JPH07289239A - Method for culturing photosynthetic organism - Google Patents

Method for culturing photosynthetic organism

Info

Publication number
JPH07289239A
JPH07289239A JP6090361A JP9036194A JPH07289239A JP H07289239 A JPH07289239 A JP H07289239A JP 6090361 A JP6090361 A JP 6090361A JP 9036194 A JP9036194 A JP 9036194A JP H07289239 A JPH07289239 A JP H07289239A
Authority
JP
Japan
Prior art keywords
liquid film
culture solution
culture
film forming
photosynthetic organism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6090361A
Other languages
Japanese (ja)
Other versions
JP3035153B2 (en
Inventor
Takeshi Endo
岳 遠藤
Tomio Nozaki
登美男 野崎
Kazuhiko Oniyama
和彦 鬼山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
IHI Corp
Original Assignee
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIKYU KANKYO SANGYO GIJUTSU, CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO, IHI Corp filed Critical CHIKYU KANKYO SANGYO GIJUTSU
Priority to JP6090361A priority Critical patent/JP3035153B2/en
Publication of JPH07289239A publication Critical patent/JPH07289239A/en
Application granted granted Critical
Publication of JP3035153B2 publication Critical patent/JP3035153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Treating Waste Gases (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To carry out photosynthesis at a high culture rate without stirring a culture solution, by supplying carbon dioxide while making the culture solution containing Anacystis nidulans flow along the surface of a liquid film forming plate and radiating the culture solution with light rays. CONSTITUTION:A CO2-containing gas is supplied from a gas feeding means 10 to a culture solution 4 containing Anacystis nidulans while making the culture solution flow along the surface of a liquid film forming plate 2 and the culture solution is irradiated with light rays from a light source 7. The thickness of a liquid film 6 of the culture solution can be readily controlled, CO2 is readily taken in the liquid film and no difference in irradiation amount of light rays in the direction of the thickness of the liquid film occurs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光合成生物を効率良く培
養するための培養方法に係わり、特に液膜形成板の表面
に形成した培養液の液膜中で微細藻類を培養し、極めて
高い培養速度で培養を行うための技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a culturing method for efficiently culturing photosynthetic organisms, and in particular, culturing microalgae in a liquid film of a culture solution formed on the surface of a liquid film forming plate to achieve extremely high culture. It relates to a technique for culturing at a high speed.

【0002】[0002]

【従来の技術】従来より、クロレラ、スピルリナなどの
光合成生物を大量培養し、培養した光合成生物から糖
類、発酵工業基質、蛋白質、不飽和脂肪酸、色素等の有
用物質の生産、あるいは光合成生物を用いた排水処理が
行われている。また、二酸化炭素の大量放出による地球
温暖化の問題がクローズアップされるに伴い、排ガス中
の二酸化炭素を光合成生物で吸収同化させる排ガス処理
技術の研究開発が進められている。このような光合成生
物を利用した有用物質生産や排水、排ガス浄化を行なう
場合、その培養効率を高めるためには、培養液中の光合
成生物に、光と二酸化炭素とを如何に効率良く供給でき
るかが重要となる。
2. Description of the Related Art Conventionally, a large amount of photosynthetic organisms such as chlorella and spirulina have been cultivated, and useful substances such as sugars, fermentation substrates, proteins, unsaturated fatty acids and pigments have been produced from the cultivated photosynthetic organisms, or photosynthetic organisms have been used. Wastewater treatment was performed. In addition, as the problem of global warming due to the large amount of carbon dioxide emission is highlighted, research and development of exhaust gas treatment technology for absorbing and assimilating carbon dioxide in exhaust gas by photosynthetic organisms is underway. In the production of useful substances, wastewater, and exhaust gas purification using such photosynthetic organisms, how to efficiently supply light and carbon dioxide to the photosynthetic organisms in the culture solution in order to increase the culture efficiency Is important.

【0003】従来、クロレラ等の培養において、培養槽
内に光を供給する方法としては、培養槽内に多数の光フ
ァイバや光拡散ロッドを浸漬して培養槽内に光を照射す
る方法、光合成生物を含む培養液を攪拌して外部から太
陽光や人工光源の光を照射する方法、培養槽内に光源を
設置して光を照射する方法がある。また、二酸化炭素を
含むガスを培養液中に強制的に供給する方法として、培
養槽内に下部からガスを強制通気する方法がある。
Conventionally, in the culture of chlorella or the like, as a method of supplying light into the culture tank, a method of irradiating light into the culture tank by immersing a large number of optical fibers or light diffusion rods in the culture tank, photosynthesis There are a method of irradiating sunlight and light of an artificial light source from the outside by stirring a culture solution containing organisms, and a method of irradiating light by installing a light source in a culture tank. Further, as a method of forcibly supplying a gas containing carbon dioxide into the culture solution, there is a method of forcibly ventilating the gas from the lower part in the culture tank.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た光を供給する方法のうち、光ファイバや光拡散ロッド
を浸漬する方法及び槽内に光源を設置する場合には、増
殖した光合成生物が光ファイバ表面やロッドの表面に付
着して照射効率が低下してしまう問題があった。また、
培養槽外部から太陽光や人工光源の光を照射する方法
は、光条件を均一にするために培養液を常時攪拌しなけ
ればならず、この攪拌によって培養生物に損傷を与える
欠点があり、かつ培養に高エネルギーを要する問題があ
った。また、培養槽下部から二酸化炭素を含むガスを強
制通気する方法では、増殖した光合成生物が通気管に付
着して通気管が目詰まりを起こし易く、また通気に際し
高エネルギーを要する問題があった。
However, among the above-mentioned methods for supplying light, when a method of immersing an optical fiber or a light diffusing rod and when a light source is installed in a tank, the propagated photosynthetic organisms are converted into an optical fiber. There has been a problem that the irradiation efficiency is reduced by adhering to the surface or the surface of the rod. Also,
The method of irradiating sunlight or light from an artificial light source from the outside of the culture tank requires that the culture solution be constantly stirred in order to make the light conditions uniform, and this stirring has the drawback of damaging cultured organisms, and There is a problem that high energy is required for culturing. Further, in the method of forcibly ventilating a gas containing carbon dioxide from the lower part of the culture tank, there is a problem that the photosynthetic organisms that have proliferated adhere to the vent tube and the vent tube is likely to be clogged, and high energy is required for venting.

【0005】本発明は上記事情に鑑みてなされたもの
で、光合成生物の培養において、効率良く光と二酸化炭
素を供給でき、極めて効率良く光合成生物を培養し得る
培養方法の提供を目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a culture method capable of efficiently supplying light and carbon dioxide in culturing a photosynthetic organism and culturing the photosynthetic organism extremely efficiently.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、光合成生物を含む培養液を、液膜形成板
の表面に沿って液膜状に流下させ、この液膜と二酸化炭
素を含むガスとを接触させるとともに、この液膜に光を
照射して光合成生物を培養する方法であり、この光合成
生物としてアナシスチス・ニドランスを用いることを特
徴としている。また本発明の別な態様では、複数枚の液
膜形成板を、各板の上流端が上段の板の下流端に隣接し
下流端が下段の板の上流端に隣接するように積層配置
し、これらの液膜形成板上に培養液を順次流下させるこ
とを特徴としている。さらに、これらの培養方法におい
て、液膜形成板に光を照射するのに、人工光源の光又は
太陽光を光ファイバを通して導き液膜形成板に光を照射
するか、或いは光ファイバを液膜形成板に接続して該液
膜形成板の表面から照射しても良い。また、二酸化炭素
を含むガスは空気又は二酸化炭素含有排ガスが使用され
る。また、液膜形成板を流下した培養液から光合成生物
の一部を回収し、この培養液を液膜形成板の上流端に循
環して培養を行うことが望ましい。
In order to solve the above-mentioned problems, the present invention allows a culture solution containing a photosynthetic organism to flow down in the form of a liquid film along the surface of a liquid film forming plate, and the liquid film and the dioxide. This is a method of culturing a photosynthetic organism by bringing the liquid film into contact with a gas containing carbon and irradiating the liquid film with light, and is characterized by using Anacystis nidulans as the photosynthetic organism. In another aspect of the present invention, a plurality of liquid film forming plates are laminated and arranged so that the upstream end of each plate is adjacent to the downstream end of the upper plate and the downstream end is adjacent to the upstream end of the lower plate. The feature is that the culture solution is sequentially flown down onto these liquid film forming plates. Furthermore, in these culturing methods, in order to irradiate the liquid film forming plate with light, the light of artificial light source or sunlight is guided through the optical fiber to irradiate the liquid film forming plate with the light, or the optical fiber is formed into a liquid film. Irradiation may be performed from the surface of the liquid film forming plate by connecting to the plate. Air or carbon dioxide-containing exhaust gas is used as the gas containing carbon dioxide. Further, it is desirable to recover a part of the photosynthetic organisms from the culture solution that has flowed down the liquid film forming plate, and circulate this culture liquid to the upstream end of the liquid film forming plate to carry out the culture.

【0007】[0007]

【作用】本発明の光合成生物の培養方法では、液膜形成
板上に光合成生物を含む培養液の液膜を形成し、この液
膜中に光源からの光と周囲の気相中からの二酸化炭素を
供給しつつ流下させ、光合成生物の培養を行うものであ
り、培養液の流量や液膜形成板の傾斜角度を適宜調節す
ることにより、形成される液膜の厚さを容易にコントロ
ールすることができる。この液膜中で光合成生物を培養
する場合には、液膜が薄いために、液膜の厚さ方向の全
てに光を照射することが可能であり、また、培養液を液
膜状で流下させることで気相との接触面積が増大し、周
囲の気相中に含まれる二酸化炭素が液膜中に容易に取り
込まれる。
In the method for culturing a photosynthetic organism of the present invention, a liquid film of a culture solution containing a photosynthetic organism is formed on a liquid film forming plate, and the light from the light source and the dioxide from the surrounding gas phase are formed in this liquid film. It is used to cultivate photosynthetic organisms by supplying it while supplying carbon, and the thickness of the liquid film to be formed can be easily controlled by appropriately adjusting the flow rate of the culture liquid and the inclination angle of the liquid film forming plate. be able to. When culturing photosynthetic organisms in this liquid film, it is possible to irradiate light in the thickness direction of the liquid film because the liquid film is thin. By doing so, the contact area with the gas phase increases, and the carbon dioxide contained in the surrounding gas phase is easily taken into the liquid film.

【0008】さらに、光合成生物として、微細な藻類で
あるアナシスチス・ニドランスを用いて上記液膜形成板
上での液膜流下培養を実施することにより、培養液の循
環ポンプなどによって破砕を受けたり、液膜形成板上に
沈澱密着して活性が低下することがなく、極めて高い効
率で光合成を行うことができる。即ち、クロレラやスピ
ルリナを用いて上記液膜流下培養を行うと、送液ポンプ
により破砕を受けたり、或いは液膜形成板上への沈澱密
着が著しく、活性が低下するなどの原因により、高い効
率での培養が困難であるが、本発明で採用したアナシス
チス・ニドランス(Anacystis nidulans)は、大きさが
1〜2μm程度と小さく、液膜流下培養において破砕を
受けたり、液膜形成板上に沈澱密着することなく、液膜
形成板上に培養液を液膜状に流下、循環させて培養して
も良好な増殖を示し、極めて高効率で光合成を行うこと
ができる。
Further, as a photosynthetic organism, microscopic algae, Anacystis nidulans, is used to carry out the liquid film flow-down culture on the liquid film forming plate, so that the liquid culture liquid is crushed by a circulation pump or the like. Photosynthesis can be carried out with extremely high efficiency without causing precipitation and adhesion on the liquid film forming plate to reduce the activity. That is, when the above-mentioned liquid film flow-down culture is performed using Chlorella or Spirulina, it is highly efficient because it is crushed by a liquid-feeding pump or the adhesion of precipitates on the liquid film-forming plate is remarkable and the activity decreases. Although it is difficult to cultivate the bacterium, the size of Anacystis nidulans used in the present invention is as small as about 1 to 2 μm, and it is crushed in the liquid film flow-down culture or precipitated on the liquid film forming plate. Even if the culture solution is flown and circulated in the form of a liquid film on the liquid film forming plate without adhering to each other, good growth is exhibited even when culturing is performed, and photosynthesis can be performed with extremely high efficiency.

【0009】[0009]

【実施例】以下、図面を参照して本発明の光合成生物の
培養方法の一例を説明する。本発明の培養方法において
は、光合成生物として、アナシスチス・ニドランス(Ana
cystis nidulans)を用い、これを含んだ培養液を、液
膜形成板の表面に沿って液膜状に流下させ、この液膜と
二酸化炭素を含むガスとを接触させるとともに、この液
膜に光を照射して培養する。本発明において使用するア
ナシスチス・ニドランスは、ラン藻類の微細な単細胞藻
類(大きさ1〜2μm程度)であり、アナシスチス・ニ
ドランスIAM M6として公知のものである。このア
ナシスチス・ニドランスは、小さく、また増殖しても互
いに接着し難いという特性を有する。また、クロレラ、
スピルリナなどの他の光合成生物と比べ、増殖が速く、
光合成能力(炭酸同化能力)が強く、他の光合成生物と
比べて単位藻重量当りの二酸化炭素固定化量が大きい。
さらに、その至適生育温度は常温付近(25〜30℃程
度)であり、また生育可能pH域も広く、微酸性〜pH
8程度で生育が可能であることから、培養条件の範囲が
広く、培養が容易である。また、ビタミン類などの有機
栄養素を用いない完全無機栄養培地での生育が可能であ
り、安価な培養液を使用し得る。
EXAMPLES An example of the method for culturing a photosynthetic organism of the present invention will be described below with reference to the drawings. In the culture method of the present invention, as a photosynthetic organism, Anacystis nidulans ( Ana
cystis nidulans ), and the culture solution containing it is allowed to flow down in the form of a liquid film along the surface of the liquid film forming plate, and the liquid film is brought into contact with a gas containing carbon dioxide, and the liquid film is exposed to light. Irradiate and culture. The Anacystis nidulans used in the present invention is a fine unicellular alga of the cyanobacteria (about 1-2 μm in size), and is known as Anacystis nidulans IAM M6. The Anacystis nidulans has the characteristics that they are small and are difficult to adhere to each other even if they grow. Also, Chlorella,
Compared to other photosynthetic organisms such as Spirulina, it grows faster,
The photosynthetic ability (carbonic acid assimilation ability) is strong, and the amount of carbon dioxide immobilized per unit alga weight is larger than that of other photosynthetic organisms.
Furthermore, the optimum growth temperature is around room temperature (about 25 to 30 ° C.), and the pH range in which growth is possible is wide.
Since it can grow at about 8, it has a wide range of culture conditions and is easy to culture. In addition, it is possible to grow in a completely inorganic nutrient medium that does not use organic nutrients such as vitamins, and an inexpensive culture medium can be used.

【0010】図1及び第2図は本発明の光合成生物の培
養方法を実施するのに好適な培養装置の一例を示すもの
であり、この培養装置1は、複数枚の液膜形成板2…
を、各板2の上流端が上段の板2の下流端に隣接し下流
端が下段の板2の上流端に隣接するように積層配置した
培養部3と、この培養部3の上端部に光合成生物を含む
培養液4を供給する培養液供給手段5と、培養部3上に
形成された液膜6に光を照射する光源7と、この培養部
3を収容する容器8と、この容器8に設けられたガス供
給口9から容器8内に空気又は二酸化炭素を含むガスを
供給するガス供給手段10とを備えて構成されている。
FIGS. 1 and 2 show an example of a culture device suitable for carrying out the method for culturing a photosynthetic organism of the present invention. This culture device 1 comprises a plurality of liquid film forming plates 2 ...
The culture section 3 in which the upstream end of each plate 2 is adjacent to the downstream end of the upper plate 2 and the downstream end is adjacent to the upstream end of the lower plate 2 and the upper end of the culture section 3 A culture solution supply means 5 for supplying a culture solution 4 containing a photosynthetic organism, a light source 7 for irradiating a liquid film 6 formed on the culture section 3 with light, a container 8 for containing this culture section 3, and this container And a gas supply means 10 for supplying a gas containing air or carbon dioxide into the container 8 from a gas supply port 9 provided in 8.

【0011】上記培養部3のそれぞれの液膜形成板2
は、30度以下の傾斜、好ましくは5〜15度程度傾斜
させて配置されている。なお、液膜形成板2を殆ど水平
とした場合でも、培養液4を供給するとその供給圧で培
養液4を流下させることができる。この培養部3におけ
る液膜形成板2の積層段数は特に限定されず、1枚又は
それ以上とすることができる。
Each liquid film forming plate 2 of the culture section 3
Are arranged with an inclination of 30 degrees or less, preferably about 5 to 15 degrees. Even when the liquid film forming plate 2 is almost horizontal, when the culture solution 4 is supplied, the culture solution 4 can be caused to flow down by the supply pressure. The number of stacked layers of the liquid film forming plate 2 in the culture section 3 is not particularly limited, and may be one or more.

【0012】上記培養液供給手段5は、培養液調整槽1
1と、この培養液調整槽11から容器8上部を通り液膜
形成板3の上流端近傍まで延びる送液ライン12と、こ
の送液ライン12に介在された送液ポンプ13と、容器
8底部に設けられた液排出口14と培養液調整槽11と
の間を接続する回収ライン15とを備え、培養液調整槽
11内の光合成生物を含んだ培養液4を送液ライン12
を通して送液ポンプ13で圧送し、送液ライン12端部
の液供給部16から培養部3の上流端に、所定流量で供
給するようになっている。培養液4の供給流量は送液ポ
ンプ13で容易に調節可能であり、その供給流量は培養
部3の面積や液膜形成板2の傾斜度合等によって適宜設
定される。例えば、1m2程度の板2を傾斜5〜10度
で傾斜させ、その表面に1mm〜5mm程度の厚さの液
膜を形成させる場合には、培養液4を50リットル・h-1
ら500リットル・h-1程度の流量で供給するのが望まし
い。
The culture solution supply means 5 is a culture solution adjusting tank 1
1, a liquid feed line 12 extending from the culture liquid adjusting tank 11 to the vicinity of the upstream end of the liquid film forming plate 3 through the upper portion of the container 8, a liquid feed pump 13 interposed in the liquid feed line 12, and a bottom portion of the container 8. And a recovery line 15 that connects the liquid discharge port 14 provided to the culture solution adjusting tank 11 and the liquid supply line 12 for supplying the culture solution 4 containing the photosynthetic organisms in the culture solution adjusting tank 11.
It is configured to be pressure-fed by the liquid feed pump 13 through the liquid feed line 12 and to be supplied from the liquid feed unit 16 at the end of the liquid feed line 12 to the upstream end of the culture unit 3 at a predetermined flow rate. The supply flow rate of the culture solution 4 can be easily adjusted by the liquid delivery pump 13, and the supply flow rate is appropriately set depending on the area of the culture section 3, the inclination degree of the liquid film forming plate 2, and the like. For example, when the plate 2 of about 1 m 2 is inclined at an inclination of 5 to 10 degrees and a liquid film having a thickness of about 1 mm to 5 mm is formed on the surface thereof, the culture solution 4 is added from 50 liter · h −1 to 500. It is desirable to supply at a flow rate of about liter · h −1 .

【0013】この培養液調整槽11には、収穫ライン1
7を介して収穫装置18が接続されており、回収ライン
15を通して流下した培養液4の一部を収穫装置18に
送って培養液4中の光合成生物を分離(収穫)するよう
になっている。この収穫装置18には光合成生物の大き
さなどに応じてろ過や沈澱槽、遠心槽等を使用する。ま
た、光合成生物を分離した培養液は別のラインを通して
培養液調整槽11に返送しても良い。培養液4の温度調
節は、熱交換器、ヒータ、冷凍器等を培養部3から培養
液供給手段5の全体または一部に設置して行う。培養温
度は対象となる生物の培養適温に調節される。光合成生
物を含んだ培養液4を培養部3の上流端に供給する液供
給部16の形状は、単管、分岐管、マニホールド等の中
から適宜選定する。
The culture line adjusting tank 11 has a harvest line 1
A harvesting device 18 is connected via 7 and a part of the culture solution 4 flowing down through the recovery line 15 is sent to the harvesting device 18 to separate (harvest) photosynthetic organisms in the culture solution 4. . As the harvesting device 18, a filtering tank, a precipitation tank, a centrifugal tank, or the like is used according to the size of the photosynthetic organism. The culture solution from which the photosynthetic organism has been separated may be returned to the culture solution adjusting tank 11 through another line. The temperature of the culture solution 4 is adjusted by installing a heat exchanger, a heater, a freezer, or the like from the culture section 3 to all or part of the culture solution supply means 5. The culture temperature is adjusted to a temperature suitable for culturing the target organism. The shape of the liquid supply section 16 for supplying the culture solution 4 containing the photosynthetic organism to the upstream end of the culture section 3 is appropriately selected from a single tube, a branch tube, a manifold and the like.

【0014】光源7は、キセノンランプ19と、この光
を各液膜形成板2の周縁に導く光ガイド20とから構成
されている。この光ガイド20は多数本の光ファイバを
束ねてなるものである。この例では液膜形成板2を透明
な板材又は高反射率の板材により形成し、光ガイド20
の多数の光ファイバの出射端を液膜形成板2の周縁に配
置し、光ガイド20を通して導かれた光を液膜形成板2
の表面から放射するような構成としている。なお、光源
7の構成はこの例に限定されることなく、光ガイド20
を液膜形成板2に接続することなく、各液膜形成板2の
上方に出射端を配して液膜6に光を照射しても良い。ま
た、キセノンランプ19に代えて他の光源、例えば太陽
光を光ガイド20で導いて照射しても良い。さらに、光
ガイドを用いずに、蛍光灯などの光源を各液膜形成板2
の上部に配設しても良い。
The light source 7 is composed of a xenon lamp 19 and a light guide 20 for guiding the light to the peripheral edge of each liquid film forming plate 2. The light guide 20 is formed by bundling a large number of optical fibers. In this example, the liquid film forming plate 2 is formed of a transparent plate material or a plate material having high reflectance, and the light guide 20
The emission ends of a large number of optical fibers are arranged on the periphery of the liquid film forming plate 2, and the light guided through the light guide 20 is applied to the liquid film forming plate 2.
It is configured to radiate from the surface of. The configuration of the light source 7 is not limited to this example, and the light guide 20
Instead of connecting the liquid film forming plate 2 to the liquid film forming plate 2, the liquid film 6 may be irradiated with light by arranging the emission end above each liquid film forming plate 2. Further, instead of the xenon lamp 19, another light source, for example, sunlight may be guided by the light guide 20 and irradiated. Further, a light source such as a fluorescent lamp is used for each liquid film forming plate 2 without using a light guide.
It may be arranged on the upper part of.

【0015】容器8内にガスを供給するためのガス供給
手段10は、空気又は二酸化炭素を含む排ガスなどをガ
ス供給ライン10aを通して容器8底部のガス供給口9
に所定流量で供給するものである。ここで使用される排
ガスとしては、硫黄酸化物、塩化水素ガスなどの有害成
分を予め除去したものが用いられ、これら有害成分の少
ないLNG燃焼排ガス等が好ましい。容器8内に供給さ
れたガスは、容器8上端のガス排出口21から外部に放
出されるが、この放出されるガスを必要に応じてガス返
送ライン22を通しガス供給手段10に返送して循環さ
せることも可能である。
The gas supply means 10 for supplying gas into the container 8 is a gas supply port 9 at the bottom of the container 8 for supplying exhaust gas containing air or carbon dioxide or the like through the gas supply line 10a.
Is supplied at a predetermined flow rate. The exhaust gas used here is one from which harmful components such as sulfur oxides and hydrogen chloride gas have been removed in advance, and LNG combustion exhaust gas containing a small amount of these harmful components is preferable. The gas supplied into the container 8 is released to the outside from the gas discharge port 21 at the upper end of the container 8. The released gas is returned to the gas supply means 10 through the gas return line 22 as needed. It is also possible to circulate.

【0016】この培養装置1を用いてアナシスチス・ニ
ドランスの培養を行うには、純粋培養したアナシスチス
・ニドランスを培養液4に混合して培養液調整槽11に
入れておき、送液ポンプ13を駆動させ、送液ライン1
2を通して培養液4を培養部3の上流端から供給し、液
膜状に流下させると共に、光源7から光ガイド20を通
して各液膜形成板2に光を照射して液膜6に当て、また
ガス供給口9から空気又は二酸化炭素を含むガスを容器
8内に供給する。液膜形成板2上に供給された培養液4
中に含まれる光合成生物は、液膜形成板2を順次流下し
ていく間に、光源7からの光エネルギーを受け、容器8
内の気相中の二酸化炭素と培養液中の水分とを原料とし
て光合成を行いながら増殖する。この培養液4の液膜6
は1〜5mm程度と薄いために、液膜の厚さ方向の全て
に光を照射することが可能であり、また、培養液を液膜
状で流下させることで気相との接触面積が増大し、周囲
の気相中に含まれる二酸化炭素が液膜中に容易に取り込
まれる。
In order to cultivate Anacystis nidulans using the culturing apparatus 1, purely cultivated Anacystis nidulans is mixed with the culture solution 4 and placed in the culture solution adjusting tank 11, and the liquid feeding pump 13 is driven. Let the liquid transfer line 1
The culture solution 4 is supplied from the upstream end of the culture section 3 through 2 and flows down in the form of a liquid film, and at the same time, each liquid film forming plate 2 is irradiated with light from a light source 7 through a light guide 20 to hit the liquid film 6, and A gas containing air or carbon dioxide is supplied into the container 8 from the gas supply port 9. The culture solution 4 supplied onto the liquid film forming plate 2
The photosynthetic organisms contained therein receive the light energy from the light source 7 while flowing down the liquid film forming plate 2 one by one, and the container 8
It grows while performing photosynthesis using carbon dioxide in the gas phase therein and water in the culture medium as raw materials. Liquid film 6 of this culture solution 4
Since it is as thin as 1 to 5 mm, it is possible to irradiate light in the thickness direction of the liquid film, and the contact area with the gas phase is increased by allowing the culture solution to flow down in the form of a liquid film. However, carbon dioxide contained in the surrounding gas phase is easily taken into the liquid film.

【0017】培養部3の最下段にある液膜形成板2の下
流端に流下した培養液4は、容器8底部の液排出口14
から外部に取り出され、回収ライン15を通って培養液
調整槽11に入る。そしてこの培養液4は送液ライン1
2を通って再び培養部3の最上段にある液膜形成板2の
上流端に供給し、循環させて光合成生物の培養を連続的
に行う。培養液4中の光合成生物の濃度がある程度まで
高まったならば、培養液調整槽11内の培養液の一部を
収穫ライン17を通して収穫装置18に送り、培養液4
中の光合成生物を分取するとともに、新規に調整した培
養液又は光合成生物を分離した培養液を培養液調整槽1
1に入れ、培養液4を補充する。
The culture solution 4 flowing down to the downstream end of the liquid film forming plate 2 at the lowermost stage of the culture section 3 has a liquid outlet 14 at the bottom of the container 8.
To the outside, and enters the culture solution adjusting tank 11 through the recovery line 15. And this culture solution 4 is a liquid transfer line 1
It is supplied again to the upstream end of the liquid film forming plate 2 at the uppermost stage of the culturing section 3 through 2 and is circulated to continuously cultivate the photosynthetic organism. When the concentration of the photosynthetic organism in the culture solution 4 has increased to a certain extent, a part of the culture solution in the culture solution adjusting tank 11 is sent to the harvesting device 18 through the harvesting line 17, and the culture solution 4
The photosynthetic organisms in the medium are collected, and a newly prepared culture liquid or a culture liquid in which the photosynthetic organisms are separated is used as a culture liquid adjusting tank 1
1 and replenish the culture solution 4.

【0018】この培養装置1は、液膜形成板2上に光合
成生物を含む培養液4の液膜6を形成し、この液膜6中
に光源7からの光と周囲の気相中からの二酸化炭素を供
給しつつ流下させ、光合成生物の培養を行うものであ
り、培養液4の流量や液膜形成板2の傾斜角度を適宜調
節することにより、形成される液膜6の厚さを容易にコ
ントロールすることができる。このように液膜6中で光
合成生物を培養する場合には、液膜が薄いために、液膜
の厚さ方向の全てに光を照射することが可能であり、ま
た、培養液を液膜状で流下させることで気相との接触面
積が増大し、周囲の気相中に含まれる二酸化炭素が液膜
中に容易に取り込むことができるので、培養液4の攪拌
を省くことができ、しかも光及び二酸化炭素の供給効率
が向上し、設置面積当りの培養効率を大幅に向上させる
ことができる。また培養液4の攪拌を省くことができる
ので、攪拌により光合成生物が損傷を受ける不都合を解
消することができ、しかも運転に要するエネルギーを低
減することができる。さらに、光合成生物として、微細
な藻類であるアナシスチス・ニドランスを用いて上記液
膜形成板上での液膜流下培養を実施することにより、培
養液の循環ポンプなどによって破砕を受けたり、液膜形
成板上に沈澱密着して活性が低下することがなく、極め
て高い効率で光合成を行うことができる。以下、実験例
により本発明の作用効果を明確化する。
This culture apparatus 1 forms a liquid film 6 of a culture solution 4 containing a photosynthetic organism on a liquid film forming plate 2, and in this liquid film 6 light from a light source 7 and from the surrounding gas phase are formed. The photosynthetic organism is cultivated by flowing it while supplying carbon dioxide, and the thickness of the liquid film 6 formed by appropriately adjusting the flow rate of the culture liquid 4 and the inclination angle of the liquid film forming plate 2. It can be controlled easily. When culturing a photosynthetic organism in the liquid film 6 as described above, since the liquid film is thin, it is possible to irradiate light in the entire thickness direction of the liquid film. Since the contact area with the gas phase is increased by letting it flow down in the form of a gas and carbon dioxide contained in the surrounding gas phase can be easily taken into the liquid film, stirring of the culture solution 4 can be omitted, Moreover, the supply efficiency of light and carbon dioxide is improved, and the culture efficiency per installation area can be significantly improved. Further, since the stirring of the culture solution 4 can be omitted, it is possible to eliminate the inconvenience that the photosynthetic organisms are damaged by the stirring, and further it is possible to reduce the energy required for operation. Furthermore, as a photosynthetic organism, Anacystis nidulans, which is a microalgae, is used to carry out liquid film flow-down culturing on the liquid film forming plate, so that the liquid culture liquid is crushed by a circulation pump, etc. It is possible to perform photosynthesis with extremely high efficiency without causing the activity to be deteriorated due to the precipitation and adhesion on the plate. Hereinafter, the effects of the present invention will be clarified by experimental examples.

【0019】(実験例)図1及び図2に示す培養装置を
試作し、アナシスチス・ニドランス、クロレラ及びスピ
ルリナを培養し、その増殖状態を比較した。液膜形成板
は一辺50cmの正方形状のものを4枚用い、それらを
図1に示すように配置した。また、光源7はキセノンラ
ンプ光源を用い、この光源からの光を光ガイド20で各
液膜形成板の周縁に導き、各液膜形成板2を通してその
表面から光を照射するようにした。なお、各液膜形成板
2は下面に高反射率の板(ステンレス鋼板)を接合した
ガラス板を用いた。この液膜形成板にアナシスチス・ニ
ドランス、クロレラ及びスピルリナのいずれかを入れた
液体培地を流下し、液膜の厚さが2〜3mm程度となる
ように循環ポンプの流量を設定し、増殖分を適宜回収す
るとともに培地を交換補給しつつ、それぞれの藻類につ
いて約1ヶ月間培養を行った。それぞれの藻類の培養条
件と、藻類の成長速度(乾物成長速度)とを合わせて表
1に示す。
(Experimental example) A prototype of the culture device shown in FIGS. 1 and 2 was produced, and Anacystis nidulans, Chlorella and Spirulina were cultured, and their growth states were compared. Four liquid film forming plates each having a square shape with a side of 50 cm were used, and they were arranged as shown in FIG. Further, the light source 7 is a xenon lamp light source, and the light from the light source is guided to the periphery of each liquid film forming plate by the light guide 20, and the light is irradiated from the surface through each liquid film forming plate 2. As the liquid film forming plate 2, a glass plate having a high reflectance plate (stainless steel plate) bonded to the lower surface was used. A liquid culture medium containing any of Anacystis nidulans, Chlorella and Spirulina is flown down to this liquid film forming plate, and the flow rate of the circulation pump is set so that the thickness of the liquid film is about 2 to 3 mm, and the growth component is increased. Each alga was cultivated for about 1 month while collecting and appropriately supplementing the medium. Table 1 shows the culture conditions of each algae and the growth rate of the algae (dry matter growth rate).

【0020】[0020]

【表1】 [Table 1]

【0021】この実験の結果、スピルリナは送液ポンプ
により破砕を受けたことにより、培養10日目に死滅し
た。またクロレラは、一応培養が可能であったが、液膜
形成板の傾斜が15°未満では、液膜形成板上への沈澱
が著しくなり、増殖率の極端な低下が認められた。アナ
シスチス・ニドランスを用いた場合には、送液ポンプに
よる細胞破砕や液膜形成板上への沈澱もなく、高い増殖
率を示した。
As a result of this experiment, Spirulina was killed on the 10th day of culturing because it was crushed by a liquid feed pump. Although chlorella could be cultivated for some time, when the inclination of the liquid film forming plate was less than 15 °, precipitation on the liquid film forming plate was remarkable, and an extremely low growth rate was observed. When Anacystis nidulans was used, a high growth rate was exhibited without cell disruption by a liquid delivery pump or precipitation on the liquid film forming plate.

【0022】[0022]

【発明の効果】以上説明したように、本発明による光合
成生物の培養装置は、液膜形成板上に光合成生物を含む
培養液の液膜を形成し、この液膜中に光源からの光と周
囲の気相中からの二酸化炭素を供給しつつ流下させ、光
合成生物の培養を行うものであり、培養液の流量や液膜
形成板の傾斜角度を適宜調節することにより、形成され
る液膜の厚さを容易にコントロールすることができる。
このように液膜中で光合成生物を培養する場合には、液
膜が薄いために、液膜の厚さ方向の全てに光を照射する
ことが可能であり、また、培養液を液膜状で流下させる
ことで気相との接触面積が増大し、周囲の気相中に含ま
れる二酸化炭素が液膜中に容易に取り込むことができる
ので、培養液の攪拌を省くことができ、しかも光及び二
酸化炭素の供給効率が向上し、設置面積当りの培養効率
を大幅に向上させることができる。また培養液の攪拌を
省くことができるので、攪拌により光合成生物が損傷を
受ける不都合を解消することができ、しかも運転に要す
るエネルギーを低減することができる。さらに、光合成
生物として、微細な藻類であるアナシスチス・ニドラン
スを用いて上記液膜形成板上での液膜流下培養を実施す
ることにより、培養液の循環ポンプなどによって破砕を
受けたり、液膜形成板上に沈澱密着して活性が低下する
ことがなく、極めて高い効率で光合成を行うことができ
る。
As described above, the apparatus for cultivating photosynthetic organisms according to the present invention forms a liquid film of a culture solution containing photosynthetic organisms on a liquid film forming plate, and a light from a light source is formed in the liquid film. Carbon dioxide from the surrounding gas phase is supplied while flowing down to cultivate a photosynthetic organism, and a liquid film formed by appropriately adjusting the flow rate of the culture solution and the inclination angle of the liquid film forming plate. The thickness of can be easily controlled.
When culturing a photosynthetic organism in a liquid film in this way, it is possible to irradiate light in the entire thickness direction of the liquid film because the liquid film is thin. The contact area with the gas phase is increased by letting the solution flow down, and the carbon dioxide contained in the surrounding gas phase can be easily taken into the liquid film, so that the stirring of the culture solution can be omitted and the Also, the supply efficiency of carbon dioxide is improved, and the culture efficiency per installation area can be significantly improved. Further, since the stirring of the culture solution can be omitted, it is possible to eliminate the inconvenience that the photosynthetic organisms are damaged by stirring, and it is possible to reduce the energy required for operation. Furthermore, as a photosynthetic organism, Anacystis nidulans, which is a microalgae, is used to carry out liquid film flow-down culturing on the liquid film forming plate, so that the liquid culture liquid is crushed by a circulation pump, etc. It is possible to perform photosynthesis with extremely high efficiency without causing the activity to be deteriorated due to the precipitation and adhesion on the plate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光合成生物の培養方法に好適な培養装
置の一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a culture device suitable for a method for culturing a photosynthetic organism of the present invention.

【図2】同じ培養装置の要部の一部断面視した斜視図で
ある。
FIG. 2 is a perspective view showing a partial cross-section of a main part of the same culture apparatus.

【符号の説明】[Explanation of symbols]

1……培養装置、2……液膜形成板、3……培養部、4
……培養液、5……培養液供給手段、6……液膜、7…
…光源、8……容器、9……ガス供給口、10……ガス
供給手段、11……培養液調整槽、12……送液ライ
ン、13……送液ポンプ、14……液排出口、15……
回収ライン、16……液供給部、17……収穫ライン、
18……収穫装置、19……キセノンランプ、20……
光ガイド、21……ガス排出口、22……ガス返送ライ
ン。
1 ... Incubator, 2 ... Liquid film forming plate, 3 ... Incubator, 4
...... Culture fluid, 5 ...... Culture fluid supply means, 6 ...... Liquid film, 7 ...
... light source, 8 ... container, 9 ... gas supply port, 10 ... gas supply means, 11 ... culture solution adjusting tank, 12 ... liquid supply line, 13 ... liquid supply pump, 14 ... liquid discharge port , 15 ……
Recovery line, 16 ... Liquid supply section, 17 ... Harvest line,
18 ... Harvesting device, 19 ... Xenon lamp, 20 ...
Light guide, 21 ... Gas outlet, 22 ... Gas return line.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12N 1/00 ZAB Q 8828−4B // C12M 1/00 E (C12N 1/12 C12R 1:89) (72)発明者 鬼山 和彦 東京都港区西新橋2−8−11 財団法人 地球環境産業技術研究機構内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area C12N 1/00 ZAB Q 8828-4B // C12M 1/00 E (C12N 1/12 C12R 1:89 (72) Inventor Kazuhiko Oniyama 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo Inside Institute for Global Environmental Technology

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光合成生物を含む培養液を、液膜形成板
の表面に沿って液膜状に流下させ、この液膜と二酸化炭
素を含むガスとを接触させるとともに、この液膜に光を
照射して光合成生物を培養する方法であって、この光合
成生物としてアナシスチス・ニドランスを用いることを
特徴とする光合成生物の培養方法。
1. A culture solution containing a photosynthetic organism is caused to flow down in a liquid film shape along the surface of a liquid film forming plate, and the liquid film is brought into contact with a gas containing carbon dioxide, and light is applied to the liquid film. A method for culturing a photosynthetic organism by irradiating, which comprises using Anacystis nidulans as the photosynthetic organism.
【請求項2】 請求項1記載の光合成生物の培養方法に
おいて、複数枚の液膜形成板を、各板の上流端が上段の
板の下流端に隣接し下流端が下段の板の上流端に隣接す
るように積層配置し、これらの液膜形成板上に培養液を
順次流下させることを特徴とする光合成生物の培養方
法。
2. The method for culturing a photosynthetic organism according to claim 1, wherein a plurality of liquid film forming plates are provided, the upstream end of each plate is adjacent to the downstream end of the upper plate, and the downstream end is the upstream end of the lower plate. A method for culturing a photosynthetic organism, which comprises arranging them so that they are adjacent to each other and sequentially flowing the culture solution onto these liquid film forming plates.
【請求項3】 請求項1又は2記載の光合成生物の培養
方法において、人工光源の光又は太陽光を光ファイバを
通して導き液膜形成板に照射するか、或いは光ファイバ
を液膜形成板に接続して該液膜形成板の表面から照射す
ることを特徴とする光合成生物の培養方法。
3. The method for culturing a photosynthetic organism according to claim 1 or 2, wherein light from an artificial light source or sunlight is introduced through an optical fiber to irradiate the liquid film forming plate, or the optical fiber is connected to the liquid film forming plate. And irradiating from the surface of the liquid film-forming plate.
【請求項4】 請求項1から3のいずれか1項記載の光
合成生物の培養方法において、二酸化炭素を含むガス
が、空気又は二酸化炭素含有排ガスであることを特徴と
する光合成生物の培養方法。
4. The method for culturing a photosynthetic organism according to claim 1, wherein the carbon dioxide-containing gas is air or carbon dioxide-containing exhaust gas.
【請求項5】 請求項1から4のいずれか1項記載の光
合成生物の培養方法において、液膜形成板を流下した培
養液から光合成生物の一部を回収し、この培養液を液膜
形成板の上流端に循環して培養を行うことを特徴とする
光合成生物の培養方法。
5. The method for cultivating a photosynthetic organism according to claim 1, wherein a part of the photosynthetic organism is recovered from the culture solution flowing down the liquid film forming plate, and the culture solution is formed into a liquid film. A method for culturing a photosynthetic organism, which comprises culturing by circulating it at an upstream end of a plate.
JP6090361A 1994-04-27 1994-04-27 Culture method for photosynthetic organisms Expired - Fee Related JP3035153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6090361A JP3035153B2 (en) 1994-04-27 1994-04-27 Culture method for photosynthetic organisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6090361A JP3035153B2 (en) 1994-04-27 1994-04-27 Culture method for photosynthetic organisms

Publications (2)

Publication Number Publication Date
JPH07289239A true JPH07289239A (en) 1995-11-07
JP3035153B2 JP3035153B2 (en) 2000-04-17

Family

ID=13996407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6090361A Expired - Fee Related JP3035153B2 (en) 1994-04-27 1994-04-27 Culture method for photosynthetic organisms

Country Status (1)

Country Link
JP (1) JP3035153B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1002924B (en) * 1996-11-06 1998-06-16 Mikrobiologicky Ustav Akademie Ved Ceske Republiky Process of outdoor thin-layer cultivation of microalgae and blue-green algae and bioreactor for performing the process
JP2007159582A (en) * 2005-12-13 2007-06-28 Ind Technol Res Inst Culture system for algae
JP2009195163A (en) * 2008-02-21 2009-09-03 Ccs Inc Culture apparatus for algae
FR2950899A1 (en) * 2009-10-01 2011-04-08 Centre Nat Rech Scient PHOTO-BIOREACTOR THIN LAYER WITH HIGH VOLUME PRODUCTIVITY
WO2011124727A1 (en) * 2010-04-08 2011-10-13 Acciona Energía, S. A. Optimum energy consumption system for microalgae culture
WO2015106733A1 (en) * 2014-01-17 2015-07-23 Forschungszentrum Jülich GmbH Photobioreactor and method for thin layer cultivation
US9790461B2 (en) 2012-12-14 2017-10-17 Denso Corporation Culture method and culture system for microalgae

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101366431B1 (en) * 2011-05-04 2014-02-24 부경대학교 산학협력단 Culture methods and apparatuses of benthic diatoms

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1002924B (en) * 1996-11-06 1998-06-16 Mikrobiologicky Ustav Akademie Ved Ceske Republiky Process of outdoor thin-layer cultivation of microalgae and blue-green algae and bioreactor for performing the process
JP2007159582A (en) * 2005-12-13 2007-06-28 Ind Technol Res Inst Culture system for algae
JP4588692B2 (en) * 2005-12-13 2010-12-01 インダストリアル テクノロジー リサーチ インスティチュート Algae culture system
JP2009195163A (en) * 2008-02-21 2009-09-03 Ccs Inc Culture apparatus for algae
FR2950899A1 (en) * 2009-10-01 2011-04-08 Centre Nat Rech Scient PHOTO-BIOREACTOR THIN LAYER WITH HIGH VOLUME PRODUCTIVITY
WO2011039354A3 (en) * 2009-10-01 2011-07-28 Centre National De La Recherche Scientifique (Cnrs) Thin-layer photobioreactor with high volume productivity
WO2011124727A1 (en) * 2010-04-08 2011-10-13 Acciona Energía, S. A. Optimum energy consumption system for microalgae culture
US9790461B2 (en) 2012-12-14 2017-10-17 Denso Corporation Culture method and culture system for microalgae
WO2015106733A1 (en) * 2014-01-17 2015-07-23 Forschungszentrum Jülich GmbH Photobioreactor and method for thin layer cultivation

Also Published As

Publication number Publication date
JP3035153B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
Chaumont Biotechnology of algal biomass production: a review of systems for outdoor mass culture
Assunção et al. Enclosed “non-conventional” photobioreactors for microalga production: A review
Pulz Photobioreactors: production systems for phototrophic microorganisms
JP3112439B2 (en) Method for producing algae and apparatus for producing the same
Pulz et al. Photobioreactors: design and performance with respect to light energy input
WO2017190504A1 (en) Rotating disc type photobioreactor for microalgae large-scale cultivation
US8642326B1 (en) System for the production and harvesting of algae
US20210079325A1 (en) Large scale mixotrophic production systems
US9260685B2 (en) System and plant for cultivation of aquatic organisms
MX2008010770A (en) Photobioreactor and uses therefor.
WO2010138571A1 (en) Photobioreactor and method for culturing and harvesting microorganisms
WO2008010737A1 (en) Photobioreactor for photosynthetic microorganism culture
WO2009037683A1 (en) A system and apparatus for growing cultures
Muller-Feuga et al. Comparison of artificial light photobioreactors and other production systems using Porphyridium cruentum
MX2008010831A (en) Cooling device for use in an electric arc furnace.
JP3035153B2 (en) Culture method for photosynthetic organisms
JP3049183B2 (en) Culture device for photosynthetic organisms
JP3553976B2 (en) Equipment for the implementation of photochemical and photocatalytic reactions and light-inducible processes
US10829725B2 (en) Air accordion bioreactor
JP4523187B2 (en) Photobioreactor
Carlozzi Closed photobioreactor assessments to grow, intensively, light dependent microorganisms: a twenty-year Italian outdoor investigation
EP0946708A1 (en) Culture of micro-organisms
JPH0716091A (en) Culture system for photosynthetic organism
Griffiths 5 Microalgal Cultivation
JP3668341B2 (en) Photosynthesis microalgae culture device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees