WO2002095333A1 - Procédé pour la mesure de position linéaire sans contact - Google Patents

Procédé pour la mesure de position linéaire sans contact Download PDF

Info

Publication number
WO2002095333A1
WO2002095333A1 PCT/DE2002/001625 DE0201625W WO02095333A1 WO 2002095333 A1 WO2002095333 A1 WO 2002095333A1 DE 0201625 W DE0201625 W DE 0201625W WO 02095333 A1 WO02095333 A1 WO 02095333A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sensor
magnetic field
permanent magnet
component
Prior art date
Application number
PCT/DE2002/001625
Other languages
German (de)
English (en)
Inventor
Jens Hauch
Klaus Ludwig
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP02726086A priority Critical patent/EP1390695A1/fr
Publication of WO2002095333A1 publication Critical patent/WO2002095333A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination

Definitions

  • the invention relates to a method for contactless, linear position measurement between two components, with the use of a magnetic field sensor attached to a first component, above which there is a permanent magnet attached to a second component, the magnetic field sensor emitting a signal which signals a Maximum value, a minimum value and an intermediate half level.
  • Magnetic field measurement is used to obtain a distance signal for position measurement by means of relative movements between the permanent magnet and the magnetic field sensor.
  • An example of such an application can be found in WO 00/09972, in which a magnetic field sensor is used as a position sensor for an electromechanical actuator for gas exchange valves of an internal combustion engine.
  • the magnetic field sensors used for such contactless position measurements are available in particular in versions in which the signal emitted by the magnetic sensor runs approximately linearly between two end positions, whereby a high resolution of the measurement signal and a precise position determination is possible.
  • the permanent magnet is generally rod-shaped. It can be aligned in such a way that its magnetic axis is perpendicular to the direction of movement with which the permanent magnet is moved via the magnetic field sensor.
  • Magnetic sensor arrangements for position measurement have the advantage that only little construction is required, in particular the sensors and permanent magnets can be very small being held. In addition, they are very robust and particularly insensitive to contamination.
  • the output signal of the magnetic field sensor is normally converted, in particular if, as with a linear sensor, it is proportional to the measured field strength, by means of a fixed calibration curve within a predetermined working range, which essentially reflects the aforementioned * linear relationship.
  • EP 0 599 175 AI describes an interpolation device which extracts the measured quantity from orthogonal sine and cosine signals of two sensors of a measuring device, in particular two magnetic field sensors, by means of a multi-stage method.
  • the characteristic curve of a magnetic field sensor can be set as linear within certain limits of the longitudinal displacement of a magnet, and a parallel change in distance between the magnet and the sensor changes the slope of the characteristic curve.
  • This publication also proposes to line up a plurality of magnetic field sensors along an axis and to relate the signals from neighboring sensors in relation to the position of a magnet above them and to evaluate them using previously stored calibration data.
  • JP 08-50004 A deals with a similar arrangement of sensors along an axis.
  • the sensors can include Hall elements.
  • the object of the invention is to increase the measurement accuracy in a contactless position measurement of the type mentioned at the outset by means of magnetic field sensors and permanent magnets and to reduce the influence of errors mentioned with regard to temperature dependence and mechanical component tolerances.
  • This object is achieved in a method for contactless, linear position measurement between a first and a second component, using a magnetic sensor attached to the first component, above which there is a permanent magnet attached to the second component and which emits a signal which has a maximum value , has a minimum value and an intermediate half-level, the signal lift being determined as the difference between the maximum value and the minimum value, and calculating a normalized signal from the signal by dividing by the signal lift, which is achieved according to the invention by evaluating the standardized signal for contactless, linear position measurement is used by using the standardized signal directly as a position specification or by means of a characteristic curve into a linear distance value, the indicates the lateral distance between the magnetic field sensor and the permanent magnet.
  • the invention thus achieves extensive independence with regard to temperature or mechanical misalignment errors without resorting to external characteristic curves or further sensors. Surprisingly, it was found that normalization of the magnetic field sensor signal with the signal swing, but a relatively large working range, results in a straight characteristic curve which is virtually completely independent of the distance between the permanent magnet and the magnetic field sensor.
  • the method according to the invention can thus greatly reduce the effort required for the exact adjustment of the distance between the permanent magnet and the magnetic field sensor, as a result of which the area of application for such contactless position measuring systems is greatly increased.
  • the sensitivity to errors decreases on movements of the permanent magnet that are not parallel to the plane in which the magnetic field sensor is located.
  • the method according to the invention makes magnetic field measurements not only suitable for straight-line movements, but also for slightly curved or oblique movements.
  • the standardized signal which is largely linear within the working range, can be used directly as position information.
  • a special scaling which can be the case, for example, when using the contactless position measuring method in motor vehicle transmissions, it is expedient to convert the standardized signal into a linear distance value by means of a characteristic curve which indicates the lateral distance between the sensor and the permanent magnet.
  • the method according to the invention is suitable for all suitable magnetic field sensors which emit a corresponding signal which fluctuates between a maximum value and a minimum value with an intermediate half level when the permanent magnet is passed over the magnetic field sensor.
  • Linear Hall sensors gave particularly high measurement accuracies, which is why it is preferable to use a linear Hall sensor as a magnetic field sensor.
  • the mentioned work area can be selected depending on the resolution requirement.
  • a particularly good resolution is obtained in particular when using Hall sensors if the working range is selected so that it lies within the lateral distance of the positions of the permanent magnet at which the signal has the maximum or minimum value. In this area between the maximum and minimum values, the lamate of the standardized signal is particularly good.
  • the method according to the invention provides a linear relationship between the standardized signal and the position of the permanent magnet with respect to the magnetic field sensor in a certain working range.
  • several magnetic field sensors can be staggered to cover a larger measuring range.
  • a sensor line, in which a plurality of magnetic field sensors are spaced along a longitudinal axis and on which the permanent magnet is moving, can thus cover an almost arbitrarily large measuring range. The advantages of the measuring method according to the invention are thus also exploited over a large measuring distance which is larger than the working range of an individual magnetic field sensor.
  • the distance at which the magnetic field sensors are lined up can in principle be selected to vary in a further range.
  • a particularly large measuring range can be achieved if the distances are selected so that the working ranges of the individual magnetic field sensors are only overlap ring.
  • 1 is a schematic representation of a sensor line for contactless position measurement
  • Fig. 4 examples of the working areas of staggered magnetic field sensors in a sensor line
  • Fig. 5 examples of the overlap of work areas of staggered magnetic field sensors in a sensor line.
  • FIG. 1 shows a schematic illustration for contactless position measurement by means of magnetic field sensors which are fastened to a first component and a permanent magnet which is fastened to a second component which is movable relative to the first component.
  • the sensor line 1 shown there has several linear Hall sensors 2a, 2b and 2c, which in a sensor distance d are attached to each other on the sensor line.
  • the sensor line 1 is attached to a first component (not shown).
  • Permanent magnet 3 The permanent magnet 3 is fastened to a second component (not shown) which shifts in the longitudinal direction x relative to the first component. There is an air gap h between the permanent magnet 3 and the sensor line 1, the dimension of which is dependent on the component tolerance and temperature.
  • the permanent magnet 3 is aligned with its magnetization axis between the north pole N and south pole S parallel to the longitudinal direction x, but can also be different depending on the measurement task.
  • Each Hall sensor 2a to 2c measures the magnetic field of the permanent magnet 3.
  • a sensor row 1 shows a sensor row 1 with a plurality of Hall sensors 2a to 2c.
  • a single Hall sensor 2 can also be used if the measuring range over which a displacement between the permanent magnet 3 and Hall sensor 2 in the longitudinal direction x is to be detected is sufficiently small.
  • the sensor signal S emitted by each Hall sensor 2a to 2c is shown in a family of curves 4 in FIG. 2.
  • the signal S is plotted in FIG. 2 as a function of the longitudinal direction x and is obtained from a sensor which outputs a voltage between 0 and 5 volts.
  • the family of curves 4 contains various sensor signals S, the air gap h being the family of parameters.
  • each sensor signal S of the family of curves 4 has a maximum value 5 and a minimum value 6.
  • a half level 7 lies between maximum value 5 and minimum value 6. This half level 7 is assumed when the permanent magnet 3 lies exactly in the center above the Hall sensor 2.
  • the air gap h is a critical dimension for the installation adjustment of the permanent magnet 6 with respect to the sensor line 1.
  • the air gap h changes due to temperature influences.
  • the minimum value 6 is then determined.
  • the signal swing is determined by forming the difference between the maximum value 5 minus the minimum value 6. Now the sensor signal S is divided by the signal swing, whereby a normalized sensor signal NS is obtained.
  • a sensor line 1 with a plurality of Hall sensors 2a to 2c these can now be arranged in a staggered manner such that the respective working areas a overlap somewhat.
  • This si tuation is shown in Fig. 4, which shows the corresponding normalized sensor signals NS as a function of the longitudinal direction x.
  • Corresponding standardized sensor signals are obtained from the sensor signals S of the Hall sensors 2a to 2c, which are entered as curves 9a to 9c in FIG. 4.
  • a linear characteristic curve 10a to 10c results, which corresponds in each case to the characteristic curve 8 in FIG. 3.
  • the Hall sensors 2a to 2c are now spaced such that the working areas a of the characteristic curves 10a to 10c adjoin one another at least continuously, ideally even overlap somewhat. A large measuring range can thus be covered, which in the present example of FIG. 4 ranges from 0 to 28 length units.
  • the use of three Hall sensors 2a to 2c means that the entire measuring range is almost tripled compared to a single Hall sensor 2.
  • FIG. 5 shows an embodiment in which the working areas a of the individual characteristic curves 10a to 10c overlap somewhat.
  • This overlap is used for a hysteresis at the transition between the individual characteristic curves 10a, 10b and 10c, the curves 9a, 9b and 9c of the individual Hall sensors 2a, 2b and 2c.
  • This hysteresis leads to the fact that, in the case of a movement extending in the longitudinal direction x, a jump to the respectively subsequent characteristic curve 10b, 10c occurs only at the end of the working area a of each characteristic curve 10a, 10b.
  • jumps to the next characteristic curve only at the end of the working range of the respective characteristic curve 10a to 10c, so that the characteristic curves overlap
  • hysteresis is carried out. This hysteresis allows a clear assignment of the sensor signal and avoids ambiguous assignments at the jump point.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

L'invention concerne un procédé servant à la mesure de position linéaire sans contact entre deux éléments déplacés l'un vers l'autre et utilisant un capteur magnétique fixé sur le premier élément. Au-dessus de ce capteur magnétique se trouve un aimant permanent qui est fixé sur le deuxième élément et qui émet un signal présentant une valeur maximale, une valeur minimale et un demi-niveau intermédiaire. Selon l'invention, la déviation du signal est définie comme la différence entre la valeur maximale et la valeur minimale, un signal normalisé est calculé à partir du signal au moyen d'une division par la déviation du signal et le signal normalisé est évalué pour la mesure de position linéaire sans contact.
PCT/DE2002/001625 2001-05-21 2002-05-06 Procédé pour la mesure de position linéaire sans contact WO2002095333A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02726086A EP1390695A1 (fr) 2001-05-21 2002-05-06 Proc d pour la mesure de position lin aire sans contact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001124760 DE10124760A1 (de) 2001-05-21 2001-05-21 Verfahren zur kontaktlosen, linearen Positionsmessung
DE10124760.5 2001-05-21

Publications (1)

Publication Number Publication Date
WO2002095333A1 true WO2002095333A1 (fr) 2002-11-28

Family

ID=7685609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/001625 WO2002095333A1 (fr) 2001-05-21 2002-05-06 Procédé pour la mesure de position linéaire sans contact

Country Status (3)

Country Link
EP (1) EP1390695A1 (fr)
DE (1) DE10124760A1 (fr)
WO (1) WO2002095333A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153005A1 (fr) * 2012-04-11 2013-10-17 Tyco Electronics Amp Gmbh Détecteur de déplacement permettant de mesurer sans contact une position au moyen d'une pluralité de détecteurs de champ magnétique agencés en série

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10338265B3 (de) * 2003-08-18 2005-04-07 Balluff Gmbh Positionsmeßsystem
DE102004043402A1 (de) * 2004-09-08 2006-03-09 Volkswagen Ag Verfahren zum Positionieren eines linear beweglichen Gegenstandes und Positioniervorrichtung
DE102007054434B3 (de) * 2007-11-13 2009-02-19 Getrag Ford Transmissions Gmbh Verfahren zur Auswertung eines Sensorsystems zur Bestimmung der Position einer Schaltgabel in einem Schaltgetriebe
DE102008004916A1 (de) * 2008-01-18 2009-07-23 Conti Temic Microelectronic Gmbh Verfahren zur Kalibrierung der Position eines Magnetfeldsensors
DE102008048506B4 (de) * 2008-09-23 2018-12-27 Volkswagen Ag Verfahren und Vorrichtung zum Kalibrieren eines Sensors, Verfahren und System zum Bestimmen einer Einstellposition einer Schaltwelle eines Getriebes und Sensor zum Erfassen einer Einstellposition einer Schaltwelle eines Getriebes
DE102012112216A1 (de) * 2012-12-13 2014-06-18 Conti Temic Microelectronic Gmbh Ermittlung einer Position auf einem Verfahrweg
CN109974832B (zh) * 2019-04-03 2021-04-02 浙江华章科技有限公司 一种高速摇振系统振幅的算法
DE102022102104A1 (de) 2022-01-31 2023-08-03 Schaeffler Technologies AG & Co. KG Positionsmessvorrichtung und Lenkungsaktuator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731579A (en) * 1982-10-12 1988-03-15 Polaroid Corporation Magnetic position indicator and actuator using same
DE3443176C1 (de) * 1984-11-27 1990-11-15 Angewandte Digital Elektronik Gmbh, 2051 Brunstorf Verfahren zur Kalibrierung eines elektronischen Positionsgebers
JPH0433564A (ja) * 1990-05-30 1992-02-04 Hitachi Metals Ltd 3相駆動方式リニアブラシレス直流モータ
DD300464A5 (de) * 1989-03-15 1992-06-11 Schonstedt Instrument Co Verfahren und vorrichtung, die dauermagneten zur markierung, lokalisierung, suche und identifizierung versteckter objekte verwenden, wie z. b. eingelassene faseroptische kabel
DE4103933A1 (de) * 1989-08-09 1992-08-20 Kollmorgen Corp Null-positionssensor
EP0590222A1 (fr) * 1992-09-30 1994-04-06 STMicroelectronics S.r.l. Capteur de position magnétique
EP0599175A1 (fr) * 1992-11-27 1994-06-01 Sony Magnescale, Inc. Appareil d'interpolation pour une échelle graduée
WO2000009972A1 (fr) * 1998-08-12 2000-02-24 Siemens Aktiengesellschaft Procede pour determiner une position en fonction d'un signal de mesure emis par un capteur de position

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3477837B2 (ja) * 1994-08-05 2003-12-10 住友電気工業株式会社 磁石位置測定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731579A (en) * 1982-10-12 1988-03-15 Polaroid Corporation Magnetic position indicator and actuator using same
DE3443176C1 (de) * 1984-11-27 1990-11-15 Angewandte Digital Elektronik Gmbh, 2051 Brunstorf Verfahren zur Kalibrierung eines elektronischen Positionsgebers
DD300464A5 (de) * 1989-03-15 1992-06-11 Schonstedt Instrument Co Verfahren und vorrichtung, die dauermagneten zur markierung, lokalisierung, suche und identifizierung versteckter objekte verwenden, wie z. b. eingelassene faseroptische kabel
DE4103933A1 (de) * 1989-08-09 1992-08-20 Kollmorgen Corp Null-positionssensor
JPH0433564A (ja) * 1990-05-30 1992-02-04 Hitachi Metals Ltd 3相駆動方式リニアブラシレス直流モータ
EP0590222A1 (fr) * 1992-09-30 1994-04-06 STMicroelectronics S.r.l. Capteur de position magnétique
EP0599175A1 (fr) * 1992-11-27 1994-06-01 Sony Magnescale, Inc. Appareil d'interpolation pour une échelle graduée
WO2000009972A1 (fr) * 1998-08-12 2000-02-24 Siemens Aktiengesellschaft Procede pour determiner une position en fonction d'un signal de mesure emis par un capteur de position

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 210 (E - 1203) 19 May 1992 (1992-05-19) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153005A1 (fr) * 2012-04-11 2013-10-17 Tyco Electronics Amp Gmbh Détecteur de déplacement permettant de mesurer sans contact une position au moyen d'une pluralité de détecteurs de champ magnétique agencés en série
CN104303018A (zh) * 2012-04-11 2015-01-21 泰科电子Amp有限责任公司 用于借助于串联布置的多个磁场传感器非接触式测量位置的位移传感器
JP2015513106A (ja) * 2012-04-11 2015-04-30 タイコ エレクトロニクス アンプ ゲゼルシャフト ミット ベシュレンクテル ハウツンク 直列に配置された複数の磁界センサによって位置を非接触式に測定する変位センサ
CN104303018B (zh) * 2012-04-11 2016-04-20 泰连德国有限公司 用于借助于串联布置的多个磁场传感器非接触式测量位置的位移传感器
US9335149B2 (en) 2012-04-11 2016-05-10 Te Connectivity Germany Gmbh Displacement sensor for contactlessly measuring a position by means of a plurality of magnetic field sensors arranged in series

Also Published As

Publication number Publication date
DE10124760A1 (de) 2003-02-20
EP1390695A1 (fr) 2004-02-25

Similar Documents

Publication Publication Date Title
EP2182330B1 (fr) Système de mesure de position/trajectoire doté d'un corps de mesure codé
EP0726448B1 (fr) Capteur magnétique de position
EP0997706B1 (fr) Dispositif pour mesurer une position relative linéaire
DE19855358A1 (de) Vorrichtung und Verfahren zur Ermittlung einer Wegstrecke
EP1158276A1 (fr) Capteur de position inductif
DE102017222674A1 (de) Wegsensor
DE102006010780A1 (de) Positionsmeßsystem für Hydraulikzylinder
WO2006035055A2 (fr) Dispositif de mesure de la position absolue d'au moins deux corps deplaçables ou mobiles en rotation l'un par rapport a l'autre
EP0555507A1 (fr) Capteur de position
AT4639U1 (de) Winkelmesseinrichtung
EP1556665B1 (fr) Tete de sonde a aimant et element a effet hall a utiliser dans un appareil de mesure de coordonnees
WO2002095333A1 (fr) Procédé pour la mesure de position linéaire sans contact
DE112018003016T5 (de) Positionssensor
EP1312889A2 (fr) Capteur d'angle inductif en particulier pour une voiture
EP1321743B1 (fr) Système pour mesurer une longueur absolue comprenant une barre de mesure qui se déplace relativement par rapport à des sondes de longueur mutuellement espacées
WO2002095334A1 (fr) Procede de mesure de position lineaire, sans contact
EP3583388B1 (fr) Dispositif de détection
DE19729312A1 (de) Absolutes magnetisches Längenmeßsystem
EP1651928B1 (fr) Dispositif de mesure et procede pour detecter la position d'un objet de mesure electroconducteur
DE102012000939A1 (de) Sensoreinheit und Verfahren zur Bestimmung einer Wegstrecke
DE10161541A1 (de) Sensoranordnung und Funktionseinheit mit Sensoranordnung
DE10135541B4 (de) Elektromotor mit Positions-Meßsystem
DE102021118302A1 (de) Ventil mit einer Positionserfassungseinrichtung
DE102006042580A1 (de) Baugruppe zur Erfassung einer Ventilstellung
DE10204314A1 (de) Verfahren zur Linearisierung und Normierung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002726086

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002726086

Country of ref document: EP