WO2002088693A1 - Capacitive sensor - Google Patents

Capacitive sensor Download PDF

Info

Publication number
WO2002088693A1
WO2002088693A1 PCT/JP2002/004283 JP0204283W WO02088693A1 WO 2002088693 A1 WO2002088693 A1 WO 2002088693A1 JP 0204283 W JP0204283 W JP 0204283W WO 02088693 A1 WO02088693 A1 WO 02088693A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
electrode
environment
humidity
substrate
Prior art date
Application number
PCT/JP2002/004283
Other languages
French (fr)
Japanese (ja)
Inventor
Tsutomu Ogura
Sachiko Obara
Original Assignee
Yamatake Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corporation filed Critical Yamatake Corporation
Publication of WO2002088693A1 publication Critical patent/WO2002088693A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • G01N27/225Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity by using hygroscopic materials

Definitions

  • the present invention relates to a capacitance sensor, and more particularly, to a capacitance sensor useful as a humidity detection sensor used in a high-temperature and high-humidity environment.
  • Humidity detection sensors using a polymer film as a moisture-sensitive material are roughly classified into two types: capacitance type and electric resistance type.
  • the capacitance type sensor uses the relatively large relative permittivity characteristic of water molecules of about 80, and has a good humidity response, and the humidity dependency of the humidity sensitivity is small, and the humidity and temperature The measurement range is wide.
  • -A capacitance-type humidity detection sensor generally has the following structure.
  • a first electrode layer is first formed on one side of the substrate that holds the sensor, then a polymer film that is electrically insulating and has moisture sensitivity is formed, and finally, a porous film is formed.
  • a second electrode layer having a structure or a mesh structure is formed. Lead wires for extracting a detection signal from the first electrode and the second electrode are respectively drawn.
  • As the substrate a material with electrical insulation and moderate strength is used to ensure the strength of the entire sensor.
  • the sensor main body formed on the substrate has a parallel plate type capacitor structure.
  • This type of sensor detects the humidity of the environment based on the following operating principle.
  • the water vapor hereinafter referred to as water molecule
  • the porous or mesh-structured second electrode layer passes through the porous or mesh-structured second electrode layer and reaches the surface of the polymer film located thereunder. Then, it penetrates into the polymer membrane and is trapped and stored.
  • the capture and storage of water molecules by the polymer membrane continues until an equilibrium is formed between the environment and the polymer membrane. In the equilibrium state, the absorption of water molecules into the polymer membrane and the desorption of water molecules from the polymer membrane proceed at the same time at an equal number, and the polymer membrane becomes a certain amount corresponding to the relative humidity in the environment. It is in a state that occludes water molecules.
  • the humidity sensitivity of the assembled sensor is measured. That is, for example, at a temperature of 25 ° C and a relative humidity of x. , X 1; — x n
  • Set several reference environments place the sensor in each reference environment, and use the impedance analyzer to detect the sensor signal (capacitance) in each reference environment c. , C l , --- c n are measured.
  • the relationship between the relative humidity and the detection signal X. vs c 0, Xl vs, advance and stored in the measuring device ⁇ x n vs c n.
  • this sensor is arranged in the environment of the humidity measurement target, and a detection signal at that time is obtained. If the detected signal is a if c n, the measuring device displays the relative humidity in the environment as a chi eta. Even when the detection signal is not the above value, it is possible to easily obtain the corresponding relative humidity by interpolating the previous data.
  • This detection method can also be applied to molecules having polarities other than the above-mentioned water molecules, for example, formaldehyde, acetone, alcohol and the like.
  • the capacitance type humidity detection sensor has some excellent features due to the good use of the characteristics of water molecules, and has the following problems.
  • An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a structure that suppresses drift deterioration of a capacitance type humidity detection sensor.
  • the capacitance type humidity detection sensor of the present invention has a capacitor structure in which a sensor body is formed by laminating a first electrode, a polymer film, and a second electrode in this order. And a substrate that has at least one through hole in the thickness direction and holds the sensor body on one surface. It is characterized by:
  • the capacitance-type humidity detection sensor of the present invention includes a sensor body having a capacitor structure in which a polymer film is interposed between a first electrode and a second electrode which are erected at predetermined intervals. , Two detection signal leads drawn from each electrode, and a substrate having at least one through hole in the thickness direction and holding the sensor body on one surface. .
  • FIG. 1 is a sectional view showing an example A1 of the sensor of the present invention.
  • FIG. 2 is a cross-sectional view showing a state where a first electrode is formed on a substrate when manufacturing the sensor A1.
  • FIG. 3 is a cross-sectional view showing a state where a polymer film is formed.
  • FIG. 4 is a cross-sectional view showing a state where the second electrode is formed.
  • FIG. 5 is a cross-sectional view showing a state where a resist mask is formed on the back surface of the substrate.
  • FIG. 6 is a sectional view showing another example A2 of the sensor of the present invention.
  • FIG. 7 is a sectional view showing still another example A3 of the sensor of the present invention.
  • FIG. 8 is a partial sectional view of a circle P in FIG.
  • FIG. 9 is a sectional view showing still another example A5 of the sensor of the present invention.
  • FIG. 10 is a plan view showing another example B of the sensor of the present invention.
  • FIG. 11 is a cross-sectional view taken along line XX of FIG.
  • FIG. 12 is a sectional view showing the structure of a conventional sensor C1.
  • Fig. 13 is a graph showing the relationship between the sensor's standing time in a high-temperature and high-humidity environment and the relative humidity Z when the reference environment is at a temperature of 25 ° C and a relative humidity of 10% (environment (1)).
  • Figure 14 is a graph showing the relationship between the relative humidity Z and the time the sensor is left in a high-temperature, high-humidity environment when the reference environment is at a temperature of 25 ° C and a relative humidity of 50% (environment ( ⁇ )).
  • Figure 15 is a graph showing the relationship between the relative humidity Z and the time the sensor is left in a high-temperature, high-humidity environment when the reference environment is at a temperature of 25 ° C and a relative humidity of 90% (environment (III)).
  • the present inventors have made the following considerations regarding the cause of drift deterioration during the course of research for achieving the above object.
  • a hygroscopic polymer film is composed of a skeletal part formed by the condensation polymerization of a polymer and a free volume part distributed three-dimensionally in the form of micropores in the skeletal part. It is composed of Occlusion of water molecules in the polymer membrane can be interpreted as a phenomenon in which water molecules permeate and are trapped in the free volume described above. Therefore, water molecules corresponding to the temperature and relative humidity of the environment are stored in the free volume. In the equilibrium state, the number of water molecules occluded from the environment in the volume and the number of water molecules that escape from the environment and escape to the environment are equal.
  • one of the polymer surfaces is fixed to the substrate via the first electrode and is in a constrained state.
  • the membrane absorbs water molecules without free thermal expansion.
  • the free volume portion near the other film surface of the polymer film swells by forcibly absorbing water molecules. This causes internal stress due to excess residual water molecules in the polymer film after passing through a high temperature and high humidity environment.
  • a state in which the polymer film has no internal stress means a state in which water molecules can be relatively freely absorbed and dehydrated in accordance with environmental conditions while the above-mentioned skeleton portion and free volume portion maintain a relative proportional relationship. It is conceivable that. In other words, if the polymer film is in an unconstrained state, both the skeleton and the free volume part thermally expand in relative proportion, so that no internal strain occurs in the polymer film itself, and the water molecule has a relatively free volume part. You can go in and out.
  • the capacitance of the conventional sensor which is re-measured through a high-temperature, high-humidity environment, is smaller than the capacitance measured first under the reference environment. It appears as a value larger by the amount corresponding to the dielectric amount. This is A c described above.
  • the present inventors can suppress the occurrence of stress accumulation even in a high-temperature and high-humidity environment by configuring a sensor without restraining the polymer film to the substrate.
  • the capacitance sensor of the present invention has been developed based on this idea. Various preferred embodiments of the capacitance sensor according to the present invention will be described in detail below.
  • FIG. 1 shows a sensor A1 according to an embodiment of the present invention.
  • This sensor Al has a frame-shaped substrate 10 in which one through hole 10a penetrating in the thickness direction is formed at the center.
  • the first electrode 11, the polymer film 12, and the second electrode 13 having a porous or mesh structure are laminated in this order so as to close the through hole 10a.
  • a sensor body 15 having a parallel plate capacitor structure is disposed.
  • lead wires 3a and 3b are respectively connected to ends of the first electrode 11 and the second electrode 13 using, for example, a conductive adhesive.
  • the sensor body 15 as a capacitor area has a structure in which the through hole 10a of the substrate 10 is closed and held in a hollow state. Therefore, the lower surface of the first electrode 11 in the sensor body 15 is in direct contact with the environment via the through hole 10a of the substrate 10.
  • This sensor A1 can be manufactured as follows.
  • a first electrode 11 is formed by depositing an electrode material on a substrate 10 having a predetermined shape by using, for example, a vacuum evaporation method and a sputtering method.
  • the substrate 10 may be made of any material having an electrical insulation property, and examples thereof include glass, quartz, silicon, silicon nitride, aluminum nitride, zirconia, sialon, and sapphire. Among them, the glass substrate is preferable from the viewpoints of cost and ease of performing the substrate processing described later.
  • the material of the first electrode 11 may be any conductive material, for example, Pt, Cr, A, Nb, Ru, Ti, Ta, Al, W, C, Si, Ni, Ag, pd, etc. Cu, Ru0 2, ITO and the like.
  • conductive material for example, Pt, Cr, A, Nb, Ru, Ti, Ta, Al, W, C, Si, Ni, Ag, pd, etc. Cu, Ru0 2, ITO and the like.
  • corrosion-resistant materials such as Au, Pt, Ta, Nb, Cr, and Ti are preferred, assuming that the humidity measurement environment is a corrosive environment. Pt is particularly preferred.
  • the thickness of the first electrode 11 is not particularly limited, it is usually set to about 0.02 to 1 ⁇ in consideration of conductivity.
  • the polymer film 12 is formed by burying the first electrode 11.
  • the polymer film 12 first, it is made of a predetermined material and adjusted to a predetermined viscosity. Prepare a conditioned resin solution. Then, the resin liquid is applied on the substrate 10 and the first electrode 11 at an appropriate temperature, for example, by a spin coating method as shown in FIG. Next, the coating film is cured by drying at an appropriate temperature to form the polymer film 12. In this process, a polymer film having a desired thickness can be obtained by adjusting the applied thickness of the resin solution.
  • the constituent material of the polymer film 12 may be any material having electrical insulation properties and moisture-sensitive properties, such as polyimide, polysulfone, polyethersulfone, polyetherimide, polyether, and the like.
  • Organic macromolecules such as polyamide imide, poly phenol oxide, polycarbonate, polymethyl methacrylate, polybutylene terephthalate, polyethylene terephthalate, polyethylene ethole ketone, poly etheno ketone, cellulose acetate butyl, cellulose acetate, etc.
  • Crosslinked polymer materials can be given.
  • a crosslinked polyimide which is resistant to deterioration even in a corrosive environment and has a long-term stable moisture-sensitive property is preferable.
  • the capacitance of the sensor having the capacitor structure has a relationship inversely proportional to the thickness of the polymer film 12. Therefore, if the thickness of the polymer film is too large, the accuracy of the detection signal is reduced. Conversely, if the thickness is too small, the homogeneity and insulation of the film will be degraded, leading to a reduction in reliability. For these reasons, it is generally preferable to set the film thickness to about 0.5 to 10 ⁇ .
  • a second electrode 13 having a porous structure or a network structure is formed on the polymer film 12 by using, for example, a vacuum evaporation method and a sputtering method.
  • the three stacked portions are the sensor body 15.
  • Examples of the electrode material used as the second electrode 13 include Cr, Au, Pt, Nb, Ru, Ti, Ta, Al, W, C, Si, Ni, Ag, Pd, and Cu. Of these, Cr has excellent corrosion resistance, and at the same time, fine cracks occur during film formation or in later processes. It is easy to have porous structure. Therefore, it is suitable as the second electrode 13 because the humidity response of the sensor is improved.
  • the thickness of the second electrode 13 is usually set to about 10 to 300 nm.
  • the surface other than the portion where the through hole is to be formed is formed with a resist mask 14 on the lower surface 10c of the substrate 10 (the surface opposite to the surface on which the sensor body 2 is located) by using, for example, photolithography technology. Cover.
  • the exposed lower surface 1 Ob of the first electrode 11 is applied to the lower surface 1 Ob of the first electrode 11 by using, for example, inductively-coupled plasma (ICP) dry etching.
  • ICP inductively-coupled plasma
  • the substrate material is removed up to.
  • a wet etching method may be used.
  • a through hole 10a as shown in FIG. 1 is formed in the substrate 10, and the lower surface 11a (the lower surface side in the figure) of the first electrode 11 is exposed from the upper portion.
  • the end of the polymer film 12 is removed to expose the end surface of the first electrode 11, to which the lead wire 3 a is connected, and the second The sensor A1 is manufactured by connecting the lead wire 3b to the end of the electrode 13.
  • the sensor main body 2 is held at the peripheral end of the substrate 10, and the first electrode 11 in the capacitor region located at the center thereof is not fixed to the substrate 10, and therefore, the capacitor The region is held hollow above the through hole 10a.
  • the polymer film 12 thermally expands. Since the sensor body 15 is held in the air via the first electrode 11 without being restrained by the substrate 10, the restraint on the polymer film 12 is significantly reduced.
  • the thermal expansion and thermal contraction of the skeleton portion and the free volume portion also proceed while maintaining the ratio of both in the reference environment. That is, as described above, the free volume Water molecules are excessively occluded in the part, and the state does not become larger (compressive stress state) than the skeleton part. Therefore, with this sensor A1, drift deterioration in a high-temperature and high-humidity environment is suppressed.
  • FIG. 6 shows a sensor A2 according to another embodiment of the present invention.
  • the first electrode 21 and a part of the polymer film 22 have a structure directly exposed to the environment. This is shown by the exposed portion 22a of the polymer film 22.
  • the stress accumulation (water molecule accumulation) in the polymer film 22 due to thermal expansion in a high-temperature and high-humidity environment is performed similarly to the sensor A1. Is alleviated. Furthermore, since the polymer film 22 is in direct contact with the environment not only from the second electrode 23 side but also from the exposed surface 22a through the through hole 20a, the water molecules excessively occluded in the free volume portion described above. Is easily released from the environment, so that even after passing through a high-temperature, high-humidity environment, the moisture-sensitive characteristics under the standard environment can be easily reproduced.
  • the sensor A2 also has the effect of shortening the time required to reach an equilibrium state with the relative humidity of the environment, that is, improving the humidity response of the sensor.
  • the responsiveness from the through hole 20a side can be further improved.
  • This method is similarly effective for the sensor A1, and the responsiveness can be further improved by using cracking Cr for both the first electrode 11 and the second electrode 13, for example.
  • the stability of the electrical characteristics of the sensor A1 is low. Better than A2.
  • the present invention is not limited to this embodiment.
  • the sensor A3 may have a plurality of through holes 30a formed in the substrate 30.
  • the entire upper surface 30b of the substrate opened by the through hole 30a may reach the lower surface 31a of the first electrode 31, or a part of the upper surface 30b may be partially omitted.
  • the lower surface 31a of the first electrode 31 (the lower surface side in the drawing) and the remainder may reach the lower surface 32a of the polymer film 32 (the lower surface side in the drawing).
  • FIG. 8 shows a partial cross-sectional view thereof.
  • a structure in which a sensor body 55 having a triangular shape in a plan view, for example, is held in a hollow state on one side of a frame-shaped substrate 50 may be employed.
  • a square or other sensor body shape is also possible, and the frame shape can be circular or otherwise.
  • the sensors Al, A2, A3, and A5 shown in FIGS. 1 to 9 all had a multilayer structure in which the polymer body was sandwiched between two electrode layers, but the sensor body 65 of the sensor B was It has a structure in which a polymer film 62 is embedded in two thin film electrodes 61 and 63.
  • the sensor B has a square shape in plan view.
  • the substrate 60 of the sensor B includes a frame 60d having a square outer shape, and a space surrounded by the frame 60d forms a rectangular through hole 60a.
  • a sensor body 65 is formed on the substrate 60 so as to extend over one surface (upper surface) 60b of the frame 60d.
  • the pair of thin-film electrodes 61 and 63 of the sensor body 65 have substantially the same shape, and have a large number of comb-like teeth. In addition, the teeth are arranged with a predetermined space therebetween.
  • the polymer film 62 is formed so as to fill a gap formed between the teeth of the electrodes 61 and 63. Therefore, as shown in the cross-sectional view of FIG. 11, the first electrode 61, the polymer film 62, and the second electrode 63 have a structure repeated many times, and the two electrode films 61, 63 and the high
  • the molecular film 62 is formed flat with respect to the substrate surface 60b.
  • the space between the polymer film and the thickness of the thin film electrode is optimally determined in consideration of the number of teeth of the comb, that is, the detection sensitivity as a capacitor that depends on the total area of the two electrodes in contact with the polymer film. Designed. Therefore, the thickness of the thin film is increased (the thickness is increased) In this case, a plating method may be used instead of the above-described vacuum evaporation method / sputtering method.
  • the sensor B is manufactured as follows. First, masking is performed on the upper surface 60b of the flat substrate 60 to form the electrodes 61 and 63 having the above shapes, and if necessary, etching is performed to form two electrodes having the shapes shown in FIG. 10 described above.
  • a polymer liquid is applied between the electrodes 61 and 63 by applying a resin liquid by, for example, a spin coat, and then hardening the resin liquid, thereby completing the sensor body 65. Then, the lower surface 60c of the substrate 60 is etched until it reaches the surface of the sensor main body 65 to form a through hole 60a.
  • the static electricity of the polymer film 62 accompanying occlusion and dehydration of water molecules from the environment is obtained.
  • a change in capacitance can be extracted as a detection signal.
  • the polymer film 62 in the sensor body 65 behaves completely differently from the case of the polymer film 12 in the sensor A1. That is, when the sensor B is placed in a high-temperature and high-humidity environment, the polymer film 62 tends to thermally expand, but the thermal expansion is uniformly suppressed by the electrodes 61 and 63 on both sides. In other words, while the skeleton and free volume of the polymer maintain the same structure as in the reference environment, only the free volume becomes relatively larger than the skeleton even in a high-temperature, high-humidity environment. Absent.
  • An example of the sensor Al shown in FIG. 1 was manufactured as follows.
  • Pt is deposited on a glass substrate 10 having a thickness of 0.5 mm by a vacuum deposition method to form a first electrode 11 having a thickness of 500 nm (FIG. 2).
  • C was heat-treated to form a 5 ⁇ -thick crosslinked polyimide polymer film 12 (Fig. 3).
  • Cr was deposited on the film 12 by sputtering to form a second electrode 13 having a thickness of 100 nm, and the sensor body 15 was disposed on the upper surface 10b of the glass substrate 10 (FIG. 4).
  • the structure was completely removed by etching from the exposed lower surface 10c to the lower surface 11a of the first electrode 11, and the sensor body 15 was held in the air by the glass substrate 10. Then, a part of the polyimide film 12 is removed to expose the end of the first electrode 11, and the lead wires 3a and 3b made of Cu are electrically connected to this end and the end of the second electrode 13, respectively.
  • the sensor A1 shown in FIG. 1 was manufactured.
  • the obtained capacitance value is plotted on the vertical axis, and the relative humidity is plotted on the horizontal axis.
  • Sensor A1 and sensor C1 were placed in three environments, and the capacitance at that time was measured. Both sensor A1 and sensor C1 showed the same values as 192DF in the case of environment (1), 200pF in the case of environment (II), and 208pF in the case of environment (III).
  • the sensor A1 and the sensor C1 were moved from the environment (I), (II), and (III) to a high-temperature and high-humidity environment with a temperature of 40 ° C and a relative humidity of 90%. After 1000 hours, each sensor was taken out and returned to the reference environment (I), (II), (III), and the capacitance was measured under that environment.
  • the relative humidity value Z in the reference environment after being placed in the high-temperature and high-humidity environment was calculated as follows.
  • Z ⁇ (Capacitance at 10% relative humidity after standing in a high temperature and high humidity environment-Capacitance at 10% relative humidity before standing in a high temperature and high humidity environment) ZO. 2 ⁇ +1
  • Z ⁇ (Capacitance at 50% relative humidity after standing in a high temperature and high humidity environment—Capacitance at 50% relative humidity before leaving in a high temperature and high humidity environment) /0.2 ⁇ + Five
  • the values on the vertical axis at the zero point on the horizontal axis are the values before the sensor is left in a high-temperature, high-humidity environment in environment (1), environment (II) or environment (III).
  • Relative humidity (% RH) This value is the same because both sensor Al and sensor C1 use the same type of polymer film.
  • the Z value shows about 10.5, while the sensor C1 shows a Z value of about 12.1. Is shown.
  • Z value is the reference value Z in environment (I). (Z value at the zero point on the horizontal axis) The larger the difference between the sensors, the larger the residual amount of water molecules in the polymer film.
  • the capacitance sensor of the present invention can obtain a highly reproducible relative humidity signal which does not easily cause drift deterioration even in a high temperature and high humidity environment.
  • a through-hole 10a that reaches the sensor body 15 is provided in the substrate 10 on which the sensor body 15 is disposed, so that the degree of freedom of thermal expansion of the polymer film 12 of the sensor body 15 is ensured.
  • This is the effect of designing the sensor structure so that the free volume in the film does not easily accumulate stress due to water molecules.
  • a similar effect can be obtained in the sensor B.
  • the number of sensor bodies is limited to one. However, a plurality of sensor bodies are formed on one substrate, and each sensor body has at least one through hole. You may.
  • the present invention is not limited to the embodiment described above.
  • the above description has been made on the case where the measurement target is the humidity in the environment.
  • the capacitance sensor of the present invention is not limited to this. Gases that change the temperature (for example, formaldehyde, acetone, and alcohol) can be used as sensors to detect them.
  • the present invention can be implemented with various modifications without departing from the scope of the invention.
  • ADVANTAGE OF THE INVENTION it is possible to suppress drift deterioration of a conventional humidity detection sensor, and an extremely high temperature and high humidity environment such as humidity detection in a fuel cell, horticulture cultivation in facilities, weather, and food storage and drying is required. It is effective in fields such as

Abstract

A capacitance type humidity detection sensor used under a high-temperature, high-humidity environment, wherein a sensor body has a capacitor structure comprising a polymer membrane interposed between a pair of electrodes, and the sensor body is disposed on one surface of a substrate having at least one through hole penetrating in the thickness direction of the substrate holding the sensor body.

Description

明 細 書  Specification
静電容量センサ 技術分野 Capacitive sensor technical field
本発明は静電容量センサに関し、更に詳しくは、高温高湿環境下で使用する湿 度検出センサとして有用な静電容量センサに関する。 背景技術 The present invention relates to a capacitance sensor, and more particularly, to a capacitance sensor useful as a humidity detection sensor used in a high-temperature and high-humidity environment. Background art
感湿材料として高分子膜を用いた湿度検出センサには、大別して静電容量型 と電気抵抗型の 2種類がある。これらのうち、静電容量型のセンサは水分子の約 8 0という比較的大きな比誘電率特性を利用するもので、湿度応答性がよ 感湿 特性の湿度依存性も小さくて湿度 ·温度の計測範囲が広レ、、という特徴を備えて いる。 - 静電容量型の湿度検出センサは、一般に、次のような構造になっている。  Humidity detection sensors using a polymer film as a moisture-sensitive material are roughly classified into two types: capacitance type and electric resistance type. Among them, the capacitance type sensor uses the relatively large relative permittivity characteristic of water molecules of about 80, and has a good humidity response, and the humidity dependency of the humidity sensitivity is small, and the humidity and temperature The measurement range is wide. -A capacitance-type humidity detection sensor generally has the following structure.
センサ本体は、センサを保持する役目を持つ基板の片面に、まず第 1電極層が 形成され、次に電気絶縁性があり、かつ感湿特性を有する高分子膜が形成され、 最後に多孔質構造または網目構造を持った第 2電極層が形成されたものである。 第 1電極と第 2電極から検出信号を取り出すリード線をそれぞれ引き出している。 基板としては電気絶縁性おょぴ適度な強度を有する材料が使用され、それでセン サ全体の強度を確保している。基板上に形成されている上記センサ本体は、平行 平板型のコンデンサ構造になっている。  In the sensor body, a first electrode layer is first formed on one side of the substrate that holds the sensor, then a polymer film that is electrically insulating and has moisture sensitivity is formed, and finally, a porous film is formed. A second electrode layer having a structure or a mesh structure is formed. Lead wires for extracting a detection signal from the first electrode and the second electrode are respectively drawn. As the substrate, a material with electrical insulation and moderate strength is used to ensure the strength of the entire sensor. The sensor main body formed on the substrate has a parallel plate type capacitor structure.
このタイプのセンサは次のような作動原理に基づいて環境の湿度を検出する。 センサをある相対湿度の環境に置くと、環境中の水蒸気(以下、水分子という) は多孔質構造または網目構造の第 2電極層を透過してその下に位置する高分子 膜の表面に到達し、更に、この高分子膜の内部に浸透して捕捉 '吸蔵される。 高分子膜の水分子の捕捉'吸蔵は、環境と高分子膜の間で平衡状態が形成さ れるまで続行する。平衡状態では、高分子膜への水分子の吸蔵と高分子膜から の水分子の脱離とが同時に等量数で進行し、高分子膜が環境中の相対湿度に 対応するある一定量の水分子を吸蔵した状態になっている。 This type of sensor detects the humidity of the environment based on the following operating principle. When the sensor is placed in an environment with a certain relative humidity, the water vapor (hereinafter referred to as water molecule) in the environment passes through the porous or mesh-structured second electrode layer and reaches the surface of the polymer film located thereunder. Then, it penetrates into the polymer membrane and is trapped and stored. The capture and storage of water molecules by the polymer membrane continues until an equilibrium is formed between the environment and the polymer membrane. In the equilibrium state, the absorption of water molecules into the polymer membrane and the desorption of water molecules from the polymer membrane proceed at the same time at an equal number, and the polymer membrane becomes a certain amount corresponding to the relative humidity in the environment. It is in a state that occludes water molecules.
したがって、その状態で上記の各電極から引き出された各リード線をインピーダ ンスアナライザに接続して高分子膜の検出信号(静電容量)を得れば、その検出 信号に基づいて高分子膜への水分子の吸蔵量、すなわち、環境の相対湿度を 測定することができる。  Therefore, in this state, if each lead wire drawn from each of the above-mentioned electrodes is connected to an impedance analyzer to obtain a detection signal (capacitance) of the polymer film, the detection signal (capacitance) is applied to the polymer film based on the detection signal. Of water molecules, that is, the relative humidity of the environment.
実際の湿度検出は次のようにして行われる。  Actual humidity detection is performed as follows.
まず、組み立てたセンサの感湿特性が測定される。すなわち、例えば温度 25 °C で、相対湿度が x。, x1 ; —xnであるいくつかの基準環境を設定し、各基準環境の 中にセンサを配置してインピーダンスアナライザで各基準環境におけるセンサの検 出信号(静電容量) c。, C l, - - - cnを測定する。そして、相対湿度と検出信号との関 係: X。 vs c0, Xl vs , 〜xn vs cnを測定装置に記憶させておく。 First, the humidity sensitivity of the assembled sensor is measured. That is, for example, at a temperature of 25 ° C and a relative humidity of x. , X 1; — x n Set several reference environments, place the sensor in each reference environment, and use the impedance analyzer to detect the sensor signal (capacitance) in each reference environment c. , C l , --- c n are measured. And the relationship between the relative humidity and the detection signal: X. vs c 0, Xl vs, advance and stored in the measuring device ~x n vs c n.
次に実際の湿度検出が行われる。すなわち、このセンサを湿度測定対象の環境 に配置し、そのときの検出信号を得る。その検出信号が仮に cnであったとすれば、 その環境における相対湿度を χηとして測定装置が表示する。検出信号が上記の 値でない場合も、先のデータを補間して容易に対応する相対湿度を得ることがで 含る。 Next, actual humidity detection is performed. That is, this sensor is arranged in the environment of the humidity measurement target, and a detection signal at that time is obtained. If the detected signal is a if c n, the measuring device displays the relative humidity in the environment as a chi eta. Even when the detection signal is not the above value, it is possible to easily obtain the corresponding relative humidity by interpolating the previous data.
この検出方式は、上記の水分子以外の極性を持った分子、例えばホルムアル デヒド,アセトン,アルコールなどに対しても適用することができる。  This detection method can also be applied to molecules having polarities other than the above-mentioned water molecules, for example, formaldehyde, acetone, alcohol and the like.
しかし、静電容量型の湿度検出センサには、水分子の特性をうまく利用したこと によるいくつかの優れた特徴があるとともに、次のような問題がある。  However, the capacitance type humidity detection sensor has some excellent features due to the good use of the characteristics of water molecules, and has the following problems.
すなわち、従来型の湿度検出センサは、高温高湿環境下で長時間使用した後 に、例えば基準環境下で再測定すると、その環境下における真の相対湿度に対 応した検出信号(静電容量)ではな 真の相対湿度よりも高い相対湿度に対応 した検出信号を示す傾向があることである。 In other words, when a conventional humidity detection sensor is used for a long time in a high-temperature, high-humidity environment, and then re-measured in a reference environment, for example, the relative humidity in the environment cannot be measured. The corresponding detection signal (capacitance) tends to show a detection signal corresponding to a relative humidity higher than the true relative humidity.
つまり、まだセンサを高温高湿環境下で使用していない時に、例えば基準環境 下での相対湿度 xnに対応するセンサの検出信号が cnであ たとする。ところが、そ のセンサを高温高湿環境下で長時間使用した後で再測定すると、同じ相対湿度 Xnの基準環境下であっても検出信号が cn+ A cとなってしまう。この現象は、通常、 静電容量測定型の湿度検出センサにおけるドリフト劣化と呼ばれている。 発明の開示 That is, when the not yet used in the environment of high temperature and high humidity sensors, for example, the detection signal of the sensor corresponding to the relative humidity x n under the reference environment and were der c n. However, when re-measured after it has been used for a long time the sensor of that in high-temperature and high-humidity environment, the detection signal even under the reference environment of the same relative humidity Xn becomes the c n + A c. This phenomenon is usually referred to as drift deterioration in a capacitance measurement type humidity detection sensor. Disclosure of the invention
本発明は上述した課題を解決するもので、静電容量型の湿度検出センサのドリ フト劣化を抑制するような構造を提供することを目的とする。  An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a structure that suppresses drift deterioration of a capacitance type humidity detection sensor.
上述した目的を達成するべく、本発明の静電容量型の湿度検出センサは、セン サ本体が、第 1電極、高分子膜、第 2電極、の順序で積層して形成されたコンデ ンサ構造のセンサ本体と、それぞれの電極から引き出した二つの検出信号リード 線と、厚み方向に少なくとも 1個の貫通孔を有し、一つの表面上にセンサ本体を 保持する基板と、で構成されていることを特徴としている。  In order to achieve the above object, the capacitance type humidity detection sensor of the present invention has a capacitor structure in which a sensor body is formed by laminating a first electrode, a polymer film, and a second electrode in this order. And a substrate that has at least one through hole in the thickness direction and holds the sensor body on one surface. It is characterized by:
さらに、本発明の静電容量型の湿度検出センサは、所定の間隔を置いて立設さ れた第 1電極と第 2電極との間に高分子膜を介在させたコンデンサ構造のセンサ 本体と、それぞれの電極から引き出した二つの検出信号リード線と、厚み方向に 少なくとも一個の貫通孔を有し、一つの表面上にセンサ本体を保持する基板と、 で構成されていることを特徴としている。 図面の簡単な説明  Further, the capacitance-type humidity detection sensor of the present invention includes a sensor body having a capacitor structure in which a polymer film is interposed between a first electrode and a second electrode which are erected at predetermined intervals. , Two detection signal leads drawn from each electrode, and a substrate having at least one through hole in the thickness direction and holding the sensor body on one surface. . BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明のセンサの 1例 A1を示す断面図である。  FIG. 1 is a sectional view showing an example A1 of the sensor of the present invention.
図 2は、センサ A1を製造する際に、基板状に第 1電極を形成した状態を示す断 面図である。 FIG. 2 is a cross-sectional view showing a state where a first electrode is formed on a substrate when manufacturing the sensor A1. FIG.
図 3は、高分子膜を成膜した状態を示す断面図である。  FIG. 3 is a cross-sectional view showing a state where a polymer film is formed.
図 4は、第 2電極を形成した状態を示す断面図である。  FIG. 4 is a cross-sectional view showing a state where the second electrode is formed.
図 5は、基板の裏面にレジストマスクを形成した状態を示す断面図である。  FIG. 5 is a cross-sectional view showing a state where a resist mask is formed on the back surface of the substrate.
図 6は、本発明のセンサの別の例 A2を示す断面図である。  FIG. 6 is a sectional view showing another example A2 of the sensor of the present invention.
図 7は、本発明のセンサの更に別の例 A3を示す断面図である。  FIG. 7 is a sectional view showing still another example A3 of the sensor of the present invention.
図 8は、図 7の円 Pの部分断面図である。  FIG. 8 is a partial sectional view of a circle P in FIG.
図 9は、本発明のセンサの更に他の例 A5を示す断面図である。  FIG. 9 is a sectional view showing still another example A5 of the sensor of the present invention.
図 10は、本発明のセンサの別の例 Bを示す平面図である。  FIG. 10 is a plan view showing another example B of the sensor of the present invention.
図 1 1は、図 10の X— X線に沿う断面図である。  FIG. 11 is a cross-sectional view taken along line XX of FIG.
図 12は、従来のセンサ C 1の構造を示す断面図である。  FIG. 12 is a sectional view showing the structure of a conventional sensor C1.
図 13は、基準環境を温度 25°C,相対湿度 10 % (環境(1) )としたときの、高温 高湿環境中へのセンサの放置時間と相対湿度 Zとの関係を示すグラフである。 図 14は、基準環境を温度 25°C ,相対湿度 50 % (環境(Π) )としたときの、高温 高湿環境中へのセンサの放置時間と相対湿度 Zとの関係を示すグラフである。 図 15は、基準環境を温度 25°C ,相対湿度 90 % (環境(III) )としたときの、高温 高湿環境中へのセンサの放置時間と相対湿度 Zとの関係を示すグラフである。 発明を実施するための最良の形態  Fig. 13 is a graph showing the relationship between the sensor's standing time in a high-temperature and high-humidity environment and the relative humidity Z when the reference environment is at a temperature of 25 ° C and a relative humidity of 10% (environment (1)). . Figure 14 is a graph showing the relationship between the relative humidity Z and the time the sensor is left in a high-temperature, high-humidity environment when the reference environment is at a temperature of 25 ° C and a relative humidity of 50% (environment (Π)). . Figure 15 is a graph showing the relationship between the relative humidity Z and the time the sensor is left in a high-temperature, high-humidity environment when the reference environment is at a temperature of 25 ° C and a relative humidity of 90% (environment (III)). . BEST MODE FOR CARRYING OUT THE INVENTION
本発明者らは、上記の目的を達成するための研究過程でドリフト劣化の発生要 因に関して以下のような考察を行った。  The present inventors have made the following considerations regarding the cause of drift deterioration during the course of research for achieving the above object.
(1 )一般に、吸湿性のある高分子膜は、高分子の縮重合によって形成された骨 格部と、この骨格部の中に微細孔の形態をとつて 3次元的に分布する自由体積 部とで構成されている。水分子が高分子膜に吸蔵されるとは、水分子が上記の自 由体積部に浸透'捕捉される現象であると解釈することができる。 したがって、 自由体積部には環境の温度と相対湿度に対応した水分子が吸蔵 されている。平衡状態では、その体積部に環境から吸蔵される水分子の数とそこ 力 ^離脱して環境に飛び出す水分子の数が等量の状態にある。 (1) In general, a hygroscopic polymer film is composed of a skeletal part formed by the condensation polymerization of a polymer and a free volume part distributed three-dimensionally in the form of micropores in the skeletal part. It is composed of Occlusion of water molecules in the polymer membrane can be interpreted as a phenomenon in which water molecules permeate and are trapped in the free volume described above. Therefore, water molecules corresponding to the temperature and relative humidity of the environment are stored in the free volume. In the equilibrium state, the number of water molecules occluded from the environment in the volume and the number of water molecules that escape from the environment and escape to the environment are equal.
(2)従来のセンサ構造の場合、高分子膜の一方の膜面は前記第 1電極を介し て基板に固定されて拘束状態にあるため、高温環境下でも一方の膜面の近傍の 高分子膜は自由に熱膨張できないまま水分子を吸蔵する。すなわち、骨格部が 基板に拘束されたままで、一方、高分子膜の他方の膜面近傍の自由体積部は水 分子を無理に吸蔵して膨潤する。このことが原因で、高温高湿環境を経た高分子 膜には過剰残留水分子による内部応力が発生してしまう。  (2) In the case of the conventional sensor structure, one of the polymer surfaces is fixed to the substrate via the first electrode and is in a constrained state. The membrane absorbs water molecules without free thermal expansion. In other words, while the skeletal portion remains constrained by the substrate, the free volume portion near the other film surface of the polymer film swells by forcibly absorbing water molecules. This causes internal stress due to excess residual water molecules in the polymer film after passing through a high temperature and high humidity environment.
高分子膜に内部応力が全くない状態とは、上記の骨格部と自由体積部が相対 比例関係を保っている状態で、環境条件に合わせて比較的自由に水分子が吸 蔵'脱水できる状態と考えられる。すなわち、高分子膜が非拘束状態であれば、 骨格部も自由体積部も相対比例して熱膨張するので、高分子膜自身に内部ひ ずみは起こらず、水分子は比較的自由体積部を出入りできる。  A state in which the polymer film has no internal stress means a state in which water molecules can be relatively freely absorbed and dehydrated in accordance with environmental conditions while the above-mentioned skeleton portion and free volume portion maintain a relative proportional relationship. it is conceivable that. In other words, if the polymer film is in an unconstrained state, both the skeleton and the free volume part thermally expand in relative proportion, so that no internal strain occurs in the polymer film itself, and the water molecule has a relatively free volume part. You can go in and out.
よって、高温高湿環境を経て再測定される従来のセンサの静電容量は、基準環 境下で最初に計測された静電容量に比べて、高分子膜に過剰に蓄積された水 分子の誘電量に相当する分だけ大きい値となって現われる。これが上述した A c である。  Therefore, the capacitance of the conventional sensor, which is re-measured through a high-temperature, high-humidity environment, is smaller than the capacitance measured first under the reference environment. It appears as a value larger by the amount corresponding to the dielectric amount. This is A c described above.
ドリフト劣化に関する以上の考察を踏まえることにより、本発明者らは、高分子 膜を基板に拘束しないでセンサを構成すれば、高温高湿環境を経ても応力蓄積 が引き起こされることを抑制でき、もってドリフト劣化の抑制が可能になる、との着 想を抱き、この着想に基づいて本発明の静電容量センサを開発するに至った。 本発明に係わる静電容量センサの種々の好適な実施形態を、以下に詳細に説 明する。  Based on the above considerations regarding drift deterioration, the present inventors can suppress the occurrence of stress accumulation even in a high-temperature and high-humidity environment by configuring a sensor without restraining the polymer film to the substrate. With the idea that drift degradation can be suppressed, the capacitance sensor of the present invention has been developed based on this idea. Various preferred embodiments of the capacitance sensor according to the present invention will be described in detail below.
図 1に本発明の実施例センサ A1を示す。 このセンサ Alは、厚み方向に貫通する貫通孔 10aが中央に 1個形成されている 枠形状をした基板 10を有している。基板 10の上面 10bに、前記貫通孔 10aを閉 塞するようにして、第 1電極 1 1と高分子膜 12と多孔質構造または網目状構造の 第 2電極 13とをこの順序で積層してなる平行平板型のコンデンサ構造のセンサ本 体 1 5が配置されている。そして、第 1電極 1 1と第 2電極 13の端部には、例えば導 電性接着剤を用いてリード線 3a, 3bがそれぞれ接続されている。 FIG. 1 shows a sensor A1 according to an embodiment of the present invention. This sensor Al has a frame-shaped substrate 10 in which one through hole 10a penetrating in the thickness direction is formed at the center. On the upper surface 10b of the substrate 10, the first electrode 11, the polymer film 12, and the second electrode 13 having a porous or mesh structure are laminated in this order so as to close the through hole 10a. A sensor body 15 having a parallel plate capacitor structure is disposed. Then, lead wires 3a and 3b are respectively connected to ends of the first electrode 11 and the second electrode 13 using, for example, a conductive adhesive.
また、コンデンサ領域としてのセンサ本体 1 5は、基板 10の貫通孔 1 0aを閉塞し た状態で中空保持された構造になっている。したがって、センサ本体 15における 第 1電極 11の下面は、基板 10の貫通孔 10aを介して環境と直接接触している。 このセンサ A1は次のようにして製造することができる。  Further, the sensor body 15 as a capacitor area has a structure in which the through hole 10a of the substrate 10 is closed and held in a hollow state. Therefore, the lower surface of the first electrode 11 in the sensor body 15 is in direct contact with the environment via the through hole 10a of the substrate 10. This sensor A1 can be manufactured as follows.
まず、図 2で示したように、所定形状の基板 10の上に、例えば真空蒸着法ゃス パッタ法を用いて電極材料を成膜して第 1電極 11を形成する。  First, as shown in FIG. 2, a first electrode 11 is formed by depositing an electrode material on a substrate 10 having a predetermined shape by using, for example, a vacuum evaporation method and a sputtering method.
基板 10は、電気絶縁性のある材料あれば何であってもよく、例えば、ガラス、石 英、シリコン、窒化ケィ素、窒化アルミニウム、ジルコユア、サイアロン、サファイアな どをあげることができる。これらのうち、ガラス基板は価格の点および後で述べる基 板加ェが行レ、やすいなどの点から好適である。  The substrate 10 may be made of any material having an electrical insulation property, and examples thereof include glass, quartz, silicon, silicon nitride, aluminum nitride, zirconia, sialon, and sapphire. Among them, the glass substrate is preferable from the viewpoints of cost and ease of performing the substrate processing described later.
また、第 1電極 11の材料としては導電性材料であれば何であってもよぐ例えば、 Pt, Cr, A , Nb, Ru, Ti, Ta, Al, W, C, Si, Ni, Ag, Pd, Cu, Ru02, ITOな どをあげることができる。これらのうち、湿度測定環境が腐食性環境であることを想 定した場合に、 Au, Pt, Ta, Nb, Cr, Tiなどの耐食性材料が好ましレ、。とくに Pt が好適である。 The material of the first electrode 11 may be any conductive material, for example, Pt, Cr, A, Nb, Ru, Ti, Ta, Al, W, C, Si, Ni, Ag, pd, etc. Cu, Ru0 2, ITO and the like. Of these, corrosion-resistant materials such as Au, Pt, Ta, Nb, Cr, and Ti are preferred, assuming that the humidity measurement environment is a corrosive environment. Pt is particularly preferred.
この第 1電極 1 1の厚みは特に限定されるものではないが、通常は、導電性を考 盧して、 0·02〜1 μ πι程度にすればよい。  Although the thickness of the first electrode 11 is not particularly limited, it is usually set to about 0.02 to 1 μπι in consideration of conductivity.
ついで、図 3で示したように、第 1電極 11を埋設して高分子膜 12が成膜される。 この高分子膜 12の形成に際しては、まず、所定の材料から成り、所定の粘度に調 整した樹脂液を調製する。そして、該樹脂液を適正な温度下で、図 3に示したよう に基板 10およぴ第 1電極 1 1の上に例えばスピンコート法で塗布する。次に、適正 な温度下で乾燥することにより塗膜を硬化させて高分子膜 12を形成する。この過 程で、所望の厚みの高分子膜が、該樹脂液の塗布厚みを調整することにより得ら れる。 Then, as shown in FIG. 3, the polymer film 12 is formed by burying the first electrode 11. When forming the polymer film 12, first, it is made of a predetermined material and adjusted to a predetermined viscosity. Prepare a conditioned resin solution. Then, the resin liquid is applied on the substrate 10 and the first electrode 11 at an appropriate temperature, for example, by a spin coating method as shown in FIG. Next, the coating film is cured by drying at an appropriate temperature to form the polymer film 12. In this process, a polymer film having a desired thickness can be obtained by adjusting the applied thickness of the resin solution.
高分子膜 1 2の構成材料としては、電気絶縁性およぴ感湿特性を持ったもので あれば何であってもよく、例えば、ポリイミド,ポリスルホン,ポリエーテルスルホン, ポリエーテルイミド,ポリエーテル,ポリアミドイミド,ポリフエ-レンオキサイド,ポリ力 ーボネート,ポリメタクリル酸メチル,ポリブチレンテレフタレート,ポリエチレンテレフ タレート,ポリェチノレエーテルケトン,ポリエーテノレケトン, セルロースアセテートプチ ル,セルロースアセテートなどの有機高分子'架橋高分子材料をあげることができ る。  The constituent material of the polymer film 12 may be any material having electrical insulation properties and moisture-sensitive properties, such as polyimide, polysulfone, polyethersulfone, polyetherimide, polyether, and the like. Organic macromolecules such as polyamide imide, poly phenol oxide, polycarbonate, polymethyl methacrylate, polybutylene terephthalate, polyethylene terephthalate, polyethylene ethole ketone, poly etheno ketone, cellulose acetate butyl, cellulose acetate, etc. Crosslinked polymer materials can be given.
これらのうち、腐食環境下でも変質を起こしづら 長期間安定な感湿特性を持 つ架橋ポリイミドが好適である。  Among them, a crosslinked polyimide which is resistant to deterioration even in a corrosive environment and has a long-term stable moisture-sensitive property is preferable.
コンデンサ構造のセンサの静電容量は、高分子膜 12の厚みと反比例する関係 にある。よってあまり高分子膜の厚さを大きくすると検出信号の精度低下を招く。 逆'に、あまり薄くすると、膜としての均質性と絶縁性が劣化して信頼性の低下を招 く。このようなこと力ら、膜厚は、通常、 0.5〜10 μ ιη程度に設定するのが好適であ る。  The capacitance of the sensor having the capacitor structure has a relationship inversely proportional to the thickness of the polymer film 12. Therefore, if the thickness of the polymer film is too large, the accuracy of the detection signal is reduced. Conversely, if the thickness is too small, the homogeneity and insulation of the film will be degraded, leading to a reduction in reliability. For these reasons, it is generally preferable to set the film thickness to about 0.5 to 10 μιη.
更に、図 4で示したように、高分子膜 12の上に例えば真空蒸着法ゃスパッタ法 を用いて多孔質構造または網目状構造を持った第 2電極 13を成膜する。この三 つの積層された部分がセンサ本体 15である。  Further, as shown in FIG. 4, a second electrode 13 having a porous structure or a network structure is formed on the polymer film 12 by using, for example, a vacuum evaporation method and a sputtering method. The three stacked portions are the sensor body 15.
第 2電極 13として用いる電極材料としては、例えば、 Cr, Au, Pt, Nb, Ru, Ti, Ta, Al, W, C, Si, Ni, Ag, Pd, Cuなどをあげることができる。これらのうち、 Cr は耐食性に優れていると同時に、成膜時または後行程において微細クラックが発 生して多孔質構造を持ちやすい。そのため、センサの湿度応答性を高めるので第 2電極 13として好適である。 Examples of the electrode material used as the second electrode 13 include Cr, Au, Pt, Nb, Ru, Ti, Ta, Al, W, C, Si, Ni, Ag, Pd, and Cu. Of these, Cr has excellent corrosion resistance, and at the same time, fine cracks occur during film formation or in later processes. It is easy to have porous structure. Therefore, it is suitable as the second electrode 13 because the humidity response of the sensor is improved.
この第 2電極 1 3の厚みをあまり大きくすると湿度応答性が小さくなる。一方、電 極 1 3の厚みをあまり小さくすると膜が島状構造になり、電極としての導電性が低 下するので、通常、電極 13の厚みは 10〜300nm程度に設定される。  If the thickness of the second electrode 13 is too large, the humidity responsiveness is reduced. On the other hand, if the thickness of the electrode 13 is too small, the film becomes an island-like structure and the conductivity as an electrode is reduced. Therefore, the thickness of the electrode 13 is usually set to about 10 to 300 nm.
ついで、図 5に示したように、基板 10の下面 10c (センサ本体 2のある面の反対 面)に例えばフォトリソグラフィー技術を用いて、貫通孔を形成すべき箇所以外の 表面をレジストマスク 14で被覆する。  Next, as shown in FIG. 5, the surface other than the portion where the through hole is to be formed is formed with a resist mask 14 on the lower surface 10c of the substrate 10 (the surface opposite to the surface on which the sensor body 2 is located) by using, for example, photolithography technology. Cover.
ついで、表出している基板下面 1 O bに対して、例えば誘導結合プラズマ (inductively- coupled plasma: ICP)ドライエッチング法を用いて第 1電極 1 1の下 面 1 1 a (図の下面側)に至るまで基板材料を除去する。もちろん、基板材料によつ てはウエットエッチング法を用いてもよレ、。その結果、基板 10には図 1で示したよう な貫通孔 10aが形成され、その上部からは第 1電極 11の下面 1 1 a (図の下面側) が表出する。  Then, the exposed lower surface 1 Ob of the first electrode 11 is applied to the lower surface 1 Ob of the first electrode 11 by using, for example, inductively-coupled plasma (ICP) dry etching. The substrate material is removed up to. Of course, depending on the substrate material, a wet etching method may be used. As a result, a through hole 10a as shown in FIG. 1 is formed in the substrate 10, and the lower surface 11a (the lower surface side in the figure) of the first electrode 11 is exposed from the upper portion.
そして最後に、図 1に示したように、高分子膜 1 2の端部を除去して第 1電極 1 1 の端部表面を表出させ、そこにリード線 3aを接続し、また第 2電極 13の端部にリ ード線 3bを接続してセンサ A1が製造される。  Finally, as shown in FIG. 1, the end of the polymer film 12 is removed to expose the end surface of the first electrode 11, to which the lead wire 3 a is connected, and the second The sensor A1 is manufactured by connecting the lead wire 3b to the end of the electrode 13.
このセンサ A1の場合、センサ本体 2は基板 10の周端部で保持され、その中心 部に位置するコンデンサ領域の第 1電極 1 1は基板 10に固定されておらず、した がって、コンデンサ領域は貫通孔 10aの上で中空保持された状態になっている。 このセンサ A1を高温高湿環境に置くと、高分子膜 1 2は熱膨張する。し力し、セ ンサ本体 1 5は第 1電極 1 1を介して基板 10に拘束されることなく中空保持されて いるので、高分子膜 12に対する拘束は著しく軽減される。  In the case of this sensor A1, the sensor main body 2 is held at the peripheral end of the substrate 10, and the first electrode 11 in the capacitor region located at the center thereof is not fixed to the substrate 10, and therefore, the capacitor The region is held hollow above the through hole 10a. When the sensor A1 is placed in a high temperature and high humidity environment, the polymer film 12 thermally expands. Since the sensor body 15 is held in the air via the first electrode 11 without being restrained by the substrate 10, the restraint on the polymer film 12 is significantly reduced.
したがって、その骨格部と自由体積部の熱膨張および熱収縮も、基準環境下に おける両者の割合を保持した状態で進行する。つまり、上述したように、自由体積 部に水分子が過剰に吸蔵され、骨格部より相対的に大きくなつた状態(圧縮応力 の状態)にはならない。そのため、このセンサ A1では、高温高湿環境下におけるド リフト劣化が抑制される。 Therefore, the thermal expansion and thermal contraction of the skeleton portion and the free volume portion also proceed while maintaining the ratio of both in the reference environment. That is, as described above, the free volume Water molecules are excessively occluded in the part, and the state does not become larger (compressive stress state) than the skeleton part. Therefore, with this sensor A1, drift deterioration in a high-temperature and high-humidity environment is suppressed.
図 6は、本発明の他の実施例のセンサ A2を示す。  FIG. 6 shows a sensor A2 according to another embodiment of the present invention.
このセンサ A2の場合は、第 1電極 21および高分子膜 22の一部が環境に直接 表出した構造になっている。それを高分子膜 22の表出部 22aで示した。  In the case of this sensor A2, the first electrode 21 and a part of the polymer film 22 have a structure directly exposed to the environment. This is shown by the exposed portion 22a of the polymer film 22.
センサ A2は、センサ本体 2が貫通孔 20aの中で中空保持されているので、セン サ A1と同様に高温高湿環境下での熱膨張による高分子膜 22への応力蓄積(水 分子蓄積)が緩和される。更に、高分子膜 22は、第 2電極 23側からだけではな 貫通孔 20aを介して表出面 22aからも環境と直接接触しているので、前記の自由 体積部に過剰に吸蔵された水分子は環境中へより離脱しやすぐそのため、高温 高湿度環境を経た後でも基準環境下における感湿特性が再現されやすい。セン サ A2は、他にも、環境の相対湿度と平衡状態になるまでの時間が短レ、、すなわち センサの湿度応答性が向上するという効果がある。  In the sensor A2, since the sensor body 2 is held hollow in the through hole 20a, the stress accumulation (water molecule accumulation) in the polymer film 22 due to thermal expansion in a high-temperature and high-humidity environment is performed similarly to the sensor A1. Is alleviated. Furthermore, since the polymer film 22 is in direct contact with the environment not only from the second electrode 23 side but also from the exposed surface 22a through the through hole 20a, the water molecules excessively occluded in the free volume portion described above. Is easily released from the environment, so that even after passing through a high-temperature, high-humidity environment, the moisture-sensitive characteristics under the standard environment can be easily reproduced. The sensor A2 also has the effect of shortening the time required to reach an equilibrium state with the relative humidity of the environment, that is, improving the humidity response of the sensor.
また、第 1電極 21を多孔質構造または網目構造にすることで、貫通孔 20a側か らの応答性を更に向上させることができる。この方法はセンサ A1においても同じよ うに有効で、例えばクラック性のある Crを第 1電極 1 1および第 2電極 13にともに用 レ、ることで応答性をさらに高めることができる。なお、センサ A1の場合、貫通孔 10 aによる開口部分は第 1電極 1 1で全面が閉塞され、高分子膜 12を環境から保護 しているので、センサ A1の電気的特性の安定性はセンサ A2よりよい。  In addition, when the first electrode 21 has a porous structure or a mesh structure, the responsiveness from the through hole 20a side can be further improved. This method is similarly effective for the sensor A1, and the responsiveness can be further improved by using cracking Cr for both the first electrode 11 and the second electrode 13, for example. In the case of the sensor A1, since the opening formed by the through hole 10a is entirely closed by the first electrode 11 and protects the polymer film 12 from the environment, the stability of the electrical characteristics of the sensor A1 is low. Better than A2.
以上説明したセンサ Al,センサ A2は、いずれも基板 10 , 20に 1個の貫通孔 10 a, 20aを形成した場合である力 本発明はこの形態に限定されるものではな 例 えば図 7で示したように、基板 30に複数個の貫通孔 30aを形成したセンサ A3であ つてもよい。その場合、図には示していないが、貫通孔 30aによって開口する基板 上面 30bは、そのすべてが第 1電極 31の下面 31 aに達していてもよく、また一部は 第 1電極 31の下面 31a (図の下面側)に、残りは高分子膜 32の下面 32a (図の下 面側)に達していてもよい。図 8にその部分断面図を示す。 The sensor Al and the sensor A2 described above both have a case in which one through hole 10a, 20a is formed in the substrate 10, 20. The present invention is not limited to this embodiment. For example, FIG. As shown, the sensor A3 may have a plurality of through holes 30a formed in the substrate 30. In this case, although not shown in the drawing, the entire upper surface 30b of the substrate opened by the through hole 30a may reach the lower surface 31a of the first electrode 31, or a part of the upper surface 30b may be partially omitted. The lower surface 31a of the first electrode 31 (the lower surface side in the drawing) and the remainder may reach the lower surface 32a of the polymer film 32 (the lower surface side in the drawing). FIG. 8 shows a partial cross-sectional view thereof.
また、図 9で示したように、枠形状をした基板 50の片側に、平面視形状が例えば 三角形であるセンサ本体 55を片持ち状態で中空保持した構造のものであっても よい。もちろん、四角形やその他のセンサ本体形状も可能であり、枠形状も円形そ の他が可能である。  Further, as shown in FIG. 9, a structure in which a sensor body 55 having a triangular shape in a plan view, for example, is held in a hollow state on one side of a frame-shaped substrate 50 may be employed. Of course, a square or other sensor body shape is also possible, and the frame shape can be circular or otherwise.
次に、本発明に係る、センサ Bを、図 10及び図 11を参照して説明する。  Next, the sensor B according to the present invention will be described with reference to FIGS.
図 1〜図 9に示すセンサ Al、 A2、 A3、 A5は、何れもセンサ本体が高分子膜を 二つの電極層で挟んだ積層構造を有していたが、センサ Bのセンサ本体 65は、 二つの薄膜電極 61 , 63に高分子膜 62を埋め込んだ構造を有している。  The sensors Al, A2, A3, and A5 shown in FIGS. 1 to 9 all had a multilayer structure in which the polymer body was sandwiched between two electrode layers, but the sensor body 65 of the sensor B was It has a structure in which a polymer film 62 is embedded in two thin film electrodes 61 and 63.
より具体的には、センサ Bは、図 10に示すとおり、平面視で正方形状を有してい る。センサ Bの基板 60は、正方形の外形形状を有する枠体 60dからなり、枠体 60 dで回りを取り囲まれる空間が矩形の貫通孔 60aを形成している。この枠体 60dの 一方の面(上面) 60bに張り渡すようにセンサ本体 65が基板 60に形成されてい る。  More specifically, as shown in FIG. 10, the sensor B has a square shape in plan view. The substrate 60 of the sensor B includes a frame 60d having a square outer shape, and a space surrounded by the frame 60d forms a rectangular through hole 60a. A sensor body 65 is formed on the substrate 60 so as to extend over one surface (upper surface) 60b of the frame 60d.
センサ本体 65の一対の、薄膜電極 61, 63は、略同じ形状を有し、櫛状の多数 の歯を有しており、互いの歯を交互に、相手の隣り合う歯間に入り込ませ、且つ、 歯と歯を所定の間隔だけ離間させて配置されている。そして、電極 61 , 63の歯間 にできる隙間を充填するように、高分子膜 62が形成されている。よって、図 1 1の 断面図に示したように、第 1電極 61 ,高分子膜 62,第 2電極 63が何度も繰り返さ れた構造になっており、二つの電極膜 61 , 63および高分子膜 62は基板面 60bに 対してフラットに形成されている。  The pair of thin-film electrodes 61 and 63 of the sensor body 65 have substantially the same shape, and have a large number of comb-like teeth. In addition, the teeth are arranged with a predetermined space therebetween. The polymer film 62 is formed so as to fill a gap formed between the teeth of the electrodes 61 and 63. Therefore, as shown in the cross-sectional view of FIG. 11, the first electrode 61, the polymer film 62, and the second electrode 63 have a structure repeated many times, and the two electrode films 61, 63 and the high The molecular film 62 is formed flat with respect to the substrate surface 60b.
高分子膜の充填される間隔と薄膜電極の厚さは、前記櫛状の歯数、すなわち、 二つの電極が高分子膜と接する総面積に依存するコンデンサとしての検出感度 を考慮して最適に設計される。よって、薄膜の厚さを大きくしたレ、(厚膜にしたレ、) 場合には、上記の真空蒸着法ゃスパッタ法などでなく、メツキ法を用いてもよい。 センサ Bは、以下のようにして作製される。先ず、フラットな基板 60の上面 60bに マスキングをして上記形状の電極 61, 63を形成させ、必要ならばエッチング加工 をして上述した図 10のような形状の二つの電極を形成する。次に、例えばスピンコ ートなどで樹脂液を塗布した後それを硬化することにより、電極 61, 63の間に高 分子膜 62を埋め込み形成して、センサ本体 65を完成させる。そして、基板 60の 下面 60cをセンサ本体 65の表面に届くまでエッチングして貫通孔 60aが形成され る。 The space between the polymer film and the thickness of the thin film electrode is optimally determined in consideration of the number of teeth of the comb, that is, the detection sensitivity as a capacitor that depends on the total area of the two electrodes in contact with the polymer film. Designed. Therefore, the thickness of the thin film is increased (the thickness is increased) In this case, a plating method may be used instead of the above-described vacuum evaporation method / sputtering method. The sensor B is manufactured as follows. First, masking is performed on the upper surface 60b of the flat substrate 60 to form the electrodes 61 and 63 having the above shapes, and if necessary, etching is performed to form two electrodes having the shapes shown in FIG. 10 described above. Next, a polymer liquid is applied between the electrodes 61 and 63 by applying a resin liquid by, for example, a spin coat, and then hardening the resin liquid, thereby completing the sensor body 65. Then, the lower surface 60c of the substrate 60 is etched until it reaches the surface of the sensor main body 65 to form a through hole 60a.
上述のようにセンサ Bは、電極 61 , 63とその間に介在する高分子膜 62で一つの コンデンサ構造が形成されているので、環境からの水分子吸蔵'脱水に伴う高分 子膜 62の静電容量の変化を検出信号として取り出すことができる。  As described above, in the sensor B, since one capacitor structure is formed by the electrodes 61 and 63 and the polymer film 62 interposed therebetween, the static electricity of the polymer film 62 accompanying occlusion and dehydration of water molecules from the environment is obtained. A change in capacitance can be extracted as a detection signal.
その場合、このセンサ本体 65における高分子膜 62は、センサ A1における高分 子膜 12の場合とは全く異なる挙動を示す。すなわち、センサ Bを高温高湿の環境 に置くと高分子膜 62は熱膨張しょうとするが、両側の電極 61 , 63によってその熱 膨張は均等に抑制される。すなわち、高分子の骨格部と自由体積部は基準環境 下の状態と同じ構造を保ったままで、高温高湿環境になっても自由体積部だけが 骨格部に対して相対的に大きくなることがない。  In this case, the polymer film 62 in the sensor body 65 behaves completely differently from the case of the polymer film 12 in the sensor A1. That is, when the sensor B is placed in a high-temperature and high-humidity environment, the polymer film 62 tends to thermally expand, but the thermal expansion is uniformly suppressed by the electrodes 61 and 63 on both sides. In other words, while the skeleton and free volume of the polymer maintain the same structure as in the reference environment, only the free volume becomes relatively larger than the skeleton even in a high-temperature, high-humidity environment. Absent.
センサ Bの場合は、高分子膜の熱膨張を全体的に略均等に拘束したことにより、 高温環境下で自由体積部だけが大きくなることはなぐ基準環境下の高分子形 状を保っていると考えられる。実験によれば、センサ Bも高温高湿環境を経ても自 由体積部に大きな残留応力が発生していない。つまり、センサ Bも、センサ Aと同じ くドリフト劣化が抑制される。  In the case of sensor B, the thermal expansion of the polymer film is almost uniformly restrained as a whole, so that the polymer shape under the standard environment is maintained, so that only the free volume part does not increase in a high temperature environment. it is conceivable that. According to the experiment, large residual stress did not occur in the free volume even after sensor B passed through the high temperature and high humidity environment. That is, the drift deterioration of the sensor B is suppressed similarly to the sensor A.
一方、高分子膜 62は図 1 1の上方からも、また貫通孔 60aを介して下方からも、 直接、環境と接触しているので、センサ Aの高分子膜に比べてはるかに水分子の 吸蔵 ·離脱が起こりやすい。よって、センサ Bは環境への湿度応答性も優れたもの になる。 On the other hand, since the polymer film 62 is in direct contact with the environment both from above in FIG. 11 and from below through the through-hole 60a, much more water molecules are compared to the polymer film of the sensor A. Occlusion and release easily occur. Therefore, sensor B has excellent humidity response to the environment. become.
図 1で示したセンサ Alの実施例を以下のようにして製造した。  An example of the sensor Al shown in FIG. 1 was manufactured as follows.
厚み 0.5mm のガラス基板 10の上に、真空蒸着法で Ptを堆積して厚み 500nm の第 1電極 11を形成し(図 2)、その上に、ポリイミドの樹脂液を塗布したのち温度 300°Cで熱処理して厚み 5 μπιの架橋ポリイミド高分子膜 12を成膜した(図 3)。そ して、この膜 12の上に、スパッタ法で Crを堆積して厚み lOOnmの第 2電極 13を形 成し、ガラス基板 10の上面 10bにセンサ本体 15を配置した(図 4)。  Pt is deposited on a glass substrate 10 having a thickness of 0.5 mm by a vacuum deposition method to form a first electrode 11 having a thickness of 500 nm (FIG. 2). C was heat-treated to form a 5 μπι-thick crosslinked polyimide polymer film 12 (Fig. 3). Then, Cr was deposited on the film 12 by sputtering to form a second electrode 13 having a thickness of 100 nm, and the sensor body 15 was disposed on the upper surface 10b of the glass substrate 10 (FIG. 4).
ついで、ガラス基板 10の下面 1 Ocにレジストを塗布したのちフォトリソグラフィーを 行レ、、下面 10c端部に枠状のレジストマスク 14を形成した(図 5)。  Next, after applying a resist to the lower surface 1 Oc of the glass substrate 10, photolithography was performed, and a frame-shaped resist mask 14 was formed at the end of the lower surface 10 c (FIG. 5).
ついで、 ICPドライエッチング装置を用いて、表出している下面 10cから第 1電極 11の下面 11 aまで完全にエッチング除去し、センサ本体 15をガラス基板 10で中 空保持した構造を製造した。そして、ポリイミド膜 12の一部を除去して第 1電極 11 の端部を表出させ、この端部と第 2電極 13の端部のそれぞれに Cu製のリード線 3 a, 3bを導電性接着剤で接続して、図 1で示したセンサ A1を製造した。  Next, using an ICP dry etching apparatus, the structure was completely removed by etching from the exposed lower surface 10c to the lower surface 11a of the first electrode 11, and the sensor body 15 was held in the air by the glass substrate 10. Then, a part of the polyimide film 12 is removed to expose the end of the first electrode 11, and the lead wires 3a and 3b made of Cu are electrically connected to this end and the end of the second electrode 13, respectively. By connecting with an adhesive, the sensor A1 shown in FIG. 1 was manufactured.
比較のために、ガラス基板 10にエッチング処理を行わず基板 10の上面 10bに センサ本体 15が配置されている従来構造のセンサを製造した。これをセンサ C1と する(図 11)。  For comparison, a sensor having a conventional structure in which the sensor body 15 is disposed on the upper surface 10b of the substrate 10 without performing the etching process on the glass substrate 10 was manufactured. This is sensor C1 (Fig. 11).
以下に、センサ A1とセンサ C1とを測定比較した実験結果を述べる。測定手順 は以下の通りである。  An experimental result of measurement and comparison between the sensor A1 and the sensor C1 will be described below. The measurement procedure is as follows.
(1)センサ A1とセンサ C 1との相対湿度 1 %当たりの静電容量測定  (1) Capacitance measurement per 1% relative humidity between sensor A1 and sensor C1
レヽずれも温度力 S25。Cで、ネ目対湿度力 S10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%の 9水準で管理されている環境を作成し、これらの環境にセン サを配置し、そのときの静電容量を測定する。測定は、 LCZメータ(測定条件:周 波数 100kHz,印加電圧 1.0 V)で行った。 Rere shift even when the temperature force S 25. In C, create an environment that is managed at 9 levels of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of the humidity vs. humidity. A sensor is placed at the point where the capacitance is measured. The measurement was performed with an LCZ meter (measurement conditions: frequency 100 kHz, applied voltage 1.0 V).
得られた静電容量値を縦軸に、上記の相対湿度を横軸にしてプロットする。測 定温度は 25°Cと比較的低温であるため、相対湿度と検出値(静電容量)はきれい な比例関係にある直線が得られた。この直線の勾配は、相対湿度が 1 %変化した ときにセンサで検出される静電容量の変化量 Vを意味し、その単位は(静電容量 pFZl%相対湿度)である。測定の結果、センサ A1,センサ C1に関して得られた 変化量 Vは、いずれも 0.2であった。 The obtained capacitance value is plotted on the vertical axis, and the relative humidity is plotted on the horizontal axis. Measurement Since the constant temperature is relatively low at 25 ° C, a straight line was obtained in which the relative humidity and the detected value (capacitance) had a clear proportional relationship. The slope of this straight line indicates the amount of change in capacitance V detected by the sensor when the relative humidity changes by 1%, and its unit is (capacitance pFZl% relative humidity). As a result of the measurement, the variation V obtained for the sensor A1 and the sensor C1 was 0.2 in both cases.
(2)基準環境および高温高湿環境に保ったセンサの静電容量比較  (2) Capacitance comparison of sensor maintained in standard environment and high temperature and high humidity environment
上述の 9水準の環境から、温度 25°C>相対湿度 10%の環境(1),温度 25°C、 相対湿度 50%の環境(11),温度 25°C,相対湿度 90%の環境(III)を基準環境と し一し HX Ahした。  From the above 9 levels of environment, the environment of temperature 25 ° C> 10% relative humidity (1), the environment of temperature 25 ° C and relative humidity 50% (11), the environment of temperature 25 ° C and relative humidity 90% ( III) was set as the reference environment and HX Ah was performed.
三つの環境の中にセンサ A1,センサ C1を配置し、そのときの静電容量を測定し た。センサ A1,センサ C1はいずれも、環境ひ)の場合は 192DF,環境(II)の場合 は 200pF,環境(III)の場合は 208pFとレヽぅ同じ値を示した。  Sensor A1 and sensor C1 were placed in three environments, and the capacitance at that time was measured. Both sensor A1 and sensor C1 showed the same values as 192DF in the case of environment (1), 200pF in the case of environment (II), and 208pF in the case of environment (III).
ついで、センサ A1とセンサ C1を、環境(I), (II), (III)から温度 40°C、相対湿度 90%の高温高湿環境下に移して、 200時間経過後, 600時間経過後, 1000時 間経過後に各センサを取り出し、基準環境(I), (II), (III)に戻してその環境下に おいて静電容量を測定した。  Then, the sensor A1 and the sensor C1 were moved from the environment (I), (II), and (III) to a high-temperature and high-humidity environment with a temperature of 40 ° C and a relative humidity of 90%. After 1000 hours, each sensor was taken out and returned to the reference environment (I), (II), (III), and the capacitance was measured under that environment.
そして、高温高湿度環境の履歴による静電容量の増加量(pF)と、上述の(1) で得られた 1%相対湿度当たりの静電容量の変化値 0. 2(pF)とを用いて、以下 のようにして高温高湿環境下に置いた後の基準環境下の相対湿度値 Zを計算し た。  Then, the amount of increase in capacitance (pF) due to the history of the high-temperature and high-humidity environment and the change in capacitance per 1% relative humidity obtained in (1) above, 0.2 (pF), are used. Then, the relative humidity value Z in the reference environment after being placed in the high-temperature and high-humidity environment was calculated as follows.
環境(I)の場合:  For environment (I):
Z={ (高温高湿環境下に放置後における相対湿度 10%のときの静電容量一 高温高湿環境下に放置前の相対湿度 10%のときの静電容量) ZO. 2} +1 Z = {(Capacitance at 10% relative humidity after standing in a high temperature and high humidity environment-Capacitance at 10% relative humidity before standing in a high temperature and high humidity environment) ZO. 2} +1
0 0
環境(II)の場合: Z= { (高温高湿環境下に放置後における相対湿度 50%のときの静電容量— 高温高湿環境下に放置前の相対湿度 50 %のときの静電容量) /0. 2 } + 5For environment (II): Z = {(Capacitance at 50% relative humidity after standing in a high temperature and high humidity environment—Capacitance at 50% relative humidity before leaving in a high temperature and high humidity environment) /0.2} + Five
0 0
環境(III)の場合:  For environment (III):
Z = { (高温高湿環境下に放置後における相対湿度 90%のときの静電容量— 高温高湿環境下に放置前の相対湿度 90 %のときの静電容量) /0. 2 } + 9 Z = {(Capacitance at 90% relative humidity after storage in a high temperature and high humidity environment-Capacitance at 90% relative humidity before storage in a high temperature and high humidity environment) /0.2} + 9
0 0
以上の結果を、環境(I)の場合は図 1 3、環境(II)の場合は図 14、環境(ΠΙ)の 場合は図 15、にそれぞれ示した。  The above results are shown in Fig. 13 for environment (I), Fig. 14 for environment (II), and Fig. 15 for environment (II).
さて、図 13〜図 15において、横軸のゼロ点における縦軸の値は、環境(1),環 境(II)または環境(III)での各センサの高温高湿環境下に放置する前の相対湿 度(%RH)である。この値は、センサ Al,センサ C 1がいずれも同種の高分子膜を 用いているのですべて同じ値になっている。  In FIGS. 13 to 15, the values on the vertical axis at the zero point on the horizontal axis are the values before the sensor is left in a high-temperature, high-humidity environment in environment (1), environment (II) or environment (III). Relative humidity (% RH). This value is the same because both sensor Al and sensor C1 use the same type of polymer film.
ところ力 センサ A1 ,センサ C 1を、高温高湿環境下に放置した後では両者は次 のような挙動を示す。  However, after the force sensors A1 and C1 have been left in a high-temperature, high-humidity environment, they both behave as follows.
例えば、図 13において、センサ A1を 200時間放置したのち、再び環境(I)に戻 して静電容量を測定すると Z値は約 10.5を示すが、センサ C 1の場合は約 12.1の Z値を示している。すなわち、センサ Al,センサ C 1のいずれにおいても、高温髙湿 環境下に 200時間放置しておくと、検出した静電容量は高温高湿環境に放置す る前に比べて増加する。 Z値が環境(I)における基準値 Z。(横軸ゼロ点における Z 値)より大きな差を示すセンサほど、高分子膜内の水分子の残留量が多い。  For example, in Fig. 13, after leaving sensor A1 for 200 hours, returning to the environment (I) again and measuring the capacitance, the Z value shows about 10.5, while the sensor C1 shows a Z value of about 12.1. Is shown. In other words, when the sensor Al and the sensor C1 are both left in a high-temperature and high-humidity environment for 200 hours, the detected capacitance increases as compared to before being left in a high-temperature and high-humidity environment. Z value is the reference value Z in environment (I). (Z value at the zero point on the horizontal axis) The larger the difference between the sensors, the larger the residual amount of water molecules in the polymer film.
高温髙湿環境下に放置する前、すなわち環境(I)における Z値がセンサ A1 ,セ ンサ C 1はいずれも 10.0であったことを考えると、高温高湿環境下に 200時間放 置されることにより、センサ A1の Z値は約 0.5 ( = 10.5— 10.0)大きくなり、センサ C 1の Z値は 1.6 ( = 12.1— 10.5)大きくなつている。つまり、センサ A1では 0. 5%R Hの誤差を持ち、センサ C1では 1 · 6 %RHの誤差を持っている。すなわち、センサ A1はセンサ C 1に比べてドリフ卜劣化がかなり抑制されていることがわかる。 Before being left in a high-temperature and high-humidity environment, that is, considering that the Z value in environment (I) was 10.0 for both sensor A1 and sensor C1, they were left in a high-temperature and high-humidity environment for 200 hours. As a result, the Z value of the sensor A1 increases by about 0.5 (= 10.5-10.0), and the Z value of the sensor C1 increases by 1.6 (= 12.1-10.5). That is, 0.5% R for sensor A1 It has an error of H and sensor C1 has an error of 1.6% RH. That is, it is understood that the drift deterioration of the sensor A1 is considerably suppressed as compared with the sensor C1.
本発明のセンサ構造は、基準環境を高湿側(50%、 90%)に設定すればするほ ど、センサ A1のほうがセンサ C1より応力緩和効果が大きいことが図 14と図 15から 明らかである。  It is clear from FIGS. 14 and 15 that the more the reference environment is set to the high humidity side (50%, 90%), the more the sensor A1 has a greater stress relaxation effect than the sensor C1. is there.
以上の結果から明らかなように、本発明の静電容量センサは高温高湿環境下 においてもドリフト劣化を起こしづらぐ再現性の高い相対湿度信号が得られる。 これは、センサ本体 15が配置されている基板 10に、センサ本体 1 5にまで到達 する貫通孔 10aを設けて、センサ本体 1 5の高分子膜 1 2の熱膨張の自由度を確 保して、膜内の自由体積部が水分子による応力蓄積しにくいセンサ構造設計をし た効果である。同じように、センサ Bにおいても同様な効果が得られる。  As is clear from the above results, the capacitance sensor of the present invention can obtain a highly reproducible relative humidity signal which does not easily cause drift deterioration even in a high temperature and high humidity environment. This is because a through-hole 10a that reaches the sensor body 15 is provided in the substrate 10 on which the sensor body 15 is disposed, so that the degree of freedom of thermal expansion of the polymer film 12 of the sensor body 15 is ensured. This is the effect of designing the sensor structure so that the free volume in the film does not easily accumulate stress due to water molecules. Similarly, a similar effect can be obtained in the sensor B.
上記の実施例では、センサ本体の数を一個に限定して説明したが、一個の基 板に複数個のセンサ本体を形成し、それぞれのセンサ本体に少なくとも一個以上 の貫通孔を持つものであってもよい。  In the above embodiment, the number of sensor bodies is limited to one. However, a plurality of sensor bodies are formed on one substrate, and each sensor body has at least one through hole. You may.
なお、本発明は上述した実施例に何ら限定されるものではない。上記の説明は 測定対象が環境中の湿度である場合について行ったが、本発明の静電容量セン サはこれに限定されるものではなぐ高分子膜への吸蔵とその脱離により静電容 量を変化させるようなガス類(例えばホルムアルデヒド,アセトン,アルコール)であ れば、それを検出対象とするセンサとして使用することができる。要は、本発明は その要旨を逸脱しない範囲で種々変形して実施することができる。 産業上の利用可能性  The present invention is not limited to the embodiment described above. The above description has been made on the case where the measurement target is the humidity in the environment. However, the capacitance sensor of the present invention is not limited to this. Gases that change the temperature (for example, formaldehyde, acetone, and alcohol) can be used as sensors to detect them. In short, the present invention can be implemented with various modifications without departing from the scope of the invention. Industrial applicability
本発明によれば、従来の湿度検出センサのドリフト劣化を抑制することができ、 例えば燃料電池における湿度検出、施設園芸栽培、気象、食物貯蔵'乾燥など のように極めて高温高湿の環境が必要とされる分野などで有効である。  ADVANTAGE OF THE INVENTION According to the present invention, it is possible to suppress drift deterioration of a conventional humidity detection sensor, and an extremely high temperature and high humidity environment such as humidity detection in a fuel cell, horticulture cultivation in facilities, weather, and food storage and drying is required. It is effective in fields such as

Claims

請 求 の 範 囲 The scope of the claims
1.下記からなる静電容量型の湿度検出センサ;  1. Capacitive humidity sensor consisting of:
第一及び第二の面を有するセンサ本体、該センサ本体は、第 1及び第 2電極と、 第 1電極と第 2電極の間に介在させた高分子膜とを含む; また  A sensor body having first and second surfaces, the sensor body including first and second electrodes, and a polymer film interposed between the first electrode and the second electrode;
一の面を有する基板、該基板は厚み方向に少なくとも 1個の貫通孔を有する; 前記センサ本体は、基板の前記一の面に保持されて配置され、センサ本体の 第一の面は前記貫通孔を介して環境に晒され、第二の面は直接環境に晒され る。  A substrate having one surface, the substrate having at least one through hole in a thickness direction; the sensor main body is held and arranged on the one surface of the substrate, and a first surface of the sensor main body is provided with the through hole. The second side is directly exposed to the environment through the holes.
2.前記センサ本体は、前記第 1電極が基板の前記一の面上に積層され、第一 電極の上に前記高分子膜が積層され、該高分子膜の上に第 2電極が積層されて 形成される積層構造を有する、請求項 1の湿度検出センサ  2. In the sensor body, the first electrode is stacked on the one surface of the substrate, the polymer film is stacked on the first electrode, and the second electrode is stacked on the polymer film. The humidity detection sensor according to claim 1, wherein the humidity detection sensor has a laminated structure formed by
3.前記第 1電極及び第 2電極の少なくとも何れか一方が多孔質構造または網目 状構造を有する、請求項 1又は 2の湿度検出センサ。  3. The humidity detection sensor according to claim 1, wherein at least one of the first electrode and the second electrode has a porous structure or a mesh structure.
4.前記第 1電極及び前記第 2電極の少なくとも何れか一方がクロム材料である、 請求項 1又は 2の湿度検出センサ。  4. The humidity detection sensor according to claim 1, wherein at least one of the first electrode and the second electrode is a chromium material.
5.前記高分子膜の一部が、前記貫通孔に表出している、請求項 1又は 2の湿度 検出センサ。  5. The humidity detection sensor according to claim 1, wherein a part of the polymer film is exposed in the through hole.
6.前記センサ本体の周縁部の一部が前記基板に保持されている、請求項 1又は 2の湿度検出センサ。  6. The humidity detection sensor according to claim 1, wherein a part of a peripheral portion of the sensor main body is held by the substrate.
7.前記センサ本体は、前記第 1電極、第 2電極及び前記高分子膜の全てが基 板の前記一の面上に形成され、第 1電極と第 2電極間に前記高分子膜が充填し て形成された、フラット膜構造を有する、請求項 1の湿度検出センサ 7. In the sensor body, the first electrode, the second electrode, and the polymer film are all formed on the one surface of the substrate, and the polymer film is filled between the first electrode and the second electrode. 2. The humidity detection sensor according to claim 1, wherein the humidity detection sensor has a flat film structure formed.
8.前記第 1電極及び第 2電極の少なくとも何れか一方が多孔質構造または網目 状構造を有する、請求項 7の湿度検出センサ。 8. The humidity detection sensor according to claim 7, wherein at least one of the first electrode and the second electrode has a porous structure or a mesh structure.
9.前記第 1電極及び前記第 2電極の少なくとも何れか一方がクロム材料である、 請求項 7の湿度検出センサ。 9. at least one of the first electrode and the second electrode is a chromium material, The humidity detection sensor according to claim 7.
10,前記センサ本体を複数個有し、前記基板は、前記複数のセンサ本体を保持 し、且つ、該各センサ本体のそれぞれ対応して少なくとも一個以上の貫通孔を持 つ、請求項 1の湿度検出センサ。  10. The humidity according to claim 1, wherein the sensor body has a plurality of the sensor bodies, the substrate holds the plurality of sensor bodies, and has at least one or more through holes corresponding to each of the sensor bodies. Detection sensor.
PCT/JP2002/004283 2001-04-27 2002-04-26 Capacitive sensor WO2002088693A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001132479A JP2002328110A (en) 2001-04-27 2001-04-27 Electrostatic capacity sensor
JP2001-132479 2001-04-27

Publications (1)

Publication Number Publication Date
WO2002088693A1 true WO2002088693A1 (en) 2002-11-07

Family

ID=18980486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004283 WO2002088693A1 (en) 2001-04-27 2002-04-26 Capacitive sensor

Country Status (2)

Country Link
JP (1) JP2002328110A (en)
WO (1) WO2002088693A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150185176A1 (en) * 2013-12-26 2015-07-02 Samsung Electro-Mechanics Co., Ltd. Humidity sensor and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984723B2 (en) * 2006-08-01 2012-07-25 株式会社デンソー Humidity detector
JP2013542422A (en) * 2010-09-30 2013-11-21 スリーエム イノベイティブ プロパティズ カンパニー Sensor element, manufacturing method thereof, and sensor device including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116978A (en) * 1974-07-31 1976-02-10 Omron Tateisi Electronics Co KANSHITSU SOCHI
US4305112A (en) * 1978-11-06 1981-12-08 Siemens Aktiengesellschaft Capacitance humidity sensing element
JPS6148861B2 (en) * 1981-02-02 1986-10-27 Chino Works Ltd
JPH02309238A (en) * 1989-05-24 1990-12-25 Nok Corp Humidity sensitive element
JPH0523124U (en) * 1991-08-30 1993-03-26 株式会社佐藤計量器製作所 Capacitance type humidity sensor
JPH06294765A (en) * 1991-09-06 1994-10-21 Glory Ltd Manufacture of humidity sensor
JP2001004579A (en) * 1999-06-16 2001-01-12 Shinei Kk Capacitance-type humidity sensitive element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116978A (en) * 1974-07-31 1976-02-10 Omron Tateisi Electronics Co KANSHITSU SOCHI
US4305112A (en) * 1978-11-06 1981-12-08 Siemens Aktiengesellschaft Capacitance humidity sensing element
JPS6148861B2 (en) * 1981-02-02 1986-10-27 Chino Works Ltd
JPH02309238A (en) * 1989-05-24 1990-12-25 Nok Corp Humidity sensitive element
JPH0523124U (en) * 1991-08-30 1993-03-26 株式会社佐藤計量器製作所 Capacitance type humidity sensor
JPH06294765A (en) * 1991-09-06 1994-10-21 Glory Ltd Manufacture of humidity sensor
JP2001004579A (en) * 1999-06-16 2001-01-12 Shinei Kk Capacitance-type humidity sensitive element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150185176A1 (en) * 2013-12-26 2015-07-02 Samsung Electro-Mechanics Co., Ltd. Humidity sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002328110A (en) 2002-11-15

Similar Documents

Publication Publication Date Title
JP2004061305A (en) Capacitance sensor
KR101093612B1 (en) The capacitance type humidity sensor and fabrication method thereof
FI71998C (en) Capacitive hygrometer, where in used capacitor and method for making capacitor.
KR101367887B1 (en) Capacitance Type Humidity Sensor
KR100965835B1 (en) Fabricating method for capacitor type polymer sensor for measuring humidity and the same
US6557393B1 (en) Thin film ppb oxygen sensor
JPWO2003021246A1 (en) Capacitive moisture sensitive element and method of manufacturing capacitive moisture sensitive element
JP2004271461A (en) Capacitance type humidity sensor
WO2007102262A1 (en) Humidity sensor
CN104215676B (en) Microelectrode for electrochemical gas detector
WO2002088693A1 (en) Capacitive sensor
JPH06281610A (en) Humidity sensor, alcohol sensor or ketone sensor
JP2001004579A (en) Capacitance-type humidity sensitive element
JPH06148122A (en) Humidity detecting element
JPS6358249A (en) Humidity detecting element
DE19917717C2 (en) Capacitive humidity sensor
CN109690301B (en) Volumetric gas sensor
JPH03167463A (en) Moisture sensitive element
FI113806B (en) Moisture detection elements and method for making them
Yu et al. A self-packaged capacitive humidity sensor with low leakage loss
JPS6288951A (en) Moisture sensitive element and its production
CN114858874A (en) Humidity sensing structure, humidity sensor and manufacturing method of humidity sensing structure
JPH04155253A (en) Capacity type thin film moisture sensor and manufacture thereof
WO2001088523A1 (en) Humidity sensor
JPH03223648A (en) Thin film moisture sensitive element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase