WO2002099031A1 - Device and method for cultivating micro algae - Google Patents

Device and method for cultivating micro algae Download PDF

Info

Publication number
WO2002099031A1
WO2002099031A1 PCT/JP2002/005263 JP0205263W WO02099031A1 WO 2002099031 A1 WO2002099031 A1 WO 2002099031A1 JP 0205263 W JP0205263 W JP 0205263W WO 02099031 A1 WO02099031 A1 WO 02099031A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
culture vessel
microalgae
gas
cylinder
Prior art date
Application number
PCT/JP2002/005263
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Sato
Yoshihiro Tsuchiya
Shinsuke Usui
Seishiro Hirabayashi
Yutaka Kondo
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to KR1020037015758A priority Critical patent/KR100609736B1/en
Priority to JP2003502141A priority patent/JP4079877B2/en
Publication of WO2002099031A1 publication Critical patent/WO2002099031A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/04Apparatus for enzymology or microbiology with gas introduction means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/06Tubular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers

Definitions

  • the present invention relates to a closed-type microalgae culturing apparatus for culturing microalgae, which is a photosynthetic organism, and a microalgae culturing method.
  • Microalgae which are photosynthetic organisms, are cultivated as feed for aquaculture because they absorb carbon dioxide and produce useful components such as vitamins, amino acids, pigments, proteins, polysaccharides, and fatty acids by photosynthesis. ing.
  • this kind of microalgae is also used as a means for treating carbon dioxide, which is one of the causes of global warming, and in recent years, a culturing apparatus for culturing the carbon dioxide in a large amount has been studied.
  • a culture device is for culturing microalgae in a culture solution, and the light necessary for photosynthesis mainly uses sunlight, and carbon dioxide is air or a mixed gas of carbon dioxide and air. Supply by blowing into.
  • the capacity per installation area of a closed type cultivation apparatus is smaller than that of an open type cultivation method, and high concentration cultivation is necessary to increase high productivity.
  • microalgae adhere to the inner wall of the culture vessel, or microalgae form a colony in the culture vessel and precipitate. There is a problem of doing. Furthermore, precipitation of microalgae in the culture vessel becomes a breeding ground for bacteria and may cause the culture solution to spoil.
  • the present invention has been made in view of the above problems, and its purpose is to achieve sufficient productivity by achieving sufficient agitation of the culture solution, and to provide microalgae on the culture vessel wall.
  • An object of the present invention is to provide a microalgae culturing apparatus and a microalgae culturing method that can maintain high cultivation efficiency over a long period of time by preventing adhesion and precipitation on the bottom of a culture vessel.
  • the invention according to claim 1 includes, while introducing a culture solution into a culture vessel having an opening at the top, blowing a gas containing carbon dioxide into the culture solution,
  • the culture vessel is formed into a double cylindrical shape composed of a horizontally placed inner cylinder and an outer cylinder, and at least the outer cylinder is formed.
  • the tube is made of a transparent material that transmits visible light, and a gas inlet for blowing a gas for forming a swirling flow of the culture solution in the culture container is opened at a lower portion in the culture container. I do.
  • the invention described in claim 2 is the invention according to claim 1, wherein the inner cylinder and the outer cylinder are formed of a cylinder, an elliptical cylinder, or a long cylinder, and the inner cylinder and the outer cylinder are Are arranged concentrically or eccentrically.
  • the invention according to claim 3 is characterized in that the culture solution is put into a culture vessel having an opening at the top, and the gas containing carbon dioxide is blown into the culture solution, and visible light is incident on the culture solution.
  • an inner cylinder and an outer cylinder that are concentrically arranged are formed into a double cylinder, and at least the outer cylinder is made of a transparent material that transmits visible light.
  • a gas inlet opening at the lower part of the configured culture vessel is arranged on one of the right and left sides of a vertical plane passing through the center axis of the inner cylinder and the outer cylinder, and the gas is injected from the gas inlet.
  • a swirling flow of the culture solution is formed in the culture vessel.
  • the invention according to claim 4 is characterized in that the culture solution is put into a culture vessel having an opening at the top, and a gas containing carbon dioxide is blown into the culture solution, and visible light is incident on the culture solution.
  • a gas containing carbon dioxide is blown into the culture solution, and visible light is incident on the culture solution.
  • an inner cylinder and an outer cylinder that are eccentrically placed sideways are formed into a double cylinder, and at least the outer cylinder is made of a transparent material that transmits visible light.
  • a gas inlet opening at the lower part of the configured culture vessel is arranged on one of the right and left sides of a vertical plane passing through the center axis of the inner cylinder, and the gas is blown from the gas inlet to thereby culture the culture vessel.
  • a swirling flow of the culture solution is formed therein.
  • the invention according to claim 5 is the invention according to claim 3 or 4, wherein the gas inlets are arranged on right and left sides of a vertical plane passing through a center axis of the inner cylinder of the culture vessel.
  • the rotating direction of the culture solution in the culture container is alternately switched.
  • the invention described in claim 6 is the invention described in claim 3 or 4.
  • a plurality of gas inlets are arranged in a longitudinal direction of the culture vessel, and a gas is sequentially blown from the gas inlet at one end of the culture vessel with a predetermined time difference, so that the culture solution is introduced into the culture vessel.
  • the invention according to claim 7 is the invention according to claim 3 or 4, wherein a plurality of gas inlets pass through a central axis of the inner cylinder along a longitudinal direction of the culture vessel.
  • the method is characterized in that swirling flows of a culture solution having different directions in the longitudinal direction are alternately formed in the culture container by alternately arranging the gas on the left and right sides of a vertical plane and injecting gas from each gas inlet.
  • the invention described in claim 8 is the invention according to any one of claims 3 to 7, wherein water is supplied to the outer surface of the outer cylinder of the culture vessel with temperature-regulated water, The temperature of the culture solution is controlled by flowing temperature-regulated water into a water passage formed outside or flowing temperature-regulated water into the inner cylinder. Therefore, according to the first aspect of the present invention, a gas inlet for injecting a gas for forming a swirling flow of the culture solution into the culture container is opened at a lower portion in the culture container. To form a swirling flow of the culture solution in the culture vessel, and sufficiently agitate the culture solution so that all microalgae can be received fairly, thereby achieving high productivity. Can be.
  • the multi-phase turbulence during the passage of bubbles in the culture solution and the turbulent boundary layer on the wall surface and the Gertruder vortex caused by the flow of the culture solution along the curved wall of the double cylindrical culture vessel cause A vortex is generated from the curved wall to the curved wall of the inner cylinder and from the curved wall of the inner cylinder to the curved wall of the outer cylinder, and the vortex causes sufficient agitation without stagnation of the culture solution. Eliminates adhesion to wall surfaces or formation of colonies and sedimentation, and light transmission is not blocked by microalgae. Microalgae are efficiently cultured to efficiently and uniformly receive light. Thus, high culture efficiency can be maintained over a long period of time.
  • the culture vessel is composed of an inner cylinder and an outer cylinder with high pressure resistance, The thickness of the apparatus can be reduced, and the weight and cost of the apparatus can be reduced.
  • the culture vessel can be easily configured by arranging the inner cylinder and the outer cylinder, each of which is a cylinder, an elliptic cylinder, or a long cylinder, concentrically or eccentrically.
  • a culture vessel formed of a concentrically arranged inner cylinder and an outer cylinder in a double cylindrical shape, wherein at least the outer cylinder is made of a transparent material that transmits visible light.
  • a vortex is easily generated from the curved wall of the outer cylinder to the curved wall of the inner cylinder and from the curved wall of the inner cylinder to the curved wall of the outer cylinder, and the vortex sufficiently agitates the culture solution without stagnation.
  • the microalgae do not adhere to the wall surface of the culture vessel or form a colony and settle out, so that light transmission is not blocked by the microalgae, and the microalgae receive light efficiently and uniformly.
  • microalgae can be cultured efficiently, and high culture efficiency can be maintained for a long period of time.
  • a culture vessel formed of an eccentrically placed inner cylinder and an outer cylinder in a double cylindrical shape, wherein at least the outer cylinder is made of a transparent material that transmits visible light.
  • a gas inlet opening at the lower part is arranged on one of the right and left sides of a vertical plane passing through the center axis of the inner cylinder, and the gas is blown from the gas inlet to thereby inject the culture solution into the culture vessel. Since the swirling flow is formed, sufficient agitation of the culture solution is easily performed, so that all microalgae can be received fairly, thereby achieving high productivity.
  • the multi-phase turbulence when bubbles pass through the culture solution and the turbulent boundary layer on the wall ⁇ ⁇ By easily generating geller vortices due to the flow of the culture solution along the curved wall of the culture vessel having a double cylindrical shape, from the curved wall of the outer cylinder to the curved wall of the inner cylinder and from the curved wall of the inner cylinder A vortex is easily generated toward the curved wall of the outer cylinder, and the vortex allows the culture solution to be sufficiently agitated without stagnation, so that microalgae can adhere to the wall surface of the culture vessel or form a colony and precipitate. The microalgae are not obstructed, and the light transmission is not blocked by the microalgae.
  • the microalgae can be efficiently cultured to efficiently and uniformly receive the microalgae, and the high culture efficiency can be maintained for a long period of time. it can.
  • the gas inlets are arranged on the left and right sides of a vertical plane passing through the center axis of the inner cylinder of the culture vessel, and the two gas inlets are alternately cut at predetermined time intervals. By alternately switching the swirling direction of the culture solution in the culture container by switching, the culture solution can be stirred more efficiently.
  • a swirling flow of the culture solution in the culture vessel that changes along the longitudinal direction of the culture vessel sufficient agitation of the culture solution can be realized and high productivity can be obtained.
  • the temperature of the culture solution can be controlled by spraying or passing the temperature-regulated water to the culture vessel. Therefore, it is possible to keep the temperature at an appropriate level all year round, and it is possible to effectively eliminate the adverse effect on algal growth caused by excessive temperature rise of the culture solution particularly in summer.
  • FIG. 1 is a perspective view of a microalgae culturing apparatus according to the present invention.
  • FIG. 2 is a cutaway front view (a cutaway view in the direction of arrow A in FIG. 1) of the microalgae culture device according to the present invention.
  • FIG. 3 is a side sectional view of the microalgae culturing apparatus according to the present invention.
  • FIG. 4 is a sectional view taken along line BB of FIG.
  • FIG. 5 is a cross-sectional view showing another embodiment of the culture vessel of the microalgae culture apparatus according to the present invention.
  • FIG. 6 is a cross-sectional view showing another embodiment of the culture vessel of the microalgae culture apparatus according to the present invention.
  • FIG. 7 is a cross-sectional view showing another embodiment of the culture vessel of the microalgae culture apparatus according to the present invention.
  • FIG. 8 is a cross-sectional view showing another embodiment of the culture vessel of the microalgae culture apparatus according to the present invention.
  • FIG. 9 is a perspective view showing an example of actual production equipment using the microalgae culturing apparatus according to the present invention.
  • 1 is a microalgae cultivation apparatus
  • 4, 4', 4" is an inner cylinder
  • 4a, 4a ' is a gas inlet
  • 5b, 5b" is the gas inlet
  • 6 and 7 are the side walls
  • 11 is the culture solution
  • 14 is the gas introduction pipe
  • 17 is the gas discharge opening
  • 18 is the cap
  • Reference numeral 19 denotes a temperature control water introduction pipe.
  • FIG. 1 is a perspective view of the microalga culturing apparatus according to the present invention
  • FIG. FIG. 3 is a cross-sectional view of the microalgae culturing apparatus
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG.
  • the microalga culturing apparatus 1 is configured by arranging a culture vessel 2 having a drum-like outer shape on a support base 3 horizontally.
  • the culture vessel 2 has a double cylindrical shape, and the left and right ends of an inner cylinder 4 and an outer cylinder 5 which are concentrically placed side by side by ring-shaped side walls 6 and 7. It is configured to be closed. That is, the side walls 6 and 7 are respectively incorporated into the left and right ends of the inner cylinder 4 and the outer cylinder 5 which are concentrically placed horizontally, and a plurality of holes (each in the illustrated example, 6) through a circular hole (not shown), pass a long port 8 horizontally (see Fig. 1), and tighten a nut 9 screwed to the end of each port 8 to form a drum-shaped culture vessel. 2 is assembled.
  • the long bonoleto 8 is arranged outside the outer cylinder 5, but may be arranged inside the inner cylinder 4.
  • a configuration may be adopted in which the side walls 6 and 7 are independently attached with short bolts and nuts screwed to the short bolts.
  • a spacer may be interposed between the inner cylinder 4 and the outer cylinder 5 to prevent bending. In this case, it is desirable to form a hole in the spacer.
  • an arc-shaped fixed bracket 10 (see FIGS. 1 and 2) along the outer shape of the side walls 6 and 7 is provided on the left and right upper portions of the frame-shaped support base 3.
  • the left and right side walls 6 and 7 are horizontally fixed and supported on the support base 3 by being fastened together with the fixing bracket 10 by the two ports 8 and the nuts 9 screwed to the two lower portions of the left and right side walls 6 and 7. ing.
  • a culture solution 11 is injected into a space surrounded by the inner cylinder 4 and the outer cylinder 5 and the side walls 6 and 7 formed in the culture vessel 2, and the liquid level is adjusted to the inner cylinder. It is kept higher than the top surface of 4.
  • the left and right ends of the inner cylinder 4 and the outer cylinder 5 are connected to both side walls 6 and 7 via seal members (not shown). Leakage to the outside is prevented.
  • the inner tube 4, the outer tube 5, and both side walls 6, 7 constituting the culture vessel 2 are made of a transparent material that transmits sunlight (visible light). And an acrylic resin is used.
  • the transparent material any material can be used as long as it has excellent light transmittance, high weather resistance and high UV resistance. Resin, glass, etc., such as recarbonate, polypropylene, polyethylene, and polyvinyl chloride can be selected.
  • the inner cylinder 4, the outer cylinder 5, and both side walls 6, 7 are formed of a transparent member.
  • at least the outer cylinder 5 is formed of a transparent member. It should be done.
  • a circular drain hole 5a (see FIG. 4) is formed at the lower portion in the center in the width direction on the side near one side wall 6 of the outer cylinder 5 of the culture vessel 2.
  • a drain pipe 12 is inserted into and connected to the drain hole 5a.
  • a drain valve 13 is provided in the middle of the drain pipe 12. By opening the drain valve 13, the culture solution 11 in the culture vessel 2 can be discharged to the outside.
  • a circular gas inlet 5b is drilled at three places in the longitudinal direction (either left or right of the surface Fv).
  • a gas introduction pipe 14 extends horizontally in the longitudinal direction below the culture vessel 2, and three branches branching from the gas introduction pipe 14 and extending toward the culture vessel 2.
  • the tubes 15 are respectively inserted into and bound to the respective gas blowing ports 5b formed in the lower part of the outer cylinder 5 of the culture vessel 2.
  • the gas introduction pipe 14 is connected to a gas supply source such as a compressor for supplying air or a mixed gas of carbon dioxide and air.
  • a cylindrical gas discharge tube 16 is attached to the top of the culture vessel 2 (outer cylinder), and an inside of the culture vessel 2 is formed with a gas discharge opening 17 that opens into the culture vessel 2.
  • An inverted dish-shaped cap 18 that opens downward is attached to the upper part of the gas discharge cylinder 16.
  • the gas discharge opening 17 is covered by a cap 18. It is possible to prevent contamination of the culture solution 11 in the culture vessel 2 with dust and dirt or floating microorganisms in the air. The same effect can be obtained by providing a filter in the gas discharge opening 17 instead of the cap 18.
  • a temperature-regulated water introduction pipe 19 is provided horizontally on the left and right sides of the gas discharge cylinder 16 at the upper part of the culture vessel 2 so as to be parallel to the length direction. Temperature control water The introduction pipe 19 is supported by a pair of left and right support brackets 20 attached to the upper portions of the left and right side walls 6 and 7. At the lower part of each temperature control water introduction pipe 19, a plurality of water spouts 19a are drilled as shown in Fig. 3, and the temperature control water introduction pipe 19 is not shown such as a cooling water pump. Connected to a temperature-regulated water supply. Next, the operation of the microalgae culturing apparatus 1 having the above configuration will be described.
  • the microalgae culturing apparatus 1 is installed outdoors, and the microalgae to be cultured and the culture solution 11 are put in the culture vessel 2, and a gas supply source (not shown) is driven to supply a gas containing carbon dioxide (air or carbon dioxide).
  • a gas supply source (not shown) is driven to supply a gas containing carbon dioxide (air or carbon dioxide).
  • gas flows through the gas introduction pipe 14, the gas is supplied from the three branch pipes 15 into the culture vessel 2.
  • the gas supplied into the culture vessel 2 forms bubbles as shown in Fig. 4 from the three bottoms of the culture vessel 2 and rises in the culture vessel 2, and in the process, the microalgae in the culture solution 11 are oxidized by the microalgae. Supply carbon. Due to the rise of the gas bubbles, a flow of the culture solution 11 swirling in the same direction (counterclockwise in FIG. 4) is formed in the culture vessel 2 as shown by an arrow in FIG. .
  • the microalgae in the culture vessel 2 undergo vitamins, amino acids, pigments, and proteins by photosynthesis. It manufactures useful components such as polysaccharides and fatty acids, and absorbs carbon dioxide, which contributes to global warming. Oxygen generated by the photosynthetic action is discharged to the atmosphere through a gas discharge opening 17 formed at the top of the culture vessel 2 and a gap between the gas discharge tube 16 and the cap 18.
  • an artificial light source can be installed in the center of the inner cylinder 4 of the culture vessel 2, and the microalgae can continuously perform photosynthesis throughout the day and night. Growth is promoted.
  • the temperature control water supply source is driven to flow the temperature control water (cooling water) to the temperature control water introduction pipe 19, and the temperature control water is drilled in the temperature control water introduction pipe 19 From the multiple sprinkler outlets 19a and flow along the outer surface of the outer cylinder 5 to cool the culture 11 in the culture vessel 2 and control the temperature of the culture 11 to control the temperature.
  • Temperature can be maintained year-round regardless of temperature, and especially in the summer, algae growth This can effectively eliminate the adverse effect on the vehicle.
  • the outer cylinder 5 The temperature of the culture solution 11 was controlled by spraying the temperature-adjusted water to the outer surface, but the temperature was adjusted to the water passage (not shown) formed outside the outer cylinder 11 Similarly, the same effect can be obtained by controlling the temperature of the culture solution 11 by passing the water or the temperature-regulated water into the inner cylinder 4.
  • the microalgae culturing apparatus 1 since the swirling flow of the culture solution 11 is formed in the culture vessel 2 by blowing gas, sufficient stirring of the culture solution 11 is performed. As a result, all microalgae can receive light fairly, and thereby high productivity can be achieved.
  • the multi-phase turbulence caused by the passage of bubbles in the culture solution 11 and the turbulent boundary layer on the wall surface and the Gellar vortex caused by the flow of the culture solution 11 along the curved wall of the double cylindrical culture vessel 2 As a result, a vortex is generated from the curved wall of the outer cylinder 5 to the curved wall of the inner cylinder 4 and from the curved wall of the inner cylinder 4 to the curved wall of the outer cylinder 5, and the vortex does not cause the culture solution 11 to stay. Since the algae are sufficiently stirred, the microalgae do not adhere to the wall of the culture vessel 2 or form a colony and settle, and light transmission is not blocked by the microalgae. Microalgae can be efficiently cultured to receive light uniformly, and high culture efficiency can be maintained over a long period of time.
  • microalgae adhere to the wall surface of the culture vessel 2 or form a colony and settle, it is not preferable because light reception of the microalgae is hindered, but according to the microalgae culture device 1, different types of mixed-phase turbulence and turbulence Since a flow boundary layer and a Gertler vortex (described in detail below) are generated, a vortex or turbulence is generated between the inner cylinder 4 and the outer cylinder 5, so that light transmission is not blocked by the microalgae.
  • Multiphase turbulence Turbulence caused by bubbles moving in the liquid phase
  • Turbulent boundary layer When a flow passes near a wall, the Reynolds number, a parameter representing the similar side of the flow, increases (the flow over the wall increases, or the distance that the flow contacts the wall increases).
  • the boundary layer which is a slow layer formed near the wall surface, becomes turbulent. This turbulent layer is called a turbulent boundary layer.
  • Görtler vortex When there is a flow parallel to a curved surface on a concave surface, a parameter expressing the similarity law of the flow When the Reynolds number, which is a meter, increases (the flow over the wall increases or the distance the flow contacts the wall increases), a rotating vortex perpendicular to the flow is generated. This rotating vortex is called Gel-Toller Evil. Further, since the culture vessel 2 is composed of the inner cylinder 4 and the outer cylinder 5 having high pressure resistance, the thickness of the culture vessel 1 can be suppressed to be small, and the weight and cost of the culture apparatus 1 can be reduced.
  • the culture vessel 2 can be easily configured by arranging the inner cylinder 4 and the outer cylinder 5 formed of cylinders concentrically.
  • the gas inlet 5b is located below the horizontal plane FH passing through the central axis of the inner cylinder 4 and the outer cylinder 5, and Since it is arranged on one of the left and right sides of the vertical plane Fv passing through the central axis, the flow of the culture solution 11 that rotates in one direction in the culture vessel 2 can be easily formed, and the multi-phase turbulent flow and turbulent boundary layer The generation of Gertler vortices is easy. If the gas inlet 5b is formed on the opposite side of the vertical plane as shown in FIG. 5, the flow of the culture solution 11 rotating in the opposite direction (the clockwise direction in FIG. 5) to the present embodiment is prevented. Can be formed.
  • gas inlets are formed on the left and right sides of a vertical plane passing through the center axis of the inner and outer cylinders, and the two inlets are alternately switched at predetermined time intervals.
  • the swirling direction can be switched alternately, and the culture solution can be stirred more efficiently.
  • the swirling direction of the culture solution 11 may be partially or transiently changed in the longitudinal direction of the culture vessel 2.
  • a plurality of gas inlets 5b are arranged in the longitudinal direction of the culture vessel 2, and gas is sequentially blown from the gas inlet 5b at one end of the culture vessel 2 with a predetermined time difference into the culture vessel 2.
  • a swirling flow that changes along the longitudinal direction of the culture vessel 2 of the culture solution 11 may be formed.
  • a plurality of gas inlets 5b are alternately arranged along the longitudinal direction of the culture vessel 2 on the left and right sides of a vertical plane passing through the center axis of the inner cylinder, and gas is blown from each gas inlet 5b.
  • a swirling flow of the culture solution 11 whose direction is alternately different in the longitudinal direction may be formed therein.
  • the culture vessel 2 is configured by concentrically arranging the inner cylinder 4 and the outer cylinder 5 formed of cylinders.
  • the culture vessel 2 may be configured by eccentrically disposing the As shown in the figure, if the air inlet 4a is arranged below the horizontal plane FH passing through the center axis of the inner cylinder 4 and at one of the right and left sides of the vertical plane Fv passing through the center axis as shown in the drawing, A flow of the culture solution 11 swirling in the same direction (counterclockwise in the illustrated example) can be easily formed, and a multiphase turbulent flow, a turbulent boundary layer, and a Gertler vortex can be easily generated.
  • a culture vessel 2 ' is constructed by concentrically arranging an inner cylinder 4' and an outer cylinder 5 'made of an elliptical cylinder as shown in FIG. 7, or an inner cylinder made of a long cylinder as shown in FIG. 4 "and the outer cylinder 5" may be arranged concentrically to form the culture vessel 2 ".
  • the gas inlets 4a 'and 5b" are connected to the inner cylinder 4' and 4 ".
  • a flow of the culture solution 11 that rotates in the counterclockwise direction can be formed.
  • the eccentric arrangement of the inner cylinder and the outer cylinder made of an elliptical cylinder or a long cylinder is not shown.
  • the culture vessel may be formed, and in these cases, the gas blowing port may be below the horizontal plane passing through the center axis of the cylinder and passing through the same center axis. It is possible to form a flow of the culture liquid to pivot in the same direction within the culture vessel by placing one left or right face.
  • FIG. 9 an example of an actual production facility using the microalgae culturing apparatus 1 according to the present embodiment is shown in FIG. 9, but in the actual production facility, a plurality of microalgae culturing apparatuses 1 are arranged in a row as shown in the figure. Are connected over several rows. In this case, in each row, one gas introduction pipe 14 and two temperature control water introduction pipes 19 are shared for each culture apparatus 1. Next, the results of a culture experiment performed using the microalgae culture apparatus according to the present invention will be described.
  • a culture solution is put into a culture vessel having an opening at the top, and visible light is emitted while blowing gas containing carbon dioxide into the culture solution.
  • the culture vessel is formed into a double cylindrical shape comprising a horizontally placed inner cylinder and an outer cylinder, and at least the outer cylinder is made of visible light.
  • a swirling flow of the culture solution is formed in the culture vessel by blowing the gas, thereby achieving sufficient agitation of the culture solution to obtain high productivity.
  • a culture solution is put into a culture container having an opening at a top portion, and while a gas containing carbon dioxide is blown into the culture solution, visible light is incident on the culture solution so that the inside of the culture container is formed.
  • a culture vessel formed of a concentrically arranged inner cylinder and an outer cylinder into a double cylinder and at least an outer cylinder made of a transparent material that transmits visible light
  • the gas inlet opening at the lower part of the cylinder is placed on one of the left and right sides of the vertical plane passing through the center axis of the inner cylinder and the outer cylinder, and the gas is blown from the gas inlet, or eccentrically placed horizontally

Abstract

A device (1) and a method for cultivating micro algae capable of providing a high productivity by realizing the sufficient stirring of culture solution and maintaining a high culture efficiency over a long period by preventing the micro algae from adhering to the wall surface of a culture container and from precipitating onto the bottom surface of the culture container, wherein, in the micro algae cultivating device (1) for cultivating micro algae in the culture container (2) by filling the culture solution (11) in the culture container (2) having a gas discharge opening part (17) at a top part and letting visible light beam into the culture solution (11) while blowing the gas containing carbon dioxide therein, the culture container (2) is formed in a double tubular shape comprising horizontal inner and outer tubes (4) and (5), at least the outer tube (5) is formed with a transparent material allowing visible light beam to transmit therethrough, and a gas inlet (5b) is open to the inside bottom part of the culture container (2), whereby the swirl flow of the culture solution (11) can be formed in the culture container (2) by blowing the gas from the gas inlet (5b) into the culture container.

Description

明 細 書 微細藻類培養装置、 及び、 微細藻類培養方法 <技術分野 >  Description Microalgae culture device and microalgae culture method <Technical field>
本発明は、 光合成生物である微細藻類を培養するためのクローズド型の微細藻 類培養装置、 及び、 微細藻類培養方法に関する。  The present invention relates to a closed-type microalgae culturing apparatus for culturing microalgae, which is a photosynthetic organism, and a microalgae culturing method.
<背景技術 > <Background technology>
光合成生物である微細藻類は、 二酸化炭素を吸収して光合成作用によってビタ ミン類、 アミノ酸、 色素類、 タンパク質、 多糖類、 脂肪酸等の有用成分を製造す るため、 養殖の飼料用等として培養されている。 又、 この種の微細藻類は、 地球 温暖化の原因の 1つとされる二酸化炭素を処理する手段としても利用され、近年、 これを大量に培養する培養装置が研究されている。  Microalgae, which are photosynthetic organisms, are cultivated as feed for aquaculture because they absorb carbon dioxide and produce useful components such as vitamins, amino acids, pigments, proteins, polysaccharides, and fatty acids by photosynthesis. ing. In addition, this kind of microalgae is also used as a means for treating carbon dioxide, which is one of the causes of global warming, and in recent years, a culturing apparatus for culturing the carbon dioxide in a large amount has been studied.
ところで、 培養装置は、 培養液中で微細藻類を培養するものであって、 光合成 に必要な光は主に太陽光線を利用し、 二酸化炭素は空気又は二酸化炭素と空気と の混合気体を培養液に吹き込むことによって供給する。  By the way, a culture device is for culturing microalgae in a culture solution, and the light necessary for photosynthesis mainly uses sunlight, and carbon dioxide is air or a mixed gas of carbon dioxide and air. Supply by blowing into.
而して、 培養装置において太陽エネルギーを効率良く利用して微細藻類を効率 良く培養するためには、  Therefore, in order to efficiently utilize microbial algae by using solar energy efficiently in a culture device,
( 1 ) 受光量が多いこと  (1) High light reception
( 2 ) 培養液を十分撹拌し、 微細藻類に効率良く光を当て、 栄養分と二酸化炭素 を均一に供給するとともに、 微細藻類から排出される酸素を除去すること (2) Thoroughly agitate the culture solution, illuminate the microalgae efficiently, supply nutrients and carbon dioxide uniformly, and remove oxygen discharged from the microalgae.
( 3 ) 培養液の滞留のない撹拌を実現し、 微細藻類の壁面付着による光透過の低 下やコロニーの形成による沈殿防止を図ること (3) Achieve agitation without stagnation of the culture solution to reduce light transmission due to the adhesion of microalgae on the wall and to prevent sedimentation by forming colonies.
が必要となる。 Is required.
従来、 微細藻類の培養法として、 培養池やレースウェイ型培養池等を利用した オープン型培養方式が実施されているが、 この方式では培養液の十分な撹拌がで きないために光が表層にしか到達せず、 培養濃度力 s低く、 埃ゃゴミ或は空気中の 浮遊微生物等の混入を防ぐことができないために高 P H、 高塩分濃度等の特殊な 条件下での培養が可能な微細藻類しか培養できず、 更には培養液の温度調整が困 難である等の問題がある。 Conventionally, as an cultivation method for microalgae, an open culture method using a culture pond or raceway type culture pond has been implemented, but this method does not allow sufficient agitation of the culture solution, so light is exposed to the surface. , The concentration of the culture is low, and the contamination of dust and dirt or airborne microorganisms cannot be prevented. Only microalgae that can be cultured under the conditions can be cultured, and furthermore, it is difficult to adjust the temperature of the culture solution.
そこで、 培養容器の中に培養液を入れ、 該培養液中に二酸化炭素を含むガスを 吹き込みつつ、 可視光線を入射させることによって培養容器内で微細藻類を培養 するクローズド型の培養装置が種々提案されている。  Therefore, various closed-type culturing devices for culturing microalgae in a culture vessel by introducing a culture solution into a culture vessel and injecting visible light while blowing gas containing carbon dioxide into the culture solution have been proposed. Have been.
ところで、 クローズド型の培養装置の設置面積当たりの容量はオープン型培養 方式のそれに比して小さく、 高い生産性を上げるには高濃度培養が必要となる。  By the way, the capacity per installation area of a closed type cultivation apparatus is smaller than that of an open type cultivation method, and high concentration cultivation is necessary to increase high productivity.
しかしながら、 クローズド型の培養装置においては、 光は受光壁面側から内部 に至るに連れて減衰するため、光に当たる藻類と当たらない藻類ができてしまい、 従って、 装置内での培養液の十分な撹拌がなければ全ての藻類に公平に受光させ ることができず、 高生産性を達成することができないという問題がある。  However, in a closed-type culture device, the light attenuates from the light-receiving wall side to the inside, resulting in some algae being exposed to light and others not being exposed to light.Therefore, sufficient agitation of the culture solution in the device is required. Without it, all algae cannot receive light fairly and high productivity cannot be achieved.
又、 クローズド型の培養装置においては、 培養容器の内壁に微細藻類が付着し たり、 培養容器内で微細藻類がコロニーを形成して沈殿するため、 光の透過が遮 られて培養効率が著しく低下するという問題がある。 更に、 培養容器内で微細藻 類が沈殿するとバクテリアの温床となり、 培養液が腐敗する原因にもなる。  In addition, in a closed-type culture device, microalgae adhere to the inner wall of the culture vessel, or microalgae form a colony in the culture vessel and precipitate. There is a problem of doing. Furthermore, precipitation of microalgae in the culture vessel becomes a breeding ground for bacteria and may cause the culture solution to spoil.
本発明は上記問題に鑑みてなされたもので、 その目的とする処は、 培養液の十 分な撹拌を実現して高い生産性を得ることができるとともに、 微細藻類の培養容 器壁面への付着や培養容器底面への沈殿を防いで長期に亘つて高い培養効率を維 持することができる微細藻類培養装置、 及び、 微細藻類培養方法を提供すること にある。  The present invention has been made in view of the above problems, and its purpose is to achieve sufficient productivity by achieving sufficient agitation of the culture solution, and to provide microalgae on the culture vessel wall. An object of the present invention is to provide a microalgae culturing apparatus and a microalgae culturing method that can maintain high cultivation efficiency over a long period of time by preventing adhesion and precipitation on the bottom of a culture vessel.
<発明の開示 > <Disclosure of Invention>
上記目的を達成するため、 請求の範囲第 1項に記載の発明は、 頂部に開口部を 有する培養容器の中に培養液を入れ、 該培養液中に二酸化炭素を含むガスを吹き 込みつつ、 可視光線を入射させることによって前記培養容器内で微細藻類を培養 する微細藻類培養装置において、 前記培養容器を横置きされた内筒と外筒から成 る二重円筒状に成形するとともに、 少なくとも外筒を可視光線を透過する透明材 料で構成し、 前記培養容器内に前記培養液の旋回流を形成するためのガスを吹き 込むガス吹込口を培養容器内下部に開口せしめたことを特徴とする。 請求の範囲第 2項に記載の発明は、 請求の範囲第 1項に記載の発明において、 前記内筒と外筒を円筒、 楕円筒又は長円筒で構成するとともに、 これらの内筒と 外筒を同心又は偏心させて配置したことを特徴とする。 請求の範囲第 3項に記載の発明は、 頂部に開口部を有する培養容器の中に培養 液を入れ、 該培養液中に二酸化炭素を含むガスを吹き込みつつ、 可視光線を入射 させることによって前記培養容器内で微細藻類を培養する微細藻類培養方法にお いて、 同心に横置された内筒と外筒とで二重円筒状に成形され、 少なくとも外筒 を可視光線を透過する透明材料で構成して成る培養容器の下部に開口するガス吹 込口を、 内筒と外筒の中心軸を通る鉛直面の左右何れか一方に配置し、 該ガス吹 込口から前記ガスを吹き込むことによつて培養容器内に前記培養液の旋回流を形 成することを特徴とする。 請求の範囲第 4項に記載の発明は、 頂部に開口部を有する培養容器の中に培養 液を入れ、 該培養液中に二酸化炭素を含むガスを吹き込みつつ、 可視光線を入射 させることによって前記培養容器内で微細藻類を培養する微細藻類培養方法にお いて、 偏心して横置きされた内筒と外筒とで二重円筒状に成形され、 少なくとも 外筒を可視光線を透過する透明材料で構成して成る培養容器の下部に開口するガ ス吹込口を、 内筒の中心軸を通る鉛直面の左右何れか一方に配置し、 該ガス吹込 口から前記ガスを吹き込むことによつて培養容器内に前記培養液の旋回流を形成 することを特徴とする。 請求の範囲第 5項に記載の発明は、 請求の範囲第 3項又は第 4項に記載の発明 において、 前記培養容器の内筒の中心軸を通る鉛直面の左右に前記ガス吹込口を 配置し、 両ガス吹込口を所定時間毎に交互に切り替えることによつて培養容器内 の培養液の旋回方向を交互に切り替えることを特徴とする。 請求の範囲第 6項に記載の発明は、 請求の範囲第 3項又は第 4項に記載の発明 において、 前記培養容器の長手方向に複数のガス吹込口を配置し、 培養容器の一 端側のガス吹込口からガスを所定の時間差をもつて順次吹き込むことによって培 養容器内に培養液の前記培養容器の長手方向に沿って変化する旋回流を形成する ことを特徴とする。 請求の範囲第 7項に記載の発明は、 請求の範囲第 3項又は第 4項に記載の発明 において、 前記培養容器の長手方向に沿つて複数のガス吹込口を内筒の中心軸を 通る鉛直面の左右に交互に配置し、 各ガス吹込口からガスを吹き込むことによつ て培養容器内に方向が長手方向に交互に異なる培養液の旋回流を形成することを 特徴とする。 請求の範囲第 8項に記載の発明は、 請求の範囲第 3項〜第 7項の何れかに記载 の発明において、 前記培養容器の外筒外面への温調水の散水、 外筒の外側に形成 された水通路への温調水の通水又は内筒内への温調水の通水によって前記培養液 の温度をコントロールすることを特徴とする。 従って、 請求の範囲第 1項に記載の発明によれば、 前記培養容器内に前記培養 液の旋回流を形成するためのガスを吹き込むガス吹込口を培養容器内下部に開口 せしめるようしたため、 ガスの吹き込みによって培養容器内に培養液の旋回流を 形成して、 培養液の十分な撹拌がなされて全ての微細藻類が公平に受光すること ができ、 これによつて高生産性を達成することができる。 又、 培養溶液内での気 泡通過時の混相乱流と壁面における乱流境界層及び二重円筒状を成す培養容器の 曲面壁に沿つて培養液が流れることによるゲルトラー渦によって、 外筒の曲面壁 から内筒の曲面壁及ぴ内筒の曲面壁から外筒の曲面壁に向かう渦が発生し、 この 渦によって培養液が滞留することなく十分撹拌されるため、 微細藻類が培養容器 の壁面に付着したりコロニーを形成して沈殿することがなくなり、 微細藻類によ つて光の透過が遮られることがなく、 微細藻類は効率良く且つ均一に受光するた めに微細藻類を効率良く培養することができ、 長期に亘つて高い培養効率を維持 することができる。更に、培養容器を耐圧強度の高い内筒と外筒で構成したため、 その板厚を小さく抑えて装置の軽量化及びコストダウンを図ることができる。 請求の範囲第 2項に記載の発明によれば、 円筒、 楕円筒又は長円筒から成る内 筒と外筒を同心又は偏心させて配置することによつて培養容器を容易に構成する ことができる。 請求の範囲第 3項によれば、 同心に横置された内筒と外筒とで二重円筒状に成 形され、 少なくとも外筒を可視光線を透過する透明材料で構成して成る培養容器 の下部に開口するガス吹込口を、 内筒と外筒の中心軸を通る鉛直面の左右何れか 一方に配置し、 また、 該ガス吹込口から前記ガスを吹き込むことによって培養容 器内に前記培養液の旋回流を形成するため、 培養液の十分な撹拌が容易になされ て全ての微細藻類が公平に受光することができ、 これによつて高生産性を達成す ることができる。 又、 培養溶液内での気泡通過時の混相乱流と壁面における乱流 境界層及び二重円筒状を成す培養容器の曲面壁に沿って培養液が流れることによ るゲルトラー渦を容易に発生させることによって、 外筒の曲面壁から内筒の曲面 壁及び内筒の曲面壁から外筒の曲面壁に向かう渦を容易に発生させ、 この渦によ つて培養液が滞留することなく十分撹拌されるため、 微細藻類が培養容器の壁面 に付着したりコロニーを形成して沈殿することがなくなり、 微細藻類によって光 の透過が遮られることがなく、 微細藻類は効率良く且つ均一に受光するために微 細藻類を効率良く培養することができ、 長期に亘つて高い培養効率を維持するこ とができる。 請求の範囲第 4項によれば、 偏心して横置きされた内筒と外筒とで二重円筒状 に成形され、 少なくとも外筒を可視光線を透過する透明材料で構成して成る培養 容器の下部に開口するガス吹込口を、 内筒の中心軸を通る鉛直面の左右何れか一 方に配置し、 該ガス吹込口から前記ガスを吹き込むことによつて培養容器内に前 記培養液の旋回流を形成するため、 培養液の十分な撹拌が容易になされて全ての 微細藻類が公平に受光することができ、 これによつて高生産性を達成することが できる。 又、 培養溶液内での気泡通過時の混相乱流と壁面における乱流境界層及 ぴ二重円筒状を成す培養容器の曲面壁に沿って培養液が流れることによるゲルト ラー渦を容易に発生させることによって、 外筒の曲面壁から内筒の曲面壁及び内 筒の曲面壁から外筒の曲面壁に向かう渦を容易に発生させ、 この渦によって培養 液が滞留することなく十分撹拌されるため、 微細藻類が培養容器の壁面に付着し たりコロニーを形成して沈殿することがなくなり、 微細藻類によって光の透過が 遮られることがなく、 微細藻類は効率良く且つ均一に受光するために微細藻類を 効率良く培養することができ、 長期に亘つて高い培養効率を維持することができ る。 請求の範囲第 5項に記載の発明によれば、 前記培養容器の内筒の中心軸を通る 鉛直面の左右に前記ガス吹込口を配置し、 両ガス吹込口を所定時間毎に交互に切 り替えることによつて培養容器内の培養液の旋回方向を交互に切り替えることに よって、 培養液を更に効率良く撹拌することができる。 請求の範囲第 6項に記載の発明、 すなわち、 前記培養容器の長手方向に複数の ガス吹込口を配置し、 培養容器の一端側のガス吹込口からガスを所定の時間差を もつて順次吹き込むことによつて培養容器内に培養液の前記培養容器の長手方向 に沿って変化する旋回流を形成することによつても、 培養液の十分な撹拌を実現 して高い生産性を得ることができるとともに、 微細藻類の培養容器壁面への付着 や培養容器底面への沈殿を防いで長期に亘つて高い培養効率を維持することがで さる。 請求の範囲第 7項に記載の発明、 すなわち、 前記培養容器の長手方向に沿って 複数のガス吹込口を内筒の中心軸を通る鉛直面の左右に交互に配置し、 各ガス吹 込口からガスを吹き込むことによって培養容器内に方向が長手方向に交互に異な る培養液の旋回流を形成することによっても、 培養液の十分な撹拌を実現して高 い生産性を得ることができるとともに、 微細藻類の培養容器壁面への付着や培養 容器底面への沈殿を防いで長期に亘つて高い培養効率を維持することができる。 請求の範囲第 8項に記載の発明によれば、 培養容器への温調水の散水又は通水 によつて培養液の温度をコント口ールすることができるため、 培養液を季節によ らず一年中適温に保つことができ、 特に夏期における培養液の過昇温による藻類 成長への悪影響を効果的に解消することができる。 In order to achieve the above object, the invention according to claim 1 includes, while introducing a culture solution into a culture vessel having an opening at the top, blowing a gas containing carbon dioxide into the culture solution, In a microalgae culturing apparatus for culturing microalgae in the culture vessel by irradiating visible light, the culture vessel is formed into a double cylindrical shape composed of a horizontally placed inner cylinder and an outer cylinder, and at least the outer cylinder is formed. The tube is made of a transparent material that transmits visible light, and a gas inlet for blowing a gas for forming a swirling flow of the culture solution in the culture container is opened at a lower portion in the culture container. I do. The invention described in claim 2 is the invention according to claim 1, wherein the inner cylinder and the outer cylinder are formed of a cylinder, an elliptical cylinder, or a long cylinder, and the inner cylinder and the outer cylinder are Are arranged concentrically or eccentrically. The invention according to claim 3 is characterized in that the culture solution is put into a culture vessel having an opening at the top, and the gas containing carbon dioxide is blown into the culture solution, and visible light is incident on the culture solution. In the microalgae culturing method of culturing microalgae in a culture vessel, an inner cylinder and an outer cylinder that are concentrically arranged are formed into a double cylinder, and at least the outer cylinder is made of a transparent material that transmits visible light. A gas inlet opening at the lower part of the configured culture vessel is arranged on one of the right and left sides of a vertical plane passing through the center axis of the inner cylinder and the outer cylinder, and the gas is injected from the gas inlet. Thus, a swirling flow of the culture solution is formed in the culture vessel. The invention according to claim 4 is characterized in that the culture solution is put into a culture vessel having an opening at the top, and a gas containing carbon dioxide is blown into the culture solution, and visible light is incident on the culture solution. In the microalgae culturing method of culturing microalgae in a culture vessel, an inner cylinder and an outer cylinder that are eccentrically placed sideways are formed into a double cylinder, and at least the outer cylinder is made of a transparent material that transmits visible light. A gas inlet opening at the lower part of the configured culture vessel is arranged on one of the right and left sides of a vertical plane passing through the center axis of the inner cylinder, and the gas is blown from the gas inlet to thereby culture the culture vessel. A swirling flow of the culture solution is formed therein. The invention according to claim 5 is the invention according to claim 3 or 4, wherein the gas inlets are arranged on right and left sides of a vertical plane passing through a center axis of the inner cylinder of the culture vessel. In addition, by alternately switching the two gas inlets at predetermined time intervals, the rotating direction of the culture solution in the culture container is alternately switched. The invention described in claim 6 is the invention described in claim 3 or 4. In the method, a plurality of gas inlets are arranged in a longitudinal direction of the culture vessel, and a gas is sequentially blown from the gas inlet at one end of the culture vessel with a predetermined time difference, so that the culture solution is introduced into the culture vessel. It is characterized by forming a swirling flow that changes along the longitudinal direction of the culture vessel. The invention according to claim 7 is the invention according to claim 3 or 4, wherein a plurality of gas inlets pass through a central axis of the inner cylinder along a longitudinal direction of the culture vessel. The method is characterized in that swirling flows of a culture solution having different directions in the longitudinal direction are alternately formed in the culture container by alternately arranging the gas on the left and right sides of a vertical plane and injecting gas from each gas inlet. The invention described in claim 8 is the invention according to any one of claims 3 to 7, wherein water is supplied to the outer surface of the outer cylinder of the culture vessel with temperature-regulated water, The temperature of the culture solution is controlled by flowing temperature-regulated water into a water passage formed outside or flowing temperature-regulated water into the inner cylinder. Therefore, according to the first aspect of the present invention, a gas inlet for injecting a gas for forming a swirling flow of the culture solution into the culture container is opened at a lower portion in the culture container. To form a swirling flow of the culture solution in the culture vessel, and sufficiently agitate the culture solution so that all microalgae can be received fairly, thereby achieving high productivity. Can be. In addition, the multi-phase turbulence during the passage of bubbles in the culture solution and the turbulent boundary layer on the wall surface and the Gertruder vortex caused by the flow of the culture solution along the curved wall of the double cylindrical culture vessel cause A vortex is generated from the curved wall to the curved wall of the inner cylinder and from the curved wall of the inner cylinder to the curved wall of the outer cylinder, and the vortex causes sufficient agitation without stagnation of the culture solution. Eliminates adhesion to wall surfaces or formation of colonies and sedimentation, and light transmission is not blocked by microalgae. Microalgae are efficiently cultured to efficiently and uniformly receive light. Thus, high culture efficiency can be maintained over a long period of time. Furthermore, because the culture vessel is composed of an inner cylinder and an outer cylinder with high pressure resistance, The thickness of the apparatus can be reduced, and the weight and cost of the apparatus can be reduced. According to the invention set forth in claim 2, the culture vessel can be easily configured by arranging the inner cylinder and the outer cylinder, each of which is a cylinder, an elliptic cylinder, or a long cylinder, concentrically or eccentrically. . According to claim 3, a culture vessel formed of a concentrically arranged inner cylinder and an outer cylinder in a double cylindrical shape, wherein at least the outer cylinder is made of a transparent material that transmits visible light. A gas inlet opening at the bottom of the inner cylinder and the right or left of a vertical plane passing through the center axis of the inner cylinder and the outer cylinder, and blowing the gas from the gas inlet into the culture vessel. Since the swirling flow of the culture solution is formed, sufficient agitation of the culture solution is facilitated, and all microalgae can be received fairly, whereby high productivity can be achieved. In addition, multi-phase turbulence when bubbles flow through the culture solution and turbulence on the wall surface easily generate Gertruder vortices due to the flow of the culture solution along the boundary layer and the curved wall of the double cylindrical culture vessel. In this way, a vortex is easily generated from the curved wall of the outer cylinder to the curved wall of the inner cylinder and from the curved wall of the inner cylinder to the curved wall of the outer cylinder, and the vortex sufficiently agitates the culture solution without stagnation. As a result, the microalgae do not adhere to the wall surface of the culture vessel or form a colony and settle out, so that light transmission is not blocked by the microalgae, and the microalgae receive light efficiently and uniformly. Thus, microalgae can be cultured efficiently, and high culture efficiency can be maintained for a long period of time. According to claim 4, a culture vessel formed of an eccentrically placed inner cylinder and an outer cylinder in a double cylindrical shape, wherein at least the outer cylinder is made of a transparent material that transmits visible light. A gas inlet opening at the lower part is arranged on one of the right and left sides of a vertical plane passing through the center axis of the inner cylinder, and the gas is blown from the gas inlet to thereby inject the culture solution into the culture vessel. Since the swirling flow is formed, sufficient agitation of the culture solution is easily performed, so that all microalgae can be received fairly, thereby achieving high productivity. In addition, the multi-phase turbulence when bubbles pass through the culture solution and the turbulent boundary layer on the wall ゲ ル By easily generating geller vortices due to the flow of the culture solution along the curved wall of the culture vessel having a double cylindrical shape, from the curved wall of the outer cylinder to the curved wall of the inner cylinder and from the curved wall of the inner cylinder A vortex is easily generated toward the curved wall of the outer cylinder, and the vortex allows the culture solution to be sufficiently agitated without stagnation, so that microalgae can adhere to the wall surface of the culture vessel or form a colony and precipitate. The microalgae are not obstructed, and the light transmission is not blocked by the microalgae. The microalgae can be efficiently cultured to efficiently and uniformly receive the microalgae, and the high culture efficiency can be maintained for a long period of time. it can. According to the invention set forth in claim 5, the gas inlets are arranged on the left and right sides of a vertical plane passing through the center axis of the inner cylinder of the culture vessel, and the two gas inlets are alternately cut at predetermined time intervals. By alternately switching the swirling direction of the culture solution in the culture container by switching, the culture solution can be stirred more efficiently. The invention according to claim 6, wherein a plurality of gas inlets are arranged in a longitudinal direction of the culture vessel, and gas is sequentially blown from the gas inlet at one end of the culture vessel with a predetermined time difference. As a result, by forming a swirling flow of the culture solution in the culture vessel that changes along the longitudinal direction of the culture vessel, sufficient agitation of the culture solution can be realized and high productivity can be obtained. At the same time, it is possible to maintain high culture efficiency over a long period of time by preventing the microalgae from adhering to the wall surface of the culture vessel and sedimentation to the bottom surface of the culture vessel. The invention according to claim 7, that is, a plurality of gas inlets are arranged alternately on the left and right sides of a vertical plane passing through a center axis of the inner cylinder along a longitudinal direction of the culture vessel, and each gas inlet is provided. By forming a swirling flow of the culture solution in which the direction is alternately changed in the longitudinal direction by injecting gas from the culture solution, sufficient agitation of the culture solution can be realized and high productivity can be obtained. At the same time, the microalgae can be prevented from adhering to the wall surface of the culture vessel and settling on the bottom surface of the culture vessel, and can maintain high culture efficiency over a long period of time. According to the invention set forth in claim 8, the temperature of the culture solution can be controlled by spraying or passing the temperature-regulated water to the culture vessel. Therefore, it is possible to keep the temperature at an appropriate level all year round, and it is possible to effectively eliminate the adverse effect on algal growth caused by excessive temperature rise of the culture solution particularly in summer.
<図面の簡単な説明 > <Brief description of drawings>
図 1は、 本発明に係る微細藻類培養装置の斜視図である。  FIG. 1 is a perspective view of a microalgae culturing apparatus according to the present invention.
図 2は、 本発明に係る微細藻類培養装置の破断正面図 (図 1の矢視 A方向の破 断面図) である。  FIG. 2 is a cutaway front view (a cutaway view in the direction of arrow A in FIG. 1) of the microalgae culture device according to the present invention.
図 3は、 本発明に係る微細藻類培養装置の側断面図である。  FIG. 3 is a side sectional view of the microalgae culturing apparatus according to the present invention.
図 4は、 図 3の B— B線断面図である。  FIG. 4 is a sectional view taken along line BB of FIG.
図 5は、 本発明に係る微細藻類培養装置の培養容器の別形態を示す横断面図で める。  FIG. 5 is a cross-sectional view showing another embodiment of the culture vessel of the microalgae culture apparatus according to the present invention.
図 6は、 本発明に係る微細藻類培養装置の培養容器の別形態を示す横断面図で ある。  FIG. 6 is a cross-sectional view showing another embodiment of the culture vessel of the microalgae culture apparatus according to the present invention.
図 7は、 本発明に係る微細藻類培養装置の培養容器の別形態を示す横断面図で ある。  FIG. 7 is a cross-sectional view showing another embodiment of the culture vessel of the microalgae culture apparatus according to the present invention.
図 8は、 本発明に係る微細藻類培養装置の培養容器の別形態を示す横断面図で ある。  FIG. 8 is a cross-sectional view showing another embodiment of the culture vessel of the microalgae culture apparatus according to the present invention.
図 9は、 本発明に係る微細藻類培養装置を用いた実際の生産設備例を示す斜視 図である。  FIG. 9 is a perspective view showing an example of actual production equipment using the microalgae culturing apparatus according to the present invention.
なお、 図中の符号、 1は微細藻類培養装置、 2, 2 ' , 2 " は培養容器、 4, 4 ' , 4 " は内筒、 4 a , 4 a ' はガス吹込口、 5 , 5 , 5 " は外筒、 5 b , 5 b " はガス吹込口、 6 , 7は側壁、 1 1は培養液、 1 4はガス導入パイプ、 1 7 はガス排出用開口部、 1 8はキャップ、 1 9は温調水導入パイプである。  In addition, the code | symbol in a figure, 1 is a microalgae cultivation apparatus, 2, 2 ', 2 "is a culture container, 4, 4', 4" is an inner cylinder, 4a, 4a 'is a gas inlet, 5, 5 , 5 "is the outer cylinder, 5b, 5b" is the gas inlet, 6 and 7 are the side walls, 11 is the culture solution, 14 is the gas introduction pipe, 17 is the gas discharge opening, and 18 is the cap Reference numeral 19 denotes a temperature control water introduction pipe.
<発明を実施するための最良の形態 > <Best mode for carrying out the invention>
以下に本発明の実施の形態を添付図面に基づいて説明する。  Embodiments of the present invention will be described below with reference to the accompanying drawings.
図 1は本発明に係る微細藻類培養装置の斜視図、 図 2は同微細藻類培養装置の 破断正面図 (図 1の矢視 A方向の破断面図) 、 図 3は同微細藻類培養装置の側断 面図、 図 4は図 3の B— B線断面図である。 FIG. 1 is a perspective view of the microalga culturing apparatus according to the present invention, and FIG. FIG. 3 is a cross-sectional view of the microalgae culturing apparatus, and FIG. 4 is a cross-sectional view taken along the line BB of FIG.
本発明に係る微細藻類培養装置 1は、 外形がドラム状を成す培養容器 2を支持 台 3上に横置きに設置して構成されている。  The microalga culturing apparatus 1 according to the present invention is configured by arranging a culture vessel 2 having a drum-like outer shape on a support base 3 horizontally.
上記培養容器 2は、 図 2〜図 3に示すように、 二重円筒状を成して同心的に横 置きされた内筒 4と外筒 5の左右両端をリング状の側壁 6, 7によって閉塞して 構成されている。 即ち、 同心的に横置きされた内筒 4と外筒 5の左右両端部に側 壁 6 , 7がそれぞれ組み込まれ、 両側壁 6, 7の外周縁に穿設された複数 (図示 例では各 6つ) の円孔 (不図示) に長尺のポルト 8を水平に通し (図 1参照) 、 各ポルト 8の端部に螺合するナツト 9を締め付けることによって外形がドラム状 を成す培養容器 2が組み立てられる。 尚、 本実施の形態では、 長尺のボノレト 8を 外筒 5の外側に配置したが、これを内筒 4の内側に配しても良い。又、各側壁 6 , 7をそれぞれ短いボルトとこれに螺合するナツトで各々独立に取り付ける構成を 採用しても良い。 更に、 内筒 4と外筒 5の撓みを防ぐために両者間にスぺーサを 介設しても良く、 この場合、 スぺーサには孔を形成しておくことが望ましい。 他方、 枠体状を成す前記支持台 3の左右上部には、 側壁 6, 7の外形形状に沿 つた円弧状の固定ブラケット 1 0 (図 1及び図 2参照) が設けられており、 培養 容器 2は、 その左右の側壁 6 , 7下部の 2箇所が前記 2本のポルト 8とこれに螺 合するナツト 9によって固定ブラケット 1 0に共締めされることによって支持台 3に水平に固定支持されている。  As shown in FIGS. 2 and 3, the culture vessel 2 has a double cylindrical shape, and the left and right ends of an inner cylinder 4 and an outer cylinder 5 which are concentrically placed side by side by ring-shaped side walls 6 and 7. It is configured to be closed. That is, the side walls 6 and 7 are respectively incorporated into the left and right ends of the inner cylinder 4 and the outer cylinder 5 which are concentrically placed horizontally, and a plurality of holes (each in the illustrated example, 6) through a circular hole (not shown), pass a long port 8 horizontally (see Fig. 1), and tighten a nut 9 screwed to the end of each port 8 to form a drum-shaped culture vessel. 2 is assembled. In this embodiment, the long bonoleto 8 is arranged outside the outer cylinder 5, but may be arranged inside the inner cylinder 4. Also, a configuration may be adopted in which the side walls 6 and 7 are independently attached with short bolts and nuts screwed to the short bolts. Further, a spacer may be interposed between the inner cylinder 4 and the outer cylinder 5 to prevent bending. In this case, it is desirable to form a hole in the spacer. On the other hand, an arc-shaped fixed bracket 10 (see FIGS. 1 and 2) along the outer shape of the side walls 6 and 7 is provided on the left and right upper portions of the frame-shaped support base 3. The left and right side walls 6 and 7 are horizontally fixed and supported on the support base 3 by being fastened together with the fixing bracket 10 by the two ports 8 and the nuts 9 screwed to the two lower portions of the left and right side walls 6 and 7. ing.
而して、 上記培養容器 2内に形成された内筒 4と外筒 5及び両側壁 6, 7によ つて囲まれた空間内には培養液 1 1が注入され、 その液位は内筒 4の上端面より も高くなるように保たれている。 尚、 内筒 4と外筒 5の左右両端は不図示のシー ル部材を介して両側壁 6, 7に結合されており、 シール部材のシール作用によつ て培養液 1 1の培養容器 2外への漏出が防がれている。  Thus, a culture solution 11 is injected into a space surrounded by the inner cylinder 4 and the outer cylinder 5 and the side walls 6 and 7 formed in the culture vessel 2, and the liquid level is adjusted to the inner cylinder. It is kept higher than the top surface of 4. The left and right ends of the inner cylinder 4 and the outer cylinder 5 are connected to both side walls 6 and 7 via seal members (not shown). Leakage to the outside is prevented.
ここで、 培養容器 2を構成する内筒 4と外筒 5及び両側壁 6, 7は太陽光 (可 視光線) を透過する透明材料で構成されており、 本実施の形態では、 透明材料と してアクリル樹脂を用いている。 尚、 透明材料としては、 光透過性に優れ、 耐候 性及ぴ耐紫外線の高い材料であれば任意のものを使用することができ、 例えばポ リカーポネート、 ポリプロピレン、 ポリエチレン、 ポリ塩化ビュル等の樹脂、 ガ ラス等を選定することができる。 又、 本実施の形態では、 内筒 4と外筒 5及び両 側壁 6, 7を透明部材で構成したが、 本発明の目的を達成するためには、 少なく とも外筒 5が透明部材で構成されていれば良い。 Here, the inner tube 4, the outer tube 5, and both side walls 6, 7 constituting the culture vessel 2 are made of a transparent material that transmits sunlight (visible light). And an acrylic resin is used. As the transparent material, any material can be used as long as it has excellent light transmittance, high weather resistance and high UV resistance. Resin, glass, etc., such as recarbonate, polypropylene, polyethylene, and polyvinyl chloride can be selected. Further, in the present embodiment, the inner cylinder 4, the outer cylinder 5, and both side walls 6, 7 are formed of a transparent member. However, in order to achieve the object of the present invention, at least the outer cylinder 5 is formed of a transparent member. It should be done.
又、 図 2〜図 4に示すように、 培養容器 2の外筒 5の一方の側壁 6に近い側の 幅方向中央下部には円孔状のドレン孔 5 a (図 4参照) が穿設されており、 この ドレン孔 5 aにはドレンパイプ 1 2が差し込まれて結着されている。 そして、 こ のドレンパイプ 1 2の途中にはドレンバルブ 1 3が設けられおり、 このドレンバ ルプ 1 3を開けることによつて培養容器 2内の培養液 1 1を外部に排出すること ができる。  In addition, as shown in FIGS. 2 to 4, a circular drain hole 5a (see FIG. 4) is formed at the lower portion in the center in the width direction on the side near one side wall 6 of the outer cylinder 5 of the culture vessel 2. A drain pipe 12 is inserted into and connected to the drain hole 5a. A drain valve 13 is provided in the middle of the drain pipe 12. By opening the drain valve 13, the culture solution 11 in the culture vessel 2 can be discharged to the outside.
更に、 培養容器 2の外筒 5の下部 (具体的には、 図 4に示すように、 内筒 4と 外筒 5の中心軸を通る水平面 F Hより下方で、 且つ、 同中心軸を通る鉛直面 F vの 左右何れか一方) の長さ方向 3箇所には円孔状のガス吹込口 5 b (図 3及び図 4 参照) が穿設されている。  Furthermore, the lower part of the outer cylinder 5 of the culture vessel 2 (specifically, as shown in FIG. 4, a vertical plane passing through the center axis of the inner cylinder 4 and the outer cylinder 5 below the horizontal plane FH and passing through the same center axis) A circular gas inlet 5b (see Figs. 3 and 4) is drilled at three places in the longitudinal direction (either left or right of the surface Fv).
そして、 培養容器 2の下方にはガス導入パイプ 1 4が長さ方向に水平に延設さ れており、 このガス導入パイプ 1 4から分岐して培養容器 2側に向かって延びる 3本の枝管 1 5は、 培養容器 2の外筒 5の下部に穿設された前記各ガス吹込口 5 bにそれぞれ差し込まれて結着されている。 尚、 図示しないが、 ガス導入パイプ 1 4は、 空気又は二酸化炭素と空気との混合気体を供給するコンプレツサ等のガ ス供給源に接続されている。  A gas introduction pipe 14 extends horizontally in the longitudinal direction below the culture vessel 2, and three branches branching from the gas introduction pipe 14 and extending toward the culture vessel 2. The tubes 15 are respectively inserted into and bound to the respective gas blowing ports 5b formed in the lower part of the outer cylinder 5 of the culture vessel 2. Although not shown, the gas introduction pipe 14 is connected to a gas supply source such as a compressor for supplying air or a mixed gas of carbon dioxide and air.
他方、 培養容器 2 (外筒) の頂部には、 円筒状のガス排出筒 1 6が取り付けら れており、 その内部は培養容器 2内に開口するガス排出用開口部 1 7が形成され ている。 そして、 ガス排出筒 1 6の上部には、 下向きに開口する逆皿状のキヤッ プ 1 8が被着されており、 ガス排出用開口部 1 7がキャップ 1 8によって覆われ ることによつて培養容器 2内の培養液 1 1への埃やゴミ或は空気中の浮遊微生物 等の混入を防ぐことができる。 尚、 キャップ 1 8に代えてガス排出用開口部 1 7 にフィルタを設けることによっても同様の効果が得られる。  On the other hand, a cylindrical gas discharge tube 16 is attached to the top of the culture vessel 2 (outer cylinder), and an inside of the culture vessel 2 is formed with a gas discharge opening 17 that opens into the culture vessel 2. I have. An inverted dish-shaped cap 18 that opens downward is attached to the upper part of the gas discharge cylinder 16. The gas discharge opening 17 is covered by a cap 18. It is possible to prevent contamination of the culture solution 11 in the culture vessel 2 with dust and dirt or floating microorganisms in the air. The same effect can be obtained by providing a filter in the gas discharge opening 17 instead of the cap 18.
又、 培養容器 2の上部の前記ガス排出筒 1 6を挟んでこれの左右には温調水導 入パイプ 1 9が長さ方向に平行を成して水平に延設されており、 これらの温調水 導入パイプ 1 9は左右両側壁 6 , 7の各上部に取り付けられた左右一対の支持プ ラケット 2 0に揷通支持されている。 そして、 各温調水導入パイプ 1 9の下部に は、 図 3に示すように複数の散水口 1 9 aが穿設されており、 温調水導入パイプ 1 9は冷却水ポンプ等の不図示の温調水供給源に接続されている。 次に、 以上の構成を有する微細藻類培養装置 1の作用について説明する。 A temperature-regulated water introduction pipe 19 is provided horizontally on the left and right sides of the gas discharge cylinder 16 at the upper part of the culture vessel 2 so as to be parallel to the length direction. Temperature control water The introduction pipe 19 is supported by a pair of left and right support brackets 20 attached to the upper portions of the left and right side walls 6 and 7. At the lower part of each temperature control water introduction pipe 19, a plurality of water spouts 19a are drilled as shown in Fig. 3, and the temperature control water introduction pipe 19 is not shown such as a cooling water pump. Connected to a temperature-regulated water supply. Next, the operation of the microalgae culturing apparatus 1 having the above configuration will be described.
当該微細藻類培養装置 1を屋外に設置するとともに、 培養容器 2に培養すべき 微細藻類と培養液 1 1を入れ、 不図示のガス供給源を駆動して二酸化炭素を含む ガス(空気又は二酸化炭素と空気との混合気体)をガス導入パイプ 1 4に流すと、 ガスは 3本の枝管 1 5から培養容器 2内に供給される。  The microalgae culturing apparatus 1 is installed outdoors, and the microalgae to be cultured and the culture solution 11 are put in the culture vessel 2, and a gas supply source (not shown) is driven to supply a gas containing carbon dioxide (air or carbon dioxide). When gas flows through the gas introduction pipe 14, the gas is supplied from the three branch pipes 15 into the culture vessel 2.
培養容器 2内に供給されたガスは、 培養容器 2の底部 3箇所から図 4に示すよ うに気泡となって培養容器 2内を上昇し、 その過程で培養液 1 1中の微細藻類に 二酸化炭素を供給する。 そして、 このガスの気泡の上昇によって、 培養容器 2内 には、 図 4に矢印にて示すように同一方向 (図 4において反時計方向) に旋回す る培養液 1 1の流れが形成される。  The gas supplied into the culture vessel 2 forms bubbles as shown in Fig. 4 from the three bottoms of the culture vessel 2 and rises in the culture vessel 2, and in the process, the microalgae in the culture solution 11 are oxidized by the microalgae. Supply carbon. Due to the rise of the gas bubbles, a flow of the culture solution 11 swirling in the same direction (counterclockwise in FIG. 4) is formed in the culture vessel 2 as shown by an arrow in FIG. .
又、 透明部材から成る外筒 5及び側壁 6, 7を透過して太陽光線が培養容器 2 内に入射するため、 培養容器 2内の微細藻類は光合成作用によってビタミン類、 アミノ酸、 色素類、 タンパク質、 多糖類、 脂肪酸等の有用成分を製造するととも に、 地球温暖化の一因となっている二酸化炭素を吸収処理する。 そして、 光合成 作用によって発生した酸素は、 培養容器 2の頂部に形成されたガス排出用開口部 1 7及びガス排出筒 1 6とキャップ 1 8の間の隙間を通って大気中に排出される。 尚、 本実施の形態においては、 培養容器 2の内筒 4内の中心部に人工光源を設置 することができ、昼夜に亘つて微細藻類に連続的に光合成を行わせることができ、 微細藻類の増殖が促進される。  In addition, since sunlight enters the culture vessel 2 through the outer cylinder 5 and the side walls 6 and 7 made of a transparent member, the microalgae in the culture vessel 2 undergo vitamins, amino acids, pigments, and proteins by photosynthesis. It manufactures useful components such as polysaccharides and fatty acids, and absorbs carbon dioxide, which contributes to global warming. Oxygen generated by the photosynthetic action is discharged to the atmosphere through a gas discharge opening 17 formed at the top of the culture vessel 2 and a gap between the gas discharge tube 16 and the cap 18. In the present embodiment, an artificial light source can be installed in the center of the inner cylinder 4 of the culture vessel 2, and the microalgae can continuously perform photosynthesis throughout the day and night. Growth is promoted.
そして、 必要に応じて、 温調水供給源を駆動して温調水 (冷却水) を温調水導 入パイプ 1 9に流せば、 温調水は温調水導入パイプ 1 9に穿設された複数の散水 口 1 9 aから散水されて外筒 5の外面に沿って流れ、 培養容器 2内の培養液 1 1 を冷却等してその温度をコントロールするため、 培養液 1 1を季節によらず一年 中適温に保つことができ、 特に夏期における培養液 1 1の過昇温による藻類成長 への悪影響を効果的に解消することができる。 尚、 本実施の形態では、 培養容器If necessary, the temperature control water supply source is driven to flow the temperature control water (cooling water) to the temperature control water introduction pipe 19, and the temperature control water is drilled in the temperature control water introduction pipe 19 From the multiple sprinkler outlets 19a and flow along the outer surface of the outer cylinder 5 to cool the culture 11 in the culture vessel 2 and control the temperature of the culture 11 to control the temperature. Temperature can be maintained year-round regardless of temperature, and especially in the summer, algae growth This can effectively eliminate the adverse effect on the vehicle. In this embodiment, the culture vessel
2の外筒 5外面への温調水の散水によって培養液 1 1の温度をコントロールする 構成を採用したが、 外筒 1 1の外側に形成された不図示の水通路への温調水の通 水又は内筒 4内への温調水の通水によっても同様に培養液 1 1の温度をコントロ ールして同様の効果を得ることができる。 2 The outer cylinder 5 The temperature of the culture solution 11 was controlled by spraying the temperature-adjusted water to the outer surface, but the temperature was adjusted to the water passage (not shown) formed outside the outer cylinder 11 Similarly, the same effect can be obtained by controlling the temperature of the culture solution 11 by passing the water or the temperature-regulated water into the inner cylinder 4.
以上において、 本実施の形態に係る微細藻類培養装置 1においては、 ガスの吹 き込みによって培養容器 2内に培養液 1 1の旋回流を形成するようにしたため、 培養液 1 1の十分な撹拌がなされて全ての微細藻類が公平に受光することができ、 これによつて高生産性を達成することができる。  As described above, in the microalgae culturing apparatus 1 according to the present embodiment, since the swirling flow of the culture solution 11 is formed in the culture vessel 2 by blowing gas, sufficient stirring of the culture solution 11 is performed. As a result, all microalgae can receive light fairly, and thereby high productivity can be achieved.
又、 培養溶液 1 1内での気泡通過時の混相乱流と壁面における乱流境界層及び 二重円筒状を成す培養容器 2の曲面壁に沿って培養液 1 1が流れることによるゲ ルトラー渦によって、 外筒 5の曲面壁から内筒 4の曲面壁及び内筒 4の曲面壁か ら外筒 5の曲面壁に向かう渦が発生し、 この渦によって培養液 1 1が滞留するこ となく十分撹拌されるため、 微細藻類が培養容器 2の壁面に付着したりコロニー を形成して沈殿することがなくなり、 微細藻類によつて光の透過が遮られること がなく、 微細藻類は効率良く且つ均一に受光するために微細藻類を効率良く培養 することができ、 長期に亘つて高い培養効率を維持することができる。  In addition, the multi-phase turbulence caused by the passage of bubbles in the culture solution 11 and the turbulent boundary layer on the wall surface and the Gellar vortex caused by the flow of the culture solution 11 along the curved wall of the double cylindrical culture vessel 2 As a result, a vortex is generated from the curved wall of the outer cylinder 5 to the curved wall of the inner cylinder 4 and from the curved wall of the inner cylinder 4 to the curved wall of the outer cylinder 5, and the vortex does not cause the culture solution 11 to stay. Since the algae are sufficiently stirred, the microalgae do not adhere to the wall of the culture vessel 2 or form a colony and settle, and light transmission is not blocked by the microalgae. Microalgae can be efficiently cultured to receive light uniformly, and high culture efficiency can be maintained over a long period of time.
微細藻類が培養容器 2の壁面に付着したりコロニーを形成して沈殿すると、 微 細藻類の受光が妨げられるので好ましくないが、 微細藻類培養装置 1によれば、 種類の異なる混相乱流と乱流境界層とゲルトラー渦 (以下に詳述) とが発生する ので、 内筒 4と外筒 5の間に渦や乱れが発生して、 微細藻類によって光の透過が 遮られることがない。 混相乱流:液相中を運動する気泡が引き起こす乱流  If the microalgae adhere to the wall surface of the culture vessel 2 or form a colony and settle, it is not preferable because light reception of the microalgae is hindered, but according to the microalgae culture device 1, different types of mixed-phase turbulence and turbulence Since a flow boundary layer and a Gertler vortex (described in detail below) are generated, a vortex or turbulence is generated between the inner cylinder 4 and the outer cylinder 5, so that light transmission is not blocked by the microalgae. Multiphase turbulence: Turbulence caused by bubbles moving in the liquid phase
乱流境界層:壁面付近を流れが通過するとき、 流れの相似側を表すパラメータで ある Reynolds数が高くなる (壁面上方の流れが速くなるか、 流れが壁面に接する 距離が長くなる) と、 壁面付近に形成される速度の遅い層である境界層が乱流化 する。 この乱流化された層を乱流境界層という。 Turbulent boundary layer: When a flow passes near a wall, the Reynolds number, a parameter representing the similar side of the flow, increases (the flow over the wall increases, or the distance that the flow contacts the wall increases). The boundary layer, which is a slow layer formed near the wall surface, becomes turbulent. This turbulent layer is called a turbulent boundary layer.
ゲルトラー渦:凹曲面を曲率に並行に流れがあるとき、 流れの相似則を表すパラ メータである Reynolds数が高くなる (壁面上方の流れが速くなるか、 流れが壁面 に接する距離が長くなる) と、 流れに垂直な回転渦を生じる。 この回転渦をゲル トラー禍と ヽう。 更に、 培養容器 2を耐圧強度の高い内筒 4と外筒 5で構成したため、 その板厚 を小さく抑えて培養装置 1の軽量化及びコス トダウンを図ることができる。 Görtler vortex: When there is a flow parallel to a curved surface on a concave surface, a parameter expressing the similarity law of the flow When the Reynolds number, which is a meter, increases (the flow over the wall increases or the distance the flow contacts the wall increases), a rotating vortex perpendicular to the flow is generated. This rotating vortex is called Gel-Toller Evil. Further, since the culture vessel 2 is composed of the inner cylinder 4 and the outer cylinder 5 having high pressure resistance, the thickness of the culture vessel 1 can be suppressed to be small, and the weight and cost of the culture apparatus 1 can be reduced.
又、 本実施の形態では、 円筒から成る内筒 4と外筒 5を同心状に配置すること によつて培養容器 2を容易に構成することができる。  Further, in the present embodiment, the culture vessel 2 can be easily configured by arranging the inner cylinder 4 and the outer cylinder 5 formed of cylinders concentrically.
そして、 内筒 4と外筒 5を同心状に配置して成る培養容器 2において、 ガスの 吹込み口 5 bを内筒 4と外筒 5の中心軸を通る水平面 F H より下方で、 且つ、 同 中心軸を通る鉛直面 F v の左右何れか一方に配置したため、 培養容器 2内に一方 向に旋回する培養液 1 1の流れを容易に形成できるとともに、 混相乱流、 乱流境 界層、 ゲルトラー渦の発生が容易である。 尚、 図 5に示すようにガス吹込口 5 b を鉛直面 の反対側に形成すれば、 本実施の形態とは逆方向 (図 5において時 計方向) に旋回する培養液 1 1の流れを形成することができる。 又、 図示しない が、 内外筒の中心軸を通る鉛直面の左右両側にガスの吹込口を形成し、 両吹込口 を所定時間毎に交互に切り替えるようにすれば、 培養容器内の培養液の旋回方向 を交互に切り替えることができ、 培養液を更に効率良く撹拌することができる。 更に、 培養容器 2の長手方向において部分的に培養液 1 1の旋回方向を定常的又 は過渡的に変えるようにしても良い。 培養容器 2の長手方向に複数のガス吹込口 5 bを配置し、 培養容器 2の一端側のガス吹込口 5 bからガスを所定の時間差を もつて順次吹き込むことによつて培養容器 2内に培養液 1 1の培養容器 2の長手 方向に沿って変化する旋回流を形成しても良い。 培養容器 2の長手方向に沿って 複数のガス吹込口 5 bを内筒の中心軸を通る鉛直面の左右に交互に配置し、 各ガ ス吹込口 5 bからガスを吹き込むことによって培養容器 2内に方向が長手方向に 交互に異なる培養液 1 1の旋回流を形成してもよい。  In the culture vessel 2 in which the inner cylinder 4 and the outer cylinder 5 are concentrically arranged, the gas inlet 5b is located below the horizontal plane FH passing through the central axis of the inner cylinder 4 and the outer cylinder 5, and Since it is arranged on one of the left and right sides of the vertical plane Fv passing through the central axis, the flow of the culture solution 11 that rotates in one direction in the culture vessel 2 can be easily formed, and the multi-phase turbulent flow and turbulent boundary layer The generation of Gertler vortices is easy. If the gas inlet 5b is formed on the opposite side of the vertical plane as shown in FIG. 5, the flow of the culture solution 11 rotating in the opposite direction (the clockwise direction in FIG. 5) to the present embodiment is prevented. Can be formed. Although not shown, gas inlets are formed on the left and right sides of a vertical plane passing through the center axis of the inner and outer cylinders, and the two inlets are alternately switched at predetermined time intervals. The swirling direction can be switched alternately, and the culture solution can be stirred more efficiently. Further, the swirling direction of the culture solution 11 may be partially or transiently changed in the longitudinal direction of the culture vessel 2. A plurality of gas inlets 5b are arranged in the longitudinal direction of the culture vessel 2, and gas is sequentially blown from the gas inlet 5b at one end of the culture vessel 2 with a predetermined time difference into the culture vessel 2. A swirling flow that changes along the longitudinal direction of the culture vessel 2 of the culture solution 11 may be formed. A plurality of gas inlets 5b are alternately arranged along the longitudinal direction of the culture vessel 2 on the left and right sides of a vertical plane passing through the center axis of the inner cylinder, and gas is blown from each gas inlet 5b. A swirling flow of the culture solution 11 whose direction is alternately different in the longitudinal direction may be formed therein.
ところで、 本実施の形態では、 円筒から成る内筒 4と外筒 5を同心状に配置し て培養容器 2を構成したが、 図 6に示すように、 円筒から成る内筒 4と外筒 5を 偏心させて配置することによって培養容器 2を構成しても良く、 この場合、 ガス の吹込口 4 aを図示のように内筒 4の中心軸を通る水平面 F Hより下方で、 且つ、 同中心軸を通る鉛直面 F v の左右何れか一方に配置すれば、 培養容器 2内で培養 液 1 1の同一方向 (図示例では、 反時計方向) に旋回する流れを容易に形成でき るとともに、 混相乱流、 乱流境界層、 ゲルトラー渦の発生が容易である。 By the way, in the present embodiment, the culture vessel 2 is configured by concentrically arranging the inner cylinder 4 and the outer cylinder 5 formed of cylinders. However, as shown in FIG. The culture vessel 2 may be configured by eccentrically disposing the As shown in the figure, if the air inlet 4a is arranged below the horizontal plane FH passing through the center axis of the inner cylinder 4 and at one of the right and left sides of the vertical plane Fv passing through the center axis as shown in the drawing, A flow of the culture solution 11 swirling in the same direction (counterclockwise in the illustrated example) can be easily formed, and a multiphase turbulent flow, a turbulent boundary layer, and a Gertler vortex can be easily generated.
又、 図 7に示すように楕円筒から成る内筒 4 ' と外筒 5 ' を同心状に配置して 培養容器 2 ' を構成し、 或は図 8に示すように長円筒から成る内筒 4 " と外筒 5 " を同心状に配置して培養容器 2 " を構成しても良く、 これらの場合はガスの吹 込口 4 a ' , 5 b " を内筒 4 ' , 4 " と外筒 5 ' , 5 " の中心軸を通る水平面 F H より下方で、 且つ、 同中心軸を通る鉛直面 F v の左右何れか一方に配置すること によって培養容器 2 ' , 2 " 内に同一方向 (図示例では、 反時計方向) に旋回す る培養液 1 1の流れを形成することができる。 尚、"図示しないが、 楕円筒又は長 円筒から成る内筒と外筒を偏心させて配置することによつて培養容器を構成して も良く、 これらの場合はガスの吹込ロを內筒の中心軸を通る水平面より下方で、 且つ、 同中心軸を通る鉛直面の左右何れか一方に配置することによって培養容器 内に同一方向に旋回する培養液の流れを形成することができる。  Also, a culture vessel 2 'is constructed by concentrically arranging an inner cylinder 4' and an outer cylinder 5 'made of an elliptical cylinder as shown in FIG. 7, or an inner cylinder made of a long cylinder as shown in FIG. 4 "and the outer cylinder 5" may be arranged concentrically to form the culture vessel 2 ". In these cases, the gas inlets 4a 'and 5b" are connected to the inner cylinder 4' and 4 ". By arranging it below the horizontal plane FH passing through the center axis of the outer cylinders 5 ', 5 "and on either the left or right of the vertical plane Fv passing through the center axis, the same direction can be set in the culture vessel 2', 2". (In the illustrated example, a flow of the culture solution 11 that rotates in the counterclockwise direction can be formed. In addition, "not shown, the eccentric arrangement of the inner cylinder and the outer cylinder made of an elliptical cylinder or a long cylinder is not shown.) In such a case, the culture vessel may be formed, and in these cases, the gas blowing port may be below the horizontal plane passing through the center axis of the cylinder and passing through the same center axis. It is possible to form a flow of the culture liquid to pivot in the same direction within the culture vessel by placing one left or right face.
ここで、 本実施の形態に係る微細藻類培養装置 1を用いた実際の生産設備例を 図 9に示すが、 実際の生産設備においては、 図示のように複数の微細藻類培養装 置 1を一列に連続して繋げたものが数列に亘つて配設される。 この場合、 各列に おいて各 1本のガス導入パイプ 1 4と各 2本の温調水導入パイプ 1 9が各培養装 置 1について共用される。 . 次に、 本発明に係る微細藻類培養装置を用いて行つた培養実験の結果について 説明する。  Here, an example of an actual production facility using the microalgae culturing apparatus 1 according to the present embodiment is shown in FIG. 9, but in the actual production facility, a plurality of microalgae culturing apparatuses 1 are arranged in a row as shown in the figure. Are connected over several rows. In this case, in each row, one gas introduction pipe 14 and two temperature control water introduction pipes 19 are shared for each culture apparatus 1. Next, the results of a culture experiment performed using the microalgae culture apparatus according to the present invention will be described.
微細藻類としてクロロコッカムリ トラーレ (Chlorococcum littorale) を用い て培養実験を 1 3日間に亘つて行った。 この場合の日照時間は 1 0時間/日、 南 中時光量子量 8 0 0 μ m o 1 Zm2 / s、 日中平均光量子量 3 4 0 μ m o 1 Zm2 Z s、 培養液量 7 0リツトルであり、 培養結果は平均増殖速度 0 . 1 5 g乾燥重 量/リットル 日であった。 又、 培養期間中に微細藻類の培養容器壁面への付着 は発生しなかった。 又、 別の培養実験において、 微細藻類としてスピルリナ .プラテンシス (Culture experiments were carried out over a period of 13 days using Chlorococcum littorale as microalgae. In this case, the sunshine duration was 10 hours / day, the southern medium photon quantity was 800 μm 1 Zm2 / s, the average daytime photon quantity was 34 0 μmo 1 Zm2 Zs, and the culture volume was 70 liters. The culture result was an average growth rate of 0.15 g dry weight / liter day. Also, no microalgae adhered to the culture vessel wall during the culture period. In another culture experiment, Spirulina platensis (microalgae)
Spirul ina platencis) を培養した結果、 従来の培養池方式では培養濃度 0 . 3〜 0 . 5 g /リットル、 一日あたりの生産性 0 . 1〜 0 · 2 g /リットルであるの に対して、本発明に係る微細藻類培養装置では培養濃度 1 o〜2 0 g / yットル、 一日あたりの生産性 2 . 8〜7 . 0 g /リットルという好結果が得られた。 ぐ産業上の利用可能性 > (Spirul ina platencis), the cultivation concentration was 0.3 to 0.5 g / l and the productivity per day was 0.1 to 0.2 g / l in the conventional culture pond method. In the microalgae culturing apparatus according to the present invention, good results were obtained with a culture concentration of 1 to 20 g / y liter and a productivity of 2.8 to 7.0 g / l per day. Industrial applicability>
以上の説明で明らかなように、 本発明によれば、 頂部に開口部を有する培養容 器の中に培養液を入れ、 該培養液中に二酸化炭素を含むガスを吹き込みつつ、 可 視光線を入射させることによって前記培養容器内で微細藻類を培養する微細藻類 培養装置において、 前記培養容器を横置きされた内筒と外筒から成る二重円筒状 に成形するとともに、 少なくとも外筒を可視光線を透過する透明材料で構成し、 前記ガスの吹き込みによつて前記培養容器内に前記培養液の旋回流を形成するよ うにしたため、 培養液の十分な撹拌を実現して高い生産性を得ることができると ともに、 微細藻類の培養容器壁面への付着や培養容器底面への沈殿を防いで長期 に亘つて高い培養効率を維持することができるという効果が得られる。  As is clear from the above description, according to the present invention, a culture solution is put into a culture vessel having an opening at the top, and visible light is emitted while blowing gas containing carbon dioxide into the culture solution. In the microalgae culturing apparatus for culturing microalgae in the culture vessel by being incident, the culture vessel is formed into a double cylindrical shape comprising a horizontally placed inner cylinder and an outer cylinder, and at least the outer cylinder is made of visible light. And a swirling flow of the culture solution is formed in the culture vessel by blowing the gas, thereby achieving sufficient agitation of the culture solution to obtain high productivity. In addition to this, it is possible to obtain an effect that high culture efficiency can be maintained for a long period of time by preventing microalgae from adhering to the wall surface of the culture vessel and sedimentation on the bottom face of the culture vessel.
また、 本発明によれば、 頂部に開口部を有する培養容器の中に培養液を入れ、 該培養液中に二酸化炭素を含むガスを吹き込みつつ、 可視光線を入射させること によって前記培養容器内で微細藻類を培養する微細藻類培養方法において、 同心 に横置された内筒と外筒とで二重円筒状に成形され、 少なくとも外筒を可視光線 を透過する透明材料で構成して成る培養容器の下部に開口するガス吹込口を、 内 筒と外筒の中心軸を通る鉛直面の左右何れか一方に配置し、 該ガス吹込口から前 記ガスを吹き込むことによって、 あるいは、 偏心して横置きされた内筒と外筒と で二重円筒状に成形され、 少なくとも外筒を可視光線を透過する透明材料で構成 して成る培養容器の下部に開口するガス吹込口を、 内筒の中心軸を通る鉛直面の 左右何れか一方に配置し、 該ガス吹込口から前記ガスを吹き込むことによって、 培養容器内に培養液の旋回流を形成するため、 培養液の十分な撹拌を容易に実現 して高い生産性を得ることができるとともに、 微細藻類の培養容器壁面への付着 や培養容器底面への沈殿を防いで長期に亘つて高い培養効率を維持することがで きるという効果が得られる。 Further, according to the present invention, a culture solution is put into a culture container having an opening at a top portion, and while a gas containing carbon dioxide is blown into the culture solution, visible light is incident on the culture solution so that the inside of the culture container is formed. In a microalgae culture method for culturing microalgae, a culture vessel formed of a concentrically arranged inner cylinder and an outer cylinder into a double cylinder and at least an outer cylinder made of a transparent material that transmits visible light The gas inlet opening at the lower part of the cylinder is placed on one of the left and right sides of the vertical plane passing through the center axis of the inner cylinder and the outer cylinder, and the gas is blown from the gas inlet, or eccentrically placed horizontally A gas inlet opening at the bottom of a culture vessel formed of a transparent material that transmits visible light at least in the outer cylinder, What is the left and right of the vertical plane passing through By arranging the culture medium in one side and injecting the gas from the gas inlet to form a swirling flow of the culture medium in the culture vessel, sufficient agitation of the culture medium is easily realized to obtain high productivity. And prevent microalgae from adhering to the wall of the culture vessel and sedimentation on the bottom of the culture vessel, thereby maintaining high culture efficiency over a long period of time. The effect that can be obtained is obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 頂部に開口部を有する培養容器の中に培養液を入れ、 該培養液中に二酸化 炭素を含むガスを吹き込みつつ、 可視光線を入射させることによって前記培養容 器内で微細藻類を培養する微細藻類培養装置において、 1. A culture solution is placed in a culture vessel having an opening at the top, and microalgae are cultured in the culture vessel by irradiating visible light while blowing a gas containing carbon dioxide into the culture solution. In microalgae culture equipment,
前記培養容器を横置きされた内筒と外筒から成る二重円筒状に成形するととも に、 少なくとも外筒を可視光線を透過する透明材料で構成し、 前記培養容器内に 前記培養液の旋回流を形成するためのガスを吹き込むガス吹込口を培養容器内下 部に開口せしめたことを特徴とする微細藻類培養装置。  The culture vessel is formed into a double cylinder composed of an inner cylinder and an outer cylinder which are placed horizontally, and at least the outer cylinder is made of a transparent material that transmits visible light, and the culture solution is swirled in the culture vessel. A microalgae culturing device, characterized in that a gas blowing port for blowing a gas for forming a flow is opened in a lower portion of the culture vessel.
2 . 前記内筒と外筒を円筒、 楕円筒又は長円筒で構成するとともに、 これらの 内筒と外筒を同心又は偏心させて配置したことを特徴とする請求の範囲第 1項に 記載の微細藻類培養装置。  2. The method according to claim 1, wherein the inner cylinder and the outer cylinder are constituted by a cylinder, an elliptical cylinder or a long cylinder, and the inner cylinder and the outer cylinder are arranged concentrically or eccentrically. Microalgae culture equipment.
3 . 頂部に開口部を有する培養容器の中に培養液を入れ、 該培養液中に二酸化 炭素を含むガスを吹き込みつつ、 可視光線を入射させることによって前記培養容 器内で微細藻類を培養する微細藻類培養方法において、  3. Pour the culture solution into a culture vessel having an opening at the top, and cultivate microalgae in the culture vessel by irradiating visible light while blowing gas containing carbon dioxide into the culture solution. In the microalgae culture method,
同心に横置された内筒と外筒とで二重円筒状に成形され、 少なくとも外筒を可 視光線を透過する透明材料で構成して成る培養容器の下部に開口するガス吹込口 を、 内筒と外筒の中心軸を通る鉛直面の左右何れか一方に配置し、 該ガス吹込口 から前記ガスを吹き込むことによつて培養容器内に前記培養液の旋回流を形成す ることを特徴とする微細藻類培養方法。  A gas injection port formed at the lower part of a culture vessel formed of a transparent cylinder through which visible light is transmitted, wherein at least the outer cylinder is formed of a double cylinder with an inner cylinder and an outer cylinder arranged concentrically, It is arranged on one of the right and left sides of the vertical plane passing through the central axis of the inner cylinder and the outer cylinder, and the gas is blown from the gas inlet to form a swirling flow of the culture solution in the culture vessel. Characteristic microalgal culture method.
4 . 頂部に開口部を有する培養容器の中に培養液を入れ、 該培養液中に二酸化 炭素を含むガスを吹き込みつつ、 可視光線を入射させることによって前記培養容 器内で微細藻類を培養する微細藻類培養方法において、  4. Pour the culture solution into a culture vessel having an opening at the top, and cultivate microalgae in the culture vessel by injecting visible light while blowing gas containing carbon dioxide into the culture solution. In the microalgae culture method,
偏心して横置きされた内筒と外筒とで二重円筒状に成形され、 少なくとも外筒 を可視光線を透過する透明材料で構成して成る培養容器の下部に開口するガス吹 込口を、 内筒の中心軸を通る鉛直面の左右何れか一方に配置し、 該ガス吹込口か ら前記ガスを吹き込むことによって培養容器内に前記培養液の旋回流を形成する ことを特徴とする微細藻類培養方法。  A gas inlet that is formed in a double cylindrical shape with an inner cylinder and an outer cylinder that are eccentrically placed sideways and that opens at the lower part of a culture vessel that is made of at least an outer cylinder made of a transparent material that transmits visible light, A microalgae arranged on one of the right and left sides of a vertical plane passing through the center axis of the inner cylinder, and forming the swirling flow of the culture solution in the culture vessel by blowing the gas from the gas inlet. Culture method.
5 . 前記培養容器の内筒の中心軸を通る鉛直面の左右に前記ガス吹込口を配置 し、 両ガス吹込口を所定時間毎に交互に切り替えることによつて培養容器内の培 養液の旋回方向を交互に切り替えることを特徴とする請求の範囲第 3項又は第 4 項に記載の微細藻類培養方法。 5. Place the gas inlets on the left and right of the vertical plane passing through the center axis of the inner cylinder of the culture vessel The method according to claim 3, wherein the turning direction of the culture solution in the culture vessel is alternately switched by alternately switching the two gas inlets at predetermined time intervals. Microalgae culture method.
6 . 前記培養容器の長手方向に複数のガス吹込口を配置し、 培養容器の一端側の ガス吹込口からガスを所定の時間差をもつて順次吹き込むことによつて培養容器 内に培養液の前記培養容器の長手方向に沿って変化する旋回流を形成することを 特徴とする請求の範囲第 3項又は第 4項に記載の微細藻類培養方法。  6. A plurality of gas inlets are arranged in the longitudinal direction of the culture vessel, and the gas is sequentially blown from the gas inlet at one end side of the culture vessel with a predetermined time difference, so that the culture solution is introduced into the culture vessel. 5. The method for culturing microalgae according to claim 3, wherein a swirling flow that changes along the longitudinal direction of the culture vessel is formed.
7 . 前記培養容器の長手方向に沿って複数のガス吹込口を内筒の中心軸を通る鉛 直面の左右に交互に配置し、 各ガス吹込口からガスを吹き込むことによって培養 容器内に方向が長手方向に交互に異なる培養液の旋回流を形成することを特徴と する請求の範囲第 3項又.は第 4項に記載の微細藻類培養方法。 7. A plurality of gas inlets are arranged alternately on the left and right sides of a vertical plane passing through the center axis of the inner cylinder along the longitudinal direction of the culture vessel, and gas is blown from each gas inlet to change the direction into the culture vessel. 5. The method of culturing microalgae according to claim 3, wherein a swirling flow of a culture solution is formed alternately in a longitudinal direction.
8 . 前記培養容器の外筒外面への温調水の散水、 外筒の外側に形成された水通 路への温調水の通水又は内筒内への温調水の通水によって前記培養液の温度をコ ントロールすることを特徴とする請求の範囲第 3項〜第 7項の何れかに記載の微 細藻類培養方法。 8. Sprinkling of temperature-regulated water on the outer surface of the outer cylinder of the culture vessel, flow of temperature-regulated water to a water passage formed outside the outer cylinder, or flow of temperature-regulated water into the inner cylinder. The microalgae culturing method according to any one of claims 3 to 7, wherein the temperature of the culture solution is controlled.
PCT/JP2002/005263 2001-06-01 2002-05-30 Device and method for cultivating micro algae WO2002099031A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020037015758A KR100609736B1 (en) 2001-06-01 2002-05-30 Device and method for cultivating micro algae
JP2003502141A JP4079877B2 (en) 2001-06-01 2002-05-30 Microalgae culture apparatus and microalgae culture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-166956 2001-06-01
JP2001166956 2001-06-01

Publications (1)

Publication Number Publication Date
WO2002099031A1 true WO2002099031A1 (en) 2002-12-12

Family

ID=19009417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005263 WO2002099031A1 (en) 2001-06-01 2002-05-30 Device and method for cultivating micro algae

Country Status (4)

Country Link
JP (1) JP4079877B2 (en)
KR (1) KR100609736B1 (en)
CN (1) CN1304555C (en)
WO (1) WO2002099031A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106218A (en) * 2007-10-31 2009-05-21 Yukio Yoneda Photosynthesis unit system
JP2013521783A (en) * 2010-03-12 2013-06-13 ソリックス バイオシステムズ インコーポレイテッド System and method for deploying a flexible floating photobioreactor
WO2014202159A1 (en) * 2013-06-20 2014-12-24 Biotubes Gmbh Tubing for use in a photobioreactor
JP2019129763A (en) * 2018-01-31 2019-08-08 株式会社熊谷組 Fine algae culture device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100679989B1 (en) * 2005-10-18 2007-02-08 한국생명공학연구원 Raceway-type outdoor mass microalgal culture vessel provided with seed culture vessel
WO2011081234A1 (en) * 2009-12-30 2011-07-07 강원대학교 산학협력단 Method for cultivating marine microalgae using effluents from a nuclear power plant
US8658421B2 (en) 2010-07-23 2014-02-25 Kairos Global Co., Ltd. Circulatory photobioreactor
EP2412794A1 (en) 2010-07-30 2012-02-01 Kairos Global Co., Ltd. Method for circulatory cultivating photosynthetic microalgae
EP2412793A1 (en) 2010-07-30 2012-02-01 Kairos Global Co., Ltd. Circulatory photobioreactor
CN102268362B (en) * 2011-06-10 2013-07-24 薛命雄 Spirulina culturing pipeline carbon dioxide compensation device and carbon compensation method
CN102660449A (en) * 2012-04-27 2012-09-12 天津大学 Sleeve-type photo-bioreactor
CN102660448A (en) * 2012-04-27 2012-09-12 天津大学 Sleeve type photobiological reaction system for culturing microalgae on scale by utilizing waste gas and waste heat
DE102012214493A1 (en) * 2012-08-14 2014-02-20 Air-Lng Gmbh Photobioreactor for the cultivation of phototrophic organisms
CN102911856B (en) * 2012-10-29 2015-04-22 天津大学 Tangential casing built-in aeration photo-bioreactor applicable to micro algae high-efficiency culture
KR101680110B1 (en) 2015-02-06 2016-11-28 주식회사 클로랜드 High-density culturing apparatus of microalgae of air exchange type
KR101657489B1 (en) 2015-02-13 2016-09-19 주식회사 클로랜드 Circulation-type high-density culturing apparatus of microalgae using air
KR101657490B1 (en) 2015-02-23 2016-09-30 주식회사 클로랜드 Operation method of circulation-type high-density culturing apparatus of microalgae using air
KR102003634B1 (en) 2018-02-01 2019-07-24 주식회사 레이바이오 Microalgae culture device using infrared and VIS
CN114540162A (en) * 2022-03-24 2022-05-27 衢州学院 Closed microalgae culture device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112481A (en) * 1989-09-26 1991-05-14 Hiroyuki Kikuchi Apparatus for culturing algae
WO1995019424A1 (en) * 1994-01-12 1995-07-20 Yeda Research And Development Co. Ltd. A bioreactor and system for improved productivity of photosynthetic algae

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1175279A (en) * 1995-02-02 1998-03-04 艾思皮塔利有限公司 Process and device for cultivating microlgae in a closed circuit
CN1185334C (en) * 1998-03-31 2005-01-19 佰奥瑞尔公司 Fine algae culture device
CN2351950Y (en) * 1998-09-01 1999-12-08 中国科学院海洋研究所 Algae cultivation reactor
CN1376777A (en) * 2001-03-26 2002-10-30 中国科学院化工冶金研究所 Process for culturing microalga cells by combination of supplementing carbon by solvent with collecting them by air floating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112481A (en) * 1989-09-26 1991-05-14 Hiroyuki Kikuchi Apparatus for culturing algae
WO1995019424A1 (en) * 1994-01-12 1995-07-20 Yeda Research And Development Co. Ltd. A bioreactor and system for improved productivity of photosynthetic algae

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106218A (en) * 2007-10-31 2009-05-21 Yukio Yoneda Photosynthesis unit system
JP2013521783A (en) * 2010-03-12 2013-06-13 ソリックス バイオシステムズ インコーポレイテッド System and method for deploying a flexible floating photobioreactor
US9145539B2 (en) 2010-03-12 2015-09-29 Solix Algredients, Inc. Systems and methods for positioning flexible floating photobioreactors
WO2014202159A1 (en) * 2013-06-20 2014-12-24 Biotubes Gmbh Tubing for use in a photobioreactor
JP2019129763A (en) * 2018-01-31 2019-08-08 株式会社熊谷組 Fine algae culture device
JP7057148B2 (en) 2018-01-31 2022-04-19 株式会社熊谷組 Microalgae culture equipment

Also Published As

Publication number Publication date
JP4079877B2 (en) 2008-04-23
KR100609736B1 (en) 2006-08-08
CN1304555C (en) 2007-03-14
KR20040019298A (en) 2004-03-05
JPWO2002099031A1 (en) 2004-09-16
CN1513055A (en) 2004-07-14

Similar Documents

Publication Publication Date Title
WO2002099031A1 (en) Device and method for cultivating micro algae
AU749885B2 (en) Fine algae culture device
KR101843934B1 (en) Cultivation system for photosynthesis organism, pipe assembly for the cultivation system, and cultivation gas supplying assembly
US8658421B2 (en) Circulatory photobioreactor
JP2019141056A (en) Large scale mixotrophic production systems
CN105143429A (en) Reactor for bulk production of photosynthetic microorganisms
MX2012005674A (en) Algae culture system.
JP4079878B2 (en) Microalgae culture apparatus and microalgae culture method
KR20190094622A (en) Apparatus for cultivating microalgae
KR20200046557A (en) Light cultivation device for microalgae
KR20100113179A (en) Tubular-type apparatus for cultivating spirulina sp
CN101760429B (en) Simple and easy cylindrical reaction vessel for microalgae culture
CN114606103A (en) Hybrid photobioreactor
JP5324532B2 (en) Circulating photobioreactor
WO2011061380A1 (en) Photobioreactor for the continuous culture of microalgae and a modular system comprising said photobioreactors
US20210002595A1 (en) Culture tank
US20110201102A1 (en) Method and apparatus for cultivating organisms
IL108321A (en) Bioreactor and system for improved productivity of photosynthetic algae
CN1483807A (en) apparatus for culturing bait microalga
CN2878404Y (en) Two-direction counter current micro-alga culture device
KR20050013269A (en) Multi-functional bio-reactor with high photo-transmittance
KR102388601B1 (en) Light bioreactor for algae culture with circulation flow and algae production system using thereof
CN101020890B (en) Photobiological hydrogen producing reactor with built-in light conducting scatterer
CN1824766A (en) Bidirection counter current type micro algae culturing device
KR200332835Y1 (en) Multi-functional bio-reactor with high photo-transmittance

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003502141

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 028109511

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037015758

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase