publication date
US7302065B2 (en) 2007-11-27
EP1403855A4 (en) 2005-10-26
JP2002366200A (ja) 2002-12-20
TW594676B (en) 2004-06-21
US20030128851A1 (en) 2003-07-10
EP1403855A1 (en) 2004-03-31
EP1403855B1 (en) 2009-11-11
CN1463422A (zh) 2003-12-24
CN1308914C (zh) 2007-04-04
DE60234343D1 (de) 2009-12-24
JP3457293B2 (ja) 2003-10-14

Similar Documents

Publication Publication Date Title
WO2002101729A1 (fr) Attenuateur de bruit
JP3454190B2 (ja) 雑音抑圧装置および方法
JP3454206B2 (ja) 雑音抑圧装置及び雑音抑圧方法
JP3574123B2 (ja) 雑音抑圧装置
KR100860805B1 (ko) 음성 강화 시스템
EP2244254B1 (en) Ambient noise compensation system robust to high excitation noise
US7555075B2 (en) Adjustable noise suppression system
US8724828B2 (en) Noise suppression device
US8447044B2 (en) Adaptive LPC noise reduction system
JP5245714B2 (ja) 雑音抑圧装置及び雑音抑圧方法
JP2007011330A (ja) スピーチ信号の適合する強化のためのシステム
WO2010052749A1 (ja) 雑音抑圧装置
WO2008101324A1 (en) High-frequency bandwidth extension in the time domain
JP5526524B2 (ja) 雑音抑圧装置及び雑音抑圧方法
JP2004341339A (ja) 雑音抑圧装置
JP2000330597A (ja) 雑音抑圧装置
JP2001005486A (ja) 音声処理装置及び方法
JP2001159899A (ja) 騒音抑圧装置
EP1278185A2 (en) Method for improving noise reduction in speech transmission
CN103187068B (zh) 基于Kalman的先验信噪比估计方法、装置及噪声抑制方法
JP5131149B2 (ja) 雑音抑圧装置及び雑音抑圧方法
JP4098271B2 (ja) 雑音抑圧装置
KR100746680B1 (ko) 음성 강조 장치
CN118762707A (zh) 电平相关最大噪声抑制的系统和方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2002726490

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10343744

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 028020170

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2002726490

Country of ref document: EP