JPWO2002099031A1 - Microalgae culture apparatus and microalgae culture method - Google Patents

Microalgae culture apparatus and microalgae culture method Download PDF

Info

Publication number
JPWO2002099031A1
JPWO2002099031A1 JP2003502141A JP2003502141A JPWO2002099031A1 JP WO2002099031 A1 JPWO2002099031 A1 JP WO2002099031A1 JP 2003502141 A JP2003502141 A JP 2003502141A JP 2003502141 A JP2003502141 A JP 2003502141A JP WO2002099031 A1 JPWO2002099031 A1 JP WO2002099031A1
Authority
JP
Japan
Prior art keywords
culture
gas
culture vessel
microalgae
culture solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003502141A
Other languages
Japanese (ja)
Other versions
JP4079877B2 (en
Inventor
佐藤 徹
徹 佐藤
好寛 土屋
好寛 土屋
真介 臼井
真介 臼井
征四郎 平林
征四郎 平林
近藤 裕
裕 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Publication of JPWO2002099031A1 publication Critical patent/JPWO2002099031A1/en
Application granted granted Critical
Publication of JP4079877B2 publication Critical patent/JP4079877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/04Apparatus for enzymology or microbiology with gas introduction means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/06Tubular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

培養液の十分な撹拌を実現して高い生産性を得ることができるとともに、微細藻類の培養容器壁面への付着や培養容器底面への沈殿を防いで長期に亘って高い培養効率を維持することができる微細藻類培養装置、及び、微細藻類培養方法を提供すること。頂部にガス排出用開口部17を有する培養容器2の中に培養液11を入れ、該培養液11中に二酸化炭素を含むガスを吹き込みつつ、可視光線を入射させることによって培養容器2内で微細藻類を培養する微細藻類培養装置1において、培養容器2を横置きされた内筒4と外筒5から成る二重円筒状に成形するとともに、少なくとも外筒5を可視光線を透過する透明材料で構成し、ガス吹込口5bを培養容器2内下部に開口せしめる。ガス吹込口5bからガスを吹き込むことによって培養容器2内に培養液11の旋回流を形成する。Achieving high productivity by achieving sufficient agitation of the culture solution and maintaining high culture efficiency over a long period of time by preventing microalgae from adhering to the culture vessel wall and preventing sedimentation on the culture vessel bottom. To provide a microalgae culturing apparatus and a microalgae culturing method. The culture solution 11 is placed in the culture container 2 having a gas discharge opening 17 at the top, and a gas containing carbon dioxide is blown into the culture solution 11 and visible light is incident on the culture solution 11 so that the culture solution 11 becomes fine. In the microalgae culturing apparatus 1 for culturing algae, the culture vessel 2 is formed into a double cylindrical shape composed of an inner cylinder 4 and an outer cylinder 5 placed horizontally, and at least the outer cylinder 5 is made of a transparent material that transmits visible light. Then, the gas inlet 5b is opened at the lower part in the culture vessel 2. A swirling flow of the culture solution 11 is formed in the culture vessel 2 by blowing gas from the gas blowing port 5b.

Description

<技術分野>
本発明は、光合成生物である微細藻類を培養するためのクローズド型の微細藻類培養装置、及び、微細藻類培養方法に関する。
<背景技術>
光合成生物である微細藻類は、二酸化炭素を吸収して光合成作用によってビタミン類、アミノ酸、色素類、タンパク質、多糖類、脂肪酸等の有用成分を製造するため、養殖の飼料用等として培養されている。又、この種の微細藻類は、地球温暖化の原因の1つとされる二酸化炭素を処理する手段としても利用され、近年、これを大量に培養する培養装置が研究されている。
ところで、培養装置は、培養液中で微細藻類を培養するものであって、光合成に必要な光は主に太陽光線を利用し、二酸化炭素は空気又は二酸化炭素と空気との混合気体を培養液に吹き込むことによって供給する。
而して、培養装置において太陽エネルギーを効率良く利用して微細藻類を効率良く培養するためには、
(1)受光量が多いこと
(2)培養液を十分撹拌し、微細藻類に効率良く光を当て、栄養分と二酸化炭素を均一に供給するとともに、微細藻類から排出される酸素を除去すること
(3)培養液の滞留のない撹拌を実現し、微細藻類の壁面付着による光透過の低下やコロニーの形成による沈殿防止を図ること
が必要となる。
従来、微細藻類の培養法として、培養池やレースウェイ型培養池等を利用したオープン型培養方式が実施されているが、この方式では培養液の十分な撹拌ができないために光が表層にしか到達せず、培養濃度が低く、埃やゴミ或は空気中の浮遊微生物等の混入を防ぐことができないために高pH、高塩分濃度等の特殊な条件下での培養が可能な微細藻類しか培養できず、更には培養液の温度調整が困難である等の問題がある。
そこで、培養容器の中に培養液を入れ、該培養液中に二酸化炭素を含むガスを吹き込みつつ、可視光線を入射させることによって培養容器内で微細藻類を培養するクローズド型の培養装置が種々提案されている。
ところで、クローズド型の培養装置の設置面積当たりの容量はオープン型培養方式のそれに比して小さく、高い生産性を上げるには高濃度培養が必要となる。
しかしながら、クローズド型の培養装置においては、光は受光壁面側から内部に至るに連れて減衰するため、光に当たる藻類と当たらない藻類ができてしまい、従って、装置内での培養液の十分な撹拌がなければ全ての藻類に公平に受光させることができず、高生産性を達成することができないという問題がある。
又、クローズド型の培養装置においては、培養容器の内壁に微細藻類が付着したり、培養容器内で微細藻類がコロニーを形成して沈殿するため、光の透過が遮られて培養効率が著しく低下するという問題がある。更に、培養容器内で微細藻類が沈殿するとバクテリアの温床となり、培養液が腐敗する原因にもなる。
本発明は上記問題に鑑みてなされたもので、その目的とする処は、培養液の十分な撹拌を実現して高い生産性を得ることができるとともに、微細藻類の培養容器壁面への付着や培養容器底面への沈殿を防いで長期に亘って高い培養効率を維持することができる微細藻類培養装置、及び、微細藻類培養方法を提供することにある。
<発明の開示>
上記目的を達成するため、請求の範囲第1項に記載の発明は、頂部に開口部を有する培養容器の中に培養液を入れ、該培養液中に二酸化炭素を含むガスを吹き込みつつ、可視光線を入射させることによって前記培養容器内で微細藻類を培養する微細藻類培養装置において、前記培養容器を横置きされた内筒と外筒から成る二重円筒状に成形するとともに、少なくとも外筒を可視光線を透過する透明材料で構成し、前記培養容器内に前記培養液の旋回流を形成するためのガスを吹き込むガス吹込口を培養容器内下部に開口せしめたことを特徴とする。
請求の範囲第2項に記載の発明は、請求の範囲第1項に記載の発明において、前記内筒と外筒を円筒、楕円筒又は長円筒で構成するとともに、これらの内筒と外筒を同心又は偏心させて配置したことを特徴とする。
請求の範囲第3項に記載の発明は、頂部に開口部を有する培養容器の中に培養液を入れ、該培養液中に二酸化炭素を含むガスを吹き込みつつ、可視光線を入射させることによって前記培養容器内で微細藻類を培養する微細藻類培養方法において、同心に横置された内筒と外筒とで二重円筒状に成形され、少なくとも外筒を可視光線を透過する透明材料で構成して成る培養容器の下部に開口するガス吹込口を、内筒と外筒の中心軸を通る鉛直面の左右何れか一方に配置し、該ガス吹込口から前記ガスを吹き込むことによって培養容器内に前記培養液の旋回流を形成することを特徴とする。
請求の範囲第4項に記載の発明は、頂部に開口部を有する培養容器の中に培養液を入れ、該培養液中に二酸化炭素を含むガスを吹き込みつつ、可視光線を入射させることによって前記培養容器内で微細藻類を培養する微細藻類培養方法において、偏心して横置きされた内筒と外筒とで二重円筒状に成形され、少なくとも外筒を可視光線を透過する透明材料で構成して成る培養容器の下部に開口するガス吹込口を、内筒の中心軸を通る鉛直面の左右何れか一方に配置し、該ガス吹込口から前記ガスを吹き込むことによって培養容器内に前記培養液の旋回流を形成することを特徴とする。
請求の範囲第5項に記載の発明は、請求の範囲第3項又は第4項に記載の発明において、前記培養容器の内筒の中心軸を通る鉛直面の左右に前記ガス吹込口を配置し、両ガス吹込口を所定時間毎に交互に切り替えることによって培養容器内の培養液の旋回方向を交互に切り替えることを特徴とする。
請求の範囲第6項に記載の発明は、請求の範囲第3項又は第4項に記載の発明において、前記培養容器の長手方向に複数のガス吹込口を配置し、培養容器の一端側のガス吹込口からガスを所定の時間差をもって順次吹き込むことによって培養容器内に培養液の前記培養容器の長手方向に沿って変化する旋回流を形成することを特徴とする。
請求の範囲第7項に記載の発明は、請求の範囲第3項又は第4項に記載の発明において、前記培養容器の長手方向に沿って複数のガス吹込口を内筒の中心軸を通る鉛直面の左右に交互に配置し、各ガス吹込口からガスを吹き込むことによって培養容器内に方向が長手方向に交互に異なる培養液の旋回流を形成することを特徴とする。
請求の範囲第8項に記載の発明は、請求の範囲第3項〜第7項の何れかに記載の発明において、前記培養容器の外筒外面への温調水の散水、外筒の外側に形成された水通路への温調水の通水又は内筒内への温調水の通水によって前記培養液の温度をコントロールすることを特徴とする。
従って、請求の範囲第1項に記載の発明によれば、前記培養容器内に前記培養液の旋回流を形成するためのガスを吹き込むガス吹込口を培養容器内下部に開口せしめるようしたため、ガスの吹き込みによって培養容器内に培養液の旋回流を形成して、培養液の十分な撹拌がなされて全ての微細藻類が公平に受光することができ、これによって高生産性を達成することができる。又、培養溶液内での気泡通過時の混相乱流と壁面における乱流境界層及び二重円筒状を成す培養容器の曲面壁に沿って培養液が流れることによるゲルトラー渦によって、外筒の曲面壁から内筒の曲面壁及び内筒の曲面壁から外筒の曲面壁に向かう渦が発生し、この渦によって培養液が滞留することなく十分撹拌されるため、微細藻類が培養容器の壁面に付着したりコロニーを形成して沈殿することがなくなり、微細藻類によって光の透過が遮られることがなく、微細藻類は効率良く且つ均一に受光するために微細藻類を効率良く培養することができ、長期に亘って高い培養効率を維持することができる。更に、培養容器を耐圧強度の高い内筒と外筒で構成したため、その板厚を小さく抑えて装置の軽量化及びコストダウンを図ることができる。
請求の範囲第2項に記載の発明によれば、円筒、楕円筒又は長円筒から成る内筒と外筒を同心又は偏心させて配置することによって培養容器を容易に構成することができる。
請求の範囲第3項によれば、同心に横置された内筒と外筒とで二重円筒状に成形され、少なくとも外筒を可視光線を透過する透明材料で構成して成る培養容器の下部に開口するガス吹込口を、内筒と外筒の中心軸を通る鉛直面の左右何れか一方に配置し、また、該ガス吹込口から前記ガスを吹き込むことによって培養容器内に前記培養液の旋回流を形成するため、培養液の十分な撹拌が容易になされて全ての微細藻類が公平に受光することができ、これによって高生産性を達成することができる。又、培養溶液内での気泡通過時の混相乱流と壁面における乱流境界層及び二重円筒状を成す培養容器の曲面壁に沿って培養液が流れることによるゲルトラー渦を容易に発生させることによって、外筒の曲面壁から内筒の曲面壁及び内筒の曲面壁から外筒の曲面壁に向かう渦を容易に発生させ、この渦によって培養液が滞留することなく十分撹拌されるため、微細藻類が培養容器の壁面に付着したりコロニーを形成して沈殿することがなくなり、微細藻類によって光の透過が遮られることがなく、微細藻類は効率良く且つ均一に受光するために微細藻類を効率良く培養することができ、長期に亘って高い培養効率を維持することができる。
請求の範囲第4項によれば、偏心して横置きされた内筒と外筒とで二重円筒状に成形され、少なくとも外筒を可視光線を透過する透明材料で構成して成る培養容器の下部に開口するガス吹込口を、内筒の中心軸を通る鉛直面の左右何れか一方に配置し、該ガス吹込口から前記ガスを吹き込むことによって培養容器内に前記培養液の旋回流を形成するため、培養液の十分な撹拌が容易になされて全ての微細藻類が公平に受光することができ、これによって高生産性を達成することができる。又、培養溶液内での気泡通過時の混相乱流と壁面における乱流境界層及び二重円筒状を成す培養容器の曲面壁に沿って培養液が流れることによるゲルトラー渦を容易に発生させることによって、外筒の曲面壁から内筒の曲面壁及び内筒の曲面壁から外筒の曲面壁に向かう渦を容易に発生させ、この渦によって培養液が滞留することなく十分撹拌されるため、微細藻類が培養容器の壁面に付着したりコロニーを形成して沈殿することがなくなり、微細藻類によって光の透過が遮られることがなく、微細藻類は効率良く且つ均一に受光するために微細藻類を効率良く培養することができ、長期に亘って高い培養効率を維持することができる。
請求の範囲第5項に記載の発明によれば、前記培養容器の内筒の中心軸を通る鉛直面の左右に前記ガス吹込口を配置し、両ガス吹込口を所定時間毎に交互に切り替えることによって培養容器内の培養液の旋回方向を交互に切り替えることによって、培養液を更に効率良く撹拌することができる。
請求の範囲第6項に記載の発明、すなわち、前記培養容器の長手方向に複数のガス吹込口を配置し、培養容器の一端側のガス吹込口からガスを所定の時間差をもって順次吹き込むことによって培養容器内に培養液の前記培養容器の長手方向に沿って変化する旋回流を形成することによっても、培養液の十分な撹拌を実現して高い生産性を得ることができるとともに、微細藻類の培養容器壁面への付着や培養容器底面への沈殿を防いで長期に亘って高い培養効率を維持することができる。
請求の範囲第7項に記載の発明、すなわち、前記培養容器の長手方向に沿って複数のガス吹込口を内筒の中心軸を通る鉛直面の左右に交互に配置し、各ガス吹込口からガスを吹き込むことによって培養容器内に方向が長手方向に交互に異なる培養液の旋回流を形成することによっても、培養液の十分な撹拌を実現して高い生産性を得ることができるとともに、微細藻類の培養容器壁面への付着や培養容器底面への沈殿を防いで長期に亘って高い培養効率を維持することができる。
請求の範囲第8項に記載の発明によれば、培養容器への温調水の散水又は通水によって培養液の温度をコントロールすることができるため、培養液を季節によらず一年中適温に保つことができ、特に夏期における培養液の過昇温による藻類成長への悪影響を効果的に解消することができる。
<発明を実施するための最良の形態>
以下に本発明の実施の形態を添付図面に基づいて説明する。
図1は本発明に係る微細藻類培養装置の斜視図、図2は同微細藻類培養装置の破断正面図(図1の矢視A方向の破断面図)、図3は同微細藻類培養装置の側断面図、図4は図3のB−B線断面図である。
本発明に係る微細藻類培養装置1は、外形がドラム状を成す培養容器2を支持台3上に横置きに設置して構成されている。
上記培養容器2は、図2〜図3に示すように、二重円筒状を成して同心的に横置きされた内筒4と外筒5の左右両端をリング状の側壁6,7によって閉塞して構成されている。即ち、同心的に横置きされた内筒4と外筒5の左右両端部に側壁6,7がそれぞれ組み込まれ、両側壁6,7の外周縁に穿設された複数(図示例では各6つ)の円孔(不図示)に長尺のボルト8を水平に通し(図1参照)、各ボルト8の端部に螺合するナット9を締め付けることによって外形がドラム状を成す培養容器2が組み立てられる。尚、本実施の形態では、長尺のボルト8を外筒5の外側に配置したが、これを内筒4の内側に配しても良い。又、各側壁6,7をそれぞれ短いボルトとこれに螺合するナットで各々独立に取り付ける構成を採用しても良い。更に、内筒4と外筒5の撓みを防ぐために両者間にスペーサを介設しても良く、この場合、スペーサには孔を形成しておくことが望ましい。
他方、枠体状を成す前記支持台3の左右上部には、側壁6,7の外形形状に沿った円弧状の固定ブラケット10(図1及び図2参照)が設けられており、培養容器2は、その左右の側壁6,7下部の2箇所が前記2本のボルト8とこれに螺合するナット9によって固定ブラケット10に共締めされることによって支持台3に水平に固定支持されている。
而して、上記培養容器2内に形成された内筒4と外筒5及び両側壁6,7によって囲まれた空間内には培養液11が注入され、その液位は内筒4の上端面よりも高くなるように保たれている。尚、内筒4と外筒5の左右両端は不図示のシール部材を介して両側壁6,7に結合されており、シール部材のシール作用によって培養液11の培養容器2外への漏出が防がれている。
ここで、培養容器2を構成する内筒4と外筒5及び両側壁6,7は太陽光(可視光線)を透過する透明材料で構成されており、本実施の形態では、透明材料としてアクリル樹脂を用いている。尚、透明材料としては、光透過性に優れ、耐候性及び耐紫外線の高い材料であれば任意のものを使用することができ、例えばポリカーボネート、ポリプロピレン、ポリエチレン、ポリ塩化ビニル等の樹脂、ガラス等を選定することができる。又、本実施の形態では、内筒4と外筒5及び両側壁6,7を透明部材で構成したが、本発明の目的を達成するためには、少なくとも外筒5が透明部材で構成されていれば良い。
又、図2〜図4に示すように、培養容器2の外筒5の一方の側壁6に近い側の幅方向中央下部には円孔状のドレン孔5a(図4参照)が穿設されており、このドレン孔5aにはドレンパイプ12が差し込まれて結着されている。そして、このドレンパイプ12の途中にはドレンバルブ13が設けられおり、このドレンバルブ13を開けることによって培養容器2内の培養液11を外部に排出することができる。
更に、培養容器2の外筒5の下部(具体的には、図4に示すように、内筒4と外筒5の中心軸を通る水平面Fより下方で、且つ、同中心軸を通る鉛直面Fの左右何れか一方)の長さ方向3箇所には円孔状のガス吹込口5b(図3及び図4参照)が穿設されている。
そして、培養容器2の下方にはガス導入パイプ14が長さ方向に水平に延設されており、このガス導入パイプ14から分岐して培養容器2側に向かって延びる3本の枝管15は、培養容器2の外筒5の下部に穿設された前記各ガス吹込口5bにそれぞれ差し込まれて結着されている。尚、図示しないが、ガス導入パイプ14は、空気又は二酸化炭素と空気との混合気体を供給するコンプレッサ等のガス供給源に接続されている。
他方、培養容器2(外筒)の頂部には、円筒状のガス排出筒16が取り付けられており、その内部は培養容器2内に開口するガス排出用開口部17が形成されている。そして、ガス排出筒16の上部には、下向きに開口する逆皿状のキャップ18が被着されており、ガス排出用開口部17がキャップ18によって覆われることによって培養容器2内の培養液11への埃やゴミ或は空気中の浮遊微生物等の混入を防ぐことができる。尚、キャップ18に代えてガス排出用開口部17にフィルタを設けることによっても同様の効果が得られる。
又、培養容器2の上部の前記ガス排出筒16を挟んでこれの左右には温調水導入パイプ19が長さ方向に平行を成して水平に延設されており、これらの温調水導入パイプ19は左右両側壁6,7の各上部に取り付けられた左右一対の支持ブラケット20に挿通支持されている。そして、各温調水導入パイプ19の下部には、図3に示すように複数の散水口19aが穿設されており、温調水導入パイプ19は冷却水ポンプ等の不図示の温調水供給源に接続されている。
次に、以上の構成を有する微細藻類培養装置1の作用について説明する。
当該微細藻類培養装置1を屋外に設置するとともに、培養容器2に培養すべき微細藻類と培養液11を入れ、不図示のガス供給源を駆動して二酸化炭素を含むガス(空気又は二酸化炭素と空気との混合気体)をガス導入パイプ14に流すと、ガスは3本の枝管15から培養容器2内に供給される。
培養容器2内に供給されたガスは、培養容器2の底部3箇所から図4に示すように気泡となって培養容器2内を上昇し、その過程で培養液11中の微細藻類に二酸化炭素を供給する。そして、このガスの気泡の上昇によって、培養容器2内には、図4に矢印にて示すように同一方向(図4において反時計方向)に旋回する培養液11の流れが形成される。
又、透明部材から成る外筒5及び側壁6,7を透過して太陽光線が培養容器2内に入射するため、培養容器2内の微細藻類は光合成作用によってビタミン類、アミノ酸、色素類、タンパク質、多糖類、脂肪酸等の有用成分を製造するとともに、地球温暖化の一因となっている二酸化炭素を吸収処理する。そして、光合成作用によって発生した酸素は、培養容器2の頂部に形成されたガス排出用開口部17及びガス排出筒16とキャップ18の間の隙間を通って大気中に排出される。尚、本実施の形態においては、培養容器2の内筒4内の中心部に人工光源を設置することができ、昼夜に亘って微細藻類に連続的に光合成を行わせることができ、微細藻類の増殖が促進される。
そして、必要に応じて、温調水供給源を駆動して温調水(冷却水)を温調水導入パイプ19に流せば、温調水は温調水導入パイプ19に穿設された複数の散水口19aから散水されて外筒5の外面に沿って流れ、培養容器2内の培養液11を冷却等してその温度をコントロールするため、培養液11を季節によらず一年中適温に保つことができ、特に夏期における培養液11の過昇温による藻類成長への悪影響を効果的に解消することができる。尚、本実施の形態では、培養容器2の外筒5外面への温調水の散水によって培養液11の温度をコントロールする構成を採用したが、外筒11の外側に形成された不図示の水通路への温調水の通水又は内筒4内への温調水の通水によっても同様に培養液11の温度をコントロールして同様の効果を得ることができる。
以上において、本実施の形態に係る微細藻類培養装置1においては、ガスの吹き込みによって培養容器2内に培養液11の旋回流を形成するようにしたため、培養液11の十分な撹拌がなされて全ての微細藻類が公平に受光することができ、これによって高生産性を達成することができる。
又、培養溶液11内での気泡通過時の混相乱流と壁面における乱流境界層及び二重円筒状を成す培養容器2の曲面壁に沿って培養液11が流れることによるゲルトラー渦によって、外筒5の曲面壁から内筒4の曲面壁及び内筒4の曲面壁から外筒5の曲面壁に向かう渦が発生し、この渦によって培養液11が滞留することなく十分撹拌されるため、微細藻類が培養容器2の壁面に付着したりコロニーを形成して沈殿することがなくなり、微細藻類によって光の透過が遮られることがなく、微細藻類は効率良く且つ均一に受光するために微細藻類を効率良く培養することができ、長期に亘って高い培養効率を維持することができる。
微細藻類が培養容器2の壁面に付着したりコロニーを形成して沈殿すると、微細藻類の受光が妨げられるので好ましくないが、微細藻類培養装置1によれば、種類の異なる混相乱流と乱流境界層とゲルトラー渦(以下に詳述)とが発生するので、内筒4と外筒5の間に渦や乱れが発生して、微細藻類によって光の透過が遮られることがない。
混相乱流:液相中を運動する気泡が引き起こす乱流
乱流境界層:壁面付近を流れが通過するとき、流れの相似側を表すパラメータであるReynolds数が高くなる(壁面上方の流れが速くなるか、流れが壁面に接する距離が長くなる)と、壁面付近に形成される速度の遅い層である境界層が乱流化する。この乱流化された層を乱流境界層という。
ゲルトラー渦:凹曲面を曲率に並行に流れがあるとき、流れの相似則を表すパラメータであるReynolds数が高くなる(壁面上方の流れが速くなるか、流れが壁面に接する距離が長くなる)と、流れに垂直な回転渦を生じる。この回転渦をゲルトラー渦という。
更に、培養容器2を耐圧強度の高い内筒4と外筒5で構成したため、その板厚を小さく抑えて培養装置1の軽量化及びコストダウンを図ることができる。
又、本実施の形態では、円筒から成る内筒4と外筒5を同心状に配置することによって培養容器2を容易に構成することができる。
そして、内筒4と外筒5を同心状に配置して成る培養容器2において、ガスの吹込み口5bを内筒4と外筒5の中心軸を通る水平面Fより下方で、且つ、同中心軸を通る鉛直面Fの左右何れか一方に配置したため、培養容器2内に一方向に旋回する培養液11の流れを容易に形成できるとともに、混相乱流、乱流境界層、ゲルトラー渦の発生が容易である。尚、図5に示すようにガス吹込口5bを鉛直面Fの反対側に形成すれば、本実施の形態とは逆方向(図5において時計方向)に旋回する培養液11の流れを形成することができる。又、図示しないが、内外筒の中心軸を通る鉛直面の左右両側にガスの吹込口を形成し、両吹込口を所定時間毎に交互に切り替えるようにすれば、培養容器内の培養液の旋回方向を交互に切り替えることができ、培養液を更に効率良く撹拌することができる。更に、培養容器2の長手方向において部分的に培養液11の旋回方向を定常的又は過渡的に変えるようにしても良い。培養容器2の長手方向に複数のガス吹込口5bを配置し、培養容器2の一端側のガス吹込口5bからガスを所定の時間差をもって順次吹き込むことによって培養容器2内に培養液11の培養容器2の長手方向に沿って変化する旋回流を形成しても良い。培養容器2の長手方向に沿って複数のガス吹込口5bを内筒の中心軸を通る鉛直面の左右に交互に配置し、各ガス吹込口5bからガスを吹き込むことによって培養容器2内に方向が長手方向に交互に異なる培養液11の旋回流を形成してもよい。
ところで、本実施の形態では、円筒から成る内筒4と外筒5を同心状に配置して培養容器2を構成したが、図6に示すように、円筒から成る内筒4と外筒5を偏心させて配置することによって培養容器2を構成しても良く、この場合、ガスの吹込口4aを図示のように内筒4の中心軸を通る水平面Fより下方で、且つ、同中心軸を通る鉛直面Fの左右何れか一方に配置すれば、培養容器2内で培養液11の同一方向(図示例では、反時計方向)に旋回する流れを容易に形成できるとともに、混相乱流、乱流境界層、ゲルトラー渦の発生が容易である。
又、図7に示すように楕円筒から成る内筒4’と外筒5’を同心状に配置して培養容器2’を構成し、或は図8に示すように長円筒から成る内筒4”と外筒5”を同心状に配置して培養容器2”を構成しても良く、これらの場合はガスの吹込口4a’,5b”を内筒4’,4”と外筒5’,5”の中心軸を通る水平面Fより下方で、且つ、同中心軸を通る鉛直面Fの左右何れか一方に配置することによって培養容器2’,2”内に同一方向(図示例では、反時計方向)に旋回する培養液11の流れを形成することができる。尚、図示しないが、楕円筒又は長円筒から成る内筒と外筒を偏心させて配置することによって培養容器を構成しても良く、これらの場合はガスの吹込口を内筒の中心軸を通る水平面より下方で、且つ、同中心軸を通る鉛直面の左右何れか一方に配置することによって培養容器内に同一方向に旋回する培養液の流れを形成することができる。
ここで、本実施の形態に係る微細藻類培養装置1を用いた実際の生産設備例を図9に示すが、実際の生産設備においては、図示のように複数の微細藻類培養装置1を一列に連続して繋げたものが数列に亘って配設される。この場合、各列において各1本のガス導入パイプ14と各2本の温調水導入パイプ19が各培養装置1について共用される。
次に、本発明に係る微細藻類培養装置を用いて行った培養実験の結果について説明する。
微細藻類としてクロロコッカムリトラーレ(Chlorococcum littorale)を用いて培養実験を13日間に亘って行った。この場合の日照時間は10時間/日、南中時光量子量800μmol/m/s、日中平均光量子量340μmol/m/s、培養液量70リットルであり、培養結果は平均増殖速度0.15g乾燥重量/リットル/日であった。又、培養期間中に微細藻類の培養容器壁面への付着は発生しなかった。
又、別の培養実験において、微細藻類としてスピルリナ・プラテンシス(Spirulina platencis)を培養した結果、従来の培養池方式では培養濃度0.3〜0.5g/リットル、一日あたりの生産性0.1〜0.2g/リットルであるのに対して、本発明に係る微細藻類培養装置では培養濃度10〜20g/リットル、一日あたりの生産性2.8〜7.0g/リットルという好結果が得られた。
<産業上の利用可能性>
以上の説明で明らかなように、本発明によれば、頂部に開口部を有する培養容器の中に培養液を入れ、該培養液中に二酸化炭素を含むガスを吹き込みつつ、可視光線を入射させることによって前記培養容器内で微細藻類を培養する微細藻類培養装置において、前記培養容器を横置きされた内筒と外筒から成る二重円筒状に成形するとともに、少なくとも外筒を可視光線を透過する透明材料で構成し、前記ガスの吹き込みによって前記培養容器内に前記培養液の旋回流を形成するようにしたため、培養液の十分な撹拌を実現して高い生産性を得ることができるとともに、微細藻類の培養容器壁面への付着や培養容器底面への沈殿を防いで長期に亘って高い培養効率を維持することができるという効果が得られる。
また、本発明によれば、頂部に開口部を有する培養容器の中に培養液を入れ、該培養液中に二酸化炭素を含むガスを吹き込みつつ、可視光線を入射させることによって前記培養容器内で微細藻類を培養する微細藻類培養方法において、同心に横置された内筒と外筒とで二重円筒状に成形され、少なくとも外筒を可視光線を透過する透明材料で構成して成る培養容器の下部に開口するガス吹込口を、内筒と外筒の中心軸を通る鉛直面の左右何れか一方に配置し、該ガス吹込口から前記ガスを吹き込むことによって、あるいは、偏心して横置きされた内筒と外筒とで二重円筒状に成形され、少なくとも外筒を可視光線を透過する透明材料で構成して成る培養容器の下部に開口するガス吹込口を、内筒の中心軸を通る鉛直面の左右何れか一方に配置し、該ガス吹込口から前記ガスを吹き込むことによって、培養容器内に培養液の旋回流を形成するため、培養液の十分な撹拌を容易に実現して高い生産性を得ることができるとともに、微細藻類の培養容器壁面への付着や培養容器底面への沈殿を防いで長期に亘って高い培養効率を維持することができるという効果が得られる。
【図面の簡単な説明】
図1は、本発明に係る微細藻類培養装置の斜視図である。
図2は、本発明に係る微細藻類培養装置の破断正面図(図1の矢視A方向の破断面図)である。
図3は、本発明に係る微細藻類培養装置の側断面図である。
図4は、図3のB−B線断面図である。
図5は、本発明に係る微細藻類培養装置の培養容器の別形態を示す横断面図である。
図6は、本発明に係る微細藻類培養装置の培養容器の別形態を示す横断面図である。
図7は、本発明に係る微細藻類培養装置の培養容器の別形態を示す横断面図である。
図8は、本発明に係る微細藻類培養装置の培養容器の別形態を示す横断面図である。
図9は、本発明に係る微細藻類培養装置を用いた実際の生産設備例を示す斜視図である。
なお、図中の符号、1は微細藻類培養装置、2,2’,2”は培養容器、4,4’,4”は内筒、4a,4a’はガス吹込口、5,5,5”は外筒、5b,5b”はガス吹込口、6,7は側壁、11は培養液、14はガス導入パイプ、17はガス排出用開口部、18はキャップ、19は温調水導入パイプである。
<Technical field>
The present invention relates to a closed type microalgae culturing apparatus for culturing microalgae, which is a photosynthetic organism, and a microalgae culturing method.
<Background technology>
Microalgae that are photosynthetic organisms are cultured as feed for aquaculture, etc., because they absorb carbon dioxide and produce useful components such as vitamins, amino acids, pigments, proteins, polysaccharides, and fatty acids by photosynthetic action. . Further, this kind of microalgae is also used as a means for treating carbon dioxide, which is one of the causes of global warming, and in recent years, a culturing apparatus for culturing this in a large amount has been studied.
By the way, a culture device is for culturing microalgae in a culture solution, and the light necessary for photosynthesis mainly uses sunlight, and carbon dioxide is air or a mixed gas of carbon dioxide and air. Supply by blowing into.
Therefore, in order to efficiently utilize microbial algae by efficiently using solar energy in a culture device,
(1) A large amount of received light
(2) Agitating the culture solution sufficiently, illuminating the microalgae efficiently, supplying nutrients and carbon dioxide uniformly, and removing oxygen discharged from the microalgae
(3) Achieve agitation without stagnation of the culture solution to reduce light transmission due to adhesion of microalgae to the wall and to prevent sedimentation by forming colonies.
Is required.
Conventionally, as a method of culturing microalgae, an open culture method using a culture pond or a raceway type culture pond has been practiced.However, in this method, sufficient stirring of the culture solution cannot be performed, so that light is applied only to the surface layer. Only microalgae that can be cultivated under special conditions such as high pH and high salinity because they do not reach, the culture concentration is low, and contamination of dust, dirt or airborne microorganisms cannot be prevented. There is a problem that culturing cannot be performed, and furthermore, it is difficult to adjust the temperature of the culture solution.
Therefore, various closed-type culture devices for culturing microalgae in a culture vessel by introducing a culture solution into a culture vessel and injecting visible light while blowing gas containing carbon dioxide into the culture solution have been proposed. Have been.
By the way, the capacity per installation area of the closed type cultivation apparatus is smaller than that of the open type cultivation method, and high concentration cultivation is required to increase high productivity.
However, in a closed-type culture device, the light is attenuated from the light-receiving wall side to the inside, so that algae that are exposed to light and algae that are not exposed are formed. Therefore, sufficient agitation of the culture solution in the device is performed. Without it, all algae cannot be received fairly and there is a problem that high productivity cannot be achieved.
In addition, in a closed-type culture device, microalgae adhere to the inner wall of the culture container, or microalgae form colonies and precipitate in the culture container, so that light transmission is interrupted and the culture efficiency is significantly reduced. There is a problem of doing. Furthermore, when microalgae precipitate in the culture vessel, they become a breeding ground for bacteria, which may cause the culture solution to spoil.
The present invention has been made in view of the above problems, and the object thereof is to achieve sufficient productivity by realizing sufficient agitation of a culture solution, and to prevent microalgae from adhering to the culture vessel wall surface. An object of the present invention is to provide a microalgae culturing apparatus and a microalgae culturing method capable of preventing sedimentation on the bottom surface of a culture vessel and maintaining a high culture efficiency for a long period of time.
<Disclosure of the Invention>
In order to achieve the above object, the invention according to claim 1 includes the steps of: introducing a culture solution into a culture container having an opening at the top, and blowing a gas containing carbon dioxide into the culture solution, In the microalgae culturing apparatus for culturing microalgae in the culture vessel by irradiating a light beam, the culture vessel is formed into a double cylindrical shape composed of an inner cylinder and an outer cylinder which are placed horizontally, and at least the outer cylinder is formed. A gas inlet for blowing gas for forming a swirling flow of the culture solution into the culture vessel is formed at a lower portion of the culture vessel, which is made of a transparent material that transmits visible light.
The invention described in claim 2 is the invention according to claim 1, wherein the inner cylinder and the outer cylinder are constituted by a cylinder, an elliptical cylinder or a long cylinder, and the inner cylinder and the outer cylinder are formed. Are arranged concentrically or eccentrically.
The invention according to claim 3 is that the culture solution is put into a culture vessel having an opening at the top, and the gas containing carbon dioxide is blown into the culture solution, and visible light is incident on the culture solution. In a microalgae culturing method of culturing microalgae in a culture vessel, an inner cylinder and an outer cylinder which are concentrically arranged are formed into a double cylindrical shape, and at least the outer cylinder is made of a transparent material that transmits visible light. A gas inlet opening at the lower part of the culture vessel, which is disposed on one of the left and right sides of a vertical plane passing through the center axis of the inner cylinder and the outer cylinder, and blowing the gas from the gas inlet into the culture vessel. The method is characterized in that a swirling flow of the culture solution is formed.
The invention according to claim 4 is to put a culture solution into a culture vessel having an opening at the top, and while blowing a gas containing carbon dioxide into the culture solution, the visible light is incident on the culture solution. In the microalgae culturing method of culturing microalgae in a culture vessel, the inner cylinder and the outer cylinder that are eccentrically placed sideways are formed into a double cylindrical shape, and at least the outer cylinder is formed of a transparent material that transmits visible light. A gas inlet opening at the lower part of the culture vessel, which is disposed on one of the right and left sides of a vertical plane passing through the center axis of the inner cylinder, and blowing the gas from the gas inlet to insert the culture solution into the culture vessel. Is formed.
The invention according to claim 5 is the invention according to claim 3 or 4, wherein the gas inlets are arranged on the left and right sides of a vertical plane passing through a center axis of the inner cylinder of the culture vessel. Then, by turning both gas inlets alternately at predetermined time intervals, the turning direction of the culture solution in the culture vessel is alternately switched.
The invention described in claim 6 is the invention according to claim 3 or 4, wherein a plurality of gas inlets are arranged in a longitudinal direction of the culture vessel, and one end side of the culture vessel is provided. By sequentially injecting gas from the gas inlet with a predetermined time difference, a swirling flow of the culture solution that changes along the longitudinal direction of the culture vessel is formed in the culture vessel.
The invention described in claim 7 is the invention according to claim 3 or 4, wherein a plurality of gas inlets pass through the center axis of the inner cylinder along the longitudinal direction of the culture vessel. The method is characterized in that swirling flows of a culture solution having different directions in the longitudinal direction are alternately formed in the culture vessel by alternately arranging the gas on the left and right sides of the vertical plane and injecting gas from each gas inlet.
The invention described in claim 8 is the invention according to any one of claims 3 to 7, wherein the temperature-regulated water is sprayed on the outer surface of the outer cylinder of the culture vessel, and the outside of the outer cylinder is provided. The temperature of the culture solution is controlled by passing temperature-regulated water through a water passage formed in the inner cylinder or by flowing temperature-regulated water into the inner cylinder.
Therefore, according to the first aspect of the present invention, a gas inlet for injecting a gas for forming a swirling flow of the culture solution into the culture vessel is opened at a lower portion in the culture vessel, so that the gas To form a swirling flow of the culture solution in the culture container, sufficient agitation of the culture solution is performed, and all microalgae can be received fairly, thereby achieving high productivity. . In addition, the multi-phase turbulent flow during the passage of bubbles in the culture solution and the turbulent boundary layer on the wall surface and the Gertler vortex caused by the flow of the culture solution along the curved wall of the culture vessel forming a double cylinder form the outer surface of the outer cylinder. A vortex is generated from the wall toward the curved wall of the inner cylinder and from the curved wall of the inner cylinder to the curved wall of the outer cylinder, and the vortex is sufficiently stirred without stagnation of the culture solution. Eliminating adherence or forming a colony to precipitate, without preventing the transmission of light by the microalgae, the microalgae can be efficiently cultured to efficiently and uniformly receive microalgae, High culture efficiency can be maintained over a long period of time. Further, since the culture vessel is formed of an inner cylinder and an outer cylinder having high pressure resistance, the plate thickness can be suppressed to be small, and the weight and cost of the apparatus can be reduced.
According to the second aspect of the present invention, the culture vessel can be easily configured by arranging the inner cylinder and the outer cylinder each formed of a cylinder, an elliptic cylinder, or a long cylinder concentrically or eccentrically.
According to the third aspect of the present invention, there is provided a culture vessel which is formed in a double cylindrical shape by an inner cylinder and an outer cylinder which are arranged concentrically and at least the outer cylinder is made of a transparent material that transmits visible light. A gas inlet opening at the lower part is disposed on one of the left and right sides of a vertical plane passing through the central axis of the inner cylinder and the outer cylinder, and the culture solution is injected into the culture vessel by blowing the gas from the gas inlet. Since the swirling flow is formed, sufficient stirring of the culture solution can be easily performed, and all microalgae can be received fairly, whereby high productivity can be achieved. In addition, it is necessary to easily generate a Gertruder vortex caused by the flow of the culture solution along the curved wall of the culture vessel having a turbulent boundary layer on the wall surface and a double cylindrical shape when the bubbles pass through the culture solution and the turbulent boundary layer on the wall surface. Thereby, a vortex is easily generated from the curved wall of the outer cylinder to the curved wall of the inner cylinder and the curved wall of the inner cylinder toward the curved wall of the outer cylinder, and the vortex allows the culture solution to be sufficiently stirred without stagnation. The microalgae do not adhere to the wall surface of the culture vessel or form colonies and precipitate, and the transmission of light is not blocked by the microalgae. Culture can be performed efficiently, and high culture efficiency can be maintained over a long period of time.
According to the fourth aspect of the present invention, there is provided a culture vessel which is formed in a double cylindrical shape with an inner cylinder and an outer cylinder which are eccentrically placed horizontally, and wherein at least the outer cylinder is made of a transparent material that transmits visible light. A gas inlet opening at the bottom is arranged on one of the left and right sides of a vertical plane passing through the center axis of the inner cylinder, and the gas is blown from the gas inlet to form a swirling flow of the culture solution in the culture vessel. Therefore, sufficient agitation of the culture solution can be easily performed, and all microalgae can be fairly received, whereby high productivity can be achieved. In addition, it is necessary to easily generate a Gertruder vortex caused by the flow of the culture solution along the curved wall of the culture vessel having a turbulent boundary layer on the wall surface and a double cylindrical shape when the bubbles pass through the culture solution and the turbulent boundary layer on the wall surface. Thereby, a vortex is easily generated from the curved wall of the outer cylinder to the curved wall of the inner cylinder and the curved wall of the inner cylinder toward the curved wall of the outer cylinder, and the vortex allows the culture solution to be sufficiently stirred without stagnation. The microalgae do not adhere to the wall surface of the culture vessel or form colonies and precipitate, and the transmission of light is not blocked by the microalgae. Culture can be performed efficiently, and high culture efficiency can be maintained over a long period of time.
According to the invention as set forth in claim 5, the gas inlets are arranged on the left and right of a vertical plane passing through the center axis of the inner cylinder of the culture vessel, and both gas inlets are alternately switched at predetermined time intervals. Thus, the culture solution can be stirred more efficiently by alternately switching the direction of rotation of the culture solution in the culture container.
The invention according to claim 6, that is, culturing by arranging a plurality of gas inlets in the longitudinal direction of the culture vessel and sequentially injecting gas from the gas inlet at one end of the culture vessel with a predetermined time difference. By forming a swirling flow of the culture solution in the container that changes along the longitudinal direction of the culture container, sufficient productivity of the culture solution can be achieved by achieving sufficient agitation of the culture solution, and culture of microalgae can be achieved. Adhesion to the vessel wall and precipitation on the bottom of the culture vessel can be prevented, and high culture efficiency can be maintained for a long period of time.
The invention according to claim 7, that is, a plurality of gas inlets are arranged alternately on the left and right sides of a vertical plane passing through the center axis of the inner cylinder along the longitudinal direction of the culture vessel, and from each gas inlet. By forming a swirling flow of the culture solution in which the direction is alternately changed in the longitudinal direction in the culture container by blowing gas, sufficient productivity of the culture solution can be realized and high productivity can be obtained. High culture efficiency can be maintained over a long period of time by preventing algae from adhering to the wall surface of the culture vessel and sedimentation on the bottom surface of the culture vessel.
According to the invention as set forth in claim 8, the temperature of the culture solution can be controlled by spraying or passing the temperature-regulated water to the culture vessel, so that the culture solution can be kept at an appropriate temperature throughout the year regardless of the season. In particular, it is possible to effectively eliminate the adverse effect on algal growth due to excessive temperature rise of the culture solution in the summer.
<Best mode for carrying out the invention>
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a perspective view of the microalgae culturing apparatus according to the present invention, FIG. 2 is a cutaway front view of the microalgae culturing apparatus (cross-sectional view in the direction of arrow A in FIG. 1), and FIG. FIG. 4 is a side sectional view, and FIG. 4 is a sectional view taken along line BB of FIG.
The microalgae culturing apparatus 1 according to the present invention is configured such that a culture vessel 2 having a drum-like outer shape is placed horizontally on a support base 3.
As shown in FIGS. 2 and 3, the culture vessel 2 has a double cylindrical shape, and the left and right ends of an inner cylinder 4 and an outer cylinder 5 which are concentrically placed side by side by ring-shaped side walls 6 and 7. It is configured to be closed. That is, the side walls 6 and 7 are respectively incorporated into the left and right ends of the inner cylinder 4 and the outer cylinder 5 which are concentrically arranged horizontally, and a plurality of holes (6 in the illustrated example) are formed on the outer peripheral edges of both side walls 6 and 7. (See FIG. 1), and the nuts 9 screwed into the ends of the bolts 8 are tightened, so that the culture vessel 2 has a drum-shaped outer shape. Is assembled. In this embodiment, the long bolt 8 is arranged outside the outer cylinder 5, but may be arranged inside the inner cylinder 4. Alternatively, a configuration may be adopted in which the side walls 6 and 7 are independently attached with short bolts and nuts screwed thereto. Furthermore, a spacer may be interposed between the inner cylinder 4 and the outer cylinder 5 to prevent bending thereof. In this case, it is desirable to form a hole in the spacer.
On the other hand, an arc-shaped fixed bracket 10 (see FIGS. 1 and 2) is provided along the outer shape of the side walls 6 and 7 on the left and right upper portions of the frame-shaped support base 3. The left and right side walls 6 and 7 are horizontally fixed and supported on the support base 3 by being fastened to a fixing bracket 10 by two bolts 8 and a nut 9 screwed thereto with the two bolts 8. .
Thus, the culture solution 11 is injected into the space surrounded by the inner cylinder 4 and the outer cylinder 5 and the side walls 6 and 7 formed in the culture vessel 2, and the liquid level is It is kept higher than the end face. The left and right ends of the inner cylinder 4 and the outer cylinder 5 are connected to both side walls 6 and 7 via seal members (not shown), and the leakage of the culture solution 11 to the outside of the culture vessel 2 is prevented by the sealing action of the seal members. Is prevented.
Here, the inner cylinder 4 and the outer cylinder 5 and the side walls 6 and 7 that constitute the culture vessel 2 are made of a transparent material that transmits sunlight (visible light). In the present embodiment, acrylic is used as the transparent material. Resin is used. In addition, as the transparent material, any material can be used as long as it is a material having excellent light transmittance, high weather resistance and high resistance to ultraviolet rays, and examples thereof include resins such as polycarbonate, polypropylene, polyethylene, and polyvinyl chloride, and glass. Can be selected. Further, in the present embodiment, the inner cylinder 4, the outer cylinder 5, and the side walls 6, 7 are made of a transparent member, but in order to achieve the object of the present invention, at least the outer cylinder 5 is made of a transparent member. It would be fine.
As shown in FIGS. 2 to 4, a circular drain hole 5 a (see FIG. 4) is formed in the lower part of the outer tube 5 of the culture vessel 2 near the one side wall 6 in the width direction center. A drain pipe 12 is inserted into and connected to the drain hole 5a. A drain valve 13 is provided in the middle of the drain pipe 12, and the culture solution 11 in the culture vessel 2 can be discharged to the outside by opening the drain valve 13.
Further, a lower portion of the outer cylinder 5 of the culture vessel 2 (specifically, as shown in FIG. 4, a horizontal plane F passing through the central axes of the inner cylinder 4 and the outer cylinder 5). H A vertical plane F below and passing through the same central axis V The gas inlet 5b (see FIGS. 3 and 4) having a circular hole shape is formed at three positions in the longitudinal direction (either right or left).
A gas introduction pipe 14 extends horizontally below the culture vessel 2 in the longitudinal direction. Three branch pipes 15 branching from the gas introduction pipe 14 and extending toward the culture vessel 2 are provided. Each of the gas inlets 5b formed in the lower part of the outer cylinder 5 of the culture vessel 2 is inserted and bound. Although not shown, the gas introduction pipe 14 is connected to a gas supply source such as a compressor that supplies air or a mixed gas of carbon dioxide and air.
On the other hand, a cylindrical gas discharge tube 16 is attached to the top of the culture vessel 2 (outer cylinder), and a gas discharge opening 17 that opens into the culture vessel 2 is formed inside. An inverted dish-shaped cap 18 that opens downward is attached to the upper part of the gas discharge tube 16, and the culture solution 11 in the culture vessel 2 is covered by the gas discharge opening 17 being covered by the cap 18. It is possible to prevent dust and dirt or airborne microorganisms from entering the air. A similar effect can be obtained by providing a filter in the gas discharge opening 17 instead of the cap 18.
On the left and right sides of the gas discharge cylinder 16 above the culture vessel 2, temperature control water introduction pipes 19 extend horizontally in parallel with the length direction. The introduction pipe 19 is inserted and supported by a pair of left and right support brackets 20 attached to the upper portions of the left and right side walls 6 and 7. As shown in FIG. 3, a plurality of sprinkling ports 19a are formed in a lower portion of each temperature control water introduction pipe 19, and the temperature control water introduction pipe 19 is provided with a temperature control water (not shown) such as a cooling water pump. Connected to source.
Next, the operation of the microalgae culturing apparatus 1 having the above configuration will be described.
The microalgae culturing apparatus 1 is installed outdoors, and the microalgae to be cultured and the culture solution 11 are put in the culture vessel 2, and a gas supply source (not shown) is driven to drive a gas containing carbon dioxide (air or carbon dioxide). When the gas (mixed gas with air) flows through the gas introduction pipe 14, the gas is supplied from the three branch pipes 15 into the culture vessel 2.
The gas supplied into the culture vessel 2 becomes bubbles as shown in FIG. 4 from the bottom three places of the culture vessel 2 and rises in the culture vessel 2, and in the process, carbon dioxide is added to the microalgae in the culture solution 11. Supply. Then, due to the rise of the gas bubbles, a flow of the culture solution 11 turning in the same direction (counterclockwise in FIG. 4) is formed in the culture container 2 as shown by an arrow in FIG.
In addition, since sunlight rays enter the culture vessel 2 through the outer cylinder 5 and the side walls 6 and 7 made of a transparent member, the microalgae in the culture vessel 2 undergo vitamins, amino acids, pigments, and proteins by photosynthesis. In addition to producing useful components such as polysaccharides and fatty acids, it absorbs carbon dioxide, which contributes to global warming. The oxygen generated by the photosynthesis is discharged to the atmosphere through the gas discharge opening 17 formed at the top of the culture vessel 2 and the gap between the gas discharge tube 16 and the cap 18. In the present embodiment, an artificial light source can be installed at the center of the inner cylinder 4 of the culture vessel 2, and microalgae can continuously perform photosynthesis throughout the day and night. Is promoted.
If necessary, the temperature-regulated water supply source is driven to flow temperature-regulated water (cooling water) through the temperature-regulated water introduction pipe 19. Of the culture solution 11 in the culture vessel 2 to control its temperature by cooling or the like, so that the culture solution 11 is kept at an appropriate temperature throughout the year regardless of the season. In particular, it is possible to effectively eliminate an adverse effect on algal growth due to an excessively high temperature of the culture solution 11 in summer. In the present embodiment, a configuration is adopted in which the temperature of the culture solution 11 is controlled by spraying the temperature-regulated water onto the outer surface of the outer cylinder 5 of the culture vessel 2. The same effect can be obtained by similarly controlling the temperature of the culture solution 11 by passing the temperature-regulated water through the water passage or the temperature-regulated water into the inner cylinder 4.
As described above, in the microalgae culturing apparatus 1 according to the present embodiment, since the swirling flow of the culture solution 11 is formed in the culture container 2 by blowing gas, the culture solution 11 is sufficiently stirred and Of microalgae can be received fairly, thereby achieving high productivity.
Further, the multi-phase turbulence during the passage of bubbles in the culture solution 11 and the turbulent boundary layer on the wall surface and the Gertruder vortex caused by the flow of the culture solution 11 along the curved wall of the culture vessel 2 having a double cylindrical shape cause the outer shape. A vortex is generated from the curved wall of the cylinder 5 to the curved wall of the inner cylinder 4 and from the curved wall of the inner cylinder 4 to the curved wall of the outer cylinder 5, and the vortex causes sufficient stirring of the culture solution 11 without stagnation. The microalgae do not adhere to the wall surface of the culture vessel 2 or form a colony and precipitate, and the transmission of light is not interrupted by the microalgae. Can be efficiently cultured, and high culture efficiency can be maintained over a long period of time.
If the microalgae adhere to the wall surface of the culture vessel 2 or form a colony and settle, light reception of the microalgae is disturbed. However, according to the microalgae culture device 1, different types of mixed-phase turbulence and turbulence Since a boundary layer and a Gertler vortex (described in detail below) are generated, a vortex or turbulence is generated between the inner cylinder 4 and the outer cylinder 5, and light transmission is not blocked by the microalgae.
Multiphase turbulence: Turbulence caused by bubbles moving in the liquid phase
Turbulent boundary layer: When a flow passes near a wall surface, when the Reynolds number, which is a parameter representing a similar side of the flow, increases (the flow over the wall surface increases, or the distance of the flow contacting the wall surface increases). The boundary layer, which is a low-speed layer formed near the wall surface, becomes turbulent. This turbulent layer is called a turbulent boundary layer.
Gertler vortex: When there is a flow parallel to the curvature on a concave surface, the Reynolds number, which is a parameter representing the similarity rule of the flow, increases (the flow above the wall surface becomes faster or the distance of the flow contacting the wall surface becomes longer). , Creating a rotating vortex perpendicular to the flow. This rotating vortex is called a Göller vortex.
Further, since the culture vessel 2 is composed of the inner cylinder 4 and the outer cylinder 5 having high pressure resistance, the plate thickness can be suppressed to be small and the weight and cost of the culture apparatus 1 can be reduced.
Further, in the present embodiment, the culture vessel 2 can be easily configured by arranging the inner cylinder 4 and the outer cylinder 5 formed of cylinders concentrically.
In the culture vessel 2 in which the inner cylinder 4 and the outer cylinder 5 are arranged concentrically, the gas injection port 5b is connected to the horizontal plane F passing through the central axis of the inner cylinder 4 and the outer cylinder 5. H A vertical plane F below and passing through the same central axis V In this case, the flow of the culture solution 11 swirling in one direction in the culture vessel 2 can be easily formed, and a multiphase turbulent flow, a turbulent boundary layer, and a Gertruder vortex can be easily generated. In addition, as shown in FIG. V , It is possible to form a flow of the culture solution 11 that turns in the opposite direction (clockwise in FIG. 5) to the present embodiment. Further, although not shown, gas inlets are formed on both left and right sides of a vertical plane passing through the center axis of the inner and outer cylinders, and if both the inlets are alternately switched at predetermined time intervals, the culture solution in the culture container can be changed. The direction of rotation can be switched alternately, and the culture solution can be stirred more efficiently. Further, the turning direction of the culture solution 11 may be partially or transiently changed in the longitudinal direction of the culture vessel 2. A plurality of gas inlets 5b are arranged in the longitudinal direction of the culture vessel 2, and gas is sequentially blown from the gas inlets 5b at one end side of the culture vessel 2 with a predetermined time difference, whereby the culture vessel of the culture solution 11 is introduced into the culture vessel 2. A swirling flow that changes along the longitudinal direction of the nozzle 2 may be formed. A plurality of gas inlets 5b are alternately arranged along the longitudinal direction of the culture vessel 2 on the left and right sides of a vertical plane passing through the center axis of the inner cylinder, and gas is blown from each gas inlet 5b so as to direct the gas into the culture vessel 2. May alternately form swirling flows of the culture solution 11 in the longitudinal direction.
By the way, in the present embodiment, the culture vessel 2 is configured by concentrically arranging the inner cylinder 4 and the outer cylinder 5 made of a cylinder. However, as shown in FIG. May be configured to be eccentric to form the culture vessel 2. In this case, the gas blowing port 4a is connected to a horizontal plane F passing through the central axis of the inner cylinder 4 as shown in the figure. H A vertical plane F below and passing through the same central axis V If it is arranged on either one of the left and right sides, a flow of the culture solution 11 swirling in the same direction (counterclockwise in the illustrated example) in the culture vessel 2 can be easily formed, and a multiphase turbulent flow, a turbulent boundary layer, It is easy to generate Gertler vortices.
Also, a culture vessel 2 'is constructed by concentrically arranging an inner cylinder 4' and an outer cylinder 5 'made of an elliptic cylinder as shown in FIG. 7, or an inner cylinder made of a long cylinder as shown in FIG. 4 "and the outer cylinder 5" may be arranged concentrically to form the culture vessel 2 ". In these cases, the gas inlets 4a 'and 5b" are connected to the inner cylinder 4' and 4 "and the outer cylinder 5". Horizontal plane F passing through the central axis of ', 5 ” H A vertical plane F below and passing through the same central axis V Can be formed in the culture vessels 2 ′ and 2 ″ in the same direction (in the illustrated example, a counterclockwise direction) to form a flow of the culture solution 11. A culture vessel may be configured by eccentrically arranging an inner cylinder and an outer cylinder consisting of an elliptic cylinder or a long cylinder, and in these cases, the gas inlet is located below a horizontal plane passing through the center axis of the inner cylinder. In addition, by disposing the culture solution on the right or left side of the vertical plane passing through the same central axis, a flow of the culture solution swirling in the same direction can be formed in the culture container.
Here, an example of an actual production facility using the microalgae culturing apparatus 1 according to the present embodiment is shown in FIG. 9, but in the actual production facility, a plurality of microalgae culturing apparatuses 1 are arranged in a row as shown in the figure. Those connected continuously are arranged in several rows. In this case, in each row, one gas introduction pipe 14 and two temperature control water introduction pipes 19 are shared by each culture device 1.
Next, the results of a culture experiment performed using the microalgae culture device according to the present invention will be described.
A culture experiment was performed for 13 days using Chlorococcum littorale as microalgae. In this case, the sunshine duration is 10 hours / day, and the quantity of photons in the south middle is 800 μmol / m 2 / S, average daytime photon quantity 340 μmol / m 2 / S, the culture volume was 70 liters, and the culture result was an average growth rate of 0.15 g dry weight / liter / day. Also, no microalgae adhered to the culture vessel wall during the culture period.
In another culture experiment, as a result of culturing Spirulina platensis as a microalga, the culture concentration was 0.3 to 0.5 g / liter and the productivity per day was 0.1 in the conventional culture pond method. On the other hand, the microalgae culturing apparatus according to the present invention has good results of a culture concentration of 10 to 20 g / l and a productivity of 2.8 to 7.0 g / l per day, while the microalgae culturing apparatus according to the present invention has a good concentration. Was done.
<Industrial applicability>
As is clear from the above description, according to the present invention, a culture solution is put into a culture vessel having an opening at the top, and a gas containing carbon dioxide is blown into the culture solution, and visible light is incident. In the microalgae culturing apparatus for culturing microalgae in the culture vessel, the culture vessel is formed into a double cylinder composed of an inner cylinder and an outer cylinder which are placed horizontally, and at least the outer cylinder transmits visible light. Since a swirling flow of the culture solution is formed in the culture container by blowing the gas, high productivity can be obtained by realizing sufficient stirring of the culture solution, The effect is obtained that the high culture efficiency can be maintained for a long period of time by preventing the microalgae from adhering to the wall surface of the culture vessel and sedimentation on the bottom surface of the culture vessel.
Further, according to the present invention, a culture solution is put into a culture container having an opening at the top, and a gas containing carbon dioxide is blown into the culture solution, and visible light is incident on the culture solution in the culture container. In a microalgae culture method for culturing microalgae, a culture vessel formed in a double cylindrical shape with an inner cylinder and an outer cylinder arranged concentrically and comprising at least an outer cylinder made of a transparent material that transmits visible light The gas inlet opening at the lower part of the inner cylinder and the outer cylinder are arranged on one of the left and right sides of the vertical plane passing through the central axis of the outer cylinder, and by blowing the gas from the gas inlet, or eccentrically placed horizontally The inner cylinder and the outer cylinder are formed into a double cylinder, and at least the outer cylinder is formed of a transparent material that transmits visible light. Located on either side of the vertical plane passing By injecting the gas from the gas inlet, a swirling flow of the culture solution is formed in the culture vessel, so that sufficient productivity of the culture solution can be easily achieved and high productivity can be obtained. The effect is obtained that the high culture efficiency can be maintained for a long period of time by preventing the algae from adhering to the wall surface of the culture vessel and sedimentation on the bottom surface of the culture vessel.
[Brief description of the drawings]
FIG. 1 is a perspective view of a microalga culturing apparatus according to the present invention.
FIG. 2 is a cutaway front view (a cutaway view in the direction of arrow A in FIG. 1) of the microalgae culture device according to the present invention.
FIG. 3 is a side sectional view of the microalgae culturing apparatus according to the present invention.
FIG. 4 is a sectional view taken along line BB of FIG.
FIG. 5 is a cross-sectional view showing another embodiment of the culture vessel of the microalgae culture apparatus according to the present invention.
FIG. 6 is a cross-sectional view showing another embodiment of the culture vessel of the microalgae culture apparatus according to the present invention.
FIG. 7 is a cross-sectional view showing another embodiment of the culture vessel of the microalgae culture apparatus according to the present invention.
FIG. 8 is a cross-sectional view showing another embodiment of the culture vessel of the microalgae culture apparatus according to the present invention.
FIG. 9 is a perspective view showing an example of an actual production facility using the microalgae culturing apparatus according to the present invention.
In addition, the code | symbol in a figure, 1 is microalgae culture | cultivation apparatus, 2,2 ', 2 "is a culture container, 4,4', 4" is an inner cylinder, 4a, 4a 'is a gas inlet, 5,5,5. ": Outer cylinder, 5b, 5b": gas inlets, 6, 7: side walls, 11: culture solution, 14: gas introduction pipe, 17: gas discharge opening, 18: cap, 19: temperature control water introduction pipe It is.

Claims (8)

頂部に開口部を有する培養容器の中に培養液を入れ、該培養液中に二酸化炭素を含むガスを吹き込みつつ、可視光線を入射させることによって前記培養容器内で微細藻類を培養する微細藻類培養装置において、
前記培養容器を横置きされた内筒と外筒から成る二重円筒状に成形するとともに、少なくとも外筒を可視光線を透過する透明材料で構成し、前記培養容器内に前記培養液の旋回流を形成するためのガスを吹き込むガス吹込口を培養容器内下部に開口せしめたことを特徴とする微細藻類培養装置。
A microalga culture in which a culture solution is placed in a culture container having an opening at the top, and a gas containing carbon dioxide is blown into the culture solution, and microalgae are cultured in the culture container by irradiating visible light. In the device,
The culture vessel is formed into a double cylindrical shape consisting of an inner cylinder and an outer cylinder placed horizontally, and at least the outer cylinder is made of a transparent material that transmits visible light, and the swirling flow of the culture solution flows into the culture vessel. A microalgae culturing apparatus, characterized in that a gas blowing port for blowing a gas for forming a porcelain is opened at a lower portion in the culture vessel.
前記内筒と外筒を円筒、楕円筒又は長円筒で構成するとともに、これらの内筒と外筒を同心又は偏心させて配置したことを特徴とする請求の範囲第1項に記載の微細藻類培養装置。The microalgae according to claim 1, wherein the inner cylinder and the outer cylinder are configured as cylinders, elliptical cylinders or long cylinders, and the inner cylinder and the outer cylinder are arranged concentrically or eccentrically. Culture equipment. 頂部に開口部を有する培養容器の中に培養液を入れ、該培養液中に二酸化炭素を含むガスを吹き込みつつ、可視光線を入射させることによって前記培養容器内で微細藻類を培養する微細藻類培養方法において、
同心に横置された内筒と外筒とで二重円筒状に成形され、少なくとも外筒を可視光線を透過する透明材料で構成して成る培養容器の下部に開口するガス吹込口を、内筒と外筒の中心軸を通る鉛直面の左右何れか一方に配置し、該ガス吹込口から前記ガスを吹き込むことによって培養容器内に前記培養液の旋回流を形成することを特徴とする微細藻類培養方法。
A microalga culture in which a culture solution is placed in a culture container having an opening at the top, and a gas containing carbon dioxide is blown into the culture solution, and microalgae are cultured in the culture container by irradiating visible light. In the method,
A gas inlet that is formed in a double cylindrical shape with an inner cylinder and an outer cylinder arranged concentrically and that opens at the lower part of a culture vessel at least composed of a transparent material that transmits visible light, A micro-fluidic device which is disposed on one of the right and left sides of a vertical plane passing through the central axis of a cylinder and an outer cylinder, and forms a swirling flow of the culture solution in a culture vessel by blowing the gas from the gas inlet. Algae culture method.
頂部に開口部を有する培養容器の中に培養液を入れ、該培養液中に二酸化炭素を含むガスを吹き込みつつ、可視光線を入射させることによって前記培養容器内で微細藻類を培養する微細藻類培養方法において、
偏心して横置きされた内筒と外筒とで二重円筒状に成形され、少なくとも外筒を可視光線を透過する透明材料で構成して成る培養容器の下部に開口するガス吹込口を、内筒の中心軸を通る鉛直面の左右何れか一方に配置し、該ガス吹込口から前記ガスを吹き込むことによって培養容器内に前記培養液の旋回流を形成することを特徴とする微細藻類培養方法。
A microalga culture in which a culture solution is placed in a culture container having an opening at the top, and a gas containing carbon dioxide is blown into the culture solution, and microalgae are cultured in the culture container by irradiating visible light. In the method,
A gas inlet opening in the lower part of a culture vessel formed of a double cylinder with an eccentrically placed inner cylinder and an outer cylinder, and at least the outer cylinder is made of a transparent material that transmits visible light, A microalgae culturing method, wherein the microalgae is arranged on one of the right and left sides of a vertical plane passing through the center axis of the cylinder, and the gas is blown from the gas inlet to form a swirling flow of the culture solution in the culture vessel. .
前記培養容器の内筒の中心軸を通る鉛直面の左右に前記ガス吹込口を配置し、両ガス吹込口を所定時間毎に交互に切り替えることによって培養容器内の培養液の旋回方向を交互に切り替えることを特徴とする請求の範囲第3項又は第4項に記載の微細藻類培養方法。The gas inlets are arranged on the left and right sides of a vertical plane passing through the center axis of the inner cylinder of the culture vessel, and the turning direction of the culture solution in the culture vessel is alternately switched by alternately switching both gas inlets at predetermined time intervals. The method for culturing microalgae according to claim 3 or 4, wherein the method is switched. 前記培養容器の長手方向に複数のガス吹込口を配置し、培養容器の一端側のガス吹込口からガスを所定の時間差をもって順次吹き込むことによって培養容器内に培養液の前記培養容器の長手方向に沿って変化する旋回流を形成することを特徴とする請求の範囲第3項又は第4項に記載の微細藻類培養方法。A plurality of gas inlets are arranged in the longitudinal direction of the culture vessel, and gas is sequentially blown from the gas inlet at one end side of the culture vessel with a predetermined time difference in the longitudinal direction of the culture vessel of the culture solution into the culture vessel. The method of culturing microalgae according to claim 3 or 4, wherein a swirling flow that changes along the direction is formed. 前記培養容器の長手方向に沿って複数のガス吹込口を内筒の中心軸を通る鉛直面の左右に交互に配置し、各ガス吹込口からガスを吹き込むことによって培養容器内に方向が長手方向に交互に異なる培養液の旋回流を形成することを特徴とする請求の範囲第3項又は第4項に記載の微細藻類培養方法。A plurality of gas inlets are arranged alternately on the left and right sides of a vertical plane passing through the center axis of the inner cylinder along the longitudinal direction of the culture vessel, and the direction in the culture vessel is elongated by blowing gas from each gas inlet. The method for culturing microalgae according to claim 3 or 4, wherein swirling flows of different culture solutions are alternately formed. 前記培養容器の外筒外面への温調水の散水、外筒の外側に形成された水通路への温調水の通水又は内筒内への温調水の通水によって前記培養液の温度をコントロールすることを特徴とする請求の範囲第3項〜第7項の何れかに記載の微細藻類培養方法。Sprinkling of the temperature-regulated water on the outer surface of the outer cylinder of the culture vessel, flow of the temperature-regulated water to a water passage formed outside the outer cylinder, or flow of the temperature-regulated water into the inner cylinder, The method for culturing microalgae according to any one of claims 3 to 7, wherein the temperature is controlled.
JP2003502141A 2001-06-01 2002-05-30 Microalgae culture apparatus and microalgae culture method Expired - Fee Related JP4079877B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001166956 2001-06-01
JP2001166956 2001-06-01
PCT/JP2002/005263 WO2002099031A1 (en) 2001-06-01 2002-05-30 Device and method for cultivating micro algae

Publications (2)

Publication Number Publication Date
JPWO2002099031A1 true JPWO2002099031A1 (en) 2004-09-16
JP4079877B2 JP4079877B2 (en) 2008-04-23

Family

ID=19009417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003502141A Expired - Fee Related JP4079877B2 (en) 2001-06-01 2002-05-30 Microalgae culture apparatus and microalgae culture method

Country Status (4)

Country Link
JP (1) JP4079877B2 (en)
KR (1) KR100609736B1 (en)
CN (1) CN1304555C (en)
WO (1) WO2002099031A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100679989B1 (en) * 2005-10-18 2007-02-08 한국생명공학연구원 Raceway-type outdoor mass microalgal culture vessel provided with seed culture vessel
JP2009106218A (en) * 2007-10-31 2009-05-21 Yukio Yoneda Photosynthesis unit system
WO2011081234A1 (en) * 2009-12-30 2011-07-07 강원대학교 산학협력단 Method for cultivating marine microalgae using effluents from a nuclear power plant
AU2011226608B2 (en) * 2010-03-12 2015-10-29 Colorado State University Research Foundation Systems and methods for positioning flexible floating photobioreactors
US8658421B2 (en) 2010-07-23 2014-02-25 Kairos Global Co., Ltd. Circulatory photobioreactor
EP2412793A1 (en) 2010-07-30 2012-02-01 Kairos Global Co., Ltd. Circulatory photobioreactor
EP2412794A1 (en) 2010-07-30 2012-02-01 Kairos Global Co., Ltd. Method for circulatory cultivating photosynthetic microalgae
CN102268362B (en) * 2011-06-10 2013-07-24 薛命雄 Spirulina culturing pipeline carbon dioxide compensation device and carbon compensation method
CN102660449A (en) * 2012-04-27 2012-09-12 天津大学 Sleeve-type photo-bioreactor
CN102660448A (en) * 2012-04-27 2012-09-12 天津大学 Sleeve type photobiological reaction system for culturing microalgae on scale by utilizing waste gas and waste heat
DE102012214493A1 (en) * 2012-08-14 2014-02-20 Air-Lng Gmbh Photobioreactor for the cultivation of phototrophic organisms
CN102911856B (en) * 2012-10-29 2015-04-22 天津大学 Tangential casing built-in aeration photo-bioreactor applicable to micro algae high-efficiency culture
DE102013106478A1 (en) * 2013-06-20 2014-12-24 Athex Gmbh & Co. Kg Pipeline for use in a photobioreactor
KR101680110B1 (en) 2015-02-06 2016-11-28 주식회사 클로랜드 High-density culturing apparatus of microalgae of air exchange type
KR101657489B1 (en) 2015-02-13 2016-09-19 주식회사 클로랜드 Circulation-type high-density culturing apparatus of microalgae using air
KR101657490B1 (en) 2015-02-23 2016-09-30 주식회사 클로랜드 Operation method of circulation-type high-density culturing apparatus of microalgae using air
JP7057148B2 (en) * 2018-01-31 2022-04-19 株式会社熊谷組 Microalgae culture equipment
KR102003634B1 (en) 2018-02-01 2019-07-24 주식회사 레이바이오 Microalgae culture device using infrared and VIS
CN114540162A (en) * 2022-03-24 2022-05-27 衢州学院 Closed microalgae culture device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112481A (en) * 1989-09-26 1991-05-14 Hiroyuki Kikuchi Apparatus for culturing algae
IL108321A (en) * 1994-01-12 1998-10-30 Yeda Res & Dev Bioreactor and system for improved productivity of photosynthetic algae
WO1996023865A1 (en) * 1995-02-02 1996-08-08 Aspitalia S.R.L. Process and device for cultivating microalgae in a closed circuit
DE69927654T2 (en) * 1998-03-31 2006-06-22 Bioreal, Inc., Maui CULTURE DEVICE FOR FINE ALGAE
CN2351950Y (en) * 1998-09-01 1999-12-08 中国科学院海洋研究所 Algae cultivation reactor
CN1376777A (en) * 2001-03-26 2002-10-30 中国科学院化工冶金研究所 Process for culturing microalga cells by combination of supplementing carbon by solvent with collecting them by air floating

Also Published As

Publication number Publication date
KR20040019298A (en) 2004-03-05
JP4079877B2 (en) 2008-04-23
CN1513055A (en) 2004-07-14
WO2002099031A1 (en) 2002-12-12
KR100609736B1 (en) 2006-08-08
CN1304555C (en) 2007-03-14

Similar Documents

Publication Publication Date Title
JP4079877B2 (en) Microalgae culture apparatus and microalgae culture method
AU749885B2 (en) Fine algae culture device
JP5756482B2 (en) System, apparatus, and method for cultivating microorganisms and reducing gas
KR100679989B1 (en) Raceway-type outdoor mass microalgal culture vessel provided with seed culture vessel
CN103221346A (en) Systems, apparatuses and methods of cultivating organisms and mitigation of gases
US10865371B2 (en) Large scale mixotrophic production systems
WO2010138571A1 (en) Photobioreactor and method for culturing and harvesting microorganisms
CN105018336A (en) Apparatus for culturing microalgae by using waste water
EP1599570A2 (en) Reactor for industrial culture of photosynthetic micro-organisms
KR20190094622A (en) Apparatus for cultivating microalgae
MX2012005674A (en) Algae culture system.
JP4079878B2 (en) Microalgae culture apparatus and microalgae culture method
KR20200046557A (en) Light cultivation device for microalgae
CN101760429A (en) Simple and easy cylindrical reaction vessel for microalgae culture
CN209602325U (en) A kind of microalgae purification livestock breeding wastewater processing unit
CN102746982A (en) Multilevel large capacity tank-type photobioreactor capable of inhibiting growth of microalgae on wall
JP5324532B2 (en) Circulating photobioreactor
AU681243B2 (en) A bioreactor and system for improved productivity of photosynthetic algae
CN111465682A (en) Culture tank
JPH07289239A (en) Method for culturing photosynthetic organism
CN1483807A (en) apparatus for culturing bait microalga
CN206706102U (en) A kind of novel photo-biological reactor
CN2878404Y (en) Two-direction counter current micro-alga culture device
KR20050013269A (en) Multi-functional bio-reactor with high photo-transmittance
CN219752064U (en) Ecological equalizing basin of breed waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees